sys_regs.c 75.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Derived from arch/arm/kvm/coproc.c:
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Authors: Rusty Russell <rusty@rustcorp.com.au>
 *          Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

23
#include <linux/bsearch.h>
24
#include <linux/kvm_host.h>
25
#include <linux/mm.h>
26
#include <linux/printk.h>
27
#include <linux/uaccess.h>
28

29 30
#include <asm/cacheflush.h>
#include <asm/cputype.h>
31
#include <asm/debug-monitors.h>
32 33 34 35 36
#include <asm/esr.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_coproc.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_host.h>
37
#include <asm/kvm_hyp.h>
38
#include <asm/kvm_mmu.h>
39
#include <asm/perf_event.h>
40
#include <asm/sysreg.h>
41

42 43 44 45
#include <trace/events/kvm.h>

#include "sys_regs.h"

46 47
#include "trace.h"

48 49 50 51 52
/*
 * All of this file is extremly similar to the ARM coproc.c, but the
 * types are different. My gut feeling is that it should be pretty
 * easy to merge, but that would be an ABI breakage -- again. VFP
 * would also need to be abstracted.
53 54 55 56
 *
 * For AArch32, we only take care of what is being trapped. Anything
 * that has to do with init and userspace access has to go via the
 * 64bit interface.
57 58
 */

59
static bool read_from_write_only(struct kvm_vcpu *vcpu,
60 61
				 struct sys_reg_params *params,
				 const struct sys_reg_desc *r)
62 63 64 65 66 67 68
{
	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
	print_sys_reg_instr(params);
	kvm_inject_undefined(vcpu);
	return false;
}

69 70 71 72 73 74 75 76 77 78
static bool write_to_read_only(struct kvm_vcpu *vcpu,
			       struct sys_reg_params *params,
			       const struct sys_reg_desc *r)
{
	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
	print_sys_reg_instr(params);
	kvm_inject_undefined(vcpu);
	return false;
}

79
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
80 81 82 83 84 85 86
{
	if (!vcpu->arch.sysregs_loaded_on_cpu)
		goto immediate_read;

	/*
	 * System registers listed in the switch are not saved on every
	 * exit from the guest but are only saved on vcpu_put.
87 88 89 90 91
	 *
	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
	 * should never be listed below, because the guest cannot modify its
	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
	 * thread when emulating cross-VCPU communication.
92 93
	 */
	switch (reg) {
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
	case CSSELR_EL1:	return read_sysreg_s(SYS_CSSELR_EL1);
	case SCTLR_EL1:		return read_sysreg_s(sctlr_EL12);
	case ACTLR_EL1:		return read_sysreg_s(SYS_ACTLR_EL1);
	case CPACR_EL1:		return read_sysreg_s(cpacr_EL12);
	case TTBR0_EL1:		return read_sysreg_s(ttbr0_EL12);
	case TTBR1_EL1:		return read_sysreg_s(ttbr1_EL12);
	case TCR_EL1:		return read_sysreg_s(tcr_EL12);
	case ESR_EL1:		return read_sysreg_s(esr_EL12);
	case AFSR0_EL1:		return read_sysreg_s(afsr0_EL12);
	case AFSR1_EL1:		return read_sysreg_s(afsr1_EL12);
	case FAR_EL1:		return read_sysreg_s(far_EL12);
	case MAIR_EL1:		return read_sysreg_s(mair_EL12);
	case VBAR_EL1:		return read_sysreg_s(vbar_EL12);
	case CONTEXTIDR_EL1:	return read_sysreg_s(contextidr_EL12);
	case TPIDR_EL0:		return read_sysreg_s(SYS_TPIDR_EL0);
	case TPIDRRO_EL0:	return read_sysreg_s(SYS_TPIDRRO_EL0);
	case TPIDR_EL1:		return read_sysreg_s(SYS_TPIDR_EL1);
	case AMAIR_EL1:		return read_sysreg_s(amair_EL12);
	case CNTKCTL_EL1:	return read_sysreg_s(cntkctl_EL12);
	case PAR_EL1:		return read_sysreg_s(SYS_PAR_EL1);
114 115 116
	case DACR32_EL2:	return read_sysreg_s(SYS_DACR32_EL2);
	case IFSR32_EL2:	return read_sysreg_s(SYS_IFSR32_EL2);
	case DBGVCR32_EL2:	return read_sysreg_s(SYS_DBGVCR32_EL2);
117 118 119 120 121 122 123 124 125 126 127 128 129 130
	}

immediate_read:
	return __vcpu_sys_reg(vcpu, reg);
}

void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
{
	if (!vcpu->arch.sysregs_loaded_on_cpu)
		goto immediate_write;

	/*
	 * System registers listed in the switch are not restored on every
	 * entry to the guest but are only restored on vcpu_load.
131 132 133 134
	 *
	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
	 * should never be listed below, because the the MPIDR should only be
	 * set once, before running the VCPU, and never changed later.
135 136
	 */
	switch (reg) {
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	case CSSELR_EL1:	write_sysreg_s(val, SYS_CSSELR_EL1);	return;
	case SCTLR_EL1:		write_sysreg_s(val, sctlr_EL12);	return;
	case ACTLR_EL1:		write_sysreg_s(val, SYS_ACTLR_EL1);	return;
	case CPACR_EL1:		write_sysreg_s(val, cpacr_EL12);	return;
	case TTBR0_EL1:		write_sysreg_s(val, ttbr0_EL12);	return;
	case TTBR1_EL1:		write_sysreg_s(val, ttbr1_EL12);	return;
	case TCR_EL1:		write_sysreg_s(val, tcr_EL12);		return;
	case ESR_EL1:		write_sysreg_s(val, esr_EL12);		return;
	case AFSR0_EL1:		write_sysreg_s(val, afsr0_EL12);	return;
	case AFSR1_EL1:		write_sysreg_s(val, afsr1_EL12);	return;
	case FAR_EL1:		write_sysreg_s(val, far_EL12);		return;
	case MAIR_EL1:		write_sysreg_s(val, mair_EL12);		return;
	case VBAR_EL1:		write_sysreg_s(val, vbar_EL12);		return;
	case CONTEXTIDR_EL1:	write_sysreg_s(val, contextidr_EL12);	return;
	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	return;
	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	return;
	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	return;
	case AMAIR_EL1:		write_sysreg_s(val, amair_EL12);	return;
	case CNTKCTL_EL1:	write_sysreg_s(val, cntkctl_EL12);	return;
	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	return;
157 158 159
	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	return;
	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	return;
	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	return;
160 161 162 163 164 165
	}

immediate_write:
	 __vcpu_sys_reg(vcpu, reg) = val;
}

166 167 168 169 170 171 172 173 174 175 176 177 178
/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
static u32 cache_levels;

/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
#define CSSELR_MAX 12

/* Which cache CCSIDR represents depends on CSSELR value. */
static u32 get_ccsidr(u32 csselr)
{
	u32 ccsidr;

	/* Make sure noone else changes CSSELR during this! */
	local_irq_disable();
179
	write_sysreg(csselr, csselr_el1);
180
	isb();
181
	ccsidr = read_sysreg(ccsidr_el1);
182 183 184 185 186
	local_irq_enable();

	return ccsidr;
}

187 188 189
/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 */
190
static bool access_dcsw(struct kvm_vcpu *vcpu,
191
			struct sys_reg_params *p,
192 193 194
			const struct sys_reg_desc *r)
{
	if (!p->is_write)
195
		return read_from_write_only(vcpu, p, r);
196

197 198 199 200 201 202 203 204 205 206
	/*
	 * Only track S/W ops if we don't have FWB. It still indicates
	 * that the guest is a bit broken (S/W operations should only
	 * be done by firmware, knowing that there is only a single
	 * CPU left in the system, and certainly not from non-secure
	 * software).
	 */
	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
		kvm_set_way_flush(vcpu);

207 208 209
	return true;
}

210 211
/*
 * Generic accessor for VM registers. Only called as long as HCR_TVM
212 213
 * is set. If the guest enables the MMU, we stop trapping the VM
 * sys_regs and leave it in complete control of the caches.
214 215
 */
static bool access_vm_reg(struct kvm_vcpu *vcpu,
216
			  struct sys_reg_params *p,
217 218
			  const struct sys_reg_desc *r)
{
219
	bool was_enabled = vcpu_has_cache_enabled(vcpu);
220 221
	u64 val;
	int reg = r->reg;
222 223 224

	BUG_ON(!p->is_write);

225 226 227 228 229 230
	/* See the 32bit mapping in kvm_host.h */
	if (p->is_aarch32)
		reg = r->reg / 2;

	if (!p->is_aarch32 || !p->is_32bit) {
		val = p->regval;
231
	} else {
232
		val = vcpu_read_sys_reg(vcpu, reg);
233 234 235 236 237
		if (r->reg % 2)
			val = (p->regval << 32) | (u64)lower_32_bits(val);
		else
			val = ((u64)upper_32_bits(val) << 32) |
				lower_32_bits(p->regval);
238
	}
239
	vcpu_write_sys_reg(vcpu, val, reg);
240

241
	kvm_toggle_cache(vcpu, was_enabled);
242 243 244
	return true;
}

245 246 247 248 249 250 251
/*
 * Trap handler for the GICv3 SGI generation system register.
 * Forward the request to the VGIC emulation.
 * The cp15_64 code makes sure this automatically works
 * for both AArch64 and AArch32 accesses.
 */
static bool access_gic_sgi(struct kvm_vcpu *vcpu,
252
			   struct sys_reg_params *p,
253 254
			   const struct sys_reg_desc *r)
{
255 256
	bool g1;

257
	if (!p->is_write)
258
		return read_from_write_only(vcpu, p, r);
259

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
	/*
	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
	 * group.
	 */
	if (p->is_aarch32) {
		switch (p->Op1) {
		default:		/* Keep GCC quiet */
		case 0:			/* ICC_SGI1R */
			g1 = true;
			break;
		case 1:			/* ICC_ASGI1R */
		case 2:			/* ICC_SGI0R */
			g1 = false;
			break;
		}
	} else {
		switch (p->Op2) {
		default:		/* Keep GCC quiet */
		case 5:			/* ICC_SGI1R_EL1 */
			g1 = true;
			break;
		case 6:			/* ICC_ASGI1R_EL1 */
		case 7:			/* ICC_SGI0R_EL1 */
			g1 = false;
			break;
		}
	}

	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
292 293 294 295

	return true;
}

296 297 298 299 300 301 302 303 304 305 306
static bool access_gic_sre(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	if (p->is_write)
		return ignore_write(vcpu, p);

	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
	return true;
}

307
static bool trap_raz_wi(struct kvm_vcpu *vcpu,
308
			struct sys_reg_params *p,
309
			const struct sys_reg_desc *r)
310 311 312 313 314 315 316
{
	if (p->is_write)
		return ignore_write(vcpu, p);
	else
		return read_zero(vcpu, p);
}

317 318 319 320 321 322 323 324 325
/*
 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
 * treat it separately.
 */
static bool trap_loregion(struct kvm_vcpu *vcpu,
			  struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
326
{
327 328 329 330 331 332 333 334 335 336 337 338 339
	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
	u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);

	if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
		kvm_inject_undefined(vcpu);
		return false;
	}

	if (p->is_write && sr == SYS_LORID_EL1)
		return write_to_read_only(vcpu, p, r);

	return trap_raz_wi(vcpu, p, r);
340 341
}

342
static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
343
			   struct sys_reg_params *p,
344 345 346 347 348
			   const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
349
		p->regval = (1 << 3);
350 351 352 353 354
		return true;
	}
}

static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
355
				   struct sys_reg_params *p,
356 357 358 359 360
				   const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
361
		p->regval = read_sysreg(dbgauthstatus_el1);
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
		return true;
	}
}

/*
 * We want to avoid world-switching all the DBG registers all the
 * time:
 * 
 * - If we've touched any debug register, it is likely that we're
 *   going to touch more of them. It then makes sense to disable the
 *   traps and start doing the save/restore dance
 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
 *   then mandatory to save/restore the registers, as the guest
 *   depends on them.
 * 
 * For this, we use a DIRTY bit, indicating the guest has modified the
 * debug registers, used as follow:
 *
 * On guest entry:
 * - If the dirty bit is set (because we're coming back from trapping),
 *   disable the traps, save host registers, restore guest registers.
 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
 *   set the dirty bit, disable the traps, save host registers,
 *   restore guest registers.
 * - Otherwise, enable the traps
 *
 * On guest exit:
 * - If the dirty bit is set, save guest registers, restore host
 *   registers and clear the dirty bit. This ensure that the host can
 *   now use the debug registers.
 */
static bool trap_debug_regs(struct kvm_vcpu *vcpu,
394
			    struct sys_reg_params *p,
395 396 397
			    const struct sys_reg_desc *r)
{
	if (p->is_write) {
398
		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
399
		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
400
	} else {
401
		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
402 403
	}

404
	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
405

406 407 408
	return true;
}

409 410 411 412 413 414 415 416 417
/*
 * reg_to_dbg/dbg_to_reg
 *
 * A 32 bit write to a debug register leave top bits alone
 * A 32 bit read from a debug register only returns the bottom bits
 *
 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
 * hyp.S code switches between host and guest values in future.
 */
418 419 420
static void reg_to_dbg(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *p,
		       u64 *dbg_reg)
421
{
422
	u64 val = p->regval;
423 424 425 426 427 428 429

	if (p->is_32bit) {
		val &= 0xffffffffUL;
		val |= ((*dbg_reg >> 32) << 32);
	}

	*dbg_reg = val;
430
	vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
431 432
}

433 434 435
static void dbg_to_reg(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *p,
		       u64 *dbg_reg)
436
{
437
	p->regval = *dbg_reg;
438
	if (p->is_32bit)
439
		p->regval &= 0xffffffffUL;
440 441
}

442 443 444
static bool trap_bvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
445 446 447 448 449 450 451 452
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

453 454
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

455 456 457 458 459 460 461 462
	return true;
}

static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

463
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
464 465 466 467 468 469 470 471 472 473 474 475 476 477
		return -EFAULT;
	return 0;
}

static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

478 479
static void reset_bvr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
480 481 482 483
{
	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
}

484 485 486
static bool trap_bcr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
487 488 489 490 491 492 493 494
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

495 496
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

497 498 499 500 501 502 503 504
	return true;
}

static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

505
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
		return -EFAULT;

	return 0;
}

static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

521 522
static void reset_bcr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
523 524 525 526
{
	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
}

527 528 529
static bool trap_wvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
530 531 532 533 534 535 536 537
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

538 539 540
	trace_trap_reg(__func__, rd->reg, p->is_write,
		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);

541 542 543 544 545 546 547 548
	return true;
}

static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

549
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
550 551 552 553 554 555 556 557 558 559 560 561 562 563
		return -EFAULT;
	return 0;
}

static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

564 565
static void reset_wvr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
566 567 568 569
{
	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
}

570 571 572
static bool trap_wcr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
573 574 575 576 577 578 579 580
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

581 582
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

583 584 585 586 587 588 589 590
	return true;
}

static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

591
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
592 593 594 595 596 597 598 599 600 601 602 603 604 605
		return -EFAULT;
	return 0;
}

static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

606 607
static void reset_wcr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
608 609 610 611
{
	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
}

612 613
static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
614 615
	u64 amair = read_sysreg(amair_el1);
	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
616 617 618 619
}

static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
620 621
	u64 mpidr;

622
	/*
623 624 625 626 627
	 * Map the vcpu_id into the first three affinity level fields of
	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
	 * of the GICv3 to be able to address each CPU directly when
	 * sending IPIs.
628
	 */
629 630 631
	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
632
	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
633 634
}

635 636 637 638
static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	u64 pmcr, val;

639 640 641
	pmcr = read_sysreg(pmcr_el0);
	/*
	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
642 643 644 645
	 * except PMCR.E resetting to zero.
	 */
	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
646
	__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
647 648
}

649
static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
650
{
651
	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
652
	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
653

654 655
	if (!enabled)
		kvm_inject_undefined(vcpu);
656

657
	return !enabled;
658 659
}

660
static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
661
{
662 663
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
}
664

665 666 667
static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
{
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
668 669 670 671
}

static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
672
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
673 674 675 676
}

static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
677
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
678 679
}

680 681 682 683 684 685 686 687
static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			const struct sys_reg_desc *r)
{
	u64 val;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

688 689 690
	if (pmu_access_el0_disabled(vcpu))
		return false;

691 692
	if (p->is_write) {
		/* Only update writeable bits of PMCR */
693
		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
694 695
		val &= ~ARMV8_PMU_PMCR_MASK;
		val |= p->regval & ARMV8_PMU_PMCR_MASK;
696
		__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
697
		kvm_pmu_handle_pmcr(vcpu, val);
698 699
	} else {
		/* PMCR.P & PMCR.C are RAZ */
700
		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
701 702 703 704 705 706 707
		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
		p->regval = val;
	}

	return true;
}

708 709 710 711 712 713
static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

714 715 716
	if (pmu_access_event_counter_el0_disabled(vcpu))
		return false;

717
	if (p->is_write)
718
		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
719 720
	else
		/* return PMSELR.SEL field */
721
		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
722 723 724 725 726
			    & ARMV8_PMU_COUNTER_MASK;

	return true;
}

727 728 729 730 731 732 733 734 735 736
static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	u64 pmceid;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	BUG_ON(p->is_write);

737 738 739
	if (pmu_access_el0_disabled(vcpu))
		return false;

740
	if (!(p->Op2 & 1))
741
		pmceid = read_sysreg(pmceid0_el0);
742
	else
743
		pmceid = read_sysreg(pmceid1_el0);
744 745 746 747 748 749

	p->regval = pmceid;

	return true;
}

750 751 752 753
static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
{
	u64 pmcr, val;

754
	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
755
	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
756 757
	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
		kvm_inject_undefined(vcpu);
758
		return false;
759
	}
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

	return true;
}

static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
			      struct sys_reg_params *p,
			      const struct sys_reg_desc *r)
{
	u64 idx;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (r->CRn == 9 && r->CRm == 13) {
		if (r->Op2 == 2) {
			/* PMXEVCNTR_EL0 */
776 777 778
			if (pmu_access_event_counter_el0_disabled(vcpu))
				return false;

779
			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
780 781 782
			      & ARMV8_PMU_COUNTER_MASK;
		} else if (r->Op2 == 0) {
			/* PMCCNTR_EL0 */
783 784 785
			if (pmu_access_cycle_counter_el0_disabled(vcpu))
				return false;

786 787
			idx = ARMV8_PMU_CYCLE_IDX;
		} else {
788
			return false;
789
		}
790 791 792 793 794 795
	} else if (r->CRn == 0 && r->CRm == 9) {
		/* PMCCNTR */
		if (pmu_access_event_counter_el0_disabled(vcpu))
			return false;

		idx = ARMV8_PMU_CYCLE_IDX;
796 797
	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
		/* PMEVCNTRn_EL0 */
798 799 800
		if (pmu_access_event_counter_el0_disabled(vcpu))
			return false;

801 802
		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
	} else {
803
		return false;
804 805 806 807 808
	}

	if (!pmu_counter_idx_valid(vcpu, idx))
		return false;

809 810 811 812
	if (p->is_write) {
		if (pmu_access_el0_disabled(vcpu))
			return false;

813
		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
814
	} else {
815
		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
816
	}
817 818 819 820

	return true;
}

821 822 823 824 825 826 827 828
static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			       const struct sys_reg_desc *r)
{
	u64 idx, reg;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

829 830 831
	if (pmu_access_el0_disabled(vcpu))
		return false;

832 833
	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
		/* PMXEVTYPER_EL0 */
834
		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
		reg = PMEVTYPER0_EL0 + idx;
	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
		if (idx == ARMV8_PMU_CYCLE_IDX)
			reg = PMCCFILTR_EL0;
		else
			/* PMEVTYPERn_EL0 */
			reg = PMEVTYPER0_EL0 + idx;
	} else {
		BUG();
	}

	if (!pmu_counter_idx_valid(vcpu, idx))
		return false;

	if (p->is_write) {
		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
852
		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
853
	} else {
854
		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
855 856 857 858 859
	}

	return true;
}

860 861 862 863 864 865 866 867
static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 val, mask;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

868 869 870
	if (pmu_access_el0_disabled(vcpu))
		return false;

871 872 873 874 875
	mask = kvm_pmu_valid_counter_mask(vcpu);
	if (p->is_write) {
		val = p->regval & mask;
		if (r->Op2 & 0x1) {
			/* accessing PMCNTENSET_EL0 */
876
			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
877 878 879
			kvm_pmu_enable_counter(vcpu, val);
		} else {
			/* accessing PMCNTENCLR_EL0 */
880
			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
881 882 883
			kvm_pmu_disable_counter(vcpu, val);
		}
	} else {
884
		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
885 886 887 888 889
	}

	return true;
}

890 891 892 893 894 895 896 897
static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 mask = kvm_pmu_valid_counter_mask(vcpu);

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

898 899
	if (!vcpu_mode_priv(vcpu)) {
		kvm_inject_undefined(vcpu);
900
		return false;
901
	}
902

903 904 905 906 907
	if (p->is_write) {
		u64 val = p->regval & mask;

		if (r->Op2 & 0x1)
			/* accessing PMINTENSET_EL1 */
908
			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
909 910
		else
			/* accessing PMINTENCLR_EL1 */
911
			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
912
	} else {
913
		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
914 915 916 917 918
	}

	return true;
}

919 920 921 922 923 924 925 926
static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			 const struct sys_reg_desc *r)
{
	u64 mask = kvm_pmu_valid_counter_mask(vcpu);

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

927 928 929
	if (pmu_access_el0_disabled(vcpu))
		return false;

930 931 932
	if (p->is_write) {
		if (r->CRm & 0x2)
			/* accessing PMOVSSET_EL0 */
933
			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
934 935
		else
			/* accessing PMOVSCLR_EL0 */
936
			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
937
	} else {
938
		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
939 940 941 942 943
	}

	return true;
}

944 945 946 947 948 949 950 951
static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 mask;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

952
	if (!p->is_write)
953
		return read_from_write_only(vcpu, p, r);
954

955 956 957
	if (pmu_write_swinc_el0_disabled(vcpu))
		return false;

958 959 960
	mask = kvm_pmu_valid_counter_mask(vcpu);
	kvm_pmu_software_increment(vcpu, p->regval & mask);
	return true;
961 962
}

963 964 965 966 967 968 969
static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			     const struct sys_reg_desc *r)
{
	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (p->is_write) {
970 971
		if (!vcpu_mode_priv(vcpu)) {
			kvm_inject_undefined(vcpu);
972
			return false;
973
		}
974

975 976
		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
			       p->regval & ARMV8_PMU_USERENR_MASK;
977
	} else {
978
		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
979 980 981 982 983 984
			    & ARMV8_PMU_USERENR_MASK;
	}

	return true;
}

985 986 987 988
#define reg_to_encoding(x)						\
	sys_reg((u32)(x)->Op0, (u32)(x)->Op1,				\
		(u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);

989 990
/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
#define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
991
	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
992
	  trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },		\
993
	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
994
	  trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },		\
995
	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
996
	  trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },		\
997
	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
998
	  trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
999

1000 1001
/* Macro to expand the PMEVCNTRn_EL0 register */
#define PMU_PMEVCNTR_EL0(n)						\
1002
	{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)),					\
1003 1004
	  access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }

1005 1006
/* Macro to expand the PMEVTYPERn_EL0 register */
#define PMU_PMEVTYPER_EL0(n)						\
1007
	{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)),					\
1008 1009
	  access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }

1010 1011 1012
static bool access_arch_timer(struct kvm_vcpu *vcpu,
			      struct sys_reg_params *p,
			      const struct sys_reg_desc *r)
1013
{
1014 1015 1016
	enum kvm_arch_timers tmr;
	enum kvm_arch_timer_regs treg;
	u64 reg = reg_to_encoding(r);
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	switch (reg) {
	case SYS_CNTP_TVAL_EL0:
	case SYS_AARCH32_CNTP_TVAL:
		tmr = TIMER_PTIMER;
		treg = TIMER_REG_TVAL;
		break;
	case SYS_CNTP_CTL_EL0:
	case SYS_AARCH32_CNTP_CTL:
		tmr = TIMER_PTIMER;
		treg = TIMER_REG_CTL;
		break;
	case SYS_CNTP_CVAL_EL0:
	case SYS_AARCH32_CNTP_CVAL:
		tmr = TIMER_PTIMER;
		treg = TIMER_REG_CVAL;
		break;
	default:
		BUG();
1036
	}
1037 1038

	if (p->is_write)
1039
		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1040
	else
1041
		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1042

1043 1044 1045
	return true;
}

1046
/* Read a sanitised cpufeature ID register by sys_reg_desc */
1047 1048
static u64 read_id_reg(const struct kvm_vcpu *vcpu,
		struct sys_reg_desc const *r, bool raz)
1049 1050 1051
{
	u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1052
	u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1053

1054
	if (id == SYS_ID_AA64PFR0_EL1 && !vcpu_has_sve(vcpu)) {
1055
		val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
M
Mark Rutland 已提交
1056 1057 1058 1059 1060 1061 1062 1063
	} else if (id == SYS_ID_AA64ISAR1_EL1) {
		const u64 ptrauth_mask = (0xfUL << ID_AA64ISAR1_APA_SHIFT) |
					 (0xfUL << ID_AA64ISAR1_API_SHIFT) |
					 (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
					 (0xfUL << ID_AA64ISAR1_GPI_SHIFT);
		if (val & ptrauth_mask)
			kvm_debug("ptrauth unsupported for guests, suppressing\n");
		val &= ~ptrauth_mask;
1064 1065 1066
	}

	return val;
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
}

/* cpufeature ID register access trap handlers */

static bool __access_id_reg(struct kvm_vcpu *vcpu,
			    struct sys_reg_params *p,
			    const struct sys_reg_desc *r,
			    bool raz)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p, r);

1079
	p->regval = read_id_reg(vcpu, r, raz);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	return true;
}

static bool access_id_reg(struct kvm_vcpu *vcpu,
			  struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	return __access_id_reg(vcpu, p, r, false);
}

static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
			      struct sys_reg_params *p,
			      const struct sys_reg_desc *r)
{
	return __access_id_reg(vcpu, p, r, true);
}

static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
static u64 sys_reg_to_index(const struct sys_reg_desc *reg);

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
/* Visibility overrides for SVE-specific control registers */
static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
				   const struct sys_reg_desc *rd)
{
	if (vcpu_has_sve(vcpu))
		return 0;

	return REG_HIDDEN_USER | REG_HIDDEN_GUEST;
}

/* Visibility overrides for SVE-specific ID registers */
static unsigned int sve_id_visibility(const struct kvm_vcpu *vcpu,
				      const struct sys_reg_desc *rd)
{
	if (vcpu_has_sve(vcpu))
		return 0;

	return REG_HIDDEN_USER;
}

/* Generate the emulated ID_AA64ZFR0_EL1 value exposed to the guest */
static u64 guest_id_aa64zfr0_el1(const struct kvm_vcpu *vcpu)
{
	if (!vcpu_has_sve(vcpu))
		return 0;

	return read_sanitised_ftr_reg(SYS_ID_AA64ZFR0_EL1);
}

static bool access_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
				   struct sys_reg_params *p,
				   const struct sys_reg_desc *rd)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p, rd);

	p->regval = guest_id_aa64zfr0_el1(vcpu);
	return true;
}

static int get_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
		const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	u64 val;

1147
	if (WARN_ON(!vcpu_has_sve(vcpu)))
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		return -ENOENT;

	val = guest_id_aa64zfr0_el1(vcpu);
	return reg_to_user(uaddr, &val, reg->id);
}

static int set_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
		const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	const u64 id = sys_reg_to_index(rd);
	int err;
	u64 val;

1162
	if (WARN_ON(!vcpu_has_sve(vcpu)))
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
		return -ENOENT;

	err = reg_from_user(&val, uaddr, id);
	if (err)
		return err;

	/* This is what we mean by invariant: you can't change it. */
	if (val != guest_id_aa64zfr0_el1(vcpu))
		return -EINVAL;

	return 0;
}

1176 1177 1178 1179 1180 1181 1182
/*
 * cpufeature ID register user accessors
 *
 * For now, these registers are immutable for userspace, so no values
 * are stored, and for set_id_reg() we don't allow the effective value
 * to be changed.
 */
1183 1184
static int __get_id_reg(const struct kvm_vcpu *vcpu,
			const struct sys_reg_desc *rd, void __user *uaddr,
1185 1186 1187
			bool raz)
{
	const u64 id = sys_reg_to_index(rd);
1188
	const u64 val = read_id_reg(vcpu, rd, raz);
1189 1190 1191 1192

	return reg_to_user(uaddr, &val, id);
}

1193 1194
static int __set_id_reg(const struct kvm_vcpu *vcpu,
			const struct sys_reg_desc *rd, void __user *uaddr,
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
			bool raz)
{
	const u64 id = sys_reg_to_index(rd);
	int err;
	u64 val;

	err = reg_from_user(&val, uaddr, id);
	if (err)
		return err;

	/* This is what we mean by invariant: you can't change it. */
1206
	if (val != read_id_reg(vcpu, rd, raz))
1207 1208 1209 1210 1211 1212 1213 1214
		return -EINVAL;

	return 0;
}

static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		      const struct kvm_one_reg *reg, void __user *uaddr)
{
1215
	return __get_id_reg(vcpu, rd, uaddr, false);
1216 1217 1218 1219 1220
}

static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		      const struct kvm_one_reg *reg, void __user *uaddr)
{
1221
	return __set_id_reg(vcpu, rd, uaddr, false);
1222 1223 1224 1225 1226
}

static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
			  const struct kvm_one_reg *reg, void __user *uaddr)
{
1227
	return __get_id_reg(vcpu, rd, uaddr, true);
1228 1229 1230 1231 1232
}

static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
			  const struct kvm_one_reg *reg, void __user *uaddr)
{
1233
	return __set_id_reg(vcpu, rd, uaddr, true);
1234 1235
}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
		       const struct sys_reg_desc *r)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p, r);

	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
	return true;
}

static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			 const struct sys_reg_desc *r)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p, r);

	p->regval = read_sysreg(clidr_el1);
	return true;
}

static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	if (p->is_write)
		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
	else
		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
	return true;
}

static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	u32 csselr;

	if (p->is_write)
		return write_to_read_only(vcpu, p, r);

	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
	p->regval = get_ccsidr(csselr);
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290

	/*
	 * Guests should not be doing cache operations by set/way at all, and
	 * for this reason, we trap them and attempt to infer the intent, so
	 * that we can flush the entire guest's address space at the appropriate
	 * time.
	 * To prevent this trapping from causing performance problems, let's
	 * expose the geometry of all data and unified caches (which are
	 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
	 * [If guests should attempt to infer aliasing properties from the
	 * geometry (which is not permitted by the architecture), they would
	 * only do so for virtually indexed caches.]
	 */
	if (!(csselr & 1)) // data or unified cache
		p->regval &= ~GENMASK(27, 3);
1291 1292 1293
	return true;
}

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
/* sys_reg_desc initialiser for known cpufeature ID registers */
#define ID_SANITISED(name) {			\
	SYS_DESC(SYS_##name),			\
	.access	= access_id_reg,		\
	.get_user = get_id_reg,			\
	.set_user = set_id_reg,			\
}

/*
 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
 * (1 <= crm < 8, 0 <= Op2 < 8).
 */
#define ID_UNALLOCATED(crm, op2) {			\
	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
	.access = access_raz_id_reg,			\
	.get_user = get_raz_id_reg,			\
	.set_user = set_raz_id_reg,			\
}

/*
 * sys_reg_desc initialiser for known ID registers that we hide from guests.
 * For now, these are exposed just like unallocated ID regs: they appear
 * RAZ for the guest.
 */
#define ID_HIDDEN(name) {			\
	SYS_DESC(SYS_##name),			\
	.access = access_raz_id_reg,		\
	.get_user = get_raz_id_reg,		\
	.set_user = set_raz_id_reg,		\
}

1326 1327 1328
/*
 * Architected system registers.
 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1329
 *
1330 1331 1332 1333 1334 1335
 * Debug handling: We do trap most, if not all debug related system
 * registers. The implementation is good enough to ensure that a guest
 * can use these with minimal performance degradation. The drawback is
 * that we don't implement any of the external debug, none of the
 * OSlock protocol. This should be revisited if we ever encounter a
 * more demanding guest...
1336 1337
 */
static const struct sys_reg_desc sys_reg_descs[] = {
1338 1339 1340
	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1341

1342 1343
	DBG_BCR_BVR_WCR_WVR_EL1(0),
	DBG_BCR_BVR_WCR_WVR_EL1(1),
1344 1345
	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	DBG_BCR_BVR_WCR_WVR_EL1(2),
	DBG_BCR_BVR_WCR_WVR_EL1(3),
	DBG_BCR_BVR_WCR_WVR_EL1(4),
	DBG_BCR_BVR_WCR_WVR_EL1(5),
	DBG_BCR_BVR_WCR_WVR_EL1(6),
	DBG_BCR_BVR_WCR_WVR_EL1(7),
	DBG_BCR_BVR_WCR_WVR_EL1(8),
	DBG_BCR_BVR_WCR_WVR_EL1(9),
	DBG_BCR_BVR_WCR_WVR_EL1(10),
	DBG_BCR_BVR_WCR_WVR_EL1(11),
	DBG_BCR_BVR_WCR_WVR_EL1(12),
	DBG_BCR_BVR_WCR_WVR_EL1(13),
	DBG_BCR_BVR_WCR_WVR_EL1(14),
	DBG_BCR_BVR_WCR_WVR_EL1(15),

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },

	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
	// DBGDTR[TR]X_EL0 share the same encoding
	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },

	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1376

1377
	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420

	/*
	 * ID regs: all ID_SANITISED() entries here must have corresponding
	 * entries in arm64_ftr_regs[].
	 */

	/* AArch64 mappings of the AArch32 ID registers */
	/* CRm=1 */
	ID_SANITISED(ID_PFR0_EL1),
	ID_SANITISED(ID_PFR1_EL1),
	ID_SANITISED(ID_DFR0_EL1),
	ID_HIDDEN(ID_AFR0_EL1),
	ID_SANITISED(ID_MMFR0_EL1),
	ID_SANITISED(ID_MMFR1_EL1),
	ID_SANITISED(ID_MMFR2_EL1),
	ID_SANITISED(ID_MMFR3_EL1),

	/* CRm=2 */
	ID_SANITISED(ID_ISAR0_EL1),
	ID_SANITISED(ID_ISAR1_EL1),
	ID_SANITISED(ID_ISAR2_EL1),
	ID_SANITISED(ID_ISAR3_EL1),
	ID_SANITISED(ID_ISAR4_EL1),
	ID_SANITISED(ID_ISAR5_EL1),
	ID_SANITISED(ID_MMFR4_EL1),
	ID_UNALLOCATED(2,7),

	/* CRm=3 */
	ID_SANITISED(MVFR0_EL1),
	ID_SANITISED(MVFR1_EL1),
	ID_SANITISED(MVFR2_EL1),
	ID_UNALLOCATED(3,3),
	ID_UNALLOCATED(3,4),
	ID_UNALLOCATED(3,5),
	ID_UNALLOCATED(3,6),
	ID_UNALLOCATED(3,7),

	/* AArch64 ID registers */
	/* CRm=4 */
	ID_SANITISED(ID_AA64PFR0_EL1),
	ID_SANITISED(ID_AA64PFR1_EL1),
	ID_UNALLOCATED(4,2),
	ID_UNALLOCATED(4,3),
1421
	{ SYS_DESC(SYS_ID_AA64ZFR0_EL1), access_id_aa64zfr0_el1, .get_user = get_id_aa64zfr0_el1, .set_user = set_id_aa64zfr0_el1, .visibility = sve_id_visibility },
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	ID_UNALLOCATED(4,5),
	ID_UNALLOCATED(4,6),
	ID_UNALLOCATED(4,7),

	/* CRm=5 */
	ID_SANITISED(ID_AA64DFR0_EL1),
	ID_SANITISED(ID_AA64DFR1_EL1),
	ID_UNALLOCATED(5,2),
	ID_UNALLOCATED(5,3),
	ID_HIDDEN(ID_AA64AFR0_EL1),
	ID_HIDDEN(ID_AA64AFR1_EL1),
	ID_UNALLOCATED(5,6),
	ID_UNALLOCATED(5,7),

	/* CRm=6 */
	ID_SANITISED(ID_AA64ISAR0_EL1),
	ID_SANITISED(ID_AA64ISAR1_EL1),
	ID_UNALLOCATED(6,2),
	ID_UNALLOCATED(6,3),
	ID_UNALLOCATED(6,4),
	ID_UNALLOCATED(6,5),
	ID_UNALLOCATED(6,6),
	ID_UNALLOCATED(6,7),

	/* CRm=7 */
	ID_SANITISED(ID_AA64MMFR0_EL1),
	ID_SANITISED(ID_AA64MMFR1_EL1),
	ID_SANITISED(ID_AA64MMFR2_EL1),
	ID_UNALLOCATED(7,3),
	ID_UNALLOCATED(7,4),
	ID_UNALLOCATED(7,5),
	ID_UNALLOCATED(7,6),
	ID_UNALLOCATED(7,7),

1456 1457
	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1458
	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1459 1460 1461 1462 1463 1464 1465
	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },

	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },

1476 1477
	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1478

1479 1480
	{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
	{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1481

1482 1483
	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1484

1485 1486 1487 1488 1489
	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
1490

1491
	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1492
	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1493

1494
	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1495
	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1496
	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1497
	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1498
	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1499
	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1500 1501
	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1502
	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1503
	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1504
	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1505
	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1506

1507 1508
	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1509

1510
	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1511

1512 1513 1514 1515
	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr },
	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
1516

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
	{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
	{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
	{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
	{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
	{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
	{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
	{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
	{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
	{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
	{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
	/*
	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1530 1531
	 * in 32bit mode. Here we choose to reset it as zero for consistency.
	 */
1532 1533
	{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
	{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1534

1535 1536
	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1537

1538 1539 1540
	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1541

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	/* PMEVCNTRn_EL0 */
	PMU_PMEVCNTR_EL0(0),
	PMU_PMEVCNTR_EL0(1),
	PMU_PMEVCNTR_EL0(2),
	PMU_PMEVCNTR_EL0(3),
	PMU_PMEVCNTR_EL0(4),
	PMU_PMEVCNTR_EL0(5),
	PMU_PMEVCNTR_EL0(6),
	PMU_PMEVCNTR_EL0(7),
	PMU_PMEVCNTR_EL0(8),
	PMU_PMEVCNTR_EL0(9),
	PMU_PMEVCNTR_EL0(10),
	PMU_PMEVCNTR_EL0(11),
	PMU_PMEVCNTR_EL0(12),
	PMU_PMEVCNTR_EL0(13),
	PMU_PMEVCNTR_EL0(14),
	PMU_PMEVCNTR_EL0(15),
	PMU_PMEVCNTR_EL0(16),
	PMU_PMEVCNTR_EL0(17),
	PMU_PMEVCNTR_EL0(18),
	PMU_PMEVCNTR_EL0(19),
	PMU_PMEVCNTR_EL0(20),
	PMU_PMEVCNTR_EL0(21),
	PMU_PMEVCNTR_EL0(22),
	PMU_PMEVCNTR_EL0(23),
	PMU_PMEVCNTR_EL0(24),
	PMU_PMEVCNTR_EL0(25),
	PMU_PMEVCNTR_EL0(26),
	PMU_PMEVCNTR_EL0(27),
	PMU_PMEVCNTR_EL0(28),
	PMU_PMEVCNTR_EL0(29),
	PMU_PMEVCNTR_EL0(30),
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	/* PMEVTYPERn_EL0 */
	PMU_PMEVTYPER_EL0(0),
	PMU_PMEVTYPER_EL0(1),
	PMU_PMEVTYPER_EL0(2),
	PMU_PMEVTYPER_EL0(3),
	PMU_PMEVTYPER_EL0(4),
	PMU_PMEVTYPER_EL0(5),
	PMU_PMEVTYPER_EL0(6),
	PMU_PMEVTYPER_EL0(7),
	PMU_PMEVTYPER_EL0(8),
	PMU_PMEVTYPER_EL0(9),
	PMU_PMEVTYPER_EL0(10),
	PMU_PMEVTYPER_EL0(11),
	PMU_PMEVTYPER_EL0(12),
	PMU_PMEVTYPER_EL0(13),
	PMU_PMEVTYPER_EL0(14),
	PMU_PMEVTYPER_EL0(15),
	PMU_PMEVTYPER_EL0(16),
	PMU_PMEVTYPER_EL0(17),
	PMU_PMEVTYPER_EL0(18),
	PMU_PMEVTYPER_EL0(19),
	PMU_PMEVTYPER_EL0(20),
	PMU_PMEVTYPER_EL0(21),
	PMU_PMEVTYPER_EL0(22),
	PMU_PMEVTYPER_EL0(23),
	PMU_PMEVTYPER_EL0(24),
	PMU_PMEVTYPER_EL0(25),
	PMU_PMEVTYPER_EL0(26),
	PMU_PMEVTYPER_EL0(27),
	PMU_PMEVTYPER_EL0(28),
	PMU_PMEVTYPER_EL0(29),
	PMU_PMEVTYPER_EL0(30),
1606 1607
	/*
	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1608 1609
	 * in 32bit mode. Here we choose to reset it as zero for consistency.
	 */
1610
	{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1611

1612 1613
	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1614
	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1615 1616
};

1617
static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1618
			struct sys_reg_params *p,
1619 1620 1621 1622 1623
			const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
1624 1625
		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1626
		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1627

1628 1629 1630 1631
		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
			     | (6 << 16) | (el3 << 14) | (el3 << 12));
1632 1633 1634 1635 1636
		return true;
	}
}

static bool trap_debug32(struct kvm_vcpu *vcpu,
1637
			 struct sys_reg_params *p,
1638 1639 1640
			 const struct sys_reg_desc *r)
{
	if (p->is_write) {
1641
		vcpu_cp14(vcpu, r->reg) = p->regval;
1642
		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1643
	} else {
1644
		p->regval = vcpu_cp14(vcpu, r->reg);
1645 1646 1647 1648 1649
	}

	return true;
}

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
/* AArch32 debug register mappings
 *
 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
 *
 * All control registers and watchpoint value registers are mapped to
 * the lower 32 bits of their AArch64 equivalents. We share the trap
 * handlers with the above AArch64 code which checks what mode the
 * system is in.
 */

1661 1662 1663
static bool trap_xvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
1664 1665 1666 1667 1668 1669 1670
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (p->is_write) {
		u64 val = *dbg_reg;

		val &= 0xffffffffUL;
1671
		val |= p->regval << 32;
1672 1673
		*dbg_reg = val;

1674
		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1675
	} else {
1676
		p->regval = *dbg_reg >> 32;
1677 1678
	}

1679 1680
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	return true;
}

#define DBG_BCR_BVR_WCR_WVR(n)						\
	/* DBGBVRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, 	\
	/* DBGBCRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	\
	/* DBGWVRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	\
	/* DBGWCRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }

#define DBGBXVR(n)							\
	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1696 1697 1698 1699

/*
 * Trapped cp14 registers. We generally ignore most of the external
 * debug, on the principle that they don't really make sense to a
1700
 * guest. Revisit this one day, would this principle change.
1701
 */
1702
static const struct sys_reg_desc cp14_regs[] = {
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	/* DBGIDR */
	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
	/* DBGDTRRXext */
	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },

	DBG_BCR_BVR_WCR_WVR(0),
	/* DBGDSCRint */
	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(1),
	/* DBGDCCINT */
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
	/* DBGDSCRext */
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
	DBG_BCR_BVR_WCR_WVR(2),
	/* DBGDTR[RT]Xint */
	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
	/* DBGDTR[RT]Xext */
	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(3),
	DBG_BCR_BVR_WCR_WVR(4),
	DBG_BCR_BVR_WCR_WVR(5),
	/* DBGWFAR */
	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
	/* DBGOSECCR */
	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(6),
	/* DBGVCR */
	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
	DBG_BCR_BVR_WCR_WVR(7),
	DBG_BCR_BVR_WCR_WVR(8),
	DBG_BCR_BVR_WCR_WVR(9),
	DBG_BCR_BVR_WCR_WVR(10),
	DBG_BCR_BVR_WCR_WVR(11),
	DBG_BCR_BVR_WCR_WVR(12),
	DBG_BCR_BVR_WCR_WVR(13),
	DBG_BCR_BVR_WCR_WVR(14),
	DBG_BCR_BVR_WCR_WVR(15),

	/* DBGDRAR (32bit) */
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },

	DBGBXVR(0),
	/* DBGOSLAR */
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
	DBGBXVR(1),
	/* DBGOSLSR */
	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
	DBGBXVR(2),
	DBGBXVR(3),
	/* DBGOSDLR */
	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
	DBGBXVR(4),
	/* DBGPRCR */
	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
	DBGBXVR(5),
	DBGBXVR(6),
	DBGBXVR(7),
	DBGBXVR(8),
	DBGBXVR(9),
	DBGBXVR(10),
	DBGBXVR(11),
	DBGBXVR(12),
	DBGBXVR(13),
	DBGBXVR(14),
	DBGBXVR(15),

	/* DBGDSAR (32bit) */
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },

	/* DBGDEVID2 */
	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
	/* DBGDEVID1 */
	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
	/* DBGDEVID */
	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
	/* DBGCLAIMSET */
	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
	/* DBGCLAIMCLR */
	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
	/* DBGAUTHSTATUS */
	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1784 1785
};

1786 1787
/* Trapped cp14 64bit registers */
static const struct sys_reg_desc cp14_64_regs[] = {
1788 1789 1790 1791 1792
	/* DBGDRAR (64bit) */
	{ Op1( 0), CRm( 1), .access = trap_raz_wi },

	/* DBGDSAR (64bit) */
	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
1793 1794
};

1795 1796 1797 1798 1799 1800 1801
/* Macro to expand the PMEVCNTRn register */
#define PMU_PMEVCNTR(n)							\
	/* PMEVCNTRn */							\
	{ Op1(0), CRn(0b1110),						\
	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
	  access_pmu_evcntr }

1802 1803 1804 1805 1806 1807 1808
/* Macro to expand the PMEVTYPERn register */
#define PMU_PMEVTYPER(n)						\
	/* PMEVTYPERn */						\
	{ Op1(0), CRn(0b1110),						\
	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
	  access_pmu_evtyper }

1809 1810 1811 1812 1813
/*
 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
 * depending on the way they are accessed (as a 32bit or a 64bit
 * register).
 */
1814
static const struct sys_reg_desc cp15_regs[] = {
1815
	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1816
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },

1828 1829 1830 1831 1832 1833
	/*
	 * DC{C,I,CI}SW operations:
	 */
	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1834

1835
	/* PMU */
1836
	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1837 1838
	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1839
	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1840
	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1841
	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1842 1843
	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1844
	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1845
	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1846
	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1847
	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1848 1849
	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1850
	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1851 1852 1853 1854 1855

	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1856 1857

	/* ICC_SRE */
1858
	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1859

1860
	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1861

1862 1863 1864
	/* Arch Tmers */
	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1865

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	/* PMEVCNTRn */
	PMU_PMEVCNTR(0),
	PMU_PMEVCNTR(1),
	PMU_PMEVCNTR(2),
	PMU_PMEVCNTR(3),
	PMU_PMEVCNTR(4),
	PMU_PMEVCNTR(5),
	PMU_PMEVCNTR(6),
	PMU_PMEVCNTR(7),
	PMU_PMEVCNTR(8),
	PMU_PMEVCNTR(9),
	PMU_PMEVCNTR(10),
	PMU_PMEVCNTR(11),
	PMU_PMEVCNTR(12),
	PMU_PMEVCNTR(13),
	PMU_PMEVCNTR(14),
	PMU_PMEVCNTR(15),
	PMU_PMEVCNTR(16),
	PMU_PMEVCNTR(17),
	PMU_PMEVCNTR(18),
	PMU_PMEVCNTR(19),
	PMU_PMEVCNTR(20),
	PMU_PMEVCNTR(21),
	PMU_PMEVCNTR(22),
	PMU_PMEVCNTR(23),
	PMU_PMEVCNTR(24),
	PMU_PMEVCNTR(25),
	PMU_PMEVCNTR(26),
	PMU_PMEVCNTR(27),
	PMU_PMEVCNTR(28),
	PMU_PMEVCNTR(29),
	PMU_PMEVCNTR(30),
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	/* PMEVTYPERn */
	PMU_PMEVTYPER(0),
	PMU_PMEVTYPER(1),
	PMU_PMEVTYPER(2),
	PMU_PMEVTYPER(3),
	PMU_PMEVTYPER(4),
	PMU_PMEVTYPER(5),
	PMU_PMEVTYPER(6),
	PMU_PMEVTYPER(7),
	PMU_PMEVTYPER(8),
	PMU_PMEVTYPER(9),
	PMU_PMEVTYPER(10),
	PMU_PMEVTYPER(11),
	PMU_PMEVTYPER(12),
	PMU_PMEVTYPER(13),
	PMU_PMEVTYPER(14),
	PMU_PMEVTYPER(15),
	PMU_PMEVTYPER(16),
	PMU_PMEVTYPER(17),
	PMU_PMEVTYPER(18),
	PMU_PMEVTYPER(19),
	PMU_PMEVTYPER(20),
	PMU_PMEVTYPER(21),
	PMU_PMEVTYPER(22),
	PMU_PMEVTYPER(23),
	PMU_PMEVTYPER(24),
	PMU_PMEVTYPER(25),
	PMU_PMEVTYPER(26),
	PMU_PMEVTYPER(27),
	PMU_PMEVTYPER(28),
	PMU_PMEVTYPER(29),
	PMU_PMEVTYPER(30),
	/* PMCCFILTR */
	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1932 1933 1934 1935

	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
1936 1937 1938 1939
};

static const struct sys_reg_desc cp15_64_regs[] = {
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1940
	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1941
	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
1942
	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1943 1944
	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
1945
	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
};

/* Target specific emulation tables */
static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];

void kvm_register_target_sys_reg_table(unsigned int target,
				       struct kvm_sys_reg_target_table *table)
{
	target_tables[target] = table;
}

/* Get specific register table for this target. */
1958 1959 1960
static const struct sys_reg_desc *get_target_table(unsigned target,
						   bool mode_is_64,
						   size_t *num)
1961 1962 1963 1964
{
	struct kvm_sys_reg_target_table *table;

	table = target_tables[target];
1965 1966 1967 1968 1969 1970 1971
	if (mode_is_64) {
		*num = table->table64.num;
		return table->table64.table;
	} else {
		*num = table->table32.num;
		return table->table32.table;
	}
1972 1973
}

1974 1975 1976 1977 1978
static int match_sys_reg(const void *key, const void *elt)
{
	const unsigned long pval = (unsigned long)key;
	const struct sys_reg_desc *r = elt;

1979
	return pval - reg_to_encoding(r);
1980 1981
}

1982 1983 1984 1985
static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
					 const struct sys_reg_desc table[],
					 unsigned int num)
{
1986
	unsigned long pval = reg_to_encoding(params);
1987 1988

	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1989 1990
}

1991 1992 1993 1994 1995 1996
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	kvm_inject_undefined(vcpu);
	return 1;
}

1997 1998 1999 2000
static void perform_access(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *params,
			   const struct sys_reg_desc *r)
{
2001 2002
	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);

2003 2004 2005 2006 2007 2008
	/* Check for regs disabled by runtime config */
	if (sysreg_hidden_from_guest(vcpu, r)) {
		kvm_inject_undefined(vcpu);
		return;
	}

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
	/*
	 * Not having an accessor means that we have configured a trap
	 * that we don't know how to handle. This certainly qualifies
	 * as a gross bug that should be fixed right away.
	 */
	BUG_ON(!r->access);

	/* Skip instruction if instructed so */
	if (likely(r->access(vcpu, params, r)))
		kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
}

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
/*
 * emulate_cp --  tries to match a sys_reg access in a handling table, and
 *                call the corresponding trap handler.
 *
 * @params: pointer to the descriptor of the access
 * @table: array of trap descriptors
 * @num: size of the trap descriptor array
 *
 * Return 0 if the access has been handled, and -1 if not.
 */
static int emulate_cp(struct kvm_vcpu *vcpu,
2032
		      struct sys_reg_params *params,
2033 2034
		      const struct sys_reg_desc *table,
		      size_t num)
2035
{
2036
	const struct sys_reg_desc *r;
2037

2038 2039
	if (!table)
		return -1;	/* Not handled */
2040 2041 2042

	r = find_reg(params, table, num);

2043
	if (r) {
2044 2045
		perform_access(vcpu, params, r);
		return 0;
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
	}

	/* Not handled */
	return -1;
}

static void unhandled_cp_access(struct kvm_vcpu *vcpu,
				struct sys_reg_params *params)
{
	u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
D
Dan Carpenter 已提交
2056
	int cp = -1;
2057 2058

	switch(hsr_ec) {
2059 2060
	case ESR_ELx_EC_CP15_32:
	case ESR_ELx_EC_CP15_64:
2061 2062
		cp = 15;
		break;
2063 2064
	case ESR_ELx_EC_CP14_MR:
	case ESR_ELx_EC_CP14_64:
2065 2066 2067
		cp = 14;
		break;
	default:
D
Dan Carpenter 已提交
2068
		WARN_ON(1);
2069 2070
	}

2071 2072
	kvm_err("Unsupported guest CP%d access at: %08lx [%08lx]\n",
		cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2073 2074 2075 2076 2077
	print_sys_reg_instr(params);
	kvm_inject_undefined(vcpu);
}

/**
2078
 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2079 2080 2081
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
2082 2083 2084 2085 2086
static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *global,
			    size_t nr_global,
			    const struct sys_reg_desc *target_specific,
			    size_t nr_specific)
2087 2088 2089
{
	struct sys_reg_params params;
	u32 hsr = kvm_vcpu_get_hsr(vcpu);
2090 2091
	int Rt = kvm_vcpu_sys_get_rt(vcpu);
	int Rt2 = (hsr >> 10) & 0x1f;
2092

2093 2094
	params.is_aarch32 = true;
	params.is_32bit = false;
2095 2096 2097 2098 2099 2100 2101 2102 2103
	params.CRm = (hsr >> 1) & 0xf;
	params.is_write = ((hsr & 1) == 0);

	params.Op0 = 0;
	params.Op1 = (hsr >> 16) & 0xf;
	params.Op2 = 0;
	params.CRn = 0;

	/*
2104
	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2105 2106 2107
	 * backends between AArch32 and AArch64, we get away with it.
	 */
	if (params.is_write) {
2108 2109
		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2110 2111
	}

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
	/*
	 * Try to emulate the coprocessor access using the target
	 * specific table first, and using the global table afterwards.
	 * If either of the tables contains a handler, handle the
	 * potential register operation in the case of a read and return
	 * with success.
	 */
	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
	    !emulate_cp(vcpu, &params, global, nr_global)) {
		/* Split up the value between registers for the read side */
		if (!params.is_write) {
			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
		}
2126

2127
		return 1;
2128 2129
	}

2130
	unhandled_cp_access(vcpu, &params);
2131 2132 2133 2134
	return 1;
}

/**
2135
 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2136 2137 2138
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
2139 2140 2141 2142 2143
static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *global,
			    size_t nr_global,
			    const struct sys_reg_desc *target_specific,
			    size_t nr_specific)
2144 2145 2146
{
	struct sys_reg_params params;
	u32 hsr = kvm_vcpu_get_hsr(vcpu);
2147
	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2148

2149 2150
	params.is_aarch32 = true;
	params.is_32bit = true;
2151
	params.CRm = (hsr >> 1) & 0xf;
2152
	params.regval = vcpu_get_reg(vcpu, Rt);
2153 2154 2155 2156 2157 2158
	params.is_write = ((hsr & 1) == 0);
	params.CRn = (hsr >> 10) & 0xf;
	params.Op0 = 0;
	params.Op1 = (hsr >> 14) & 0x7;
	params.Op2 = (hsr >> 17) & 0x7;

2159 2160 2161 2162
	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
	    !emulate_cp(vcpu, &params, global, nr_global)) {
		if (!params.is_write)
			vcpu_set_reg(vcpu, Rt, params.regval);
2163
		return 1;
2164
	}
2165 2166

	unhandled_cp_access(vcpu, &params);
2167 2168 2169
	return 1;
}

2170 2171 2172 2173 2174 2175 2176
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	const struct sys_reg_desc *target_specific;
	size_t num;

	target_specific = get_target_table(vcpu->arch.target, false, &num);
	return kvm_handle_cp_64(vcpu,
2177
				cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
				target_specific, num);
}

int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	const struct sys_reg_desc *target_specific;
	size_t num;

	target_specific = get_target_table(vcpu->arch.target, false, &num);
	return kvm_handle_cp_32(vcpu,
				cp15_regs, ARRAY_SIZE(cp15_regs),
				target_specific, num);
}

int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	return kvm_handle_cp_64(vcpu,
2195
				cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
				NULL, 0);
}

int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	return kvm_handle_cp_32(vcpu,
				cp14_regs, ARRAY_SIZE(cp14_regs),
				NULL, 0);
}

2206
static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2207
			   struct sys_reg_params *params)
2208 2209 2210 2211
{
	size_t num;
	const struct sys_reg_desc *table, *r;

2212
	table = get_target_table(vcpu->arch.target, true, &num);
2213 2214 2215 2216 2217 2218 2219

	/* Search target-specific then generic table. */
	r = find_reg(params, table, num);
	if (!r)
		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

	if (likely(r)) {
2220
		perform_access(vcpu, params, r);
2221
	} else {
2222 2223
		kvm_err("Unsupported guest sys_reg access at: %lx [%08lx]\n",
			*vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2224
		print_sys_reg_instr(params);
2225
		kvm_inject_undefined(vcpu);
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
	}
	return 1;
}

static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
			      const struct sys_reg_desc *table, size_t num)
{
	unsigned long i;

	for (i = 0; i < num; i++)
		if (table[i].reset)
			table[i].reset(vcpu, &table[i]);
}

/**
 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	struct sys_reg_params params;
	unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2249
	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2250
	int ret;
2251

2252 2253
	trace_kvm_handle_sys_reg(esr);

2254 2255
	params.is_aarch32 = false;
	params.is_32bit = false;
2256 2257 2258 2259 2260
	params.Op0 = (esr >> 20) & 3;
	params.Op1 = (esr >> 14) & 0x7;
	params.CRn = (esr >> 10) & 0xf;
	params.CRm = (esr >> 1) & 0xf;
	params.Op2 = (esr >> 17) & 0x7;
2261
	params.regval = vcpu_get_reg(vcpu, Rt);
2262 2263
	params.is_write = !(esr & 1);

2264 2265 2266 2267 2268
	ret = emulate_sys_reg(vcpu, &params);

	if (!params.is_write)
		vcpu_set_reg(vcpu, Rt, params.regval);
	return ret;
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
}

/******************************************************************************
 * Userspace API
 *****************************************************************************/

static bool index_to_params(u64 id, struct sys_reg_params *params)
{
	switch (id & KVM_REG_SIZE_MASK) {
	case KVM_REG_SIZE_U64:
		/* Any unused index bits means it's not valid. */
		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
			      | KVM_REG_ARM_COPROC_MASK
			      | KVM_REG_ARM64_SYSREG_OP0_MASK
			      | KVM_REG_ARM64_SYSREG_OP1_MASK
			      | KVM_REG_ARM64_SYSREG_CRN_MASK
			      | KVM_REG_ARM64_SYSREG_CRM_MASK
			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
			return false;
		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
		return true;
	default:
		return false;
	}
}

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
const struct sys_reg_desc *find_reg_by_id(u64 id,
					  struct sys_reg_params *params,
					  const struct sys_reg_desc table[],
					  unsigned int num)
{
	if (!index_to_params(id, params))
		return NULL;

	return find_reg(params, table, num);
}

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
/* Decode an index value, and find the sys_reg_desc entry. */
static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
						    u64 id)
{
	size_t num;
	const struct sys_reg_desc *table, *r;
	struct sys_reg_params params;

	/* We only do sys_reg for now. */
	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
		return NULL;

2327
	table = get_target_table(vcpu->arch.target, true, &num);
2328
	r = find_reg_by_id(id, &params, table, num);
2329 2330 2331
	if (!r)
		r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

2332 2333
	/* Not saved in the sys_reg array and not otherwise accessible? */
	if (r && !(r->reg || r->get_user))
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
		r = NULL;

	return r;
}

/*
 * These are the invariant sys_reg registers: we let the guest see the
 * host versions of these, so they're part of the guest state.
 *
 * A future CPU may provide a mechanism to present different values to
 * the guest, or a future kvm may trap them.
 */

#define FUNCTION_INVARIANT(reg)						\
	static void get_##reg(struct kvm_vcpu *v,			\
			      const struct sys_reg_desc *r)		\
	{								\
2351
		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
2352 2353 2354 2355 2356 2357 2358
	}

FUNCTION_INVARIANT(midr_el1)
FUNCTION_INVARIANT(revidr_el1)
FUNCTION_INVARIANT(clidr_el1)
FUNCTION_INVARIANT(aidr_el1)

2359 2360 2361 2362 2363
static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
{
	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
}

2364 2365
/* ->val is filled in by kvm_sys_reg_table_init() */
static struct sys_reg_desc invariant_sys_regs[] = {
2366 2367 2368 2369 2370
	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2371 2372
};

2373
static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2374 2375 2376 2377 2378 2379
{
	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
		return -EFAULT;
	return 0;
}

2380
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
{
	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
		return -EFAULT;
	return 0;
}

static int get_invariant_sys_reg(u64 id, void __user *uaddr)
{
	struct sys_reg_params params;
	const struct sys_reg_desc *r;

2392 2393
	r = find_reg_by_id(id, &params, invariant_sys_regs,
			   ARRAY_SIZE(invariant_sys_regs));
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	if (!r)
		return -ENOENT;

	return reg_to_user(uaddr, &r->val, id);
}

static int set_invariant_sys_reg(u64 id, void __user *uaddr)
{
	struct sys_reg_params params;
	const struct sys_reg_desc *r;
	int err;
	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */

2407 2408
	r = find_reg_by_id(id, &params, invariant_sys_regs,
			   ARRAY_SIZE(invariant_sys_regs));
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	if (!r)
		return -ENOENT;

	err = reg_from_user(&val, uaddr, id);
	if (err)
		return err;

	/* This is what we mean by invariant: you can't change it. */
	if (r->val != val)
		return -EINVAL;

	return 0;
}

static bool is_valid_cache(u32 val)
{
	u32 level, ctype;

	if (val >= CSSELR_MAX)
2428
		return false;
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519

	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
	level = (val >> 1);
	ctype = (cache_levels >> (level * 3)) & 7;

	switch (ctype) {
	case 0: /* No cache */
		return false;
	case 1: /* Instruction cache only */
		return (val & 1);
	case 2: /* Data cache only */
	case 4: /* Unified cache */
		return !(val & 1);
	case 3: /* Separate instruction and data caches */
		return true;
	default: /* Reserved: we can't know instruction or data. */
		return false;
	}
}

static int demux_c15_get(u64 id, void __user *uaddr)
{
	u32 val;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (!is_valid_cache(val))
			return -ENOENT;

		return put_user(get_ccsidr(val), uval);
	default:
		return -ENOENT;
	}
}

static int demux_c15_set(u64 id, void __user *uaddr)
{
	u32 val, newval;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (!is_valid_cache(val))
			return -ENOENT;

		if (get_user(newval, uval))
			return -EFAULT;

		/* This is also invariant: you can't change it. */
		if (newval != get_ccsidr(val))
			return -EINVAL;
		return 0;
	default:
		return -ENOENT;
	}
}

int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	const struct sys_reg_desc *r;
	void __user *uaddr = (void __user *)(unsigned long)reg->addr;

	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_get(reg->id, uaddr);

	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
		return -ENOENT;

	r = index_to_sys_reg_desc(vcpu, reg->id);
	if (!r)
		return get_invariant_sys_reg(reg->id, uaddr);

2520 2521 2522 2523
	/* Check for regs disabled by runtime config */
	if (sysreg_hidden_from_user(vcpu, r))
		return -ENOENT;

2524 2525 2526
	if (r->get_user)
		return (r->get_user)(vcpu, r, reg, uaddr);

2527
	return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
}

int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	const struct sys_reg_desc *r;
	void __user *uaddr = (void __user *)(unsigned long)reg->addr;

	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_set(reg->id, uaddr);

	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
		return -ENOENT;

	r = index_to_sys_reg_desc(vcpu, reg->id);
	if (!r)
		return set_invariant_sys_reg(reg->id, uaddr);

2545 2546 2547 2548
	/* Check for regs disabled by runtime config */
	if (sysreg_hidden_from_user(vcpu, r))
		return -ENOENT;

2549 2550 2551
	if (r->set_user)
		return (r->set_user)(vcpu, r, reg, uaddr);

2552
	return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
}

static unsigned int num_demux_regs(void)
{
	unsigned int i, count = 0;

	for (i = 0; i < CSSELR_MAX; i++)
		if (is_valid_cache(i))
			count++;

	return count;
}

static int write_demux_regids(u64 __user *uindices)
{
2568
	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
	unsigned int i;

	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
	for (i = 0; i < CSSELR_MAX; i++) {
		if (!is_valid_cache(i))
			continue;
		if (put_user(val | i, uindices))
			return -EFAULT;
		uindices++;
	}
	return 0;
}

static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
{
	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
		KVM_REG_ARM64_SYSREG |
		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
}

static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
{
	if (!*uind)
		return true;

	if (put_user(sys_reg_to_index(reg), *uind))
		return false;

	(*uind)++;
	return true;
}

2605 2606
static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *rd,
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
			    u64 __user **uind,
			    unsigned int *total)
{
	/*
	 * Ignore registers we trap but don't save,
	 * and for which no custom user accessor is provided.
	 */
	if (!(rd->reg || rd->get_user))
		return 0;

2617 2618 2619
	if (sysreg_hidden_from_user(vcpu, rd))
		return 0;

2620 2621 2622 2623 2624 2625 2626
	if (!copy_reg_to_user(rd, uind))
		return -EFAULT;

	(*total)++;
	return 0;
}

2627 2628 2629 2630 2631 2632
/* Assumed ordered tables, see kvm_sys_reg_table_init. */
static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
{
	const struct sys_reg_desc *i1, *i2, *end1, *end2;
	unsigned int total = 0;
	size_t num;
2633
	int err;
2634 2635

	/* We check for duplicates here, to allow arch-specific overrides. */
2636
	i1 = get_target_table(vcpu->arch.target, true, &num);
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
	end1 = i1 + num;
	i2 = sys_reg_descs;
	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);

	BUG_ON(i1 == end1 || i2 == end2);

	/* Walk carefully, as both tables may refer to the same register. */
	while (i1 || i2) {
		int cmp = cmp_sys_reg(i1, i2);
		/* target-specific overrides generic entry. */
2647
		if (cmp <= 0)
2648
			err = walk_one_sys_reg(vcpu, i1, &uind, &total);
2649
		else
2650
			err = walk_one_sys_reg(vcpu, i2, &uind, &total);
2651 2652 2653

		if (err)
			return err;
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689

		if (cmp <= 0 && ++i1 == end1)
			i1 = NULL;
		if (cmp >= 0 && ++i2 == end2)
			i2 = NULL;
	}
	return total;
}

unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
{
	return ARRAY_SIZE(invariant_sys_regs)
		+ num_demux_regs()
		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
}

int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
	unsigned int i;
	int err;

	/* Then give them all the invariant registers' indices. */
	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
			return -EFAULT;
		uindices++;
	}

	err = walk_sys_regs(vcpu, uindices);
	if (err < 0)
		return err;
	uindices += err;

	return write_demux_regids(uindices);
}

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
{
	unsigned int i;

	for (i = 1; i < n; i++) {
		if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
			return 1;
		}
	}

	return 0;
}

2704 2705 2706 2707 2708 2709
void kvm_sys_reg_table_init(void)
{
	unsigned int i;
	struct sys_reg_desc clidr;

	/* Make sure tables are unique and in order. */
2710 2711 2712 2713 2714 2715
	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757

	/* We abuse the reset function to overwrite the table itself. */
	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);

	/*
	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
	 *
	 *   If software reads the Cache Type fields from Ctype1
	 *   upwards, once it has seen a value of 0b000, no caches
	 *   exist at further-out levels of the hierarchy. So, for
	 *   example, if Ctype3 is the first Cache Type field with a
	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
	 *   ignored.
	 */
	get_clidr_el1(NULL, &clidr); /* Ugly... */
	cache_levels = clidr.val;
	for (i = 0; i < 7; i++)
		if (((cache_levels >> (i*3)) & 7) == 0)
			break;
	/* Clear all higher bits. */
	cache_levels &= (1 << (i*3))-1;
}

/**
 * kvm_reset_sys_regs - sets system registers to reset value
 * @vcpu: The VCPU pointer
 *
 * This function finds the right table above and sets the registers on the
 * virtual CPU struct to their architecturally defined reset values.
 */
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
{
	size_t num;
	const struct sys_reg_desc *table;

	/* Catch someone adding a register without putting in reset entry. */
	memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));

	/* Generic chip reset first (so target could override). */
	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

2758
	table = get_target_table(vcpu->arch.target, true, &num);
2759 2760
	reset_sys_reg_descs(vcpu, table, num);

2761 2762 2763 2764 2765
	for (num = 1; num < NR_SYS_REGS; num++) {
		if (WARN(__vcpu_sys_reg(vcpu, num) == 0x4242424242424242,
			 "Didn't reset __vcpu_sys_reg(%zi)\n", num))
			break;
	}
2766
}