cs-etm.c 43.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Copyright(C) 2015-2018 Linaro Limited.
 *
 * Author: Tor Jeremiassen <tor@ti.com>
 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
 */

#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/log2.h>
#include <linux/types.h>

15
#include <opencsd/ocsd_if_types.h>
16 17 18 19 20
#include <stdlib.h>

#include "auxtrace.h"
#include "color.h"
#include "cs-etm.h"
21
#include "cs-etm-decoder/cs-etm-decoder.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#include "debug.h"
#include "evlist.h"
#include "intlist.h"
#include "machine.h"
#include "map.h"
#include "perf.h"
#include "thread.h"
#include "thread_map.h"
#include "thread-stack.h"
#include "util.h"

#define MAX_TIMESTAMP (~0ULL)

struct cs_etm_auxtrace {
	struct auxtrace auxtrace;
	struct auxtrace_queues queues;
	struct auxtrace_heap heap;
	struct itrace_synth_opts synth_opts;
	struct perf_session *session;
	struct machine *machine;
	struct thread *unknown_thread;

	u8 timeless_decoding;
	u8 snapshot_mode;
	u8 data_queued;
	u8 sample_branches;
48
	u8 sample_instructions;
49 50 51 52 53

	int num_cpu;
	u32 auxtrace_type;
	u64 branches_sample_type;
	u64 branches_id;
54 55 56
	u64 instructions_sample_type;
	u64 instructions_sample_period;
	u64 instructions_id;
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
	u64 **metadata;
	u64 kernel_start;
	unsigned int pmu_type;
};

struct cs_etm_queue {
	struct cs_etm_auxtrace *etm;
	struct thread *thread;
	struct cs_etm_decoder *decoder;
	struct auxtrace_buffer *buffer;
	const struct cs_etm_state *state;
	union perf_event *event_buf;
	unsigned int queue_nr;
	pid_t pid, tid;
	int cpu;
	u64 time;
	u64 timestamp;
	u64 offset;
75 76 77 78 79 80
	u64 period_instructions;
	struct branch_stack *last_branch;
	struct branch_stack *last_branch_rb;
	size_t last_branch_pos;
	struct cs_etm_packet *prev_packet;
	struct cs_etm_packet *packet;
81 82
};

83 84 85 86
static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
					   pid_t tid, u64 time_);

87 88 89 90 91 92 93 94 95 96 97 98 99
/* PTMs ETMIDR [11:8] set to b0011 */
#define ETMIDR_PTM_VERSION 0x00000300

static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
{
	etmidr &= ETMIDR_PTM_VERSION;

	if (etmidr == ETMIDR_PTM_VERSION)
		return CS_ETM_PROTO_PTM;

	return CS_ETM_PROTO_ETMV3;
}

100 101 102 103 104 105 106 107 108 109 110 111 112 113
int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
{
	struct int_node *inode;
	u64 *metadata;

	inode = intlist__find(traceid_list, trace_chan_id);
	if (!inode)
		return -EINVAL;

	metadata = inode->priv;
	*cpu = (int)metadata[CS_ETM_CPU];
	return 0;
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
static void cs_etm__packet_dump(const char *pkt_string)
{
	const char *color = PERF_COLOR_BLUE;
	int len = strlen(pkt_string);

	if (len && (pkt_string[len-1] == '\n'))
		color_fprintf(stdout, color, "	%s", pkt_string);
	else
		color_fprintf(stdout, color, "	%s\n", pkt_string);

	fflush(stdout);
}

static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
			       struct auxtrace_buffer *buffer)
{
	int i, ret;
	const char *color = PERF_COLOR_BLUE;
	struct cs_etm_decoder_params d_params;
	struct cs_etm_trace_params *t_params;
	struct cs_etm_decoder *decoder;
	size_t buffer_used = 0;

	fprintf(stdout, "\n");
	color_fprintf(stdout, color,
		     ". ... CoreSight ETM Trace data: size %zu bytes\n",
		     buffer->size);

	/* Use metadata to fill in trace parameters for trace decoder */
	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
	for (i = 0; i < etm->num_cpu; i++) {
145
		if (etm->metadata[i][CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
146 147 148 149
			u32 etmidr = etm->metadata[i][CS_ETM_ETMIDR];

			t_params[i].protocol =
					cs_etm__get_v7_protocol_version(etmidr);
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
			t_params[i].etmv3.reg_ctrl =
					etm->metadata[i][CS_ETM_ETMCR];
			t_params[i].etmv3.reg_trc_id =
					etm->metadata[i][CS_ETM_ETMTRACEIDR];
		} else if (etm->metadata[i][CS_ETM_MAGIC] ==
						      __perf_cs_etmv4_magic) {
			t_params[i].protocol = CS_ETM_PROTO_ETMV4i;
			t_params[i].etmv4.reg_idr0 =
					etm->metadata[i][CS_ETMV4_TRCIDR0];
			t_params[i].etmv4.reg_idr1 =
					etm->metadata[i][CS_ETMV4_TRCIDR1];
			t_params[i].etmv4.reg_idr2 =
					etm->metadata[i][CS_ETMV4_TRCIDR2];
			t_params[i].etmv4.reg_idr8 =
					etm->metadata[i][CS_ETMV4_TRCIDR8];
			t_params[i].etmv4.reg_configr =
166
					etm->metadata[i][CS_ETMV4_TRCCONFIGR];
167
			t_params[i].etmv4.reg_traceidr =
168
					etm->metadata[i][CS_ETMV4_TRCTRACEIDR];
169
		}
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
	}

	/* Set decoder parameters to simply print the trace packets */
	d_params.packet_printer = cs_etm__packet_dump;
	d_params.operation = CS_ETM_OPERATION_PRINT;
	d_params.formatted = true;
	d_params.fsyncs = false;
	d_params.hsyncs = false;
	d_params.frame_aligned = true;

	decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);

	zfree(&t_params);

	if (!decoder)
		return;
	do {
		size_t consumed;

		ret = cs_etm_decoder__process_data_block(
				decoder, buffer->offset,
				&((u8 *)buffer->data)[buffer_used],
				buffer->size - buffer_used, &consumed);
		if (ret)
			break;

		buffer_used += consumed;
	} while (buffer_used < buffer->size);

	cs_etm_decoder__free(decoder);
}

202 203 204
static int cs_etm__flush_events(struct perf_session *session,
				struct perf_tool *tool)
{
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
	int ret;
	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);
	if (dump_trace)
		return 0;

	if (!tool->ordered_events)
		return -EINVAL;

	if (!etm->timeless_decoding)
		return -EINVAL;

	ret = cs_etm__update_queues(etm);

	if (ret < 0)
		return ret;

	return cs_etm__process_timeless_queues(etm, -1, MAX_TIMESTAMP - 1);
224 225 226 227 228 229
}

static void cs_etm__free_queue(void *priv)
{
	struct cs_etm_queue *etmq = priv;

230 231 232 233 234 235
	if (!etmq)
		return;

	thread__zput(etmq->thread);
	cs_etm_decoder__free(etmq->decoder);
	zfree(&etmq->event_buf);
236 237 238 239
	zfree(&etmq->last_branch);
	zfree(&etmq->last_branch_rb);
	zfree(&etmq->prev_packet);
	zfree(&etmq->packet);
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	free(etmq);
}

static void cs_etm__free_events(struct perf_session *session)
{
	unsigned int i;
	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);
	struct auxtrace_queues *queues = &aux->queues;

	for (i = 0; i < queues->nr_queues; i++) {
		cs_etm__free_queue(queues->queue_array[i].priv);
		queues->queue_array[i].priv = NULL;
	}

	auxtrace_queues__free(queues);
}

static void cs_etm__free(struct perf_session *session)
{
261 262
	int i;
	struct int_node *inode, *tmp;
263 264 265 266 267 268
	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);
	cs_etm__free_events(session);
	session->auxtrace = NULL;

269
	/* First remove all traceID/metadata nodes for the RB tree */
270 271 272 273 274 275 276 277
	intlist__for_each_entry_safe(inode, tmp, traceid_list)
		intlist__remove(traceid_list, inode);
	/* Then the RB tree itself */
	intlist__delete(traceid_list);

	for (i = 0; i < aux->num_cpu; i++)
		zfree(&aux->metadata[i]);

278
	thread__zput(aux->unknown_thread);
279
	zfree(&aux->metadata);
280 281 282
	zfree(&aux);
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
{
	struct machine *machine;

	machine = etmq->etm->machine;

	if (address >= etmq->etm->kernel_start) {
		if (machine__is_host(machine))
			return PERF_RECORD_MISC_KERNEL;
		else
			return PERF_RECORD_MISC_GUEST_KERNEL;
	} else {
		if (machine__is_host(machine))
			return PERF_RECORD_MISC_USER;
		else if (perf_guest)
			return PERF_RECORD_MISC_GUEST_USER;
		else
			return PERF_RECORD_MISC_HYPERVISOR;
	}
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317
static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u64 address,
			      size_t size, u8 *buffer)
{
	u8  cpumode;
	u64 offset;
	int len;
	struct	 thread *thread;
	struct	 machine *machine;
	struct	 addr_location al;

	if (!etmq)
		return -1;

	machine = etmq->etm->machine;
318
	cpumode = cs_etm__cpu_mode(etmq, address);
319 320 321 322 323 324 325 326

	thread = etmq->thread;
	if (!thread) {
		if (cpumode != PERF_RECORD_MISC_KERNEL)
			return -EINVAL;
		thread = etmq->etm->unknown_thread;
	}

327
	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
		return 0;

	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
		return 0;

	offset = al.map->map_ip(al.map, address);

	map__load(al.map);

	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);

	if (len <= 0)
		return 0;

	return len;
}

static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
						unsigned int queue_nr)
{
	int i;
	struct cs_etm_decoder_params d_params;
	struct cs_etm_trace_params  *t_params;
	struct cs_etm_queue *etmq;
353
	size_t szp = sizeof(struct cs_etm_packet);
354 355 356 357 358

	etmq = zalloc(sizeof(*etmq));
	if (!etmq)
		return NULL;

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
	etmq->packet = zalloc(szp);
	if (!etmq->packet)
		goto out_free;

	if (etm->synth_opts.last_branch || etm->sample_branches) {
		etmq->prev_packet = zalloc(szp);
		if (!etmq->prev_packet)
			goto out_free;
	}

	if (etm->synth_opts.last_branch) {
		size_t sz = sizeof(struct branch_stack);

		sz += etm->synth_opts.last_branch_sz *
		      sizeof(struct branch_entry);
		etmq->last_branch = zalloc(sz);
		if (!etmq->last_branch)
			goto out_free;
		etmq->last_branch_rb = zalloc(sz);
		if (!etmq->last_branch_rb)
			goto out_free;
	}

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
	etmq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
	if (!etmq->event_buf)
		goto out_free;

	etmq->etm = etm;
	etmq->queue_nr = queue_nr;
	etmq->pid = -1;
	etmq->tid = -1;
	etmq->cpu = -1;

	/* Use metadata to fill in trace parameters for trace decoder */
	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);

	if (!t_params)
		goto out_free;

	for (i = 0; i < etm->num_cpu; i++) {
399
		if (etm->metadata[i][CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
400 401 402 403
			u32 etmidr = etm->metadata[i][CS_ETM_ETMIDR];

			t_params[i].protocol =
					cs_etm__get_v7_protocol_version(etmidr);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
			t_params[i].etmv3.reg_ctrl =
					etm->metadata[i][CS_ETM_ETMCR];
			t_params[i].etmv3.reg_trc_id =
					etm->metadata[i][CS_ETM_ETMTRACEIDR];
		} else if (etm->metadata[i][CS_ETM_MAGIC] ==
							__perf_cs_etmv4_magic) {
			t_params[i].protocol = CS_ETM_PROTO_ETMV4i;
			t_params[i].etmv4.reg_idr0 =
					etm->metadata[i][CS_ETMV4_TRCIDR0];
			t_params[i].etmv4.reg_idr1 =
					etm->metadata[i][CS_ETMV4_TRCIDR1];
			t_params[i].etmv4.reg_idr2 =
					etm->metadata[i][CS_ETMV4_TRCIDR2];
			t_params[i].etmv4.reg_idr8 =
					etm->metadata[i][CS_ETMV4_TRCIDR8];
			t_params[i].etmv4.reg_configr =
420
					etm->metadata[i][CS_ETMV4_TRCCONFIGR];
421
			t_params[i].etmv4.reg_traceidr =
422
					etm->metadata[i][CS_ETMV4_TRCTRACEIDR];
423
		}
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
	}

	/* Set decoder parameters to simply print the trace packets */
	d_params.packet_printer = cs_etm__packet_dump;
	d_params.operation = CS_ETM_OPERATION_DECODE;
	d_params.formatted = true;
	d_params.fsyncs = false;
	d_params.hsyncs = false;
	d_params.frame_aligned = true;
	d_params.data = etmq;

	etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);

	zfree(&t_params);

	if (!etmq->decoder)
		goto out_free;

	/*
	 * Register a function to handle all memory accesses required by
	 * the trace decoder library.
	 */
	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
					      0x0L, ((u64) -1L),
					      cs_etm__mem_access))
		goto out_free_decoder;

	etmq->offset = 0;
452
	etmq->period_instructions = 0;
453 454 455 456 457 458 459

	return etmq;

out_free_decoder:
	cs_etm_decoder__free(etmq->decoder);
out_free:
	zfree(&etmq->event_buf);
460 461 462 463
	zfree(&etmq->last_branch);
	zfree(&etmq->last_branch_rb);
	zfree(&etmq->prev_packet);
	zfree(&etmq->packet);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	free(etmq);

	return NULL;
}

static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
			       struct auxtrace_queue *queue,
			       unsigned int queue_nr)
{
	struct cs_etm_queue *etmq = queue->priv;

	if (list_empty(&queue->head) || etmq)
		return 0;

	etmq = cs_etm__alloc_queue(etm, queue_nr);

	if (!etmq)
		return -ENOMEM;

	queue->priv = etmq;

	if (queue->cpu != -1)
		etmq->cpu = queue->cpu;

	etmq->tid = queue->tid;

	return 0;
}

static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
{
	unsigned int i;
	int ret;

	for (i = 0; i < etm->queues.nr_queues; i++) {
		ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
		if (ret)
			return ret;
	}

	return 0;
}

static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
{
	if (etm->queues.new_data) {
		etm->queues.new_data = false;
		return cs_etm__setup_queues(etm);
	}

	return 0;
}

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
static inline void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq)
{
	struct branch_stack *bs_src = etmq->last_branch_rb;
	struct branch_stack *bs_dst = etmq->last_branch;
	size_t nr = 0;

	/*
	 * Set the number of records before early exit: ->nr is used to
	 * determine how many branches to copy from ->entries.
	 */
	bs_dst->nr = bs_src->nr;

	/*
	 * Early exit when there is nothing to copy.
	 */
	if (!bs_src->nr)
		return;

	/*
	 * As bs_src->entries is a circular buffer, we need to copy from it in
	 * two steps.  First, copy the branches from the most recently inserted
	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
	 */
	nr = etmq->etm->synth_opts.last_branch_sz - etmq->last_branch_pos;
	memcpy(&bs_dst->entries[0],
	       &bs_src->entries[etmq->last_branch_pos],
	       sizeof(struct branch_entry) * nr);

	/*
	 * If we wrapped around at least once, the branches from the beginning
	 * of the bs_src->entries buffer and until the ->last_branch_pos element
	 * are older valid branches: copy them over.  The total number of
	 * branches copied over will be equal to the number of branches asked by
	 * the user in last_branch_sz.
	 */
	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
		memcpy(&bs_dst->entries[nr],
		       &bs_src->entries[0],
		       sizeof(struct branch_entry) * etmq->last_branch_pos);
	}
}

static inline void cs_etm__reset_last_branch_rb(struct cs_etm_queue *etmq)
{
	etmq->last_branch_pos = 0;
	etmq->last_branch_rb->nr = 0;
}

565 566 567
static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
					 u64 addr) {
	u8 instrBytes[2];
568

569
	cs_etm__mem_access(etmq, addr, ARRAY_SIZE(instrBytes), instrBytes);
570
	/*
571 572 573
	 * T32 instruction size is indicated by bits[15:11] of the first
	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
	 * denote a 32-bit instruction.
574
	 */
575
	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
576 577
}

578 579
static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
{
580 581
	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
	if (packet->sample_type == CS_ETM_DISCONTINUITY)
582 583 584 585 586
		return 0;

	return packet->start_addr;
}

587 588
static inline
u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
589
{
590 591
	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
	if (packet->sample_type == CS_ETM_DISCONTINUITY)
592 593 594
		return 0;

	return packet->end_addr - packet->last_instr_size;
595 596
}

597 598
static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
				     const struct cs_etm_packet *packet,
599 600
				     u64 offset)
{
601 602 603 604 605 606 607 608 609 610 611 612
	if (packet->isa == CS_ETM_ISA_T32) {
		u64 addr = packet->start_addr;

		while (offset > 0) {
			addr += cs_etm__t32_instr_size(etmq, addr);
			offset--;
		}
		return addr;
	}

	/* Assume a 4 byte instruction size (A32/A64) */
	return packet->start_addr + offset * 4;
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
}

static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq)
{
	struct branch_stack *bs = etmq->last_branch_rb;
	struct branch_entry *be;

	/*
	 * The branches are recorded in a circular buffer in reverse
	 * chronological order: we start recording from the last element of the
	 * buffer down.  After writing the first element of the stack, move the
	 * insert position back to the end of the buffer.
	 */
	if (!etmq->last_branch_pos)
		etmq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;

	etmq->last_branch_pos -= 1;

	be       = &bs->entries[etmq->last_branch_pos];
	be->from = cs_etm__last_executed_instr(etmq->prev_packet);
633
	be->to	 = cs_etm__first_executed_instr(etmq->packet);
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	/* No support for mispredict */
	be->flags.mispred = 0;
	be->flags.predicted = 1;

	/*
	 * Increment bs->nr until reaching the number of last branches asked by
	 * the user on the command line.
	 */
	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
		bs->nr += 1;
}

static int cs_etm__inject_event(union perf_event *event,
			       struct perf_sample *sample, u64 type)
{
	event->header.size = perf_event__sample_event_size(sample, type, 0);
	return perf_event__synthesize_sample(event, type, 0, sample);
}


654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
static int
cs_etm__get_trace(struct cs_etm_buffer *buff, struct cs_etm_queue *etmq)
{
	struct auxtrace_buffer *aux_buffer = etmq->buffer;
	struct auxtrace_buffer *old_buffer = aux_buffer;
	struct auxtrace_queue *queue;

	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];

	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);

	/* If no more data, drop the previous auxtrace_buffer and return */
	if (!aux_buffer) {
		if (old_buffer)
			auxtrace_buffer__drop_data(old_buffer);
		buff->len = 0;
		return 0;
	}

	etmq->buffer = aux_buffer;

	/* If the aux_buffer doesn't have data associated, try to load it */
	if (!aux_buffer->data) {
		/* get the file desc associated with the perf data file */
		int fd = perf_data__fd(etmq->etm->session->data);

		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
		if (!aux_buffer->data)
			return -ENOMEM;
	}

	/* If valid, drop the previous buffer */
	if (old_buffer)
		auxtrace_buffer__drop_data(old_buffer);

	buff->offset = aux_buffer->offset;
	buff->len = aux_buffer->size;
	buff->buf = aux_buffer->data;

	buff->ref_timestamp = aux_buffer->reference;

	return buff->len;
}

L
Leo Yan 已提交
698 699
static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
				    struct auxtrace_queue *queue)
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
{
	struct cs_etm_queue *etmq = queue->priv;

	/* CPU-wide tracing isn't supported yet */
	if (queue->tid == -1)
		return;

	if ((!etmq->thread) && (etmq->tid != -1))
		etmq->thread = machine__find_thread(etm->machine, -1,
						    etmq->tid);

	if (etmq->thread) {
		etmq->pid = etmq->thread->pid_;
		if (queue->cpu == -1)
			etmq->cpu = etmq->thread->cpu;
	}
}

718 719 720 721 722 723 724 725 726
static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
					    u64 addr, u64 period)
{
	int ret = 0;
	struct cs_etm_auxtrace *etm = etmq->etm;
	union perf_event *event = etmq->event_buf;
	struct perf_sample sample = {.ip = 0,};

	event->sample.header.type = PERF_RECORD_SAMPLE;
727
	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
728 729 730 731 732 733 734 735 736
	event->sample.header.size = sizeof(struct perf_event_header);

	sample.ip = addr;
	sample.pid = etmq->pid;
	sample.tid = etmq->tid;
	sample.id = etmq->etm->instructions_id;
	sample.stream_id = etmq->etm->instructions_id;
	sample.period = period;
	sample.cpu = etmq->packet->cpu;
737
	sample.flags = etmq->prev_packet->flags;
738
	sample.insn_len = 1;
739
	sample.cpumode = event->sample.header.misc;
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765

	if (etm->synth_opts.last_branch) {
		cs_etm__copy_last_branch_rb(etmq);
		sample.branch_stack = etmq->last_branch;
	}

	if (etm->synth_opts.inject) {
		ret = cs_etm__inject_event(event, &sample,
					   etm->instructions_sample_type);
		if (ret)
			return ret;
	}

	ret = perf_session__deliver_synth_event(etm->session, event, &sample);

	if (ret)
		pr_err(
			"CS ETM Trace: failed to deliver instruction event, error %d\n",
			ret);

	if (etm->synth_opts.last_branch)
		cs_etm__reset_last_branch_rb(etmq);

	return ret;
}

766 767 768 769
/*
 * The cs etm packet encodes an instruction range between a branch target
 * and the next taken branch. Generate sample accordingly.
 */
770
static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq)
771 772 773 774 775
{
	int ret = 0;
	struct cs_etm_auxtrace *etm = etmq->etm;
	struct perf_sample sample = {.ip = 0,};
	union perf_event *event = etmq->event_buf;
776 777 778 779
	struct dummy_branch_stack {
		u64			nr;
		struct branch_entry	entries;
	} dummy_bs;
780 781 782
	u64 ip;

	ip = cs_etm__last_executed_instr(etmq->prev_packet);
783 784

	event->sample.header.type = PERF_RECORD_SAMPLE;
785
	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
786 787
	event->sample.header.size = sizeof(struct perf_event_header);

788
	sample.ip = ip;
789 790
	sample.pid = etmq->pid;
	sample.tid = etmq->tid;
791
	sample.addr = cs_etm__first_executed_instr(etmq->packet);
792 793 794
	sample.id = etmq->etm->branches_id;
	sample.stream_id = etmq->etm->branches_id;
	sample.period = 1;
795
	sample.cpu = etmq->packet->cpu;
796
	sample.flags = etmq->prev_packet->flags;
797
	sample.cpumode = event->sample.header.misc;
798

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
	/*
	 * perf report cannot handle events without a branch stack
	 */
	if (etm->synth_opts.last_branch) {
		dummy_bs = (struct dummy_branch_stack){
			.nr = 1,
			.entries = {
				.from = sample.ip,
				.to = sample.addr,
			},
		};
		sample.branch_stack = (struct branch_stack *)&dummy_bs;
	}

	if (etm->synth_opts.inject) {
		ret = cs_etm__inject_event(event, &sample,
					   etm->branches_sample_type);
		if (ret)
			return ret;
	}

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
	ret = perf_session__deliver_synth_event(etm->session, event, &sample);

	if (ret)
		pr_err(
		"CS ETM Trace: failed to deliver instruction event, error %d\n",
		ret);

	return ret;
}

struct cs_etm_synth {
	struct perf_tool dummy_tool;
	struct perf_session *session;
};

static int cs_etm__event_synth(struct perf_tool *tool,
			       union perf_event *event,
			       struct perf_sample *sample __maybe_unused,
			       struct machine *machine __maybe_unused)
{
	struct cs_etm_synth *cs_etm_synth =
		      container_of(tool, struct cs_etm_synth, dummy_tool);

	return perf_session__deliver_synth_event(cs_etm_synth->session,
						 event, NULL);
}

static int cs_etm__synth_event(struct perf_session *session,
			       struct perf_event_attr *attr, u64 id)
{
	struct cs_etm_synth cs_etm_synth;

	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
	cs_etm_synth.session = session;

	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
					   &id, cs_etm__event_synth);
}

static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
				struct perf_session *session)
{
	struct perf_evlist *evlist = session->evlist;
	struct perf_evsel *evsel;
	struct perf_event_attr attr;
	bool found = false;
	u64 id;
	int err;

	evlist__for_each_entry(evlist, evsel) {
		if (evsel->attr.type == etm->pmu_type) {
			found = true;
			break;
		}
	}

	if (!found) {
		pr_debug("No selected events with CoreSight Trace data\n");
		return 0;
	}

	memset(&attr, 0, sizeof(struct perf_event_attr));
	attr.size = sizeof(struct perf_event_attr);
	attr.type = PERF_TYPE_HARDWARE;
	attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
			    PERF_SAMPLE_PERIOD;
	if (etm->timeless_decoding)
		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
	else
		attr.sample_type |= PERF_SAMPLE_TIME;

	attr.exclude_user = evsel->attr.exclude_user;
	attr.exclude_kernel = evsel->attr.exclude_kernel;
	attr.exclude_hv = evsel->attr.exclude_hv;
	attr.exclude_host = evsel->attr.exclude_host;
	attr.exclude_guest = evsel->attr.exclude_guest;
	attr.sample_id_all = evsel->attr.sample_id_all;
	attr.read_format = evsel->attr.read_format;

	/* create new id val to be a fixed offset from evsel id */
	id = evsel->id[0] + 1000000000;

	if (!id)
		id = 1;

	if (etm->synth_opts.branches) {
		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
		attr.sample_period = 1;
		attr.sample_type |= PERF_SAMPLE_ADDR;
		err = cs_etm__synth_event(session, &attr, id);
		if (err)
			return err;
		etm->sample_branches = true;
		etm->branches_sample_type = attr.sample_type;
		etm->branches_id = id;
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
		id += 1;
		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
	}

	if (etm->synth_opts.last_branch)
		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;

	if (etm->synth_opts.instructions) {
		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
		attr.sample_period = etm->synth_opts.period;
		etm->instructions_sample_period = attr.sample_period;
		err = cs_etm__synth_event(session, &attr, id);
		if (err)
			return err;
		etm->sample_instructions = true;
		etm->instructions_sample_type = attr.sample_type;
		etm->instructions_id = id;
		id += 1;
934 935 936 937 938 939 940
	}

	return 0;
}

static int cs_etm__sample(struct cs_etm_queue *etmq)
{
941 942
	struct cs_etm_auxtrace *etm = etmq->etm;
	struct cs_etm_packet *tmp;
943
	int ret;
944
	u64 instrs_executed = etmq->packet->instr_count;
945

946 947 948 949 950 951 952 953
	etmq->period_instructions += instrs_executed;

	/*
	 * Record a branch when the last instruction in
	 * PREV_PACKET is a branch.
	 */
	if (etm->synth_opts.last_branch &&
	    etmq->prev_packet &&
954
	    etmq->prev_packet->sample_type == CS_ETM_RANGE &&
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
	    etmq->prev_packet->last_instr_taken_branch)
		cs_etm__update_last_branch_rb(etmq);

	if (etm->sample_instructions &&
	    etmq->period_instructions >= etm->instructions_sample_period) {
		/*
		 * Emit instruction sample periodically
		 * TODO: allow period to be defined in cycles and clock time
		 */

		/* Get number of instructions executed after the sample point */
		u64 instrs_over = etmq->period_instructions -
			etm->instructions_sample_period;

		/*
		 * Calculate the address of the sampled instruction (-1 as
		 * sample is reported as though instruction has just been
		 * executed, but PC has not advanced to next instruction)
		 */
		u64 offset = (instrs_executed - instrs_over - 1);
975
		u64 addr = cs_etm__instr_addr(etmq, etmq->packet, offset);
976 977 978 979 980 981 982 983 984 985

		ret = cs_etm__synth_instruction_sample(
			etmq, addr, etm->instructions_sample_period);
		if (ret)
			return ret;

		/* Carry remaining instructions into next sample period */
		etmq->period_instructions = instrs_over;
	}

986 987 988 989
	if (etm->sample_branches && etmq->prev_packet) {
		bool generate_sample = false;

		/* Generate sample for tracing on packet */
990
		if (etmq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
991 992 993 994 995 996 997 998 999 1000 1001 1002
			generate_sample = true;

		/* Generate sample for branch taken packet */
		if (etmq->prev_packet->sample_type == CS_ETM_RANGE &&
		    etmq->prev_packet->last_instr_taken_branch)
			generate_sample = true;

		if (generate_sample) {
			ret = cs_etm__synth_branch_sample(etmq);
			if (ret)
				return ret;
		}
1003
	}
1004

1005
	if (etm->sample_branches || etm->synth_opts.last_branch) {
1006
		/*
1007 1008
		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
		 * the next incoming packet.
1009
		 */
1010 1011 1012
		tmp = etmq->packet;
		etmq->packet = etmq->prev_packet;
		etmq->prev_packet = tmp;
1013 1014 1015 1016 1017
	}

	return 0;
}

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
static int cs_etm__exception(struct cs_etm_queue *etmq)
{
	/*
	 * When the exception packet is inserted, whether the last instruction
	 * in previous range packet is taken branch or not, we need to force
	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
	 * to generate branch sample for the instruction range before the
	 * exception is trapped to kernel or before the exception returning.
	 *
	 * The exception packet includes the dummy address values, so don't
	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
	 * for generating instruction and branch samples.
	 */
	if (etmq->prev_packet->sample_type == CS_ETM_RANGE)
		etmq->prev_packet->last_instr_taken_branch = true;

	return 0;
}

1037 1038 1039
static int cs_etm__flush(struct cs_etm_queue *etmq)
{
	int err = 0;
1040
	struct cs_etm_auxtrace *etm = etmq->etm;
1041 1042
	struct cs_etm_packet *tmp;

1043 1044 1045 1046 1047 1048 1049
	if (!etmq->prev_packet)
		return 0;

	/* Handle start tracing packet */
	if (etmq->prev_packet->sample_type == CS_ETM_EMPTY)
		goto swap_packet;

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	if (etmq->etm->synth_opts.last_branch &&
	    etmq->prev_packet->sample_type == CS_ETM_RANGE) {
		/*
		 * Generate a last branch event for the branches left in the
		 * circular buffer at the end of the trace.
		 *
		 * Use the address of the end of the last reported execution
		 * range
		 */
		u64 addr = cs_etm__last_executed_instr(etmq->prev_packet);

		err = cs_etm__synth_instruction_sample(
			etmq, addr,
			etmq->period_instructions);
1064 1065 1066
		if (err)
			return err;

1067 1068
		etmq->period_instructions = 0;

1069 1070
	}

1071 1072 1073 1074 1075 1076 1077
	if (etm->sample_branches &&
	    etmq->prev_packet->sample_type == CS_ETM_RANGE) {
		err = cs_etm__synth_branch_sample(etmq);
		if (err)
			return err;
	}

1078
swap_packet:
1079
	if (etm->sample_branches || etm->synth_opts.last_branch) {
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
		/*
		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
		 * the next incoming packet.
		 */
		tmp = etmq->packet;
		etmq->packet = etmq->prev_packet;
		etmq->prev_packet = tmp;
	}

	return err;
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
static int cs_etm__end_block(struct cs_etm_queue *etmq)
{
	int err;

	/*
	 * It has no new packet coming and 'etmq->packet' contains the stale
	 * packet which was set at the previous time with packets swapping;
	 * so skip to generate branch sample to avoid stale packet.
	 *
	 * For this case only flush branch stack and generate a last branch
	 * event for the branches left in the circular buffer at the end of
	 * the trace.
	 */
	if (etmq->etm->synth_opts.last_branch &&
	    etmq->prev_packet->sample_type == CS_ETM_RANGE) {
		/*
		 * Use the address of the end of the last reported execution
		 * range.
		 */
		u64 addr = cs_etm__last_executed_instr(etmq->prev_packet);

		err = cs_etm__synth_instruction_sample(
			etmq, addr,
			etmq->period_instructions);
		if (err)
			return err;

		etmq->period_instructions = 0;
	}

	return 0;
}

1125 1126 1127
static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq)
{
	struct cs_etm_packet *packet = etmq->packet;
1128
	struct cs_etm_packet *prev_packet = etmq->prev_packet;
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

	switch (packet->sample_type) {
	case CS_ETM_RANGE:
		/*
		 * Immediate branch instruction without neither link nor
		 * return flag, it's normal branch instruction within
		 * the function.
		 */
		if (packet->last_instr_type == OCSD_INSTR_BR &&
		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
			packet->flags = PERF_IP_FLAG_BRANCH;

			if (packet->last_instr_cond)
				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
		}

		/*
		 * Immediate branch instruction with link (e.g. BL), this is
		 * branch instruction for function call.
		 */
		if (packet->last_instr_type == OCSD_INSTR_BR &&
		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_CALL;

		/*
		 * Indirect branch instruction with link (e.g. BLR), this is
		 * branch instruction for function call.
		 */
		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_CALL;

		/*
		 * Indirect branch instruction with subtype of
		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
		 * function return for A32/T32.
		 */
		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_RETURN;

		/*
		 * Indirect branch instruction without link (e.g. BR), usually
		 * this is used for function return, especially for functions
		 * within dynamic link lib.
		 */
		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_RETURN;

		/* Return instruction for function return. */
		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_RETURN;
1188 1189 1190 1191 1192 1193 1194 1195 1196

		/*
		 * Decoder might insert a discontinuity in the middle of
		 * instruction packets, fixup prev_packet with flag
		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
		 */
		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
					      PERF_IP_FLAG_TRACE_BEGIN;
1197 1198
		break;
	case CS_ETM_DISCONTINUITY:
1199 1200 1201 1202 1203 1204 1205 1206 1207
		/*
		 * The trace is discontinuous, if the previous packet is
		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
		 * for previous packet.
		 */
		if (prev_packet->sample_type == CS_ETM_RANGE)
			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
					      PERF_IP_FLAG_TRACE_END;
		break;
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	case CS_ETM_EXCEPTION:
	case CS_ETM_EXCEPTION_RET:
	case CS_ETM_EMPTY:
	default:
		break;
	}

	return 0;
}

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
{
	struct cs_etm_auxtrace *etm = etmq->etm;
	struct cs_etm_buffer buffer;
	size_t buffer_used, processed;
	int err = 0;

	if (!etm->kernel_start)
		etm->kernel_start = machine__kernel_start(etm->machine);

	/* Go through each buffer in the queue and decode them one by one */
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	while (1) {
		buffer_used = 0;
		memset(&buffer, 0, sizeof(buffer));
		err = cs_etm__get_trace(&buffer, etmq);
		if (err <= 0)
			return err;
		/*
		 * We cannot assume consecutive blocks in the data file are
		 * contiguous, reset the decoder to force re-sync.
		 */
		err = cs_etm_decoder__reset(etmq->decoder);
		if (err != 0)
1241 1242
			return err;

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
		/* Run trace decoder until buffer consumed or end of trace */
		do {
			processed = 0;
			err = cs_etm_decoder__process_data_block(
				etmq->decoder,
				etmq->offset,
				&buffer.buf[buffer_used],
				buffer.len - buffer_used,
				&processed);
			if (err)
				return err;

			etmq->offset += processed;
			buffer_used += processed;

			/* Process each packet in this chunk */
			while (1) {
				err = cs_etm_decoder__get_packet(etmq->decoder,
								 etmq->packet);
				if (err <= 0)
					/*
					 * Stop processing this chunk on
					 * end of data or error
					 */
					break;

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
				/*
				 * Since packet addresses are swapped in packet
				 * handling within below switch() statements,
				 * thus setting sample flags must be called
				 * prior to switch() statement to use address
				 * information before packets swapping.
				 */
				err = cs_etm__set_sample_flags(etmq);
				if (err < 0)
					break;

1280 1281 1282 1283 1284 1285 1286 1287 1288
				switch (etmq->packet->sample_type) {
				case CS_ETM_RANGE:
					/*
					 * If the packet contains an instruction
					 * range, generate instruction sequence
					 * events.
					 */
					cs_etm__sample(etmq);
					break;
1289 1290 1291 1292 1293 1294 1295 1296 1297
				case CS_ETM_EXCEPTION:
				case CS_ETM_EXCEPTION_RET:
					/*
					 * If the exception packet is coming,
					 * make sure the previous instruction
					 * range packet to be handled properly.
					 */
					cs_etm__exception(etmq);
					break;
1298
				case CS_ETM_DISCONTINUITY:
1299 1300 1301 1302 1303 1304
					/*
					 * Discontinuity in trace, flush
					 * previous branch stack
					 */
					cs_etm__flush(etmq);
					break;
1305 1306 1307 1308 1309 1310 1311
				case CS_ETM_EMPTY:
					/*
					 * Should not receive empty packet,
					 * report error.
					 */
					pr_err("CS ETM Trace: empty packet\n");
					return -EINVAL;
1312 1313 1314
				default:
					break;
				}
1315 1316
			}
		} while (buffer.len > buffer_used);
1317

1318 1319
		if (err == 0)
			/* Flush any remaining branch stack entries */
1320
			err = cs_etm__end_block(etmq);
1321
	}
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345

	return err;
}

static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
					   pid_t tid, u64 time_)
{
	unsigned int i;
	struct auxtrace_queues *queues = &etm->queues;

	for (i = 0; i < queues->nr_queues; i++) {
		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
		struct cs_etm_queue *etmq = queue->priv;

		if (etmq && ((tid == -1) || (etmq->tid == tid))) {
			etmq->time = time_;
			cs_etm__set_pid_tid_cpu(etm, queue);
			cs_etm__run_decoder(etmq);
		}
	}

	return 0;
}

1346 1347 1348 1349 1350
static int cs_etm__process_event(struct perf_session *session,
				 union perf_event *event,
				 struct perf_sample *sample,
				 struct perf_tool *tool)
{
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	int err = 0;
	u64 timestamp;
	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);

	if (dump_trace)
		return 0;

	if (!tool->ordered_events) {
		pr_err("CoreSight ETM Trace requires ordered events\n");
		return -EINVAL;
	}

	if (!etm->timeless_decoding)
		return -EINVAL;

	if (sample->time && (sample->time != (u64) -1))
		timestamp = sample->time;
	else
		timestamp = 0;

	if (timestamp || etm->timeless_decoding) {
		err = cs_etm__update_queues(etm);
		if (err)
			return err;
	}

1379 1380 1381 1382 1383
	if (event->header.type == PERF_RECORD_EXIT)
		return cs_etm__process_timeless_queues(etm,
						       event->fork.tid,
						       sample->time);

1384 1385 1386 1387 1388
	return 0;
}

static int cs_etm__process_auxtrace_event(struct perf_session *session,
					  union perf_event *event,
1389
					  struct perf_tool *tool __maybe_unused)
1390
{
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);
	if (!etm->data_queued) {
		struct auxtrace_buffer *buffer;
		off_t  data_offset;
		int fd = perf_data__fd(session->data);
		bool is_pipe = perf_data__is_pipe(session->data);
		int err;

		if (is_pipe)
			data_offset = 0;
		else {
			data_offset = lseek(fd, 0, SEEK_CUR);
			if (data_offset == -1)
				return -errno;
		}

		err = auxtrace_queues__add_event(&etm->queues, session,
						 event, data_offset, &buffer);
		if (err)
			return err;

		if (dump_trace)
			if (auxtrace_buffer__get_data(buffer, fd)) {
				cs_etm__dump_event(etm, buffer);
				auxtrace_buffer__put_data(buffer);
			}
	}

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	return 0;
}

static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
{
	struct perf_evsel *evsel;
	struct perf_evlist *evlist = etm->session->evlist;
	bool timeless_decoding = true;

	/*
	 * Circle through the list of event and complain if we find one
	 * with the time bit set.
	 */
	evlist__for_each_entry(evlist, evsel) {
		if ((evsel->attr.sample_type & PERF_SAMPLE_TIME))
			timeless_decoding = false;
	}

	return timeless_decoding;
}

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
static const char * const cs_etm_global_header_fmts[] = {
	[CS_HEADER_VERSION_0]	= "	Header version		       %llx\n",
	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
};

static const char * const cs_etm_priv_fmts[] = {
	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
	[CS_ETM_CPU]		= "	CPU			       %lld\n",
	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
};

static const char * const cs_etmv4_priv_fmts[] = {
	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
	[CS_ETM_CPU]		= "	CPU			       %lld\n",
	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
};

static void cs_etm__print_auxtrace_info(u64 *val, int num)
{
	int i, j, cpu = 0;

	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);

	for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
		if (val[i] == __perf_cs_etmv3_magic)
			for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
		else if (val[i] == __perf_cs_etmv4_magic)
			for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
		else
			/* failure.. return */
			return;
	}
}

1489 1490 1491 1492 1493
int cs_etm__process_auxtrace_info(union perf_event *event,
				  struct perf_session *session)
{
	struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
	struct cs_etm_auxtrace *etm = NULL;
1494 1495
	struct int_node *inode;
	unsigned int pmu_type;
1496 1497 1498
	int event_header_size = sizeof(struct perf_event_header);
	int info_header_size;
	int total_size = auxtrace_info->header.size;
1499 1500 1501 1502 1503 1504
	int priv_size = 0;
	int num_cpu;
	int err = 0, idx = -1;
	int i, j, k;
	u64 *ptr, *hdr = NULL;
	u64 **metadata = NULL;
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

	/*
	 * sizeof(auxtrace_info_event::type) +
	 * sizeof(auxtrace_info_event::reserved) == 8
	 */
	info_header_size = 8;

	if (total_size < (event_header_size + info_header_size))
		return -EINVAL;

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	priv_size = total_size - event_header_size - info_header_size;

	/* First the global part */
	ptr = (u64 *) auxtrace_info->priv;

	/* Look for version '0' of the header */
	if (ptr[0] != 0)
		return -EINVAL;

	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
	if (!hdr)
		return -ENOMEM;

	/* Extract header information - see cs-etm.h for format */
	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
		hdr[i] = ptr[i];
	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
				    0xffffffff);

	/*
1536 1537 1538
	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
	 * has to be made for each packet that gets decoded, optimizing access
	 * in anything other than a sequential array is worth doing.
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	 */
	traceid_list = intlist__new(NULL);
	if (!traceid_list) {
		err = -ENOMEM;
		goto err_free_hdr;
	}

	metadata = zalloc(sizeof(*metadata) * num_cpu);
	if (!metadata) {
		err = -ENOMEM;
		goto err_free_traceid_list;
	}

	/*
	 * The metadata is stored in the auxtrace_info section and encodes
	 * the configuration of the ARM embedded trace macrocell which is
	 * required by the trace decoder to properly decode the trace due
	 * to its highly compressed nature.
	 */
	for (j = 0; j < num_cpu; j++) {
		if (ptr[i] == __perf_cs_etmv3_magic) {
			metadata[j] = zalloc(sizeof(*metadata[j]) *
					     CS_ETM_PRIV_MAX);
			if (!metadata[j]) {
				err = -ENOMEM;
				goto err_free_metadata;
			}
			for (k = 0; k < CS_ETM_PRIV_MAX; k++)
				metadata[j][k] = ptr[i + k];

			/* The traceID is our handle */
			idx = metadata[j][CS_ETM_ETMTRACEIDR];
			i += CS_ETM_PRIV_MAX;
		} else if (ptr[i] == __perf_cs_etmv4_magic) {
			metadata[j] = zalloc(sizeof(*metadata[j]) *
					     CS_ETMV4_PRIV_MAX);
			if (!metadata[j]) {
				err = -ENOMEM;
				goto err_free_metadata;
			}
			for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
				metadata[j][k] = ptr[i + k];

			/* The traceID is our handle */
			idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
			i += CS_ETMV4_PRIV_MAX;
		}

		/* Get an RB node for this CPU */
		inode = intlist__findnew(traceid_list, idx);

		/* Something went wrong, no need to continue */
		if (!inode) {
			err = PTR_ERR(inode);
			goto err_free_metadata;
		}

		/*
		 * The node for that CPU should not be taken.
		 * Back out if that's the case.
		 */
		if (inode->priv) {
			err = -EINVAL;
			goto err_free_metadata;
		}
1604 1605
		/* All good, associate the traceID with the metadata pointer */
		inode->priv = metadata[j];
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	}

	/*
	 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
	 * global metadata, and each cpu's metadata respectively.
	 * The following tests if the correct number of double words was
	 * present in the auxtrace info section.
	 */
	if (i * 8 != priv_size) {
		err = -EINVAL;
		goto err_free_metadata;
	}

1620 1621
	etm = zalloc(sizeof(*etm));

1622
	if (!etm) {
1623
		err = -ENOMEM;
1624 1625
		goto err_free_metadata;
	}
1626 1627 1628 1629 1630 1631 1632 1633

	err = auxtrace_queues__init(&etm->queues);
	if (err)
		goto err_free_etm;

	etm->session = session;
	etm->machine = &session->machines.host;

1634 1635 1636 1637
	etm->num_cpu = num_cpu;
	etm->pmu_type = pmu_type;
	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
	etm->metadata = metadata;
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	etm->auxtrace_type = auxtrace_info->type;
	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);

	etm->auxtrace.process_event = cs_etm__process_event;
	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
	etm->auxtrace.flush_events = cs_etm__flush_events;
	etm->auxtrace.free_events = cs_etm__free_events;
	etm->auxtrace.free = cs_etm__free;
	session->auxtrace = &etm->auxtrace;

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	etm->unknown_thread = thread__new(999999999, 999999999);
	if (!etm->unknown_thread)
		goto err_free_queues;

	/*
	 * Initialize list node so that at thread__zput() we can avoid
	 * segmentation fault at list_del_init().
	 */
	INIT_LIST_HEAD(&etm->unknown_thread->node);

	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
	if (err)
		goto err_delete_thread;

	if (thread__init_map_groups(etm->unknown_thread, etm->machine))
		goto err_delete_thread;

1665 1666
	if (dump_trace) {
		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
1667
		return 0;
1668
	}
1669

1670 1671 1672
	if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
		etm->synth_opts = *session->itrace_synth_opts;
	} else {
1673 1674
		itrace_synth_opts__set_default(&etm->synth_opts,
				session->itrace_synth_opts->default_no_sample);
1675 1676 1677 1678 1679
		etm->synth_opts.callchain = false;
	}

	err = cs_etm__synth_events(etm, session);
	if (err)
1680
		goto err_delete_thread;
1681

1682 1683
	err = auxtrace_queues__process_index(&etm->queues, session);
	if (err)
1684
		goto err_delete_thread;
1685 1686 1687 1688 1689

	etm->data_queued = etm->queues.populated;

	return 0;

1690 1691
err_delete_thread:
	thread__zput(etm->unknown_thread);
1692 1693 1694 1695 1696
err_free_queues:
	auxtrace_queues__free(&etm->queues);
	session->auxtrace = NULL;
err_free_etm:
	zfree(&etm);
1697 1698 1699 1700 1701 1702 1703 1704 1705
err_free_metadata:
	/* No need to check @metadata[j], free(NULL) is supported */
	for (j = 0; j < num_cpu; j++)
		free(metadata[j]);
	zfree(&metadata);
err_free_traceid_list:
	intlist__delete(traceid_list);
err_free_hdr:
	zfree(&hdr);
1706 1707 1708

	return -EINVAL;
}