cs-etm.c 51.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Copyright(C) 2015-2018 Linaro Limited.
 *
 * Author: Tor Jeremiassen <tor@ti.com>
 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
 */

#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/log2.h>
#include <linux/types.h>

15
#include <opencsd/ocsd_if_types.h>
16 17 18 19 20
#include <stdlib.h>

#include "auxtrace.h"
#include "color.h"
#include "cs-etm.h"
21
#include "cs-etm-decoder/cs-etm-decoder.h"
22 23 24 25 26 27
#include "debug.h"
#include "evlist.h"
#include "intlist.h"
#include "machine.h"
#include "map.h"
#include "perf.h"
28
#include "symbol.h"
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#include "thread.h"
#include "thread_map.h"
#include "thread-stack.h"
#include "util.h"

#define MAX_TIMESTAMP (~0ULL)

struct cs_etm_auxtrace {
	struct auxtrace auxtrace;
	struct auxtrace_queues queues;
	struct auxtrace_heap heap;
	struct itrace_synth_opts synth_opts;
	struct perf_session *session;
	struct machine *machine;
	struct thread *unknown_thread;

	u8 timeless_decoding;
	u8 snapshot_mode;
	u8 data_queued;
	u8 sample_branches;
49
	u8 sample_instructions;
50 51 52 53 54

	int num_cpu;
	u32 auxtrace_type;
	u64 branches_sample_type;
	u64 branches_id;
55 56 57
	u64 instructions_sample_type;
	u64 instructions_sample_period;
	u64 instructions_id;
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
	u64 **metadata;
	u64 kernel_start;
	unsigned int pmu_type;
};

struct cs_etm_queue {
	struct cs_etm_auxtrace *etm;
	struct thread *thread;
	struct cs_etm_decoder *decoder;
	struct auxtrace_buffer *buffer;
	union perf_event *event_buf;
	unsigned int queue_nr;
	pid_t pid, tid;
	int cpu;
	u64 offset;
73 74 75 76 77 78
	u64 period_instructions;
	struct branch_stack *last_branch;
	struct branch_stack *last_branch_rb;
	size_t last_branch_pos;
	struct cs_etm_packet *prev_packet;
	struct cs_etm_packet *packet;
79 80
};

81 82
static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
83
					   pid_t tid);
84

85 86 87 88 89 90 91 92 93 94 95 96 97
/* PTMs ETMIDR [11:8] set to b0011 */
#define ETMIDR_PTM_VERSION 0x00000300

static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
{
	etmidr &= ETMIDR_PTM_VERSION;

	if (etmidr == ETMIDR_PTM_VERSION)
		return CS_ETM_PROTO_PTM;

	return CS_ETM_PROTO_ETMV3;
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111
static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
{
	struct int_node *inode;
	u64 *metadata;

	inode = intlist__find(traceid_list, trace_chan_id);
	if (!inode)
		return -EINVAL;

	metadata = inode->priv;
	*magic = metadata[CS_ETM_MAGIC];
	return 0;
}

112 113 114 115 116 117 118 119 120 121 122 123 124 125
int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
{
	struct int_node *inode;
	u64 *metadata;

	inode = intlist__find(traceid_list, trace_chan_id);
	if (!inode)
		return -EINVAL;

	metadata = inode->priv;
	*cpu = (int)metadata[CS_ETM_CPU];
	return 0;
}

126 127 128 129 130 131 132 133 134 135 136 137 138
static void cs_etm__packet_dump(const char *pkt_string)
{
	const char *color = PERF_COLOR_BLUE;
	int len = strlen(pkt_string);

	if (len && (pkt_string[len-1] == '\n'))
		color_fprintf(stdout, color, "	%s", pkt_string);
	else
		color_fprintf(stdout, color, "	%s\n", pkt_string);

	fflush(stdout);
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
					  struct cs_etm_auxtrace *etm, int idx,
					  u32 etmidr)
{
	u64 **metadata = etm->metadata;

	t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
	t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
	t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
}

static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
					  struct cs_etm_auxtrace *etm, int idx)
{
	u64 **metadata = etm->metadata;

	t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
	t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
	t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
	t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
	t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
	t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
	t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
}

static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
				     struct cs_etm_auxtrace *etm)
{
	int i;
	u32 etmidr;
	u64 architecture;

	for (i = 0; i < etm->num_cpu; i++) {
		architecture = etm->metadata[i][CS_ETM_MAGIC];

		switch (architecture) {
		case __perf_cs_etmv3_magic:
			etmidr = etm->metadata[i][CS_ETM_ETMIDR];
			cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
			break;
		case __perf_cs_etmv4_magic:
			cs_etm__set_trace_param_etmv4(t_params, etm, i);
			break;
		default:
			return -EINVAL;
		}
	}

	return 0;
}

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
				       struct cs_etm_queue *etmq,
				       enum cs_etm_decoder_operation mode)
{
	int ret = -EINVAL;

	if (!(mode < CS_ETM_OPERATION_MAX))
		goto out;

	d_params->packet_printer = cs_etm__packet_dump;
	d_params->operation = mode;
	d_params->data = etmq;
	d_params->formatted = true;
	d_params->fsyncs = false;
	d_params->hsyncs = false;
	d_params->frame_aligned = true;

	ret = 0;
out:
	return ret;
}

212 213 214
static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
			       struct auxtrace_buffer *buffer)
{
215
	int ret;
216 217 218 219 220 221 222 223 224 225 226 227 228
	const char *color = PERF_COLOR_BLUE;
	struct cs_etm_decoder_params d_params;
	struct cs_etm_trace_params *t_params;
	struct cs_etm_decoder *decoder;
	size_t buffer_used = 0;

	fprintf(stdout, "\n");
	color_fprintf(stdout, color,
		     ". ... CoreSight ETM Trace data: size %zu bytes\n",
		     buffer->size);

	/* Use metadata to fill in trace parameters for trace decoder */
	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
229 230 231 232

	if (!t_params)
		return;

233 234
	if (cs_etm__init_trace_params(t_params, etm))
		goto out_free;
235 236

	/* Set decoder parameters to simply print the trace packets */
237 238
	if (cs_etm__init_decoder_params(&d_params, NULL,
					CS_ETM_OPERATION_PRINT))
239
		goto out_free;
240 241 242 243

	decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);

	if (!decoder)
244
		goto out_free;
245 246 247 248 249 250 251 252 253 254 255 256 257 258
	do {
		size_t consumed;

		ret = cs_etm_decoder__process_data_block(
				decoder, buffer->offset,
				&((u8 *)buffer->data)[buffer_used],
				buffer->size - buffer_used, &consumed);
		if (ret)
			break;

		buffer_used += consumed;
	} while (buffer_used < buffer->size);

	cs_etm_decoder__free(decoder);
259 260 261

out_free:
	zfree(&t_params);
262 263
}

264 265 266
static int cs_etm__flush_events(struct perf_session *session,
				struct perf_tool *tool)
{
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	int ret;
	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);
	if (dump_trace)
		return 0;

	if (!tool->ordered_events)
		return -EINVAL;

	if (!etm->timeless_decoding)
		return -EINVAL;

	ret = cs_etm__update_queues(etm);

	if (ret < 0)
		return ret;

285
	return cs_etm__process_timeless_queues(etm, -1);
286 287 288 289 290 291
}

static void cs_etm__free_queue(void *priv)
{
	struct cs_etm_queue *etmq = priv;

292 293 294 295 296 297
	if (!etmq)
		return;

	thread__zput(etmq->thread);
	cs_etm_decoder__free(etmq->decoder);
	zfree(&etmq->event_buf);
298 299 300 301
	zfree(&etmq->last_branch);
	zfree(&etmq->last_branch_rb);
	zfree(&etmq->prev_packet);
	zfree(&etmq->packet);
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
	free(etmq);
}

static void cs_etm__free_events(struct perf_session *session)
{
	unsigned int i;
	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);
	struct auxtrace_queues *queues = &aux->queues;

	for (i = 0; i < queues->nr_queues; i++) {
		cs_etm__free_queue(queues->queue_array[i].priv);
		queues->queue_array[i].priv = NULL;
	}

	auxtrace_queues__free(queues);
}

static void cs_etm__free(struct perf_session *session)
{
323 324
	int i;
	struct int_node *inode, *tmp;
325 326 327 328 329 330
	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);
	cs_etm__free_events(session);
	session->auxtrace = NULL;

331
	/* First remove all traceID/metadata nodes for the RB tree */
332 333 334 335 336 337 338 339
	intlist__for_each_entry_safe(inode, tmp, traceid_list)
		intlist__remove(traceid_list, inode);
	/* Then the RB tree itself */
	intlist__delete(traceid_list);

	for (i = 0; i < aux->num_cpu; i++)
		zfree(&aux->metadata[i]);

340
	thread__zput(aux->unknown_thread);
341
	zfree(&aux->metadata);
342 343 344
	zfree(&aux);
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
{
	struct machine *machine;

	machine = etmq->etm->machine;

	if (address >= etmq->etm->kernel_start) {
		if (machine__is_host(machine))
			return PERF_RECORD_MISC_KERNEL;
		else
			return PERF_RECORD_MISC_GUEST_KERNEL;
	} else {
		if (machine__is_host(machine))
			return PERF_RECORD_MISC_USER;
		else if (perf_guest)
			return PERF_RECORD_MISC_GUEST_USER;
		else
			return PERF_RECORD_MISC_HYPERVISOR;
	}
}

366 367 368 369 370 371 372 373 374 375 376
static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u64 address,
			      size_t size, u8 *buffer)
{
	u8  cpumode;
	u64 offset;
	int len;
	struct	 thread *thread;
	struct	 machine *machine;
	struct	 addr_location al;

	if (!etmq)
377
		return 0;
378 379

	machine = etmq->etm->machine;
380
	cpumode = cs_etm__cpu_mode(etmq, address);
381 382 383 384

	thread = etmq->thread;
	if (!thread) {
		if (cpumode != PERF_RECORD_MISC_KERNEL)
385
			return 0;
386 387 388
		thread = etmq->etm->unknown_thread;
	}

389
	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
		return 0;

	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
		return 0;

	offset = al.map->map_ip(al.map, address);

	map__load(al.map);

	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);

	if (len <= 0)
		return 0;

	return len;
}

408
static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
409 410
{
	struct cs_etm_decoder_params d_params;
411
	struct cs_etm_trace_params  *t_params = NULL;
412
	struct cs_etm_queue *etmq;
413
	size_t szp = sizeof(struct cs_etm_packet);
414 415 416 417 418

	etmq = zalloc(sizeof(*etmq));
	if (!etmq)
		return NULL;

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
	etmq->packet = zalloc(szp);
	if (!etmq->packet)
		goto out_free;

	if (etm->synth_opts.last_branch || etm->sample_branches) {
		etmq->prev_packet = zalloc(szp);
		if (!etmq->prev_packet)
			goto out_free;
	}

	if (etm->synth_opts.last_branch) {
		size_t sz = sizeof(struct branch_stack);

		sz += etm->synth_opts.last_branch_sz *
		      sizeof(struct branch_entry);
		etmq->last_branch = zalloc(sz);
		if (!etmq->last_branch)
			goto out_free;
		etmq->last_branch_rb = zalloc(sz);
		if (!etmq->last_branch_rb)
			goto out_free;
	}

442 443 444 445 446 447 448 449 450 451
	etmq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
	if (!etmq->event_buf)
		goto out_free;

	/* Use metadata to fill in trace parameters for trace decoder */
	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);

	if (!t_params)
		goto out_free;

452 453
	if (cs_etm__init_trace_params(t_params, etm))
		goto out_free;
454

455
	/* Set decoder parameters to decode trace packets */
456 457 458
	if (cs_etm__init_decoder_params(&d_params, etmq,
					CS_ETM_OPERATION_DECODE))
		goto out_free;
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

	etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);

	if (!etmq->decoder)
		goto out_free;

	/*
	 * Register a function to handle all memory accesses required by
	 * the trace decoder library.
	 */
	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
					      0x0L, ((u64) -1L),
					      cs_etm__mem_access))
		goto out_free_decoder;

474
	zfree(&t_params);
475 476 477 478 479
	return etmq;

out_free_decoder:
	cs_etm_decoder__free(etmq->decoder);
out_free:
480
	zfree(&t_params);
481
	zfree(&etmq->event_buf);
482 483 484 485
	zfree(&etmq->last_branch);
	zfree(&etmq->last_branch_rb);
	zfree(&etmq->prev_packet);
	zfree(&etmq->packet);
486 487 488 489 490 491 492 493 494
	free(etmq);

	return NULL;
}

static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
			       struct auxtrace_queue *queue,
			       unsigned int queue_nr)
{
495
	int ret = 0;
496 497 498
	struct cs_etm_queue *etmq = queue->priv;

	if (list_empty(&queue->head) || etmq)
499
		goto out;
500

501
	etmq = cs_etm__alloc_queue(etm);
502

503 504 505 506
	if (!etmq) {
		ret = -ENOMEM;
		goto out;
	}
507 508

	queue->priv = etmq;
509 510 511
	etmq->etm = etm;
	etmq->queue_nr = queue_nr;
	etmq->cpu = queue->cpu;
512
	etmq->tid = queue->tid;
513 514 515
	etmq->pid = -1;
	etmq->offset = 0;
	etmq->period_instructions = 0;
516

517 518
out:
	return ret;
519 520 521 522 523 524 525
}

static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
{
	unsigned int i;
	int ret;

526 527 528
	if (!etm->kernel_start)
		etm->kernel_start = machine__kernel_start(etm->machine);

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
	for (i = 0; i < etm->queues.nr_queues; i++) {
		ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
		if (ret)
			return ret;
	}

	return 0;
}

static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
{
	if (etm->queues.new_data) {
		etm->queues.new_data = false;
		return cs_etm__setup_queues(etm);
	}

	return 0;
}

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
static inline void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq)
{
	struct branch_stack *bs_src = etmq->last_branch_rb;
	struct branch_stack *bs_dst = etmq->last_branch;
	size_t nr = 0;

	/*
	 * Set the number of records before early exit: ->nr is used to
	 * determine how many branches to copy from ->entries.
	 */
	bs_dst->nr = bs_src->nr;

	/*
	 * Early exit when there is nothing to copy.
	 */
	if (!bs_src->nr)
		return;

	/*
	 * As bs_src->entries is a circular buffer, we need to copy from it in
	 * two steps.  First, copy the branches from the most recently inserted
	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
	 */
	nr = etmq->etm->synth_opts.last_branch_sz - etmq->last_branch_pos;
	memcpy(&bs_dst->entries[0],
	       &bs_src->entries[etmq->last_branch_pos],
	       sizeof(struct branch_entry) * nr);

	/*
	 * If we wrapped around at least once, the branches from the beginning
	 * of the bs_src->entries buffer and until the ->last_branch_pos element
	 * are older valid branches: copy them over.  The total number of
	 * branches copied over will be equal to the number of branches asked by
	 * the user in last_branch_sz.
	 */
	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
		memcpy(&bs_dst->entries[nr],
		       &bs_src->entries[0],
		       sizeof(struct branch_entry) * etmq->last_branch_pos);
	}
}

static inline void cs_etm__reset_last_branch_rb(struct cs_etm_queue *etmq)
{
	etmq->last_branch_pos = 0;
	etmq->last_branch_rb->nr = 0;
}

596 597 598
static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
					 u64 addr) {
	u8 instrBytes[2];
599

600
	cs_etm__mem_access(etmq, addr, ARRAY_SIZE(instrBytes), instrBytes);
601
	/*
602 603 604
	 * T32 instruction size is indicated by bits[15:11] of the first
	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
	 * denote a 32-bit instruction.
605
	 */
606
	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
607 608
}

609 610
static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
{
611 612
	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
	if (packet->sample_type == CS_ETM_DISCONTINUITY)
613 614 615 616 617
		return 0;

	return packet->start_addr;
}

618 619
static inline
u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
620
{
621 622
	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
	if (packet->sample_type == CS_ETM_DISCONTINUITY)
623 624 625
		return 0;

	return packet->end_addr - packet->last_instr_size;
626 627
}

628 629
static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
				     const struct cs_etm_packet *packet,
630 631
				     u64 offset)
{
632 633 634 635 636 637 638 639 640 641 642 643
	if (packet->isa == CS_ETM_ISA_T32) {
		u64 addr = packet->start_addr;

		while (offset > 0) {
			addr += cs_etm__t32_instr_size(etmq, addr);
			offset--;
		}
		return addr;
	}

	/* Assume a 4 byte instruction size (A32/A64) */
	return packet->start_addr + offset * 4;
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
}

static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq)
{
	struct branch_stack *bs = etmq->last_branch_rb;
	struct branch_entry *be;

	/*
	 * The branches are recorded in a circular buffer in reverse
	 * chronological order: we start recording from the last element of the
	 * buffer down.  After writing the first element of the stack, move the
	 * insert position back to the end of the buffer.
	 */
	if (!etmq->last_branch_pos)
		etmq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;

	etmq->last_branch_pos -= 1;

	be       = &bs->entries[etmq->last_branch_pos];
	be->from = cs_etm__last_executed_instr(etmq->prev_packet);
664
	be->to	 = cs_etm__first_executed_instr(etmq->packet);
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
	/* No support for mispredict */
	be->flags.mispred = 0;
	be->flags.predicted = 1;

	/*
	 * Increment bs->nr until reaching the number of last branches asked by
	 * the user on the command line.
	 */
	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
		bs->nr += 1;
}

static int cs_etm__inject_event(union perf_event *event,
			       struct perf_sample *sample, u64 type)
{
	event->header.size = perf_event__sample_event_size(sample, type, 0);
	return perf_event__synthesize_sample(event, type, 0, sample);
}


685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
static int
cs_etm__get_trace(struct cs_etm_buffer *buff, struct cs_etm_queue *etmq)
{
	struct auxtrace_buffer *aux_buffer = etmq->buffer;
	struct auxtrace_buffer *old_buffer = aux_buffer;
	struct auxtrace_queue *queue;

	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];

	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);

	/* If no more data, drop the previous auxtrace_buffer and return */
	if (!aux_buffer) {
		if (old_buffer)
			auxtrace_buffer__drop_data(old_buffer);
		buff->len = 0;
		return 0;
	}

	etmq->buffer = aux_buffer;

	/* If the aux_buffer doesn't have data associated, try to load it */
	if (!aux_buffer->data) {
		/* get the file desc associated with the perf data file */
		int fd = perf_data__fd(etmq->etm->session->data);

		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
		if (!aux_buffer->data)
			return -ENOMEM;
	}

	/* If valid, drop the previous buffer */
	if (old_buffer)
		auxtrace_buffer__drop_data(old_buffer);

	buff->offset = aux_buffer->offset;
	buff->len = aux_buffer->size;
	buff->buf = aux_buffer->data;

	buff->ref_timestamp = aux_buffer->reference;

	return buff->len;
}

L
Leo Yan 已提交
729 730
static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
				    struct auxtrace_queue *queue)
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
{
	struct cs_etm_queue *etmq = queue->priv;

	/* CPU-wide tracing isn't supported yet */
	if (queue->tid == -1)
		return;

	if ((!etmq->thread) && (etmq->tid != -1))
		etmq->thread = machine__find_thread(etm->machine, -1,
						    etmq->tid);

	if (etmq->thread) {
		etmq->pid = etmq->thread->pid_;
		if (queue->cpu == -1)
			etmq->cpu = etmq->thread->cpu;
	}
}

749 750 751 752 753 754 755 756 757
static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
					    u64 addr, u64 period)
{
	int ret = 0;
	struct cs_etm_auxtrace *etm = etmq->etm;
	union perf_event *event = etmq->event_buf;
	struct perf_sample sample = {.ip = 0,};

	event->sample.header.type = PERF_RECORD_SAMPLE;
758
	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
759 760 761 762 763 764 765 766 767
	event->sample.header.size = sizeof(struct perf_event_header);

	sample.ip = addr;
	sample.pid = etmq->pid;
	sample.tid = etmq->tid;
	sample.id = etmq->etm->instructions_id;
	sample.stream_id = etmq->etm->instructions_id;
	sample.period = period;
	sample.cpu = etmq->packet->cpu;
768
	sample.flags = etmq->prev_packet->flags;
769
	sample.insn_len = 1;
770
	sample.cpumode = event->sample.header.misc;
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

	if (etm->synth_opts.last_branch) {
		cs_etm__copy_last_branch_rb(etmq);
		sample.branch_stack = etmq->last_branch;
	}

	if (etm->synth_opts.inject) {
		ret = cs_etm__inject_event(event, &sample,
					   etm->instructions_sample_type);
		if (ret)
			return ret;
	}

	ret = perf_session__deliver_synth_event(etm->session, event, &sample);

	if (ret)
		pr_err(
			"CS ETM Trace: failed to deliver instruction event, error %d\n",
			ret);

	if (etm->synth_opts.last_branch)
		cs_etm__reset_last_branch_rb(etmq);

	return ret;
}

797 798 799 800
/*
 * The cs etm packet encodes an instruction range between a branch target
 * and the next taken branch. Generate sample accordingly.
 */
801
static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq)
802 803 804 805 806
{
	int ret = 0;
	struct cs_etm_auxtrace *etm = etmq->etm;
	struct perf_sample sample = {.ip = 0,};
	union perf_event *event = etmq->event_buf;
807 808 809 810
	struct dummy_branch_stack {
		u64			nr;
		struct branch_entry	entries;
	} dummy_bs;
811 812 813
	u64 ip;

	ip = cs_etm__last_executed_instr(etmq->prev_packet);
814 815

	event->sample.header.type = PERF_RECORD_SAMPLE;
816
	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
817 818
	event->sample.header.size = sizeof(struct perf_event_header);

819
	sample.ip = ip;
820 821
	sample.pid = etmq->pid;
	sample.tid = etmq->tid;
822
	sample.addr = cs_etm__first_executed_instr(etmq->packet);
823 824 825
	sample.id = etmq->etm->branches_id;
	sample.stream_id = etmq->etm->branches_id;
	sample.period = 1;
826
	sample.cpu = etmq->packet->cpu;
827
	sample.flags = etmq->prev_packet->flags;
828
	sample.cpumode = event->sample.header.misc;
829

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	/*
	 * perf report cannot handle events without a branch stack
	 */
	if (etm->synth_opts.last_branch) {
		dummy_bs = (struct dummy_branch_stack){
			.nr = 1,
			.entries = {
				.from = sample.ip,
				.to = sample.addr,
			},
		};
		sample.branch_stack = (struct branch_stack *)&dummy_bs;
	}

	if (etm->synth_opts.inject) {
		ret = cs_etm__inject_event(event, &sample,
					   etm->branches_sample_type);
		if (ret)
			return ret;
	}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
	ret = perf_session__deliver_synth_event(etm->session, event, &sample);

	if (ret)
		pr_err(
		"CS ETM Trace: failed to deliver instruction event, error %d\n",
		ret);

	return ret;
}

struct cs_etm_synth {
	struct perf_tool dummy_tool;
	struct perf_session *session;
};

static int cs_etm__event_synth(struct perf_tool *tool,
			       union perf_event *event,
			       struct perf_sample *sample __maybe_unused,
			       struct machine *machine __maybe_unused)
{
	struct cs_etm_synth *cs_etm_synth =
		      container_of(tool, struct cs_etm_synth, dummy_tool);

	return perf_session__deliver_synth_event(cs_etm_synth->session,
						 event, NULL);
}

static int cs_etm__synth_event(struct perf_session *session,
			       struct perf_event_attr *attr, u64 id)
{
	struct cs_etm_synth cs_etm_synth;

	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
	cs_etm_synth.session = session;

	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
					   &id, cs_etm__event_synth);
}

static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
				struct perf_session *session)
{
	struct perf_evlist *evlist = session->evlist;
	struct perf_evsel *evsel;
	struct perf_event_attr attr;
	bool found = false;
	u64 id;
	int err;

	evlist__for_each_entry(evlist, evsel) {
		if (evsel->attr.type == etm->pmu_type) {
			found = true;
			break;
		}
	}

	if (!found) {
		pr_debug("No selected events with CoreSight Trace data\n");
		return 0;
	}

	memset(&attr, 0, sizeof(struct perf_event_attr));
	attr.size = sizeof(struct perf_event_attr);
	attr.type = PERF_TYPE_HARDWARE;
	attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
			    PERF_SAMPLE_PERIOD;
	if (etm->timeless_decoding)
		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
	else
		attr.sample_type |= PERF_SAMPLE_TIME;

	attr.exclude_user = evsel->attr.exclude_user;
	attr.exclude_kernel = evsel->attr.exclude_kernel;
	attr.exclude_hv = evsel->attr.exclude_hv;
	attr.exclude_host = evsel->attr.exclude_host;
	attr.exclude_guest = evsel->attr.exclude_guest;
	attr.sample_id_all = evsel->attr.sample_id_all;
	attr.read_format = evsel->attr.read_format;

	/* create new id val to be a fixed offset from evsel id */
	id = evsel->id[0] + 1000000000;

	if (!id)
		id = 1;

	if (etm->synth_opts.branches) {
		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
		attr.sample_period = 1;
		attr.sample_type |= PERF_SAMPLE_ADDR;
		err = cs_etm__synth_event(session, &attr, id);
		if (err)
			return err;
		etm->sample_branches = true;
		etm->branches_sample_type = attr.sample_type;
		etm->branches_id = id;
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
		id += 1;
		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
	}

	if (etm->synth_opts.last_branch)
		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;

	if (etm->synth_opts.instructions) {
		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
		attr.sample_period = etm->synth_opts.period;
		etm->instructions_sample_period = attr.sample_period;
		err = cs_etm__synth_event(session, &attr, id);
		if (err)
			return err;
		etm->sample_instructions = true;
		etm->instructions_sample_type = attr.sample_type;
		etm->instructions_id = id;
		id += 1;
965 966 967 968 969 970 971
	}

	return 0;
}

static int cs_etm__sample(struct cs_etm_queue *etmq)
{
972 973
	struct cs_etm_auxtrace *etm = etmq->etm;
	struct cs_etm_packet *tmp;
974
	int ret;
975
	u64 instrs_executed = etmq->packet->instr_count;
976

977 978 979 980 981 982 983 984
	etmq->period_instructions += instrs_executed;

	/*
	 * Record a branch when the last instruction in
	 * PREV_PACKET is a branch.
	 */
	if (etm->synth_opts.last_branch &&
	    etmq->prev_packet &&
985
	    etmq->prev_packet->sample_type == CS_ETM_RANGE &&
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	    etmq->prev_packet->last_instr_taken_branch)
		cs_etm__update_last_branch_rb(etmq);

	if (etm->sample_instructions &&
	    etmq->period_instructions >= etm->instructions_sample_period) {
		/*
		 * Emit instruction sample periodically
		 * TODO: allow period to be defined in cycles and clock time
		 */

		/* Get number of instructions executed after the sample point */
		u64 instrs_over = etmq->period_instructions -
			etm->instructions_sample_period;

		/*
		 * Calculate the address of the sampled instruction (-1 as
		 * sample is reported as though instruction has just been
		 * executed, but PC has not advanced to next instruction)
		 */
		u64 offset = (instrs_executed - instrs_over - 1);
1006
		u64 addr = cs_etm__instr_addr(etmq, etmq->packet, offset);
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

		ret = cs_etm__synth_instruction_sample(
			etmq, addr, etm->instructions_sample_period);
		if (ret)
			return ret;

		/* Carry remaining instructions into next sample period */
		etmq->period_instructions = instrs_over;
	}

1017 1018 1019 1020
	if (etm->sample_branches && etmq->prev_packet) {
		bool generate_sample = false;

		/* Generate sample for tracing on packet */
1021
		if (etmq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
			generate_sample = true;

		/* Generate sample for branch taken packet */
		if (etmq->prev_packet->sample_type == CS_ETM_RANGE &&
		    etmq->prev_packet->last_instr_taken_branch)
			generate_sample = true;

		if (generate_sample) {
			ret = cs_etm__synth_branch_sample(etmq);
			if (ret)
				return ret;
		}
1034
	}
1035

1036
	if (etm->sample_branches || etm->synth_opts.last_branch) {
1037
		/*
1038 1039
		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
		 * the next incoming packet.
1040
		 */
1041 1042 1043
		tmp = etmq->packet;
		etmq->packet = etmq->prev_packet;
		etmq->prev_packet = tmp;
1044 1045 1046 1047 1048
	}

	return 0;
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
static int cs_etm__exception(struct cs_etm_queue *etmq)
{
	/*
	 * When the exception packet is inserted, whether the last instruction
	 * in previous range packet is taken branch or not, we need to force
	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
	 * to generate branch sample for the instruction range before the
	 * exception is trapped to kernel or before the exception returning.
	 *
	 * The exception packet includes the dummy address values, so don't
	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
	 * for generating instruction and branch samples.
	 */
	if (etmq->prev_packet->sample_type == CS_ETM_RANGE)
		etmq->prev_packet->last_instr_taken_branch = true;

	return 0;
}

1068 1069 1070
static int cs_etm__flush(struct cs_etm_queue *etmq)
{
	int err = 0;
1071
	struct cs_etm_auxtrace *etm = etmq->etm;
1072 1073
	struct cs_etm_packet *tmp;

1074 1075 1076 1077 1078 1079 1080
	if (!etmq->prev_packet)
		return 0;

	/* Handle start tracing packet */
	if (etmq->prev_packet->sample_type == CS_ETM_EMPTY)
		goto swap_packet;

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	if (etmq->etm->synth_opts.last_branch &&
	    etmq->prev_packet->sample_type == CS_ETM_RANGE) {
		/*
		 * Generate a last branch event for the branches left in the
		 * circular buffer at the end of the trace.
		 *
		 * Use the address of the end of the last reported execution
		 * range
		 */
		u64 addr = cs_etm__last_executed_instr(etmq->prev_packet);

		err = cs_etm__synth_instruction_sample(
			etmq, addr,
			etmq->period_instructions);
1095 1096 1097
		if (err)
			return err;

1098 1099
		etmq->period_instructions = 0;

1100 1101
	}

1102 1103 1104 1105 1106 1107 1108
	if (etm->sample_branches &&
	    etmq->prev_packet->sample_type == CS_ETM_RANGE) {
		err = cs_etm__synth_branch_sample(etmq);
		if (err)
			return err;
	}

1109
swap_packet:
1110
	if (etm->sample_branches || etm->synth_opts.last_branch) {
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
		/*
		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
		 * the next incoming packet.
		 */
		tmp = etmq->packet;
		etmq->packet = etmq->prev_packet;
		etmq->prev_packet = tmp;
	}

	return err;
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
static int cs_etm__end_block(struct cs_etm_queue *etmq)
{
	int err;

	/*
	 * It has no new packet coming and 'etmq->packet' contains the stale
	 * packet which was set at the previous time with packets swapping;
	 * so skip to generate branch sample to avoid stale packet.
	 *
	 * For this case only flush branch stack and generate a last branch
	 * event for the branches left in the circular buffer at the end of
	 * the trace.
	 */
	if (etmq->etm->synth_opts.last_branch &&
	    etmq->prev_packet->sample_type == CS_ETM_RANGE) {
		/*
		 * Use the address of the end of the last reported execution
		 * range.
		 */
		u64 addr = cs_etm__last_executed_instr(etmq->prev_packet);

		err = cs_etm__synth_instruction_sample(
			etmq, addr,
			etmq->period_instructions);
		if (err)
			return err;

		etmq->period_instructions = 0;
	}

	return 0;
}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq,
				 struct cs_etm_packet *packet,
				 u64 end_addr)
{
	u16 instr16;
	u32 instr32;
	u64 addr;

	switch (packet->isa) {
	case CS_ETM_ISA_T32:
		/*
		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
		 *
		 *  b'15         b'8
		 * +-----------------+--------+
		 * | 1 1 0 1 1 1 1 1 |  imm8  |
		 * +-----------------+--------+
		 *
		 * According to the specifiction, it only defines SVC for T32
		 * with 16 bits instruction and has no definition for 32bits;
		 * so below only read 2 bytes as instruction size for T32.
		 */
		addr = end_addr - 2;
		cs_etm__mem_access(etmq, addr, sizeof(instr16), (u8 *)&instr16);
		if ((instr16 & 0xFF00) == 0xDF00)
			return true;

		break;
	case CS_ETM_ISA_A32:
		/*
		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
		 *
		 *  b'31 b'28 b'27 b'24
		 * +---------+---------+-------------------------+
		 * |  !1111  | 1 1 1 1 |        imm24            |
		 * +---------+---------+-------------------------+
		 */
		addr = end_addr - 4;
		cs_etm__mem_access(etmq, addr, sizeof(instr32), (u8 *)&instr32);
		if ((instr32 & 0x0F000000) == 0x0F000000 &&
		    (instr32 & 0xF0000000) != 0xF0000000)
			return true;

		break;
	case CS_ETM_ISA_A64:
		/*
		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
		 *
		 *  b'31               b'21           b'4     b'0
		 * +-----------------------+---------+-----------+
		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
		 * +-----------------------+---------+-----------+
		 */
		addr = end_addr - 4;
		cs_etm__mem_access(etmq, addr, sizeof(instr32), (u8 *)&instr32);
		if ((instr32 & 0xFFE0001F) == 0xd4000001)
			return true;

		break;
	case CS_ETM_ISA_UNKNOWN:
	default:
		break;
	}

	return false;
}

static bool cs_etm__is_syscall(struct cs_etm_queue *etmq, u64 magic)
{
	struct cs_etm_packet *packet = etmq->packet;
	struct cs_etm_packet *prev_packet = etmq->prev_packet;

	if (magic == __perf_cs_etmv3_magic)
		if (packet->exception_number == CS_ETMV3_EXC_SVC)
			return true;

	/*
	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
	 * HVC cases; need to check if it's SVC instruction based on
	 * packet address.
	 */
	if (magic == __perf_cs_etmv4_magic) {
		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
		    cs_etm__is_svc_instr(etmq, prev_packet,
					 prev_packet->end_addr))
			return true;
	}

	return false;
}

static bool cs_etm__is_async_exception(struct cs_etm_queue *etmq, u64 magic)
{
	struct cs_etm_packet *packet = etmq->packet;

	if (magic == __perf_cs_etmv3_magic)
		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
		    packet->exception_number == CS_ETMV3_EXC_FIQ)
			return true;

	if (magic == __perf_cs_etmv4_magic)
		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
		    packet->exception_number == CS_ETMV4_EXC_FIQ)
			return true;

	return false;
}

static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq, u64 magic)
{
	struct cs_etm_packet *packet = etmq->packet;
	struct cs_etm_packet *prev_packet = etmq->prev_packet;

	if (magic == __perf_cs_etmv3_magic)
		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
		    packet->exception_number == CS_ETMV3_EXC_HYP ||
		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
			return true;

	if (magic == __perf_cs_etmv4_magic) {
		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
			return true;

		/*
		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
		 * (SMC, HVC) are taken as sync exceptions.
		 */
		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
		    !cs_etm__is_svc_instr(etmq, prev_packet,
					  prev_packet->end_addr))
			return true;

		/*
		 * ETMv4 has 5 bits for exception number; if the numbers
		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
		 * they are implementation defined exceptions.
		 *
		 * For this case, simply take it as sync exception.
		 */
		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
		    packet->exception_number <= CS_ETMV4_EXC_END)
			return true;
	}

	return false;
}

1318 1319 1320
static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq)
{
	struct cs_etm_packet *packet = etmq->packet;
1321
	struct cs_etm_packet *prev_packet = etmq->prev_packet;
1322 1323
	u64 magic;
	int ret;
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

	switch (packet->sample_type) {
	case CS_ETM_RANGE:
		/*
		 * Immediate branch instruction without neither link nor
		 * return flag, it's normal branch instruction within
		 * the function.
		 */
		if (packet->last_instr_type == OCSD_INSTR_BR &&
		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
			packet->flags = PERF_IP_FLAG_BRANCH;

			if (packet->last_instr_cond)
				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
		}

		/*
		 * Immediate branch instruction with link (e.g. BL), this is
		 * branch instruction for function call.
		 */
		if (packet->last_instr_type == OCSD_INSTR_BR &&
		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_CALL;

		/*
		 * Indirect branch instruction with link (e.g. BLR), this is
		 * branch instruction for function call.
		 */
		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_CALL;

		/*
		 * Indirect branch instruction with subtype of
		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
		 * function return for A32/T32.
		 */
		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_RETURN;

		/*
		 * Indirect branch instruction without link (e.g. BR), usually
		 * this is used for function return, especially for functions
		 * within dynamic link lib.
		 */
		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_RETURN;

		/* Return instruction for function return. */
		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_RETURN;
1383 1384 1385 1386 1387 1388 1389 1390 1391

		/*
		 * Decoder might insert a discontinuity in the middle of
		 * instruction packets, fixup prev_packet with flag
		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
		 */
		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
					      PERF_IP_FLAG_TRACE_BEGIN;
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

		/*
		 * If the previous packet is an exception return packet
		 * and the return address just follows SVC instuction,
		 * it needs to calibrate the previous packet sample flags
		 * as PERF_IP_FLAG_SYSCALLRET.
		 */
		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
					   PERF_IP_FLAG_RETURN |
					   PERF_IP_FLAG_INTERRUPT) &&
		    cs_etm__is_svc_instr(etmq, packet, packet->start_addr))
			prev_packet->flags = PERF_IP_FLAG_BRANCH |
					     PERF_IP_FLAG_RETURN |
					     PERF_IP_FLAG_SYSCALLRET;
1406 1407
		break;
	case CS_ETM_DISCONTINUITY:
1408 1409 1410 1411 1412 1413 1414 1415 1416
		/*
		 * The trace is discontinuous, if the previous packet is
		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
		 * for previous packet.
		 */
		if (prev_packet->sample_type == CS_ETM_RANGE)
			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
					      PERF_IP_FLAG_TRACE_END;
		break;
1417
	case CS_ETM_EXCEPTION:
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
		if (ret)
			return ret;

		/* The exception is for system call. */
		if (cs_etm__is_syscall(etmq, magic))
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_CALL |
					PERF_IP_FLAG_SYSCALLRET;
		/*
		 * The exceptions are triggered by external signals from bus,
		 * interrupt controller, debug module, PE reset or halt.
		 */
		else if (cs_etm__is_async_exception(etmq, magic))
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_CALL |
					PERF_IP_FLAG_ASYNC |
					PERF_IP_FLAG_INTERRUPT;
		/*
		 * Otherwise, exception is caused by trap, instruction &
		 * data fault, or alignment errors.
		 */
		else if (cs_etm__is_sync_exception(etmq, magic))
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_CALL |
					PERF_IP_FLAG_INTERRUPT;

		/*
		 * When the exception packet is inserted, since exception
		 * packet is not used standalone for generating samples
		 * and it's affiliation to the previous instruction range
		 * packet; so set previous range packet flags to tell perf
		 * it is an exception taken branch.
		 */
		if (prev_packet->sample_type == CS_ETM_RANGE)
			prev_packet->flags = packet->flags;
		break;
1455
	case CS_ETM_EXCEPTION_RET:
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
		/*
		 * When the exception return packet is inserted, since
		 * exception return packet is not used standalone for
		 * generating samples and it's affiliation to the previous
		 * instruction range packet; so set previous range packet
		 * flags to tell perf it is an exception return branch.
		 *
		 * The exception return can be for either system call or
		 * other exception types; unfortunately the packet doesn't
		 * contain exception type related info so we cannot decide
		 * the exception type purely based on exception return packet.
		 * If we record the exception number from exception packet and
		 * reuse it for excpetion return packet, this is not reliable
		 * due the trace can be discontinuity or the interrupt can
		 * be nested, thus the recorded exception number cannot be
		 * used for exception return packet for these two cases.
		 *
		 * For exception return packet, we only need to distinguish the
		 * packet is for system call or for other types.  Thus the
		 * decision can be deferred when receive the next packet which
		 * contains the return address, based on the return address we
		 * can read out the previous instruction and check if it's a
		 * system call instruction and then calibrate the sample flag
		 * as needed.
		 */
		if (prev_packet->sample_type == CS_ETM_RANGE)
			prev_packet->flags = PERF_IP_FLAG_BRANCH |
					     PERF_IP_FLAG_RETURN |
					     PERF_IP_FLAG_INTERRUPT;
		break;
1486 1487 1488 1489 1490 1491 1492 1493
	case CS_ETM_EMPTY:
	default:
		break;
	}

	return 0;
}

1494 1495 1496 1497 1498 1499 1500
static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
{
	struct cs_etm_buffer buffer;
	size_t buffer_used, processed;
	int err = 0;

	/* Go through each buffer in the queue and decode them one by one */
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	while (1) {
		buffer_used = 0;
		memset(&buffer, 0, sizeof(buffer));
		err = cs_etm__get_trace(&buffer, etmq);
		if (err <= 0)
			return err;
		/*
		 * We cannot assume consecutive blocks in the data file are
		 * contiguous, reset the decoder to force re-sync.
		 */
		err = cs_etm_decoder__reset(etmq->decoder);
		if (err != 0)
1513 1514
			return err;

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
		/* Run trace decoder until buffer consumed or end of trace */
		do {
			processed = 0;
			err = cs_etm_decoder__process_data_block(
				etmq->decoder,
				etmq->offset,
				&buffer.buf[buffer_used],
				buffer.len - buffer_used,
				&processed);
			if (err)
				return err;

			etmq->offset += processed;
			buffer_used += processed;

			/* Process each packet in this chunk */
			while (1) {
				err = cs_etm_decoder__get_packet(etmq->decoder,
								 etmq->packet);
				if (err <= 0)
					/*
					 * Stop processing this chunk on
					 * end of data or error
					 */
					break;

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
				/*
				 * Since packet addresses are swapped in packet
				 * handling within below switch() statements,
				 * thus setting sample flags must be called
				 * prior to switch() statement to use address
				 * information before packets swapping.
				 */
				err = cs_etm__set_sample_flags(etmq);
				if (err < 0)
					break;

1552 1553 1554 1555 1556 1557 1558 1559 1560
				switch (etmq->packet->sample_type) {
				case CS_ETM_RANGE:
					/*
					 * If the packet contains an instruction
					 * range, generate instruction sequence
					 * events.
					 */
					cs_etm__sample(etmq);
					break;
1561 1562 1563 1564 1565 1566 1567 1568 1569
				case CS_ETM_EXCEPTION:
				case CS_ETM_EXCEPTION_RET:
					/*
					 * If the exception packet is coming,
					 * make sure the previous instruction
					 * range packet to be handled properly.
					 */
					cs_etm__exception(etmq);
					break;
1570
				case CS_ETM_DISCONTINUITY:
1571 1572 1573 1574 1575 1576
					/*
					 * Discontinuity in trace, flush
					 * previous branch stack
					 */
					cs_etm__flush(etmq);
					break;
1577 1578 1579 1580 1581 1582 1583
				case CS_ETM_EMPTY:
					/*
					 * Should not receive empty packet,
					 * report error.
					 */
					pr_err("CS ETM Trace: empty packet\n");
					return -EINVAL;
1584 1585 1586
				default:
					break;
				}
1587 1588
			}
		} while (buffer.len > buffer_used);
1589

1590 1591
		if (err == 0)
			/* Flush any remaining branch stack entries */
1592
			err = cs_etm__end_block(etmq);
1593
	}
1594 1595 1596 1597 1598

	return err;
}

static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
1599
					   pid_t tid)
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
{
	unsigned int i;
	struct auxtrace_queues *queues = &etm->queues;

	for (i = 0; i < queues->nr_queues; i++) {
		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
		struct cs_etm_queue *etmq = queue->priv;

		if (etmq && ((tid == -1) || (etmq->tid == tid))) {
			cs_etm__set_pid_tid_cpu(etm, queue);
			cs_etm__run_decoder(etmq);
		}
	}

	return 0;
}

1617 1618 1619 1620 1621
static int cs_etm__process_event(struct perf_session *session,
				 union perf_event *event,
				 struct perf_sample *sample,
				 struct perf_tool *tool)
{
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	int err = 0;
	u64 timestamp;
	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);

	if (dump_trace)
		return 0;

	if (!tool->ordered_events) {
		pr_err("CoreSight ETM Trace requires ordered events\n");
		return -EINVAL;
	}

	if (!etm->timeless_decoding)
		return -EINVAL;

	if (sample->time && (sample->time != (u64) -1))
		timestamp = sample->time;
	else
		timestamp = 0;

	if (timestamp || etm->timeless_decoding) {
		err = cs_etm__update_queues(etm);
		if (err)
			return err;
	}

1650 1651
	if (event->header.type == PERF_RECORD_EXIT)
		return cs_etm__process_timeless_queues(etm,
1652
						       event->fork.tid);
1653

1654 1655 1656 1657 1658
	return 0;
}

static int cs_etm__process_auxtrace_event(struct perf_session *session,
					  union perf_event *event,
1659
					  struct perf_tool *tool __maybe_unused)
1660
{
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);
	if (!etm->data_queued) {
		struct auxtrace_buffer *buffer;
		off_t  data_offset;
		int fd = perf_data__fd(session->data);
		bool is_pipe = perf_data__is_pipe(session->data);
		int err;

		if (is_pipe)
			data_offset = 0;
		else {
			data_offset = lseek(fd, 0, SEEK_CUR);
			if (data_offset == -1)
				return -errno;
		}

		err = auxtrace_queues__add_event(&etm->queues, session,
						 event, data_offset, &buffer);
		if (err)
			return err;

		if (dump_trace)
			if (auxtrace_buffer__get_data(buffer, fd)) {
				cs_etm__dump_event(etm, buffer);
				auxtrace_buffer__put_data(buffer);
			}
	}

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	return 0;
}

static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
{
	struct perf_evsel *evsel;
	struct perf_evlist *evlist = etm->session->evlist;
	bool timeless_decoding = true;

	/*
	 * Circle through the list of event and complain if we find one
	 * with the time bit set.
	 */
	evlist__for_each_entry(evlist, evsel) {
		if ((evsel->attr.sample_type & PERF_SAMPLE_TIME))
			timeless_decoding = false;
	}

	return timeless_decoding;
}

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
static const char * const cs_etm_global_header_fmts[] = {
	[CS_HEADER_VERSION_0]	= "	Header version		       %llx\n",
	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
};

static const char * const cs_etm_priv_fmts[] = {
	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
	[CS_ETM_CPU]		= "	CPU			       %lld\n",
	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
};

static const char * const cs_etmv4_priv_fmts[] = {
	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
	[CS_ETM_CPU]		= "	CPU			       %lld\n",
	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
};

static void cs_etm__print_auxtrace_info(u64 *val, int num)
{
	int i, j, cpu = 0;

	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);

	for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
		if (val[i] == __perf_cs_etmv3_magic)
			for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
		else if (val[i] == __perf_cs_etmv4_magic)
			for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
		else
			/* failure.. return */
			return;
	}
}

1759 1760 1761 1762 1763
int cs_etm__process_auxtrace_info(union perf_event *event,
				  struct perf_session *session)
{
	struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
	struct cs_etm_auxtrace *etm = NULL;
1764 1765
	struct int_node *inode;
	unsigned int pmu_type;
1766 1767 1768
	int event_header_size = sizeof(struct perf_event_header);
	int info_header_size;
	int total_size = auxtrace_info->header.size;
1769 1770 1771 1772 1773 1774
	int priv_size = 0;
	int num_cpu;
	int err = 0, idx = -1;
	int i, j, k;
	u64 *ptr, *hdr = NULL;
	u64 **metadata = NULL;
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784

	/*
	 * sizeof(auxtrace_info_event::type) +
	 * sizeof(auxtrace_info_event::reserved) == 8
	 */
	info_header_size = 8;

	if (total_size < (event_header_size + info_header_size))
		return -EINVAL;

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	priv_size = total_size - event_header_size - info_header_size;

	/* First the global part */
	ptr = (u64 *) auxtrace_info->priv;

	/* Look for version '0' of the header */
	if (ptr[0] != 0)
		return -EINVAL;

	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
	if (!hdr)
		return -ENOMEM;

	/* Extract header information - see cs-etm.h for format */
	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
		hdr[i] = ptr[i];
	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
				    0xffffffff);

	/*
1806 1807 1808
	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
	 * has to be made for each packet that gets decoded, optimizing access
	 * in anything other than a sequential array is worth doing.
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
	 */
	traceid_list = intlist__new(NULL);
	if (!traceid_list) {
		err = -ENOMEM;
		goto err_free_hdr;
	}

	metadata = zalloc(sizeof(*metadata) * num_cpu);
	if (!metadata) {
		err = -ENOMEM;
		goto err_free_traceid_list;
	}

	/*
	 * The metadata is stored in the auxtrace_info section and encodes
	 * the configuration of the ARM embedded trace macrocell which is
	 * required by the trace decoder to properly decode the trace due
	 * to its highly compressed nature.
	 */
	for (j = 0; j < num_cpu; j++) {
		if (ptr[i] == __perf_cs_etmv3_magic) {
			metadata[j] = zalloc(sizeof(*metadata[j]) *
					     CS_ETM_PRIV_MAX);
			if (!metadata[j]) {
				err = -ENOMEM;
				goto err_free_metadata;
			}
			for (k = 0; k < CS_ETM_PRIV_MAX; k++)
				metadata[j][k] = ptr[i + k];

			/* The traceID is our handle */
			idx = metadata[j][CS_ETM_ETMTRACEIDR];
			i += CS_ETM_PRIV_MAX;
		} else if (ptr[i] == __perf_cs_etmv4_magic) {
			metadata[j] = zalloc(sizeof(*metadata[j]) *
					     CS_ETMV4_PRIV_MAX);
			if (!metadata[j]) {
				err = -ENOMEM;
				goto err_free_metadata;
			}
			for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
				metadata[j][k] = ptr[i + k];

			/* The traceID is our handle */
			idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
			i += CS_ETMV4_PRIV_MAX;
		}

		/* Get an RB node for this CPU */
		inode = intlist__findnew(traceid_list, idx);

		/* Something went wrong, no need to continue */
		if (!inode) {
			err = PTR_ERR(inode);
			goto err_free_metadata;
		}

		/*
		 * The node for that CPU should not be taken.
		 * Back out if that's the case.
		 */
		if (inode->priv) {
			err = -EINVAL;
			goto err_free_metadata;
		}
1874 1875
		/* All good, associate the traceID with the metadata pointer */
		inode->priv = metadata[j];
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	}

	/*
	 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
	 * global metadata, and each cpu's metadata respectively.
	 * The following tests if the correct number of double words was
	 * present in the auxtrace info section.
	 */
	if (i * 8 != priv_size) {
		err = -EINVAL;
		goto err_free_metadata;
	}

1890 1891
	etm = zalloc(sizeof(*etm));

1892
	if (!etm) {
1893
		err = -ENOMEM;
1894 1895
		goto err_free_metadata;
	}
1896 1897 1898 1899 1900 1901 1902 1903

	err = auxtrace_queues__init(&etm->queues);
	if (err)
		goto err_free_etm;

	etm->session = session;
	etm->machine = &session->machines.host;

1904 1905 1906 1907
	etm->num_cpu = num_cpu;
	etm->pmu_type = pmu_type;
	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
	etm->metadata = metadata;
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
	etm->auxtrace_type = auxtrace_info->type;
	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);

	etm->auxtrace.process_event = cs_etm__process_event;
	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
	etm->auxtrace.flush_events = cs_etm__flush_events;
	etm->auxtrace.free_events = cs_etm__free_events;
	etm->auxtrace.free = cs_etm__free;
	session->auxtrace = &etm->auxtrace;

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	etm->unknown_thread = thread__new(999999999, 999999999);
	if (!etm->unknown_thread)
		goto err_free_queues;

	/*
	 * Initialize list node so that at thread__zput() we can avoid
	 * segmentation fault at list_del_init().
	 */
	INIT_LIST_HEAD(&etm->unknown_thread->node);

	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
	if (err)
		goto err_delete_thread;

	if (thread__init_map_groups(etm->unknown_thread, etm->machine))
		goto err_delete_thread;

1935 1936
	if (dump_trace) {
		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
1937
		return 0;
1938
	}
1939

1940 1941 1942
	if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
		etm->synth_opts = *session->itrace_synth_opts;
	} else {
1943 1944
		itrace_synth_opts__set_default(&etm->synth_opts,
				session->itrace_synth_opts->default_no_sample);
1945 1946 1947 1948 1949
		etm->synth_opts.callchain = false;
	}

	err = cs_etm__synth_events(etm, session);
	if (err)
1950
		goto err_delete_thread;
1951

1952 1953
	err = auxtrace_queues__process_index(&etm->queues, session);
	if (err)
1954
		goto err_delete_thread;
1955 1956 1957 1958 1959

	etm->data_queued = etm->queues.populated;

	return 0;

1960 1961
err_delete_thread:
	thread__zput(etm->unknown_thread);
1962 1963 1964 1965 1966
err_free_queues:
	auxtrace_queues__free(&etm->queues);
	session->auxtrace = NULL;
err_free_etm:
	zfree(&etm);
1967 1968 1969 1970 1971 1972 1973 1974 1975
err_free_metadata:
	/* No need to check @metadata[j], free(NULL) is supported */
	for (j = 0; j < num_cpu; j++)
		free(metadata[j]);
	zfree(&metadata);
err_free_traceid_list:
	intlist__delete(traceid_list);
err_free_hdr:
	zfree(&hdr);
1976 1977 1978

	return -EINVAL;
}