cs-etm.c 84.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9
/*
 * Copyright(C) 2015-2018 Linaro Limited.
 *
 * Author: Tor Jeremiassen <tor@ti.com>
 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
 */

#include <linux/bitops.h>
10
#include <linux/coresight-pmu.h>
11 12 13 14
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/log2.h>
#include <linux/types.h>
15
#include <linux/zalloc.h>
16

17
#include <opencsd/ocsd_if_types.h>
18 19 20 21 22
#include <stdlib.h>

#include "auxtrace.h"
#include "color.h"
#include "cs-etm.h"
23
#include "cs-etm-decoder/cs-etm-decoder.h"
24
#include "debug.h"
25
#include "dso.h"
26 27 28 29 30
#include "evlist.h"
#include "intlist.h"
#include "machine.h"
#include "map.h"
#include "perf.h"
31
#include "session.h"
32 33
#include "map_symbol.h"
#include "branch.h"
34
#include "symbol.h"
35
#include "tool.h"
36 37
#include "thread.h"
#include "thread-stack.h"
38
#include <tools/libc_compat.h>
39
#include "util/synthetic-events.h"
40 41 42 43 44 45 46 47 48 49 50 51 52 53

struct cs_etm_auxtrace {
	struct auxtrace auxtrace;
	struct auxtrace_queues queues;
	struct auxtrace_heap heap;
	struct itrace_synth_opts synth_opts;
	struct perf_session *session;
	struct machine *machine;
	struct thread *unknown_thread;

	u8 timeless_decoding;
	u8 snapshot_mode;
	u8 data_queued;
	u8 sample_branches;
54
	u8 sample_instructions;
55 56

	int num_cpu;
57
	u64 latest_kernel_timestamp;
58 59 60
	u32 auxtrace_type;
	u64 branches_sample_type;
	u64 branches_id;
61 62 63
	u64 instructions_sample_type;
	u64 instructions_sample_period;
	u64 instructions_id;
64 65 66 67
	u64 **metadata;
	unsigned int pmu_type;
};

68 69
struct cs_etm_traceid_queue {
	u8 trace_chan_id;
70
	pid_t pid, tid;
71 72 73
	u64 period_instructions;
	size_t last_branch_pos;
	union perf_event *event_buf;
74
	struct thread *thread;
75 76 77 78 79 80 81
	struct branch_stack *last_branch;
	struct branch_stack *last_branch_rb;
	struct cs_etm_packet *prev_packet;
	struct cs_etm_packet *packet;
	struct cs_etm_packet_queue packet_queue;
};

82 83 84 85 86
struct cs_etm_queue {
	struct cs_etm_auxtrace *etm;
	struct cs_etm_decoder *decoder;
	struct auxtrace_buffer *buffer;
	unsigned int queue_nr;
87
	u8 pending_timestamp_chan_id;
88
	u64 offset;
89 90
	const unsigned char *buf;
	size_t buf_len, buf_used;
91 92 93
	/* Conversion between traceID and index in traceid_queues array */
	struct intlist *traceid_queues_list;
	struct cs_etm_traceid_queue **traceid_queues;
94 95
};

96 97 98
/* RB tree for quick conversion between traceID and metadata pointers */
static struct intlist *traceid_list;

99
static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
100
static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
101
static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
102
					   pid_t tid);
103 104
static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
105

106 107 108
/* PTMs ETMIDR [11:8] set to b0011 */
#define ETMIDR_PTM_VERSION 0x00000300

109 110 111 112 113 114
/*
 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
 * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
 * encode the etm queue number as the upper 16 bit and the channel as
 * the lower 16 bit.
 */
115
#define TO_CS_QUEUE_NR(queue_nr, trace_chan_id)	\
116 117 118 119
		      (queue_nr << 16 | trace_chan_id)
#define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
#define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)

120 121 122 123 124 125 126 127 128 129
static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
{
	etmidr &= ETMIDR_PTM_VERSION;

	if (etmidr == ETMIDR_PTM_VERSION)
		return CS_ETM_PROTO_PTM;

	return CS_ETM_PROTO_ETMV3;
}

130 131 132 133 134 135 136 137 138 139 140 141 142 143
static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
{
	struct int_node *inode;
	u64 *metadata;

	inode = intlist__find(traceid_list, trace_chan_id);
	if (!inode)
		return -EINVAL;

	metadata = inode->priv;
	*magic = metadata[CS_ETM_MAGIC];
	return 0;
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157
int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
{
	struct int_node *inode;
	u64 *metadata;

	inode = intlist__find(traceid_list, trace_chan_id);
	if (!inode)
		return -EINVAL;

	metadata = inode->priv;
	*cpu = (int)metadata[CS_ETM_CPU];
	return 0;
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * The returned PID format is presented by two bits:
 *
 *   Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced;
 *   Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced.
 *
 * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
 * are enabled at the same time when the session runs on an EL2 kernel.
 * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
 * recorded in the trace data, the tool will selectively use
 * CONTEXTIDR_EL2 as PID.
 */
int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt)
{
	struct int_node *inode;
	u64 *metadata, val;

	inode = intlist__find(traceid_list, trace_chan_id);
	if (!inode)
		return -EINVAL;

	metadata = inode->priv;

	if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
		val = metadata[CS_ETM_ETMCR];
		/* CONTEXTIDR is traced */
		if (val & BIT(ETM_OPT_CTXTID))
			*pid_fmt = BIT(ETM_OPT_CTXTID);
	} else {
		val = metadata[CS_ETMV4_TRCCONFIGR];
		/* CONTEXTIDR_EL2 is traced */
		if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
			*pid_fmt = BIT(ETM_OPT_CTXTID2);
		/* CONTEXTIDR_EL1 is traced */
		else if (val & BIT(ETM4_CFG_BIT_CTXTID))
			*pid_fmt = BIT(ETM_OPT_CTXTID);
	}

	return 0;
}

199 200 201 202
void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
					      u8 trace_chan_id)
{
	/*
203
	 * When a timestamp packet is encountered the backend code
204 205 206 207 208
	 * is stopped so that the front end has time to process packets
	 * that were accumulated in the traceID queue.  Since there can
	 * be more than one channel per cs_etm_queue, we need to specify
	 * what traceID queue needs servicing.
	 */
209
	etmq->pending_timestamp_chan_id = trace_chan_id;
210 211
}

212 213 214 215 216
static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
				      u8 *trace_chan_id)
{
	struct cs_etm_packet_queue *packet_queue;

217
	if (!etmq->pending_timestamp_chan_id)
218 219 220
		return 0;

	if (trace_chan_id)
221
		*trace_chan_id = etmq->pending_timestamp_chan_id;
222 223

	packet_queue = cs_etm__etmq_get_packet_queue(etmq,
224
						     etmq->pending_timestamp_chan_id);
225 226 227 228
	if (!packet_queue)
		return 0;

	/* Acknowledge pending status */
229
	etmq->pending_timestamp_chan_id = 0;
230 231

	/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
232
	return packet_queue->cs_timestamp;
233 234
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
{
	int i;

	queue->head = 0;
	queue->tail = 0;
	queue->packet_count = 0;
	for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
		queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
		queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
		queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
		queue->packet_buffer[i].instr_count = 0;
		queue->packet_buffer[i].last_instr_taken_branch = false;
		queue->packet_buffer[i].last_instr_size = 0;
		queue->packet_buffer[i].last_instr_type = 0;
		queue->packet_buffer[i].last_instr_subtype = 0;
		queue->packet_buffer[i].last_instr_cond = 0;
		queue->packet_buffer[i].flags = 0;
		queue->packet_buffer[i].exception_number = UINT32_MAX;
		queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
		queue->packet_buffer[i].cpu = INT_MIN;
	}
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272
static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
{
	int idx;
	struct int_node *inode;
	struct cs_etm_traceid_queue *tidq;
	struct intlist *traceid_queues_list = etmq->traceid_queues_list;

	intlist__for_each_entry(inode, traceid_queues_list) {
		idx = (int)(intptr_t)inode->priv;
		tidq = etmq->traceid_queues[idx];
		cs_etm__clear_packet_queue(&tidq->packet_queue);
	}
}

273 274 275 276 277
static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
				      struct cs_etm_traceid_queue *tidq,
				      u8 trace_chan_id)
{
	int rc = -ENOMEM;
278
	struct auxtrace_queue *queue;
279 280 281 282
	struct cs_etm_auxtrace *etm = etmq->etm;

	cs_etm__clear_packet_queue(&tidq->packet_queue);

283 284 285
	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
	tidq->tid = queue->tid;
	tidq->pid = -1;
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
	tidq->trace_chan_id = trace_chan_id;

	tidq->packet = zalloc(sizeof(struct cs_etm_packet));
	if (!tidq->packet)
		goto out;

	tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
	if (!tidq->prev_packet)
		goto out_free;

	if (etm->synth_opts.last_branch) {
		size_t sz = sizeof(struct branch_stack);

		sz += etm->synth_opts.last_branch_sz *
		      sizeof(struct branch_entry);
		tidq->last_branch = zalloc(sz);
		if (!tidq->last_branch)
			goto out_free;
		tidq->last_branch_rb = zalloc(sz);
		if (!tidq->last_branch_rb)
			goto out_free;
	}

	tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
	if (!tidq->event_buf)
		goto out_free;

	return 0;

out_free:
	zfree(&tidq->last_branch_rb);
	zfree(&tidq->last_branch);
	zfree(&tidq->prev_packet);
	zfree(&tidq->packet);
out:
	return rc;
}

static struct cs_etm_traceid_queue
*cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
{
327 328 329 330
	int idx;
	struct int_node *inode;
	struct intlist *traceid_queues_list;
	struct cs_etm_traceid_queue *tidq, **traceid_queues;
331 332
	struct cs_etm_auxtrace *etm = etmq->etm;

333 334
	if (etm->timeless_decoding)
		trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
335

336
	traceid_queues_list = etmq->traceid_queues_list;
337

338 339 340 341 342 343 344 345 346
	/*
	 * Check if the traceid_queue exist for this traceID by looking
	 * in the queue list.
	 */
	inode = intlist__find(traceid_queues_list, trace_chan_id);
	if (inode) {
		idx = (int)(intptr_t)inode->priv;
		return etmq->traceid_queues[idx];
	}
347

348
	/* We couldn't find a traceid_queue for this traceID, allocate one */
349 350 351 352 353 354
	tidq = malloc(sizeof(*tidq));
	if (!tidq)
		return NULL;

	memset(tidq, 0, sizeof(*tidq));

355 356 357 358 359 360 361 362 363 364
	/* Get a valid index for the new traceid_queue */
	idx = intlist__nr_entries(traceid_queues_list);
	/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
	inode = intlist__findnew(traceid_queues_list, trace_chan_id);
	if (!inode)
		goto out_free;

	/* Associate this traceID with this index */
	inode->priv = (void *)(intptr_t)idx;

365 366 367
	if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
		goto out_free;

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
	/* Grow the traceid_queues array by one unit */
	traceid_queues = etmq->traceid_queues;
	traceid_queues = reallocarray(traceid_queues,
				      idx + 1,
				      sizeof(*traceid_queues));

	/*
	 * On failure reallocarray() returns NULL and the original block of
	 * memory is left untouched.
	 */
	if (!traceid_queues)
		goto out_free;

	traceid_queues[idx] = tidq;
	etmq->traceid_queues = traceid_queues;
383

384
	return etmq->traceid_queues[idx];
385 386

out_free:
387 388 389 390 391
	/*
	 * Function intlist__remove() removes the inode from the list
	 * and delete the memory associated to it.
	 */
	intlist__remove(traceid_queues_list, inode);
392 393 394 395 396
	free(tidq);

	return NULL;
}

397
struct cs_etm_packet_queue
398
*cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
399
{
400 401 402 403 404 405 406
	struct cs_etm_traceid_queue *tidq;

	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
	if (tidq)
		return &tidq->packet_queue;

	return NULL;
407 408
}

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
				struct cs_etm_traceid_queue *tidq)
{
	struct cs_etm_packet *tmp;

	if (etm->sample_branches || etm->synth_opts.last_branch ||
	    etm->sample_instructions) {
		/*
		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
		 * the next incoming packet.
		 */
		tmp = tidq->packet;
		tidq->packet = tidq->prev_packet;
		tidq->prev_packet = tmp;
	}
}

426 427 428 429 430 431 432 433 434 435 436 437 438
static void cs_etm__packet_dump(const char *pkt_string)
{
	const char *color = PERF_COLOR_BLUE;
	int len = strlen(pkt_string);

	if (len && (pkt_string[len-1] == '\n'))
		color_fprintf(stdout, color, "	%s", pkt_string);
	else
		color_fprintf(stdout, color, "	%s\n", pkt_string);

	fflush(stdout);
}

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
					  struct cs_etm_auxtrace *etm, int idx,
					  u32 etmidr)
{
	u64 **metadata = etm->metadata;

	t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
	t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
	t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
}

static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
					  struct cs_etm_auxtrace *etm, int idx)
{
	u64 **metadata = etm->metadata;

	t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
	t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
	t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
	t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
	t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
	t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
	t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
}

static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
				     struct cs_etm_auxtrace *etm)
{
	int i;
	u32 etmidr;
	u64 architecture;

	for (i = 0; i < etm->num_cpu; i++) {
		architecture = etm->metadata[i][CS_ETM_MAGIC];

		switch (architecture) {
		case __perf_cs_etmv3_magic:
			etmidr = etm->metadata[i][CS_ETM_ETMIDR];
			cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
			break;
		case __perf_cs_etmv4_magic:
			cs_etm__set_trace_param_etmv4(t_params, etm, i);
			break;
		default:
			return -EINVAL;
		}
	}

	return 0;
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
				       struct cs_etm_queue *etmq,
				       enum cs_etm_decoder_operation mode)
{
	int ret = -EINVAL;

	if (!(mode < CS_ETM_OPERATION_MAX))
		goto out;

	d_params->packet_printer = cs_etm__packet_dump;
	d_params->operation = mode;
	d_params->data = etmq;
	d_params->formatted = true;
	d_params->fsyncs = false;
	d_params->hsyncs = false;
	d_params->frame_aligned = true;

	ret = 0;
out:
	return ret;
}

512 513 514
static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
			       struct auxtrace_buffer *buffer)
{
515
	int ret;
516 517 518 519 520 521 522 523 524 525 526 527 528
	const char *color = PERF_COLOR_BLUE;
	struct cs_etm_decoder_params d_params;
	struct cs_etm_trace_params *t_params;
	struct cs_etm_decoder *decoder;
	size_t buffer_used = 0;

	fprintf(stdout, "\n");
	color_fprintf(stdout, color,
		     ". ... CoreSight ETM Trace data: size %zu bytes\n",
		     buffer->size);

	/* Use metadata to fill in trace parameters for trace decoder */
	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
529 530 531 532

	if (!t_params)
		return;

533 534
	if (cs_etm__init_trace_params(t_params, etm))
		goto out_free;
535 536

	/* Set decoder parameters to simply print the trace packets */
537 538
	if (cs_etm__init_decoder_params(&d_params, NULL,
					CS_ETM_OPERATION_PRINT))
539
		goto out_free;
540 541 542 543

	decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);

	if (!decoder)
544
		goto out_free;
545 546 547 548 549 550 551 552 553 554 555 556 557 558
	do {
		size_t consumed;

		ret = cs_etm_decoder__process_data_block(
				decoder, buffer->offset,
				&((u8 *)buffer->data)[buffer_used],
				buffer->size - buffer_used, &consumed);
		if (ret)
			break;

		buffer_used += consumed;
	} while (buffer_used < buffer->size);

	cs_etm_decoder__free(decoder);
559 560 561

out_free:
	zfree(&t_params);
562 563
}

564 565 566
static int cs_etm__flush_events(struct perf_session *session,
				struct perf_tool *tool)
{
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
	int ret;
	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);
	if (dump_trace)
		return 0;

	if (!tool->ordered_events)
		return -EINVAL;

	ret = cs_etm__update_queues(etm);

	if (ret < 0)
		return ret;

582 583 584 585
	if (etm->timeless_decoding)
		return cs_etm__process_timeless_queues(etm, -1);

	return cs_etm__process_queues(etm);
586 587
}

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
{
	int idx;
	uintptr_t priv;
	struct int_node *inode, *tmp;
	struct cs_etm_traceid_queue *tidq;
	struct intlist *traceid_queues_list = etmq->traceid_queues_list;

	intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
		priv = (uintptr_t)inode->priv;
		idx = priv;

		/* Free this traceid_queue from the array */
		tidq = etmq->traceid_queues[idx];
		thread__zput(tidq->thread);
		zfree(&tidq->event_buf);
		zfree(&tidq->last_branch);
		zfree(&tidq->last_branch_rb);
		zfree(&tidq->prev_packet);
		zfree(&tidq->packet);
		zfree(&tidq);

		/*
		 * Function intlist__remove() removes the inode from the list
		 * and delete the memory associated to it.
		 */
		intlist__remove(traceid_queues_list, inode);
	}

	/* Then the RB tree itself */
	intlist__delete(traceid_queues_list);
	etmq->traceid_queues_list = NULL;

	/* finally free the traceid_queues array */
622
	zfree(&etmq->traceid_queues);
623 624
}

625 626 627 628
static void cs_etm__free_queue(void *priv)
{
	struct cs_etm_queue *etmq = priv;

629 630 631 632
	if (!etmq)
		return;

	cs_etm_decoder__free(etmq->decoder);
633
	cs_etm__free_traceid_queues(etmq);
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
	free(etmq);
}

static void cs_etm__free_events(struct perf_session *session)
{
	unsigned int i;
	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);
	struct auxtrace_queues *queues = &aux->queues;

	for (i = 0; i < queues->nr_queues; i++) {
		cs_etm__free_queue(queues->queue_array[i].priv);
		queues->queue_array[i].priv = NULL;
	}

	auxtrace_queues__free(queues);
}

static void cs_etm__free(struct perf_session *session)
{
655 656
	int i;
	struct int_node *inode, *tmp;
657 658 659 660 661 662
	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);
	cs_etm__free_events(session);
	session->auxtrace = NULL;

663
	/* First remove all traceID/metadata nodes for the RB tree */
664 665 666 667 668 669 670 671
	intlist__for_each_entry_safe(inode, tmp, traceid_list)
		intlist__remove(traceid_list, inode);
	/* Then the RB tree itself */
	intlist__delete(traceid_list);

	for (i = 0; i < aux->num_cpu; i++)
		zfree(&aux->metadata[i]);

672
	thread__zput(aux->unknown_thread);
673
	zfree(&aux->metadata);
674 675 676
	zfree(&aux);
}

677 678 679 680 681 682 683 684 685 686
static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
				      struct evsel *evsel)
{
	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);

	return evsel->core.attr.type == aux->pmu_type;
}

687 688 689 690 691 692
static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
{
	struct machine *machine;

	machine = etmq->etm->machine;

693
	if (address >= machine__kernel_start(machine)) {
694 695 696 697 698 699 700 701 702 703 704 705 706 707
		if (machine__is_host(machine))
			return PERF_RECORD_MISC_KERNEL;
		else
			return PERF_RECORD_MISC_GUEST_KERNEL;
	} else {
		if (machine__is_host(machine))
			return PERF_RECORD_MISC_USER;
		else if (perf_guest)
			return PERF_RECORD_MISC_GUEST_USER;
		else
			return PERF_RECORD_MISC_HYPERVISOR;
	}
}

708 709
static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
			      u64 address, size_t size, u8 *buffer)
710 711 712 713
{
	u8  cpumode;
	u64 offset;
	int len;
714 715 716 717
	struct thread *thread;
	struct machine *machine;
	struct addr_location al;
	struct cs_etm_traceid_queue *tidq;
718

719
	if (!etmq)
720
		return 0;
721 722

	machine = etmq->etm->machine;
723
	cpumode = cs_etm__cpu_mode(etmq, address);
724 725 726
	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
	if (!tidq)
		return 0;
727

728
	thread = tidq->thread;
729 730
	if (!thread) {
		if (cpumode != PERF_RECORD_MISC_KERNEL)
731
			return 0;
732 733 734
		thread = etmq->etm->unknown_thread;
	}

735
	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
		return 0;

	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
		return 0;

	offset = al.map->map_ip(al.map, address);

	map__load(al.map);

	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);

	if (len <= 0)
		return 0;

	return len;
}

754
static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
755 756
{
	struct cs_etm_decoder_params d_params;
757
	struct cs_etm_trace_params  *t_params = NULL;
758 759 760 761 762 763
	struct cs_etm_queue *etmq;

	etmq = zalloc(sizeof(*etmq));
	if (!etmq)
		return NULL;

764 765 766 767
	etmq->traceid_queues_list = intlist__new(NULL);
	if (!etmq->traceid_queues_list)
		goto out_free;

768 769 770 771 772 773
	/* Use metadata to fill in trace parameters for trace decoder */
	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);

	if (!t_params)
		goto out_free;

774 775
	if (cs_etm__init_trace_params(t_params, etm))
		goto out_free;
776

777
	/* Set decoder parameters to decode trace packets */
778 779 780
	if (cs_etm__init_decoder_params(&d_params, etmq,
					CS_ETM_OPERATION_DECODE))
		goto out_free;
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795

	etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);

	if (!etmq->decoder)
		goto out_free;

	/*
	 * Register a function to handle all memory accesses required by
	 * the trace decoder library.
	 */
	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
					      0x0L, ((u64) -1L),
					      cs_etm__mem_access))
		goto out_free_decoder;

796
	zfree(&t_params);
797 798 799 800 801
	return etmq;

out_free_decoder:
	cs_etm_decoder__free(etmq->decoder);
out_free:
802
	intlist__delete(etmq->traceid_queues_list);
803 804 805 806 807 808 809 810 811
	free(etmq);

	return NULL;
}

static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
			       struct auxtrace_queue *queue,
			       unsigned int queue_nr)
{
812
	int ret = 0;
813 814
	unsigned int cs_queue_nr;
	u8 trace_chan_id;
815
	u64 cs_timestamp;
816 817 818
	struct cs_etm_queue *etmq = queue->priv;

	if (list_empty(&queue->head) || etmq)
819
		goto out;
820

821
	etmq = cs_etm__alloc_queue(etm);
822

823 824 825 826
	if (!etmq) {
		ret = -ENOMEM;
		goto out;
	}
827 828

	queue->priv = etmq;
829 830 831
	etmq->etm = etm;
	etmq->queue_nr = queue_nr;
	etmq->offset = 0;
832

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
	if (etm->timeless_decoding)
		goto out;

	/*
	 * We are under a CPU-wide trace scenario.  As such we need to know
	 * when the code that generated the traces started to execute so that
	 * it can be correlated with execution on other CPUs.  So we get a
	 * handle on the beginning of traces and decode until we find a
	 * timestamp.  The timestamp is then added to the auxtrace min heap
	 * in order to know what nibble (of all the etmqs) to decode first.
	 */
	while (1) {
		/*
		 * Fetch an aux_buffer from this etmq.  Bail if no more
		 * blocks or an error has been encountered.
		 */
		ret = cs_etm__get_data_block(etmq);
		if (ret <= 0)
			goto out;

		/*
		 * Run decoder on the trace block.  The decoder will stop when
855
		 * encountering a CS timestamp, a full packet queue or the end of
856 857 858 859 860 861 862 863 864 865
		 * trace for that block.
		 */
		ret = cs_etm__decode_data_block(etmq);
		if (ret)
			goto out;

		/*
		 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
		 * the timestamp calculation for us.
		 */
866
		cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
867 868

		/* We found a timestamp, no need to continue. */
869
		if (cs_timestamp)
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
			break;

		/*
		 * We didn't find a timestamp so empty all the traceid packet
		 * queues before looking for another timestamp packet, either
		 * in the current data block or a new one.  Packets that were
		 * just decoded are useless since no timestamp has been
		 * associated with them.  As such simply discard them.
		 */
		cs_etm__clear_all_packet_queues(etmq);
	}

	/*
	 * We have a timestamp.  Add it to the min heap to reflect when
	 * instructions conveyed by the range packets of this traceID queue
	 * started to execute.  Once the same has been done for all the traceID
	 * queues of each etmq, redenring and decoding can start in
	 * chronological order.
	 *
	 * Note that packets decoded above are still in the traceID's packet
	 * queue and will be processed in cs_etm__process_queues().
	 */
892
	cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
893
	ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
894 895
out:
	return ret;
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
}

static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
{
	unsigned int i;
	int ret;

	for (i = 0; i < etm->queues.nr_queues; i++) {
		ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
		if (ret)
			return ret;
	}

	return 0;
}

static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
{
	if (etm->queues.new_data) {
		etm->queues.new_data = false;
		return cs_etm__setup_queues(etm);
	}

	return 0;
}

922 923 924
static inline
void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
				 struct cs_etm_traceid_queue *tidq)
925
{
926 927
	struct branch_stack *bs_src = tidq->last_branch_rb;
	struct branch_stack *bs_dst = tidq->last_branch;
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
	size_t nr = 0;

	/*
	 * Set the number of records before early exit: ->nr is used to
	 * determine how many branches to copy from ->entries.
	 */
	bs_dst->nr = bs_src->nr;

	/*
	 * Early exit when there is nothing to copy.
	 */
	if (!bs_src->nr)
		return;

	/*
	 * As bs_src->entries is a circular buffer, we need to copy from it in
	 * two steps.  First, copy the branches from the most recently inserted
	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
	 */
947
	nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
948
	memcpy(&bs_dst->entries[0],
949
	       &bs_src->entries[tidq->last_branch_pos],
950 951 952 953 954 955 956 957 958 959 960 961
	       sizeof(struct branch_entry) * nr);

	/*
	 * If we wrapped around at least once, the branches from the beginning
	 * of the bs_src->entries buffer and until the ->last_branch_pos element
	 * are older valid branches: copy them over.  The total number of
	 * branches copied over will be equal to the number of branches asked by
	 * the user in last_branch_sz.
	 */
	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
		memcpy(&bs_dst->entries[nr],
		       &bs_src->entries[0],
962
		       sizeof(struct branch_entry) * tidq->last_branch_pos);
963 964 965
	}
}

966 967
static inline
void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
968
{
969 970
	tidq->last_branch_pos = 0;
	tidq->last_branch_rb->nr = 0;
971 972
}

973
static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
974 975
					 u8 trace_chan_id, u64 addr)
{
976
	u8 instrBytes[2];
977

978 979
	cs_etm__mem_access(etmq, trace_chan_id, addr,
			   ARRAY_SIZE(instrBytes), instrBytes);
980
	/*
981 982 983
	 * T32 instruction size is indicated by bits[15:11] of the first
	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
	 * denote a 32-bit instruction.
984
	 */
985
	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
986 987
}

988 989
static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
{
990 991
	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
	if (packet->sample_type == CS_ETM_DISCONTINUITY)
992 993 994 995 996
		return 0;

	return packet->start_addr;
}

997 998
static inline
u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
999
{
1000 1001
	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
	if (packet->sample_type == CS_ETM_DISCONTINUITY)
1002 1003 1004
		return 0;

	return packet->end_addr - packet->last_instr_size;
1005 1006
}

1007
static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
1008
				     u64 trace_chan_id,
1009
				     const struct cs_etm_packet *packet,
1010 1011
				     u64 offset)
{
1012 1013 1014
	if (packet->isa == CS_ETM_ISA_T32) {
		u64 addr = packet->start_addr;

1015
		while (offset) {
1016 1017
			addr += cs_etm__t32_instr_size(etmq,
						       trace_chan_id, addr);
1018 1019 1020 1021 1022 1023 1024
			offset--;
		}
		return addr;
	}

	/* Assume a 4 byte instruction size (A32/A64) */
	return packet->start_addr + offset * 4;
1025 1026
}

1027 1028
static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
					  struct cs_etm_traceid_queue *tidq)
1029
{
1030
	struct branch_stack *bs = tidq->last_branch_rb;
1031 1032 1033 1034 1035 1036 1037 1038
	struct branch_entry *be;

	/*
	 * The branches are recorded in a circular buffer in reverse
	 * chronological order: we start recording from the last element of the
	 * buffer down.  After writing the first element of the stack, move the
	 * insert position back to the end of the buffer.
	 */
1039 1040
	if (!tidq->last_branch_pos)
		tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1041

1042
	tidq->last_branch_pos -= 1;
1043

1044 1045 1046
	be       = &bs->entries[tidq->last_branch_pos];
	be->from = cs_etm__last_executed_instr(tidq->prev_packet);
	be->to	 = cs_etm__first_executed_instr(tidq->packet);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	/* No support for mispredict */
	be->flags.mispred = 0;
	be->flags.predicted = 1;

	/*
	 * Increment bs->nr until reaching the number of last branches asked by
	 * the user on the command line.
	 */
	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
		bs->nr += 1;
}

static int cs_etm__inject_event(union perf_event *event,
			       struct perf_sample *sample, u64 type)
{
	event->header.size = perf_event__sample_event_size(sample, type, 0);
	return perf_event__synthesize_sample(event, type, 0, sample);
}


1067
static int
1068
cs_etm__get_trace(struct cs_etm_queue *etmq)
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
{
	struct auxtrace_buffer *aux_buffer = etmq->buffer;
	struct auxtrace_buffer *old_buffer = aux_buffer;
	struct auxtrace_queue *queue;

	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];

	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);

	/* If no more data, drop the previous auxtrace_buffer and return */
	if (!aux_buffer) {
		if (old_buffer)
			auxtrace_buffer__drop_data(old_buffer);
1082
		etmq->buf_len = 0;
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
		return 0;
	}

	etmq->buffer = aux_buffer;

	/* If the aux_buffer doesn't have data associated, try to load it */
	if (!aux_buffer->data) {
		/* get the file desc associated with the perf data file */
		int fd = perf_data__fd(etmq->etm->session->data);

		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
		if (!aux_buffer->data)
			return -ENOMEM;
	}

	/* If valid, drop the previous buffer */
	if (old_buffer)
		auxtrace_buffer__drop_data(old_buffer);

1102 1103 1104
	etmq->buf_used = 0;
	etmq->buf_len = aux_buffer->size;
	etmq->buf = aux_buffer->data;
1105

1106
	return etmq->buf_len;
1107 1108
}

L
Leo Yan 已提交
1109
static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1110
				    struct cs_etm_traceid_queue *tidq)
1111
{
1112
	if ((!tidq->thread) && (tidq->tid != -1))
1113
		tidq->thread = machine__find_thread(etm->machine, -1,
1114
						    tidq->tid);
1115

1116
	if (tidq->thread)
1117
		tidq->pid = tidq->thread->pid_;
1118 1119
}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
			 pid_t tid, u8 trace_chan_id)
{
	int cpu, err = -EINVAL;
	struct cs_etm_auxtrace *etm = etmq->etm;
	struct cs_etm_traceid_queue *tidq;

	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
	if (!tidq)
		return err;

	if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
		return err;

	err = machine__set_current_tid(etm->machine, cpu, tid, tid);
	if (err)
		return err;

	tidq->tid = tid;
	thread__zput(tidq->thread);

	cs_etm__set_pid_tid_cpu(etm, tidq);
	return 0;
}

1145 1146 1147 1148 1149
bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
{
	return !!etmq->etm->timeless_decoding;
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
			      u64 trace_chan_id,
			      const struct cs_etm_packet *packet,
			      struct perf_sample *sample)
{
	/*
	 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
	 * packet, so directly bail out with 'insn_len' = 0.
	 */
	if (packet->sample_type == CS_ETM_DISCONTINUITY) {
		sample->insn_len = 0;
		return;
	}

	/*
	 * T32 instruction size might be 32-bit or 16-bit, decide by calling
	 * cs_etm__t32_instr_size().
	 */
	if (packet->isa == CS_ETM_ISA_T32)
		sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
							  sample->ip);
	/* Otherwise, A64 and A32 instruction size are always 32-bit. */
	else
		sample->insn_len = 4;

	cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
			   sample->insn_len, (void *)sample->insn);
}

1179
static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1180
					    struct cs_etm_traceid_queue *tidq,
1181 1182 1183 1184
					    u64 addr, u64 period)
{
	int ret = 0;
	struct cs_etm_auxtrace *etm = etmq->etm;
1185
	union perf_event *event = tidq->event_buf;
1186 1187 1188
	struct perf_sample sample = {.ip = 0,};

	event->sample.header.type = PERF_RECORD_SAMPLE;
1189
	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1190 1191
	event->sample.header.size = sizeof(struct perf_event_header);

1192 1193
	if (!etm->timeless_decoding)
		sample.time = etm->latest_kernel_timestamp;
1194
	sample.ip = addr;
1195 1196
	sample.pid = tidq->pid;
	sample.tid = tidq->tid;
1197 1198 1199
	sample.id = etmq->etm->instructions_id;
	sample.stream_id = etmq->etm->instructions_id;
	sample.period = period;
1200 1201
	sample.cpu = tidq->packet->cpu;
	sample.flags = tidq->prev_packet->flags;
1202
	sample.cpumode = event->sample.header.misc;
1203

1204 1205
	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);

1206
	if (etm->synth_opts.last_branch)
1207
		sample.branch_stack = tidq->last_branch;
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

	if (etm->synth_opts.inject) {
		ret = cs_etm__inject_event(event, &sample,
					   etm->instructions_sample_type);
		if (ret)
			return ret;
	}

	ret = perf_session__deliver_synth_event(etm->session, event, &sample);

	if (ret)
		pr_err(
			"CS ETM Trace: failed to deliver instruction event, error %d\n",
			ret);

	return ret;
}

1226 1227 1228 1229
/*
 * The cs etm packet encodes an instruction range between a branch target
 * and the next taken branch. Generate sample accordingly.
 */
1230 1231
static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
				       struct cs_etm_traceid_queue *tidq)
1232 1233 1234 1235
{
	int ret = 0;
	struct cs_etm_auxtrace *etm = etmq->etm;
	struct perf_sample sample = {.ip = 0,};
1236
	union perf_event *event = tidq->event_buf;
1237 1238
	struct dummy_branch_stack {
		u64			nr;
1239
		u64			hw_idx;
1240 1241
		struct branch_entry	entries;
	} dummy_bs;
1242 1243
	u64 ip;

1244
	ip = cs_etm__last_executed_instr(tidq->prev_packet);
1245 1246

	event->sample.header.type = PERF_RECORD_SAMPLE;
1247
	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1248 1249
	event->sample.header.size = sizeof(struct perf_event_header);

1250 1251
	if (!etm->timeless_decoding)
		sample.time = etm->latest_kernel_timestamp;
1252
	sample.ip = ip;
1253 1254
	sample.pid = tidq->pid;
	sample.tid = tidq->tid;
1255
	sample.addr = cs_etm__first_executed_instr(tidq->packet);
1256 1257 1258
	sample.id = etmq->etm->branches_id;
	sample.stream_id = etmq->etm->branches_id;
	sample.period = 1;
1259 1260
	sample.cpu = tidq->packet->cpu;
	sample.flags = tidq->prev_packet->flags;
1261
	sample.cpumode = event->sample.header.misc;
1262

1263 1264 1265
	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
			  &sample);

1266 1267 1268 1269 1270 1271
	/*
	 * perf report cannot handle events without a branch stack
	 */
	if (etm->synth_opts.last_branch) {
		dummy_bs = (struct dummy_branch_stack){
			.nr = 1,
1272
			.hw_idx = -1ULL,
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
			.entries = {
				.from = sample.ip,
				.to = sample.addr,
			},
		};
		sample.branch_stack = (struct branch_stack *)&dummy_bs;
	}

	if (etm->synth_opts.inject) {
		ret = cs_etm__inject_event(event, &sample,
					   etm->branches_sample_type);
		if (ret)
			return ret;
	}

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	ret = perf_session__deliver_synth_event(etm->session, event, &sample);

	if (ret)
		pr_err(
		"CS ETM Trace: failed to deliver instruction event, error %d\n",
		ret);

	return ret;
}

struct cs_etm_synth {
	struct perf_tool dummy_tool;
	struct perf_session *session;
};

static int cs_etm__event_synth(struct perf_tool *tool,
			       union perf_event *event,
			       struct perf_sample *sample __maybe_unused,
			       struct machine *machine __maybe_unused)
{
	struct cs_etm_synth *cs_etm_synth =
		      container_of(tool, struct cs_etm_synth, dummy_tool);

	return perf_session__deliver_synth_event(cs_etm_synth->session,
						 event, NULL);
}

static int cs_etm__synth_event(struct perf_session *session,
			       struct perf_event_attr *attr, u64 id)
{
	struct cs_etm_synth cs_etm_synth;

	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
	cs_etm_synth.session = session;

	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
					   &id, cs_etm__event_synth);
}

static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
				struct perf_session *session)
{
1330
	struct evlist *evlist = session->evlist;
1331
	struct evsel *evsel;
1332 1333 1334 1335 1336 1337
	struct perf_event_attr attr;
	bool found = false;
	u64 id;
	int err;

	evlist__for_each_entry(evlist, evsel) {
1338
		if (evsel->core.attr.type == etm->pmu_type) {
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
			found = true;
			break;
		}
	}

	if (!found) {
		pr_debug("No selected events with CoreSight Trace data\n");
		return 0;
	}

	memset(&attr, 0, sizeof(struct perf_event_attr));
	attr.size = sizeof(struct perf_event_attr);
	attr.type = PERF_TYPE_HARDWARE;
1352
	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1353 1354 1355 1356 1357 1358 1359
	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
			    PERF_SAMPLE_PERIOD;
	if (etm->timeless_decoding)
		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
	else
		attr.sample_type |= PERF_SAMPLE_TIME;

1360 1361 1362 1363 1364 1365 1366
	attr.exclude_user = evsel->core.attr.exclude_user;
	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
	attr.exclude_hv = evsel->core.attr.exclude_hv;
	attr.exclude_host = evsel->core.attr.exclude_host;
	attr.exclude_guest = evsel->core.attr.exclude_guest;
	attr.sample_id_all = evsel->core.attr.sample_id_all;
	attr.read_format = evsel->core.attr.read_format;
1367 1368

	/* create new id val to be a fixed offset from evsel id */
1369
	id = evsel->core.id[0] + 1000000000;
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

	if (!id)
		id = 1;

	if (etm->synth_opts.branches) {
		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
		attr.sample_period = 1;
		attr.sample_type |= PERF_SAMPLE_ADDR;
		err = cs_etm__synth_event(session, &attr, id);
		if (err)
			return err;
		etm->sample_branches = true;
		etm->branches_sample_type = attr.sample_type;
		etm->branches_id = id;
1384 1385 1386 1387
		id += 1;
		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
	}

1388
	if (etm->synth_opts.last_branch) {
1389
		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1390 1391 1392 1393 1394 1395 1396
		/*
		 * We don't use the hardware index, but the sample generation
		 * code uses the new format branch_stack with this field,
		 * so the event attributes must indicate that it's present.
		 */
		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
	}
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

	if (etm->synth_opts.instructions) {
		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
		attr.sample_period = etm->synth_opts.period;
		etm->instructions_sample_period = attr.sample_period;
		err = cs_etm__synth_event(session, &attr, id);
		if (err)
			return err;
		etm->sample_instructions = true;
		etm->instructions_sample_type = attr.sample_type;
		etm->instructions_id = id;
		id += 1;
1409 1410 1411 1412 1413
	}

	return 0;
}

1414 1415
static int cs_etm__sample(struct cs_etm_queue *etmq,
			  struct cs_etm_traceid_queue *tidq)
1416
{
1417
	struct cs_etm_auxtrace *etm = etmq->etm;
1418
	int ret;
1419
	u8 trace_chan_id = tidq->trace_chan_id;
1420
	u64 instrs_prev;
1421

1422 1423 1424 1425
	/* Get instructions remainder from previous packet */
	instrs_prev = tidq->period_instructions;

	tidq->period_instructions += tidq->packet->instr_count;
1426 1427 1428 1429 1430 1431

	/*
	 * Record a branch when the last instruction in
	 * PREV_PACKET is a branch.
	 */
	if (etm->synth_opts.last_branch &&
1432 1433 1434
	    tidq->prev_packet->sample_type == CS_ETM_RANGE &&
	    tidq->prev_packet->last_instr_taken_branch)
		cs_etm__update_last_branch_rb(etmq, tidq);
1435 1436

	if (etm->sample_instructions &&
1437
	    tidq->period_instructions >= etm->instructions_sample_period) {
1438 1439 1440 1441 1442 1443
		/*
		 * Emit instruction sample periodically
		 * TODO: allow period to be defined in cycles and clock time
		 */

		/*
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
		 * Below diagram demonstrates the instruction samples
		 * generation flows:
		 *
		 *    Instrs     Instrs       Instrs       Instrs
		 *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
		 *    |            |            |            |
		 *    V            V            V            V
		 *   --------------------------------------------------
		 *            ^                                  ^
		 *            |                                  |
		 *         Period                             Period
		 *    instructions(Pi)                   instructions(Pi')
		 *
		 *            |                                  |
		 *            \---------------- -----------------/
		 *                             V
		 *                 tidq->packet->instr_count
		 *
		 * Instrs Sample(n...) are the synthesised samples occurring
		 * every etm->instructions_sample_period instructions - as
		 * defined on the perf command line.  Sample(n) is being the
		 * last sample before the current etm packet, n+1 to n+3
		 * samples are generated from the current etm packet.
		 *
		 * tidq->packet->instr_count represents the number of
		 * instructions in the current etm packet.
		 *
		 * Period instructions (Pi) contains the the number of
		 * instructions executed after the sample point(n) from the
		 * previous etm packet.  This will always be less than
		 * etm->instructions_sample_period.
		 *
		 * When generate new samples, it combines with two parts
		 * instructions, one is the tail of the old packet and another
		 * is the head of the new coming packet, to generate
		 * sample(n+1); sample(n+2) and sample(n+3) consume the
		 * instructions with sample period.  After sample(n+3), the rest
		 * instructions will be used by later packet and it is assigned
		 * to tidq->period_instructions for next round calculation.
1483 1484
		 */

1485 1486 1487 1488 1489 1490 1491 1492
		/*
		 * Get the initial offset into the current packet instructions;
		 * entry conditions ensure that instrs_prev is less than
		 * etm->instructions_sample_period.
		 */
		u64 offset = etm->instructions_sample_period - instrs_prev;
		u64 addr;

1493 1494 1495 1496
		/* Prepare last branches for instruction sample */
		if (etm->synth_opts.last_branch)
			cs_etm__copy_last_branch_rb(etmq, tidq);

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
		while (tidq->period_instructions >=
				etm->instructions_sample_period) {
			/*
			 * Calculate the address of the sampled instruction (-1
			 * as sample is reported as though instruction has just
			 * been executed, but PC has not advanced to next
			 * instruction)
			 */
			addr = cs_etm__instr_addr(etmq, trace_chan_id,
						  tidq->packet, offset - 1);
			ret = cs_etm__synth_instruction_sample(
				etmq, tidq, addr,
				etm->instructions_sample_period);
			if (ret)
				return ret;
1512

1513 1514 1515 1516
			offset += etm->instructions_sample_period;
			tidq->period_instructions -=
				etm->instructions_sample_period;
		}
1517 1518
	}

1519
	if (etm->sample_branches) {
1520 1521 1522
		bool generate_sample = false;

		/* Generate sample for tracing on packet */
1523
		if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1524 1525 1526
			generate_sample = true;

		/* Generate sample for branch taken packet */
1527 1528
		if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
		    tidq->prev_packet->last_instr_taken_branch)
1529 1530 1531
			generate_sample = true;

		if (generate_sample) {
1532
			ret = cs_etm__synth_branch_sample(etmq, tidq);
1533 1534 1535
			if (ret)
				return ret;
		}
1536
	}
1537

1538
	cs_etm__packet_swap(etm, tidq);
1539 1540 1541 1542

	return 0;
}

1543
static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
{
	/*
	 * When the exception packet is inserted, whether the last instruction
	 * in previous range packet is taken branch or not, we need to force
	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
	 * to generate branch sample for the instruction range before the
	 * exception is trapped to kernel or before the exception returning.
	 *
	 * The exception packet includes the dummy address values, so don't
	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
	 * for generating instruction and branch samples.
	 */
1556 1557
	if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
		tidq->prev_packet->last_instr_taken_branch = true;
1558 1559 1560 1561

	return 0;
}

1562 1563
static int cs_etm__flush(struct cs_etm_queue *etmq,
			 struct cs_etm_traceid_queue *tidq)
1564 1565
{
	int err = 0;
1566
	struct cs_etm_auxtrace *etm = etmq->etm;
1567

1568
	/* Handle start tracing packet */
1569
	if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1570 1571
		goto swap_packet;

1572
	if (etmq->etm->synth_opts.last_branch &&
1573
	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1574 1575 1576 1577 1578
		u64 addr;

		/* Prepare last branches for instruction sample */
		cs_etm__copy_last_branch_rb(etmq, tidq);

1579 1580 1581 1582 1583 1584 1585
		/*
		 * Generate a last branch event for the branches left in the
		 * circular buffer at the end of the trace.
		 *
		 * Use the address of the end of the last reported execution
		 * range
		 */
1586
		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1587 1588

		err = cs_etm__synth_instruction_sample(
1589 1590
			etmq, tidq, addr,
			tidq->period_instructions);
1591 1592 1593
		if (err)
			return err;

1594
		tidq->period_instructions = 0;
1595

1596 1597
	}

1598
	if (etm->sample_branches &&
1599 1600
	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
		err = cs_etm__synth_branch_sample(etmq, tidq);
1601 1602 1603 1604
		if (err)
			return err;
	}

1605
swap_packet:
1606
	cs_etm__packet_swap(etm, tidq);
1607

1608 1609 1610 1611
	/* Reset last branches after flush the trace */
	if (etm->synth_opts.last_branch)
		cs_etm__reset_last_branch_rb(tidq);

1612 1613 1614
	return err;
}

1615 1616
static int cs_etm__end_block(struct cs_etm_queue *etmq,
			     struct cs_etm_traceid_queue *tidq)
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
{
	int err;

	/*
	 * It has no new packet coming and 'etmq->packet' contains the stale
	 * packet which was set at the previous time with packets swapping;
	 * so skip to generate branch sample to avoid stale packet.
	 *
	 * For this case only flush branch stack and generate a last branch
	 * event for the branches left in the circular buffer at the end of
	 * the trace.
	 */
	if (etmq->etm->synth_opts.last_branch &&
1630
	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1631 1632 1633 1634 1635
		u64 addr;

		/* Prepare last branches for instruction sample */
		cs_etm__copy_last_branch_rb(etmq, tidq);

1636 1637 1638 1639
		/*
		 * Use the address of the end of the last reported execution
		 * range.
		 */
1640
		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1641 1642

		err = cs_etm__synth_instruction_sample(
1643 1644
			etmq, tidq, addr,
			tidq->period_instructions);
1645 1646 1647
		if (err)
			return err;

1648
		tidq->period_instructions = 0;
1649 1650 1651 1652
	}

	return 0;
}
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
/*
 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
 *			   if need be.
 * Returns:	< 0	if error
 *		= 0	if no more auxtrace_buffer to read
 *		> 0	if the current buffer isn't empty yet
 */
static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
{
	int ret;

	if (!etmq->buf_len) {
		ret = cs_etm__get_trace(etmq);
		if (ret <= 0)
			return ret;
		/*
		 * We cannot assume consecutive blocks in the data file
		 * are contiguous, reset the decoder to force re-sync.
		 */
		ret = cs_etm_decoder__reset(etmq->decoder);
		if (ret)
			return ret;
	}

	return etmq->buf_len;
}
1679

1680
static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1681 1682 1683
				 struct cs_etm_packet *packet,
				 u64 end_addr)
{
1684 1685 1686
	/* Initialise to keep compiler happy */
	u16 instr16 = 0;
	u32 instr32 = 0;
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	u64 addr;

	switch (packet->isa) {
	case CS_ETM_ISA_T32:
		/*
		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
		 *
		 *  b'15         b'8
		 * +-----------------+--------+
		 * | 1 1 0 1 1 1 1 1 |  imm8  |
		 * +-----------------+--------+
		 *
1699
		 * According to the specification, it only defines SVC for T32
1700 1701 1702 1703
		 * with 16 bits instruction and has no definition for 32bits;
		 * so below only read 2 bytes as instruction size for T32.
		 */
		addr = end_addr - 2;
1704 1705
		cs_etm__mem_access(etmq, trace_chan_id, addr,
				   sizeof(instr16), (u8 *)&instr16);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
		if ((instr16 & 0xFF00) == 0xDF00)
			return true;

		break;
	case CS_ETM_ISA_A32:
		/*
		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
		 *
		 *  b'31 b'28 b'27 b'24
		 * +---------+---------+-------------------------+
		 * |  !1111  | 1 1 1 1 |        imm24            |
		 * +---------+---------+-------------------------+
		 */
		addr = end_addr - 4;
1720 1721
		cs_etm__mem_access(etmq, trace_chan_id, addr,
				   sizeof(instr32), (u8 *)&instr32);
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
		if ((instr32 & 0x0F000000) == 0x0F000000 &&
		    (instr32 & 0xF0000000) != 0xF0000000)
			return true;

		break;
	case CS_ETM_ISA_A64:
		/*
		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
		 *
		 *  b'31               b'21           b'4     b'0
		 * +-----------------------+---------+-----------+
		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
		 * +-----------------------+---------+-----------+
		 */
		addr = end_addr - 4;
1737 1738
		cs_etm__mem_access(etmq, trace_chan_id, addr,
				   sizeof(instr32), (u8 *)&instr32);
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
		if ((instr32 & 0xFFE0001F) == 0xd4000001)
			return true;

		break;
	case CS_ETM_ISA_UNKNOWN:
	default:
		break;
	}

	return false;
}

1751 1752
static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
			       struct cs_etm_traceid_queue *tidq, u64 magic)
1753
{
1754
	u8 trace_chan_id = tidq->trace_chan_id;
1755 1756
	struct cs_etm_packet *packet = tidq->packet;
	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

	if (magic == __perf_cs_etmv3_magic)
		if (packet->exception_number == CS_ETMV3_EXC_SVC)
			return true;

	/*
	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
	 * HVC cases; need to check if it's SVC instruction based on
	 * packet address.
	 */
	if (magic == __perf_cs_etmv4_magic) {
		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1769
		    cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1770 1771 1772 1773 1774 1775 1776
					 prev_packet->end_addr))
			return true;
	}

	return false;
}

1777 1778
static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
				       u64 magic)
1779
{
1780
	struct cs_etm_packet *packet = tidq->packet;
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802

	if (magic == __perf_cs_etmv3_magic)
		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
		    packet->exception_number == CS_ETMV3_EXC_FIQ)
			return true;

	if (magic == __perf_cs_etmv4_magic)
		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
		    packet->exception_number == CS_ETMV4_EXC_FIQ)
			return true;

	return false;
}

1803 1804 1805
static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
				      struct cs_etm_traceid_queue *tidq,
				      u64 magic)
1806
{
1807
	u8 trace_chan_id = tidq->trace_chan_id;
1808 1809
	struct cs_etm_packet *packet = tidq->packet;
	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832

	if (magic == __perf_cs_etmv3_magic)
		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
		    packet->exception_number == CS_ETMV3_EXC_HYP ||
		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
			return true;

	if (magic == __perf_cs_etmv4_magic) {
		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
			return true;

		/*
		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
		 * (SMC, HVC) are taken as sync exceptions.
		 */
		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1833
		    !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
					  prev_packet->end_addr))
			return true;

		/*
		 * ETMv4 has 5 bits for exception number; if the numbers
		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
		 * they are implementation defined exceptions.
		 *
		 * For this case, simply take it as sync exception.
		 */
		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
		    packet->exception_number <= CS_ETMV4_EXC_END)
			return true;
	}

	return false;
}

1852 1853
static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
				    struct cs_etm_traceid_queue *tidq)
1854
{
1855 1856
	struct cs_etm_packet *packet = tidq->packet;
	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1857
	u8 trace_chan_id = tidq->trace_chan_id;
1858 1859
	u64 magic;
	int ret;
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918

	switch (packet->sample_type) {
	case CS_ETM_RANGE:
		/*
		 * Immediate branch instruction without neither link nor
		 * return flag, it's normal branch instruction within
		 * the function.
		 */
		if (packet->last_instr_type == OCSD_INSTR_BR &&
		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
			packet->flags = PERF_IP_FLAG_BRANCH;

			if (packet->last_instr_cond)
				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
		}

		/*
		 * Immediate branch instruction with link (e.g. BL), this is
		 * branch instruction for function call.
		 */
		if (packet->last_instr_type == OCSD_INSTR_BR &&
		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_CALL;

		/*
		 * Indirect branch instruction with link (e.g. BLR), this is
		 * branch instruction for function call.
		 */
		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_CALL;

		/*
		 * Indirect branch instruction with subtype of
		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
		 * function return for A32/T32.
		 */
		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_RETURN;

		/*
		 * Indirect branch instruction without link (e.g. BR), usually
		 * this is used for function return, especially for functions
		 * within dynamic link lib.
		 */
		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_RETURN;

		/* Return instruction for function return. */
		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_RETURN;
1919 1920 1921 1922 1923 1924 1925 1926 1927

		/*
		 * Decoder might insert a discontinuity in the middle of
		 * instruction packets, fixup prev_packet with flag
		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
		 */
		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
					      PERF_IP_FLAG_TRACE_BEGIN;
1928 1929 1930

		/*
		 * If the previous packet is an exception return packet
1931
		 * and the return address just follows SVC instruction,
1932 1933 1934 1935 1936 1937
		 * it needs to calibrate the previous packet sample flags
		 * as PERF_IP_FLAG_SYSCALLRET.
		 */
		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
					   PERF_IP_FLAG_RETURN |
					   PERF_IP_FLAG_INTERRUPT) &&
1938 1939
		    cs_etm__is_svc_instr(etmq, trace_chan_id,
					 packet, packet->start_addr))
1940 1941 1942
			prev_packet->flags = PERF_IP_FLAG_BRANCH |
					     PERF_IP_FLAG_RETURN |
					     PERF_IP_FLAG_SYSCALLRET;
1943 1944
		break;
	case CS_ETM_DISCONTINUITY:
1945 1946 1947 1948 1949 1950 1951 1952 1953
		/*
		 * The trace is discontinuous, if the previous packet is
		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
		 * for previous packet.
		 */
		if (prev_packet->sample_type == CS_ETM_RANGE)
			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
					      PERF_IP_FLAG_TRACE_END;
		break;
1954
	case CS_ETM_EXCEPTION:
1955 1956 1957 1958 1959
		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
		if (ret)
			return ret;

		/* The exception is for system call. */
1960
		if (cs_etm__is_syscall(etmq, tidq, magic))
1961 1962 1963 1964 1965 1966 1967
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_CALL |
					PERF_IP_FLAG_SYSCALLRET;
		/*
		 * The exceptions are triggered by external signals from bus,
		 * interrupt controller, debug module, PE reset or halt.
		 */
1968
		else if (cs_etm__is_async_exception(tidq, magic))
1969 1970 1971 1972 1973 1974 1975 1976
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_CALL |
					PERF_IP_FLAG_ASYNC |
					PERF_IP_FLAG_INTERRUPT;
		/*
		 * Otherwise, exception is caused by trap, instruction &
		 * data fault, or alignment errors.
		 */
1977
		else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_CALL |
					PERF_IP_FLAG_INTERRUPT;

		/*
		 * When the exception packet is inserted, since exception
		 * packet is not used standalone for generating samples
		 * and it's affiliation to the previous instruction range
		 * packet; so set previous range packet flags to tell perf
		 * it is an exception taken branch.
		 */
		if (prev_packet->sample_type == CS_ETM_RANGE)
			prev_packet->flags = packet->flags;
		break;
1992
	case CS_ETM_EXCEPTION_RET:
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
		/*
		 * When the exception return packet is inserted, since
		 * exception return packet is not used standalone for
		 * generating samples and it's affiliation to the previous
		 * instruction range packet; so set previous range packet
		 * flags to tell perf it is an exception return branch.
		 *
		 * The exception return can be for either system call or
		 * other exception types; unfortunately the packet doesn't
		 * contain exception type related info so we cannot decide
		 * the exception type purely based on exception return packet.
		 * If we record the exception number from exception packet and
2005
		 * reuse it for exception return packet, this is not reliable
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
		 * due the trace can be discontinuity or the interrupt can
		 * be nested, thus the recorded exception number cannot be
		 * used for exception return packet for these two cases.
		 *
		 * For exception return packet, we only need to distinguish the
		 * packet is for system call or for other types.  Thus the
		 * decision can be deferred when receive the next packet which
		 * contains the return address, based on the return address we
		 * can read out the previous instruction and check if it's a
		 * system call instruction and then calibrate the sample flag
		 * as needed.
		 */
		if (prev_packet->sample_type == CS_ETM_RANGE)
			prev_packet->flags = PERF_IP_FLAG_BRANCH |
					     PERF_IP_FLAG_RETURN |
					     PERF_IP_FLAG_INTERRUPT;
		break;
2023 2024 2025 2026 2027 2028 2029 2030
	case CS_ETM_EMPTY:
	default:
		break;
	}

	return 0;
}

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
{
	int ret = 0;
	size_t processed = 0;

	/*
	 * Packets are decoded and added to the decoder's packet queue
	 * until the decoder packet processing callback has requested that
	 * processing stops or there is nothing left in the buffer.  Normal
	 * operations that stop processing are a timestamp packet or a full
	 * decoder buffer queue.
	 */
	ret = cs_etm_decoder__process_data_block(etmq->decoder,
						 etmq->offset,
						 &etmq->buf[etmq->buf_used],
						 etmq->buf_len,
						 &processed);
	if (ret)
		goto out;

	etmq->offset += processed;
	etmq->buf_used += processed;
	etmq->buf_len -= processed;

out:
	return ret;
}

2059 2060
static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
					 struct cs_etm_traceid_queue *tidq)
2061 2062
{
	int ret;
2063 2064
	struct cs_etm_packet_queue *packet_queue;

2065
	packet_queue = &tidq->packet_queue;
2066

2067 2068 2069
	/* Process each packet in this chunk */
	while (1) {
		ret = cs_etm_decoder__get_packet(packet_queue,
2070
						 tidq->packet);
2071 2072 2073 2074 2075 2076
		if (ret <= 0)
			/*
			 * Stop processing this chunk on
			 * end of data or error
			 */
			break;
2077

2078 2079 2080 2081 2082 2083 2084
		/*
		 * Since packet addresses are swapped in packet
		 * handling within below switch() statements,
		 * thus setting sample flags must be called
		 * prior to switch() statement to use address
		 * information before packets swapping.
		 */
2085
		ret = cs_etm__set_sample_flags(etmq, tidq);
2086 2087 2088
		if (ret < 0)
			break;

2089
		switch (tidq->packet->sample_type) {
2090 2091 2092 2093 2094 2095
		case CS_ETM_RANGE:
			/*
			 * If the packet contains an instruction
			 * range, generate instruction sequence
			 * events.
			 */
2096
			cs_etm__sample(etmq, tidq);
2097 2098 2099
			break;
		case CS_ETM_EXCEPTION:
		case CS_ETM_EXCEPTION_RET:
2100
			/*
2101 2102 2103
			 * If the exception packet is coming,
			 * make sure the previous instruction
			 * range packet to be handled properly.
2104
			 */
2105
			cs_etm__exception(tidq);
2106 2107 2108 2109 2110 2111
			break;
		case CS_ETM_DISCONTINUITY:
			/*
			 * Discontinuity in trace, flush
			 * previous branch stack
			 */
2112
			cs_etm__flush(etmq, tidq);
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
			break;
		case CS_ETM_EMPTY:
			/*
			 * Should not receive empty packet,
			 * report error.
			 */
			pr_err("CS ETM Trace: empty packet\n");
			return -EINVAL;
		default:
			break;
2123
		}
2124
	}
2125 2126 2127 2128

	return ret;
}

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
{
	int idx;
	struct int_node *inode;
	struct cs_etm_traceid_queue *tidq;
	struct intlist *traceid_queues_list = etmq->traceid_queues_list;

	intlist__for_each_entry(inode, traceid_queues_list) {
		idx = (int)(intptr_t)inode->priv;
		tidq = etmq->traceid_queues[idx];

		/* Ignore return value */
		cs_etm__process_traceid_queue(etmq, tidq);

		/*
		 * Generate an instruction sample with the remaining
		 * branchstack entries.
		 */
		cs_etm__flush(etmq, tidq);
	}
}

2151 2152 2153
static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
{
	int err = 0;
2154 2155 2156 2157 2158
	struct cs_etm_traceid_queue *tidq;

	tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
	if (!tidq)
		return -EINVAL;
2159 2160

	/* Go through each buffer in the queue and decode them one by one */
2161
	while (1) {
2162 2163 2164
		err = cs_etm__get_data_block(etmq);
		if (err <= 0)
			return err;
2165

2166 2167
		/* Run trace decoder until buffer consumed or end of trace */
		do {
2168
			err = cs_etm__decode_data_block(etmq);
2169 2170 2171
			if (err)
				return err;

2172 2173 2174 2175 2176
			/*
			 * Process each packet in this chunk, nothing to do if
			 * an error occurs other than hoping the next one will
			 * be better.
			 */
2177
			err = cs_etm__process_traceid_queue(etmq, tidq);
2178

2179
		} while (etmq->buf_len);
2180

2181 2182
		if (err == 0)
			/* Flush any remaining branch stack entries */
2183
			err = cs_etm__end_block(etmq, tidq);
2184
	}
2185 2186 2187 2188 2189

	return err;
}

static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2190
					   pid_t tid)
2191 2192 2193 2194 2195 2196 2197
{
	unsigned int i;
	struct auxtrace_queues *queues = &etm->queues;

	for (i = 0; i < queues->nr_queues; i++) {
		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
		struct cs_etm_queue *etmq = queue->priv;
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
		struct cs_etm_traceid_queue *tidq;

		if (!etmq)
			continue;

		tidq = cs_etm__etmq_get_traceid_queue(etmq,
						CS_ETM_PER_THREAD_TRACEID);

		if (!tidq)
			continue;
2208

2209
		if ((tid == -1) || (tidq->tid == tid)) {
2210
			cs_etm__set_pid_tid_cpu(etm, tidq);
2211 2212 2213 2214 2215 2216 2217
			cs_etm__run_decoder(etmq);
		}
	}

	return 0;
}

2218 2219 2220 2221 2222
static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
{
	int ret = 0;
	unsigned int cs_queue_nr, queue_nr;
	u8 trace_chan_id;
2223
	u64 cs_timestamp;
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
	struct auxtrace_queue *queue;
	struct cs_etm_queue *etmq;
	struct cs_etm_traceid_queue *tidq;

	while (1) {
		if (!etm->heap.heap_cnt)
			goto out;

		/* Take the entry at the top of the min heap */
		cs_queue_nr = etm->heap.heap_array[0].queue_nr;
		queue_nr = TO_QUEUE_NR(cs_queue_nr);
		trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
		queue = &etm->queues.queue_array[queue_nr];
		etmq = queue->priv;

		/*
		 * Remove the top entry from the heap since we are about
		 * to process it.
		 */
		auxtrace_heap__pop(&etm->heap);

		tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
		if (!tidq) {
			/*
			 * No traceID queue has been allocated for this traceID,
			 * which means something somewhere went very wrong.  No
			 * other choice than simply exit.
			 */
			ret = -EINVAL;
			goto out;
		}

		/*
		 * Packets associated with this timestamp are already in
		 * the etmq's traceID queue, so process them.
		 */
		ret = cs_etm__process_traceid_queue(etmq, tidq);
		if (ret < 0)
			goto out;

		/*
		 * Packets for this timestamp have been processed, time to
		 * move on to the next timestamp, fetching a new auxtrace_buffer
		 * if need be.
		 */
refetch:
		ret = cs_etm__get_data_block(etmq);
		if (ret < 0)
			goto out;

		/*
		 * No more auxtrace_buffers to process in this etmq, simply
		 * move on to another entry in the auxtrace_heap.
		 */
		if (!ret)
			continue;

		ret = cs_etm__decode_data_block(etmq);
		if (ret)
			goto out;

2285
		cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2286

2287
		if (!cs_timestamp) {
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
			/*
			 * Function cs_etm__decode_data_block() returns when
			 * there is no more traces to decode in the current
			 * auxtrace_buffer OR when a timestamp has been
			 * encountered on any of the traceID queues.  Since we
			 * did not get a timestamp, there is no more traces to
			 * process in this auxtrace_buffer.  As such empty and
			 * flush all traceID queues.
			 */
			cs_etm__clear_all_traceid_queues(etmq);

			/* Fetch another auxtrace_buffer for this etmq */
			goto refetch;
		}

		/*
		 * Add to the min heap the timestamp for packets that have
		 * just been decoded.  They will be processed and synthesized
		 * during the next call to cs_etm__process_traceid_queue() for
		 * this queue/traceID.
		 */
		cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2310
		ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
2311 2312 2313 2314 2315 2316
	}

out:
	return ret;
}

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
					union perf_event *event)
{
	struct thread *th;

	if (etm->timeless_decoding)
		return 0;

	/*
	 * Add the tid/pid to the log so that we can get a match when
	 * we get a contextID from the decoder.
	 */
	th = machine__findnew_thread(etm->machine,
				     event->itrace_start.pid,
				     event->itrace_start.tid);
	if (!th)
		return -ENOMEM;

	thread__put(th);

	return 0;
}

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
					   union perf_event *event)
{
	struct thread *th;
	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;

	/*
	 * Context switch in per-thread mode are irrelevant since perf
	 * will start/stop tracing as the process is scheduled.
	 */
	if (etm->timeless_decoding)
		return 0;

	/*
	 * SWITCH_IN events carry the next process to be switched out while
	 * SWITCH_OUT events carry the process to be switched in.  As such
	 * we don't care about IN events.
	 */
	if (!out)
		return 0;

	/*
	 * Add the tid/pid to the log so that we can get a match when
	 * we get a contextID from the decoder.
	 */
	th = machine__findnew_thread(etm->machine,
				     event->context_switch.next_prev_pid,
				     event->context_switch.next_prev_tid);
	if (!th)
		return -ENOMEM;

	thread__put(th);

	return 0;
}

2376 2377 2378 2379 2380
static int cs_etm__process_event(struct perf_session *session,
				 union perf_event *event,
				 struct perf_sample *sample,
				 struct perf_tool *tool)
{
2381
	int err = 0;
2382
	u64 sample_kernel_timestamp;
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);

	if (dump_trace)
		return 0;

	if (!tool->ordered_events) {
		pr_err("CoreSight ETM Trace requires ordered events\n");
		return -EINVAL;
	}

	if (sample->time && (sample->time != (u64) -1))
2396
		sample_kernel_timestamp = sample->time;
2397
	else
2398
		sample_kernel_timestamp = 0;
2399

2400
	if (sample_kernel_timestamp || etm->timeless_decoding) {
2401 2402 2403 2404 2405
		err = cs_etm__update_queues(etm);
		if (err)
			return err;
	}

2406 2407 2408 2409 2410
	/*
	 * Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We
	 * need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because
	 * ETM_OPT_CTXTID is not enabled.
	 */
2411 2412
	if (etm->timeless_decoding &&
	    event->header.type == PERF_RECORD_EXIT)
2413
		return cs_etm__process_timeless_queues(etm,
2414
						       event->fork.tid);
2415

2416 2417
	if (event->header.type == PERF_RECORD_ITRACE_START)
		return cs_etm__process_itrace_start(etm, event);
2418 2419
	else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
		return cs_etm__process_switch_cpu_wide(etm, event);
2420

2421 2422 2423 2424 2425 2426 2427 2428
	if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) {
		/*
		 * Record the latest kernel timestamp available in the header
		 * for samples so that synthesised samples occur from this point
		 * onwards.
		 */
		etm->latest_kernel_timestamp = sample_kernel_timestamp;
	}
2429

2430 2431 2432
	return 0;
}

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
static void dump_queued_data(struct cs_etm_auxtrace *etm,
			     struct perf_record_auxtrace *event)
{
	struct auxtrace_buffer *buf;
	unsigned int i;
	/*
	 * Find all buffers with same reference in the queues and dump them.
	 * This is because the queues can contain multiple entries of the same
	 * buffer that were split on aux records.
	 */
	for (i = 0; i < etm->queues.nr_queues; ++i)
		list_for_each_entry(buf, &etm->queues.queue_array[i].head, list)
			if (buf->reference == event->reference)
				cs_etm__dump_event(etm, buf);
}

2449 2450
static int cs_etm__process_auxtrace_event(struct perf_session *session,
					  union perf_event *event,
2451
					  struct perf_tool *tool __maybe_unused)
2452
{
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);
	if (!etm->data_queued) {
		struct auxtrace_buffer *buffer;
		off_t  data_offset;
		int fd = perf_data__fd(session->data);
		bool is_pipe = perf_data__is_pipe(session->data);
		int err;

		if (is_pipe)
			data_offset = 0;
		else {
			data_offset = lseek(fd, 0, SEEK_CUR);
			if (data_offset == -1)
				return -errno;
		}

		err = auxtrace_queues__add_event(&etm->queues, session,
						 event, data_offset, &buffer);
		if (err)
			return err;

		if (dump_trace)
			if (auxtrace_buffer__get_data(buffer, fd)) {
				cs_etm__dump_event(etm, buffer);
				auxtrace_buffer__put_data(buffer);
			}
2481 2482
	} else if (dump_trace)
		dump_queued_data(etm, &event->auxtrace);
2483

2484 2485 2486 2487 2488
	return 0;
}

static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
{
2489
	struct evsel *evsel;
2490
	struct evlist *evlist = etm->session->evlist;
2491 2492
	bool timeless_decoding = true;

2493 2494 2495 2496
	/* Override timeless mode with user input from --itrace=Z */
	if (etm->synth_opts.timeless_decoding)
		return true;

2497 2498 2499 2500 2501
	/*
	 * Circle through the list of event and complain if we find one
	 * with the time bit set.
	 */
	evlist__for_each_entry(evlist, evsel) {
2502
		if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2503 2504 2505 2506 2507 2508
			timeless_decoding = false;
	}

	return timeless_decoding;
}

2509
static const char * const cs_etm_global_header_fmts[] = {
2510
	[CS_HEADER_VERSION]	= "	Header version		       %llx\n",
2511 2512 2513 2514 2515 2516 2517
	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
};

static const char * const cs_etm_priv_fmts[] = {
	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2518
	[CS_ETM_NR_TRC_PARAMS]	= "	NR_TRC_PARAMS		       %llx\n",
2519 2520 2521 2522 2523 2524 2525 2526 2527
	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
};

static const char * const cs_etmv4_priv_fmts[] = {
	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2528
	[CS_ETM_NR_TRC_PARAMS]	= "	NR_TRC_PARAMS		       %llx\n",
2529 2530 2531 2532 2533 2534 2535 2536 2537
	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
};

2538 2539 2540 2541 2542 2543
static const char * const param_unk_fmt =
	"	Unknown parameter [%d]	       %llx\n";
static const char * const magic_unk_fmt =
	"	Magic number Unknown	       %llx\n";

static int cs_etm__print_cpu_metadata_v0(__u64 *val, int *offset)
2544
{
2545 2546
	int i = *offset, j, nr_params = 0, fmt_offset;
	__u64 magic;
2547

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	/* check magic value */
	magic = val[i + CS_ETM_MAGIC];
	if ((magic != __perf_cs_etmv3_magic) &&
	    (magic != __perf_cs_etmv4_magic)) {
		/* failure - note bad magic value */
		fprintf(stdout, magic_unk_fmt, magic);
		return -EINVAL;
	}

	/* print common header block */
	fprintf(stdout, cs_etm_priv_fmts[CS_ETM_MAGIC], val[i++]);
	fprintf(stdout, cs_etm_priv_fmts[CS_ETM_CPU], val[i++]);

	if (magic == __perf_cs_etmv3_magic) {
		nr_params = CS_ETM_NR_TRC_PARAMS_V0;
		fmt_offset = CS_ETM_ETMCR;
		/* after common block, offset format index past NR_PARAMS */
		for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
			fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
	} else if (magic == __perf_cs_etmv4_magic) {
		nr_params = CS_ETMV4_NR_TRC_PARAMS_V0;
		fmt_offset = CS_ETMV4_TRCCONFIGR;
		/* after common block, offset format index past NR_PARAMS */
		for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
			fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
	}
	*offset = i;
	return 0;
}

static int cs_etm__print_cpu_metadata_v1(__u64 *val, int *offset)
{
	int i = *offset, j, total_params = 0;
	__u64 magic;

	magic = val[i + CS_ETM_MAGIC];
	/* total params to print is NR_PARAMS + common block size for v1 */
	total_params = val[i + CS_ETM_NR_TRC_PARAMS] + CS_ETM_COMMON_BLK_MAX_V1;
2586

2587 2588 2589 2590 2591 2592
	if (magic == __perf_cs_etmv3_magic) {
		for (j = 0; j < total_params; j++, i++) {
			/* if newer record - could be excess params */
			if (j >= CS_ETM_PRIV_MAX)
				fprintf(stdout, param_unk_fmt, j, val[i]);
			else
2593
				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2594 2595 2596 2597 2598 2599 2600
		}
	} else if (magic == __perf_cs_etmv4_magic) {
		for (j = 0; j < total_params; j++, i++) {
			/* if newer record - could be excess params */
			if (j >= CS_ETMV4_PRIV_MAX)
				fprintf(stdout, param_unk_fmt, j, val[i]);
			else
2601
				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
		}
	} else {
		/* failure - note bad magic value and error out */
		fprintf(stdout, magic_unk_fmt, magic);
		return -EINVAL;
	}
	*offset = i;
	return 0;
}

static void cs_etm__print_auxtrace_info(__u64 *val, int num)
{
	int i, cpu = 0, version, err;

	/* bail out early on bad header version */
	version = val[0];
	if (version > CS_HEADER_CURRENT_VERSION) {
		/* failure.. return */
		fprintf(stdout, "	Unknown Header Version = %x, ", version);
		fprintf(stdout, "Version supported <= %x\n", CS_HEADER_CURRENT_VERSION);
		return;
	}

	for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);

	for (i = CS_HEADER_VERSION_MAX; cpu < num; cpu++) {
		if (version == 0)
			err = cs_etm__print_cpu_metadata_v0(val, &i);
		else if (version == 1)
			err = cs_etm__print_cpu_metadata_v1(val, &i);
		if (err)
2634 2635 2636 2637
			return;
	}
}

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
/*
 * Read a single cpu parameter block from the auxtrace_info priv block.
 *
 * For version 1 there is a per cpu nr_params entry. If we are handling
 * version 1 file, then there may be less, the same, or more params
 * indicated by this value than the compile time number we understand.
 *
 * For a version 0 info block, there are a fixed number, and we need to
 * fill out the nr_param value in the metadata we create.
 */
static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
				    int out_blk_size, int nr_params_v0)
{
	u64 *metadata = NULL;
	int hdr_version;
	int nr_in_params, nr_out_params, nr_cmn_params;
	int i, k;

	metadata = zalloc(sizeof(*metadata) * out_blk_size);
	if (!metadata)
		return NULL;

	/* read block current index & version */
	i = *buff_in_offset;
	hdr_version = buff_in[CS_HEADER_VERSION];

	if (!hdr_version) {
	/* read version 0 info block into a version 1 metadata block  */
		nr_in_params = nr_params_v0;
		metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
		metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
		metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
		/* remaining block params at offset +1 from source */
		for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
			metadata[k + 1] = buff_in[i + k];
		/* version 0 has 2 common params */
		nr_cmn_params = 2;
	} else {
	/* read version 1 info block - input and output nr_params may differ */
		/* version 1 has 3 common params */
		nr_cmn_params = 3;
		nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];

		/* if input has more params than output - skip excess */
		nr_out_params = nr_in_params + nr_cmn_params;
		if (nr_out_params > out_blk_size)
			nr_out_params = out_blk_size;

		for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
			metadata[k] = buff_in[i + k];

		/* record the actual nr params we copied */
		metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
	}

	/* adjust in offset by number of in params used */
	i += nr_in_params + nr_cmn_params;
	*buff_in_offset = i;
	return metadata;
}

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
/**
 * Puts a fragment of an auxtrace buffer into the auxtrace queues based
 * on the bounds of aux_event, if it matches with the buffer that's at
 * file_offset.
 *
 * Normally, whole auxtrace buffers would be added to the queue. But we
 * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder
 * is reset across each buffer, so splitting the buffers up in advance has
 * the same effect.
 */
static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz,
				      struct perf_record_aux *aux_event, struct perf_sample *sample)
{
	int err;
	char buf[PERF_SAMPLE_MAX_SIZE];
	union perf_event *auxtrace_event_union;
	struct perf_record_auxtrace *auxtrace_event;
	union perf_event auxtrace_fragment;
	__u64 aux_offset, aux_size;

	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);

	/*
	 * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got
	 * from looping through the auxtrace index.
	 */
	err = perf_session__peek_event(session, file_offset, buf,
				       PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL);
	if (err)
		return err;
	auxtrace_event = &auxtrace_event_union->auxtrace;
	if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE)
		return -EINVAL;

	if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) ||
		auxtrace_event->header.size != sz) {
		return -EINVAL;
	}

	/*
	 * In per-thread mode, CPU is set to -1, but TID will be set instead. See
	 * auxtrace_mmap_params__set_idx(). Return 'not found' if neither CPU nor TID match.
	 */
	if ((auxtrace_event->cpu == (__u32) -1 && auxtrace_event->tid != sample->tid) ||
			auxtrace_event->cpu != sample->cpu)
		return 1;

	if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) {
		/*
		 * Clamp size in snapshot mode. The buffer size is clamped in
		 * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect
		 * the buffer size.
		 */
		aux_size = min(aux_event->aux_size, auxtrace_event->size);

		/*
		 * In this mode, the head also points to the end of the buffer so aux_offset
		 * needs to have the size subtracted so it points to the beginning as in normal mode
		 */
		aux_offset = aux_event->aux_offset - aux_size;
	} else {
		aux_size = aux_event->aux_size;
		aux_offset = aux_event->aux_offset;
	}

	if (aux_offset >= auxtrace_event->offset &&
	    aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) {
		/*
		 * If this AUX event was inside this buffer somewhere, create a new auxtrace event
		 * based on the sizes of the aux event, and queue that fragment.
		 */
		auxtrace_fragment.auxtrace = *auxtrace_event;
		auxtrace_fragment.auxtrace.size = aux_size;
		auxtrace_fragment.auxtrace.offset = aux_offset;
		file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size;

		pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64
			  " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu);
		return auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment,
						  file_offset, NULL);
	}

	/* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */
	return 1;
}

static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event,
					u64 offset __maybe_unused, void *data __maybe_unused)
{
	struct perf_sample sample;
	int ret;
	struct auxtrace_index_entry *ent;
	struct auxtrace_index *auxtrace_index;
	struct evsel *evsel;
	size_t i;

	/* Don't care about any other events, we're only queuing buffers for AUX events */
	if (event->header.type != PERF_RECORD_AUX)
		return 0;

	if (event->header.size < sizeof(struct perf_record_aux))
		return -EINVAL;

	/* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */
	if (!event->aux.aux_size)
		return 0;

	/*
	 * Parse the sample, we need the sample_id_all data that comes after the event so that the
	 * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID.
	 */
	evsel = evlist__event2evsel(session->evlist, event);
	if (!evsel)
		return -EINVAL;
	ret = evsel__parse_sample(evsel, event, &sample);
	if (ret)
		return ret;

	/*
	 * Loop through the auxtrace index to find the buffer that matches up with this aux event.
	 */
	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
		for (i = 0; i < auxtrace_index->nr; i++) {
			ent = &auxtrace_index->entries[i];
			ret = cs_etm__queue_aux_fragment(session, ent->file_offset,
							 ent->sz, &event->aux, &sample);
			/*
			 * Stop search on error or successful values. Continue search on
			 * 1 ('not found')
			 */
			if (ret != 1)
				return ret;
		}
	}

	/*
	 * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but
	 * don't exit with an error because it will still be possible to decode other aux records.
	 */
	pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64
	       " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu);
	return 0;
}

static int cs_etm__queue_aux_records(struct perf_session *session)
{
	struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index,
								struct auxtrace_index, list);
	if (index && index->nr > 0)
		return perf_session__peek_events(session, session->header.data_offset,
						 session->header.data_size,
						 cs_etm__queue_aux_records_cb, NULL);

	/*
	 * We would get here if there are no entries in the index (either no auxtrace
	 * buffers or no index at all). Fail silently as there is the possibility of
	 * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still
	 * false.
	 *
	 * In that scenario, buffers will not be split by AUX records.
	 */
	return 0;
}

2865 2866 2867
int cs_etm__process_auxtrace_info(union perf_event *event,
				  struct perf_session *session)
{
2868
	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2869
	struct cs_etm_auxtrace *etm = NULL;
2870 2871
	struct int_node *inode;
	unsigned int pmu_type;
2872 2873 2874
	int event_header_size = sizeof(struct perf_event_header);
	int info_header_size;
	int total_size = auxtrace_info->header.size;
2875
	int priv_size = 0;
2876 2877 2878
	int num_cpu, trcidr_idx;
	int err = 0;
	int i, j;
2879 2880
	u64 *ptr, *hdr = NULL;
	u64 **metadata = NULL;
2881
	u64 hdr_version;
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891

	/*
	 * sizeof(auxtrace_info_event::type) +
	 * sizeof(auxtrace_info_event::reserved) == 8
	 */
	info_header_size = 8;

	if (total_size < (event_header_size + info_header_size))
		return -EINVAL;

2892 2893 2894 2895 2896
	priv_size = total_size - event_header_size - info_header_size;

	/* First the global part */
	ptr = (u64 *) auxtrace_info->priv;

2897 2898 2899 2900 2901 2902
	/* Look for version of the header */
	hdr_version = ptr[0];
	if (hdr_version > CS_HEADER_CURRENT_VERSION) {
		/* print routine will print an error on bad version */
		if (dump_trace)
			cs_etm__print_auxtrace_info(auxtrace_info->priv, 0);
2903
		return -EINVAL;
2904
	}
2905

2906
	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_MAX);
2907 2908 2909 2910
	if (!hdr)
		return -ENOMEM;

	/* Extract header information - see cs-etm.h for format */
2911
	for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2912 2913 2914 2915 2916 2917
		hdr[i] = ptr[i];
	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
				    0xffffffff);

	/*
2918 2919 2920
	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
	 * has to be made for each packet that gets decoded, optimizing access
	 * in anything other than a sequential array is worth doing.
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	 */
	traceid_list = intlist__new(NULL);
	if (!traceid_list) {
		err = -ENOMEM;
		goto err_free_hdr;
	}

	metadata = zalloc(sizeof(*metadata) * num_cpu);
	if (!metadata) {
		err = -ENOMEM;
		goto err_free_traceid_list;
	}

	/*
	 * The metadata is stored in the auxtrace_info section and encodes
	 * the configuration of the ARM embedded trace macrocell which is
	 * required by the trace decoder to properly decode the trace due
	 * to its highly compressed nature.
	 */
	for (j = 0; j < num_cpu; j++) {
		if (ptr[i] == __perf_cs_etmv3_magic) {
2942 2943 2944 2945
			metadata[j] =
				cs_etm__create_meta_blk(ptr, &i,
							CS_ETM_PRIV_MAX,
							CS_ETM_NR_TRC_PARAMS_V0);
2946 2947

			/* The traceID is our handle */
2948 2949
			trcidr_idx = CS_ETM_ETMTRACEIDR;

2950
		} else if (ptr[i] == __perf_cs_etmv4_magic) {
2951 2952 2953 2954
			metadata[j] =
				cs_etm__create_meta_blk(ptr, &i,
							CS_ETMV4_PRIV_MAX,
							CS_ETMV4_NR_TRC_PARAMS_V0);
2955 2956

			/* The traceID is our handle */
2957 2958 2959 2960 2961 2962
			trcidr_idx = CS_ETMV4_TRCTRACEIDR;
		}

		if (!metadata[j]) {
			err = -ENOMEM;
			goto err_free_metadata;
2963 2964 2965
		}

		/* Get an RB node for this CPU */
2966
		inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]);
2967 2968 2969

		/* Something went wrong, no need to continue */
		if (!inode) {
2970
			err = -ENOMEM;
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
			goto err_free_metadata;
		}

		/*
		 * The node for that CPU should not be taken.
		 * Back out if that's the case.
		 */
		if (inode->priv) {
			err = -EINVAL;
			goto err_free_metadata;
		}
2982 2983
		/* All good, associate the traceID with the metadata pointer */
		inode->priv = metadata[j];
2984 2985 2986
	}

	/*
2987
	 * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
	 * global metadata, and each cpu's metadata respectively.
	 * The following tests if the correct number of double words was
	 * present in the auxtrace info section.
	 */
	if (i * 8 != priv_size) {
		err = -EINVAL;
		goto err_free_metadata;
	}

2998 2999
	etm = zalloc(sizeof(*etm));

3000
	if (!etm) {
3001
		err = -ENOMEM;
3002 3003
		goto err_free_metadata;
	}
3004 3005 3006 3007 3008

	err = auxtrace_queues__init(&etm->queues);
	if (err)
		goto err_free_etm;

3009 3010 3011 3012 3013 3014 3015 3016
	if (session->itrace_synth_opts->set) {
		etm->synth_opts = *session->itrace_synth_opts;
	} else {
		itrace_synth_opts__set_default(&etm->synth_opts,
				session->itrace_synth_opts->default_no_sample);
		etm->synth_opts.callchain = false;
	}

3017 3018 3019
	etm->session = session;
	etm->machine = &session->machines.host;

3020 3021 3022 3023
	etm->num_cpu = num_cpu;
	etm->pmu_type = pmu_type;
	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
	etm->metadata = metadata;
3024 3025 3026 3027 3028 3029 3030 3031
	etm->auxtrace_type = auxtrace_info->type;
	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);

	etm->auxtrace.process_event = cs_etm__process_event;
	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
	etm->auxtrace.flush_events = cs_etm__flush_events;
	etm->auxtrace.free_events = cs_etm__free_events;
	etm->auxtrace.free = cs_etm__free;
3032
	etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
3033 3034
	session->auxtrace = &etm->auxtrace;

3035
	etm->unknown_thread = thread__new(999999999, 999999999);
3036 3037
	if (!etm->unknown_thread) {
		err = -ENOMEM;
3038
		goto err_free_queues;
3039
	}
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050

	/*
	 * Initialize list node so that at thread__zput() we can avoid
	 * segmentation fault at list_del_init().
	 */
	INIT_LIST_HEAD(&etm->unknown_thread->node);

	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
	if (err)
		goto err_delete_thread;

3051
	if (thread__init_maps(etm->unknown_thread, etm->machine)) {
3052
		err = -ENOMEM;
3053
		goto err_delete_thread;
3054
	}
3055

3056 3057 3058
	if (dump_trace) {
		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
	}
3059

3060 3061
	err = cs_etm__synth_events(etm, session);
	if (err)
3062
		goto err_delete_thread;
3063

3064
	err = cs_etm__queue_aux_records(session);
3065
	if (err)
3066
		goto err_delete_thread;
3067 3068 3069 3070 3071

	etm->data_queued = etm->queues.populated;

	return 0;

3072 3073
err_delete_thread:
	thread__zput(etm->unknown_thread);
3074 3075 3076 3077 3078
err_free_queues:
	auxtrace_queues__free(&etm->queues);
	session->auxtrace = NULL;
err_free_etm:
	zfree(&etm);
3079 3080 3081
err_free_metadata:
	/* No need to check @metadata[j], free(NULL) is supported */
	for (j = 0; j < num_cpu; j++)
3082
		zfree(&metadata[j]);
3083 3084 3085 3086 3087
	zfree(&metadata);
err_free_traceid_list:
	intlist__delete(traceid_list);
err_free_hdr:
	zfree(&hdr);
3088 3089 3090 3091 3092 3093 3094
	/*
	 * At this point, as a minimum we have valid header. Dump the rest of
	 * the info section - the print routines will error out on structural
	 * issues.
	 */
	if (dump_trace)
		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
3095
	return err;
3096
}