ich8lan.c 125.5 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/*
30
 * 82562G 10/100 Network Connection
31 32 33 34 35 36 37 38 39 40 41
 * 82562G-2 10/100 Network Connection
 * 82562GT 10/100 Network Connection
 * 82562GT-2 10/100 Network Connection
 * 82562V 10/100 Network Connection
 * 82562V-2 10/100 Network Connection
 * 82566DC-2 Gigabit Network Connection
 * 82566DC Gigabit Network Connection
 * 82566DM-2 Gigabit Network Connection
 * 82566DM Gigabit Network Connection
 * 82566MC Gigabit Network Connection
 * 82566MM Gigabit Network Connection
42 43
 * 82567LM Gigabit Network Connection
 * 82567LF Gigabit Network Connection
44
 * 82567V Gigabit Network Connection
45 46 47
 * 82567LM-2 Gigabit Network Connection
 * 82567LF-2 Gigabit Network Connection
 * 82567V-2 Gigabit Network Connection
48 49
 * 82567LF-3 Gigabit Network Connection
 * 82567LM-3 Gigabit Network Connection
50
 * 82567LM-4 Gigabit Network Connection
51 52 53 54
 * 82577LM Gigabit Network Connection
 * 82577LC Gigabit Network Connection
 * 82578DM Gigabit Network Connection
 * 82578DC Gigabit Network Connection
55 56
 * 82579LM Gigabit Network Connection
 * 82579V Gigabit Network Connection
57 58 59 60 61 62 63 64 65
 */

#include "e1000.h"

#define ICH_FLASH_GFPREG		0x0000
#define ICH_FLASH_HSFSTS		0x0004
#define ICH_FLASH_HSFCTL		0x0006
#define ICH_FLASH_FADDR			0x0008
#define ICH_FLASH_FDATA0		0x0010
66
#define ICH_FLASH_PR0			0x0074
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

#define ICH_FLASH_READ_COMMAND_TIMEOUT	500
#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
#define ICH_FLASH_CYCLE_REPEAT_COUNT	10

#define ICH_CYCLE_READ			0
#define ICH_CYCLE_WRITE			2
#define ICH_CYCLE_ERASE			3

#define FLASH_GFPREG_BASE_MASK		0x1FFF
#define FLASH_SECTOR_ADDR_SHIFT		12

#define ICH_FLASH_SEG_SIZE_256		256
#define ICH_FLASH_SEG_SIZE_4K		4096
#define ICH_FLASH_SEG_SIZE_8K		8192
#define ICH_FLASH_SEG_SIZE_64K		65536


#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
88 89
/* FW established a valid mode */
#define E1000_ICH_FWSM_FW_VALID		0x00008000
90 91 92 93 94 95 96 97 98 99

#define E1000_ICH_MNG_IAMT_MODE		0x2

#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
				 (ID_LED_DEF1_OFF2 <<  8) | \
				 (ID_LED_DEF1_ON2  <<  4) | \
				 (ID_LED_DEF1_DEF2))

#define E1000_ICH_NVM_SIG_WORD		0x13
#define E1000_ICH_NVM_SIG_MASK		0xC000
100 101
#define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
#define E1000_ICH_NVM_SIG_VALUE         0x80
102 103 104 105 106 107

#define E1000_ICH8_LAN_INIT_TIMEOUT	1500

#define E1000_FEXTNVM_SW_CONFIG		1
#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */

108 109 110
#define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK    0x0C000000
#define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC  0x08000000

111 112 113 114
#define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
#define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
#define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3

115 116 117
#define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL

#define E1000_ICH_RAR_ENTRIES		7
118
#define E1000_PCH2_RAR_ENTRIES		5 /* RAR[0], SHRA[0-3] */
B
Bruce Allan 已提交
119
#define E1000_PCH_LPT_RAR_ENTRIES	12 /* RAR[0], SHRA[0-10] */
120 121 122 123 124 125 126 127 128 129 130

#define PHY_PAGE_SHIFT 5
#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
			   ((reg) & MAX_PHY_REG_ADDRESS))
#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */

#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
#define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200

131 132
#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */

133 134
#define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */

B
Bruce Allan 已提交
135 136 137 138
/* SMBus Control Phy Register */
#define CV_SMB_CTRL		PHY_REG(769, 23)
#define CV_SMB_CTRL_FORCE_SMBUS	0x0001

139 140
/* SMBus Address Phy Register */
#define HV_SMB_ADDR            PHY_REG(768, 26)
141
#define HV_SMB_ADDR_MASK       0x007F
142 143
#define HV_SMB_ADDR_PEC_EN     0x0200
#define HV_SMB_ADDR_VALID      0x0080
B
Bruce Allan 已提交
144 145 146
#define HV_SMB_ADDR_FREQ_MASK           0x1100
#define HV_SMB_ADDR_FREQ_LOW_SHIFT      8
#define HV_SMB_ADDR_FREQ_HIGH_SHIFT     12
147

148 149
/* PHY Power Management Control */
#define HV_PM_CTRL		PHY_REG(770, 17)
150
#define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA	0x100
151

152
/* PHY Low Power Idle Control */
153 154 155
#define I82579_LPI_CTRL				PHY_REG(772, 20)
#define I82579_LPI_CTRL_ENABLE_MASK		0x6000
#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT	0x80
156

157 158 159 160
/* EMI Registers */
#define I82579_EMI_ADDR         0x10
#define I82579_EMI_DATA         0x11
#define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */
161 162
#define I82579_MSE_THRESHOLD    0x084F	/* Mean Square Error Threshold */
#define I82579_MSE_LINK_DOWN    0x2411	/* MSE count before dropping link */
B
Bruce Allan 已提交
163 164 165 166 167
#define I217_EEE_ADVERTISEMENT  0x8001	/* IEEE MMD Register 7.60 */
#define I217_EEE_LP_ABILITY     0x8002	/* IEEE MMD Register 7.61 */
#define I217_EEE_100_SUPPORTED  (1 << 1)	/* 100BaseTx EEE supported */

/* Intel Rapid Start Technology Support */
168
#define I217_PROXY_CTRL                 BM_PHY_REG(BM_WUC_PAGE, 70)
B
Bruce Allan 已提交
169 170
#define I217_PROXY_CTRL_AUTO_DISABLE    0x0080
#define I217_SxCTRL                     PHY_REG(BM_PORT_CTRL_PAGE, 28)
171
#define I217_SxCTRL_ENABLE_LPI_RESET    0x1000
B
Bruce Allan 已提交
172
#define I217_CGFREG                     PHY_REG(772, 29)
173
#define I217_CGFREG_ENABLE_MTA_RESET    0x0002
B
Bruce Allan 已提交
174
#define I217_MEMPWR                     PHY_REG(772, 26)
175
#define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010
176

177 178 179 180
/* Strapping Option Register - RO */
#define E1000_STRAP                     0x0000C
#define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
B
Bruce Allan 已提交
181 182
#define E1000_STRAP_SMT_FREQ_MASK       0x00003000
#define E1000_STRAP_SMT_FREQ_SHIFT      12
183

184 185 186
/* OEM Bits Phy Register */
#define HV_OEM_BITS            PHY_REG(768, 25)
#define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
187
#define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
188 189
#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */

190 191 192
#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
#define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */

193 194 195 196
/* KMRN Mode Control */
#define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
#define HV_KMRN_MDIO_SLOW      0x0400

197 198 199 200 201
/* KMRN FIFO Control and Status */
#define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
/* Offset 04h HSFSTS */
union ich8_hws_flash_status {
	struct ich8_hsfsts {
		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
		u16 dael       :1; /* bit 2 Direct Access error Log */
		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
		u16 reserved1  :2; /* bit 13:6 Reserved */
		u16 reserved2  :6; /* bit 13:6 Reserved */
		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
	} hsf_status;
	u16 regval;
};

/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
/* Offset 06h FLCTL */
union ich8_hws_flash_ctrl {
	struct ich8_hsflctl {
		u16 flcgo      :1;   /* 0 Flash Cycle Go */
		u16 flcycle    :2;   /* 2:1 Flash Cycle */
		u16 reserved   :5;   /* 7:3 Reserved  */
		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
		u16 flockdn    :6;   /* 15:10 Reserved */
	} hsf_ctrl;
	u16 regval;
};

/* ICH Flash Region Access Permissions */
union ich8_hws_flash_regacc {
	struct ich8_flracc {
		u32 grra      :8; /* 0:7 GbE region Read Access */
		u32 grwa      :8; /* 8:15 GbE region Write Access */
		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
	} hsf_flregacc;
	u16 regval;
};

243 244 245 246 247 248 249 250 251 252 253 254 255
/* ICH Flash Protected Region */
union ich8_flash_protected_range {
	struct ich8_pr {
		u32 base:13;     /* 0:12 Protected Range Base */
		u32 reserved1:2; /* 13:14 Reserved */
		u32 rpe:1;       /* 15 Read Protection Enable */
		u32 limit:13;    /* 16:28 Protected Range Limit */
		u32 reserved2:2; /* 29:30 Reserved */
		u32 wpe:1;       /* 31 Write Protection Enable */
	} range;
	u32 regval;
};

256 257 258 259 260 261
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte);
262 263
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data);
264 265 266 267 268 269
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data);
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data);
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
270
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
271 272 273 274 275 276 277 278
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
279
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
280
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
281
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
282
static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
283
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
284 285
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
286
static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
B
Bruce Allan 已提交
287
static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
288
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
289
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
{
	return readw(hw->flash_address + reg);
}

static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
{
	return readl(hw->flash_address + reg);
}

static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
{
	writew(val, hw->flash_address + reg);
}

static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
{
	writel(val, hw->flash_address + reg);
}

#define er16flash(reg)		__er16flash(hw, (reg))
#define er32flash(reg)		__er32flash(hw, (reg))
313 314
#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
315

316 317 318 319 320 321 322 323 324 325 326
/**
 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 *  @hw: pointer to the HW structure
 *
 *  Test access to the PHY registers by reading the PHY ID registers.  If
 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 *  otherwise assume the read PHY ID is correct if it is valid.
 *
 *  Assumes the sw/fw/hw semaphore is already acquired.
 **/
static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
327
{
328 329
	u16 phy_reg;
	u32 phy_id;
330

331
	e1e_rphy_locked(hw, PHY_ID1, &phy_reg);
332
	phy_id = (u32)(phy_reg << 16);
333
	e1e_rphy_locked(hw, PHY_ID2, &phy_reg);
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);

	if (hw->phy.id) {
		if (hw->phy.id == phy_id)
			return true;
	} else {
		if ((phy_id != 0) && (phy_id != PHY_REVISION_MASK))
			hw->phy.id = phy_id;
		return true;
	}

	return false;
}

/**
 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 *  @hw: pointer to the HW structure
 *
 *  Workarounds/flow necessary for PHY initialization during driver load
 *  and resume paths.
 **/
static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
{
	u32 mac_reg, fwsm = er32(FWSM);
	s32 ret_val;
B
Bruce Allan 已提交
359
	u16 phy_reg;
360 361 362 363 364 365 366 367 368 369 370 371 372

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val) {
		e_dbg("Failed to initialize PHY flow\n");
		return ret_val;
	}

	/*
	 * The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
	 * inaccessible and resetting the PHY is not blocked, toggle the
	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
	 */
	switch (hw->mac.type) {
B
Bruce Allan 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385
	case e1000_pch_lpt:
		if (e1000_phy_is_accessible_pchlan(hw))
			break;

		/*
		 * Before toggling LANPHYPC, see if PHY is accessible by
		 * forcing MAC to SMBus mode first.
		 */
		mac_reg = er32(CTRL_EXT);
		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
		ew32(CTRL_EXT, mac_reg);

		/* fall-through */
386 387 388 389 390
	case e1000_pch2lan:
		/*
		 * Gate automatic PHY configuration by hardware on
		 * non-managed 82579
		 */
B
Bruce Allan 已提交
391 392
		if ((hw->mac.type == e1000_pch2lan) &&
		    !(fwsm & E1000_ICH_FWSM_FW_VALID))
393 394
			e1000_gate_hw_phy_config_ich8lan(hw, true);

B
Bruce Allan 已提交
395 396 397 398 399 400 401 402 403 404 405 406
		if (e1000_phy_is_accessible_pchlan(hw)) {
			if (hw->mac.type == e1000_pch_lpt) {
				/* Unforce SMBus mode in PHY */
				e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
				phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
				e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);

				/* Unforce SMBus mode in MAC */
				mac_reg = er32(CTRL_EXT);
				mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
				ew32(CTRL_EXT, mac_reg);
			}
407
			break;
B
Bruce Allan 已提交
408
		}
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

		/* fall-through */
	case e1000_pchlan:
		if ((hw->mac.type == e1000_pchlan) &&
		    (fwsm & E1000_ICH_FWSM_FW_VALID))
			break;

		if (hw->phy.ops.check_reset_block(hw)) {
			e_dbg("Required LANPHYPC toggle blocked by ME\n");
			break;
		}

		e_dbg("Toggling LANPHYPC\n");

		/* Set Phy Config Counter to 50msec */
		mac_reg = er32(FEXTNVM3);
		mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
		mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
		ew32(FEXTNVM3, mac_reg);

		/* Toggle LANPHYPC Value bit */
		mac_reg = er32(CTRL);
		mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
		mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
		ew32(CTRL, mac_reg);
		e1e_flush();
		udelay(10);
		mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
		ew32(CTRL, mac_reg);
		e1e_flush();
B
Bruce Allan 已提交
439 440 441 442 443 444 445 446 447
		if (hw->mac.type < e1000_pch_lpt) {
			msleep(50);
		} else {
			u16 count = 20;
			do {
				usleep_range(5000, 10000);
			} while (!(er32(CTRL_EXT) &
				   E1000_CTRL_EXT_LPCD) && count--);
		}
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
		break;
	default:
		break;
	}

	hw->phy.ops.release(hw);

	/*
	 * Reset the PHY before any access to it.  Doing so, ensures
	 * that the PHY is in a known good state before we read/write
	 * PHY registers.  The generic reset is sufficient here,
	 * because we haven't determined the PHY type yet.
	 */
	ret_val = e1000e_phy_hw_reset_generic(hw);

	/* Ungate automatic PHY configuration on non-managed 82579 */
	if ((hw->mac.type == e1000_pch2lan) &&
	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
		usleep_range(10000, 20000);
		e1000_gate_hw_phy_config_ich8lan(hw, false);
	}

	return ret_val;
471 472
}

473 474 475 476 477 478 479 480 481 482 483 484 485 486
/**
 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;

	phy->addr                     = 1;
	phy->reset_delay_us           = 100;

487
	phy->ops.set_page             = e1000_set_page_igp;
488 489
	phy->ops.read_reg             = e1000_read_phy_reg_hv;
	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
490
	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
491 492
	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
493 494
	phy->ops.write_reg            = e1000_write_phy_reg_hv;
	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
495
	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
496 497
	phy->ops.power_up             = e1000_power_up_phy_copper;
	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
498 499
	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;

500
	phy->id = e1000_phy_unknown;
501

502 503 504
	ret_val = e1000_init_phy_workarounds_pchlan(hw);
	if (ret_val)
		return ret_val;
505

506 507 508 509 510 511 512 513 514 515
	if (phy->id == e1000_phy_unknown)
		switch (hw->mac.type) {
		default:
			ret_val = e1000e_get_phy_id(hw);
			if (ret_val)
				return ret_val;
			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
				break;
			/* fall-through */
		case e1000_pch2lan:
B
Bruce Allan 已提交
516
		case e1000_pch_lpt:
517 518 519 520 521 522 523 524 525 526
			/*
			 * In case the PHY needs to be in mdio slow mode,
			 * set slow mode and try to get the PHY id again.
			 */
			ret_val = e1000_set_mdio_slow_mode_hv(hw);
			if (ret_val)
				return ret_val;
			ret_val = e1000e_get_phy_id(hw);
			if (ret_val)
				return ret_val;
527
			break;
528
		}
529 530
	phy->type = e1000e_get_phy_type_from_id(phy->id);

531 532
	switch (phy->type) {
	case e1000_phy_82577:
533
	case e1000_phy_82579:
B
Bruce Allan 已提交
534
	case e1000_phy_i217:
535 536
		phy->ops.check_polarity = e1000_check_polarity_82577;
		phy->ops.force_speed_duplex =
537
		    e1000_phy_force_speed_duplex_82577;
538
		phy->ops.get_cable_length = e1000_get_cable_length_82577;
539 540
		phy->ops.get_info = e1000_get_phy_info_82577;
		phy->ops.commit = e1000e_phy_sw_reset;
541
		break;
542 543 544 545 546 547 548 549 550
	case e1000_phy_82578:
		phy->ops.check_polarity = e1000_check_polarity_m88;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
		phy->ops.get_info = e1000e_get_phy_info_m88;
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		break;
551 552 553 554 555
	}

	return ret_val;
}

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
/**
 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 i = 0;

	phy->addr			= 1;
	phy->reset_delay_us		= 100;

571 572 573
	phy->ops.power_up               = e1000_power_up_phy_copper;
	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;

574 575 576 577 578 579
	/*
	 * We may need to do this twice - once for IGP and if that fails,
	 * we'll set BM func pointers and try again
	 */
	ret_val = e1000e_determine_phy_address(hw);
	if (ret_val) {
580 581
		phy->ops.write_reg = e1000e_write_phy_reg_bm;
		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
582
		ret_val = e1000e_determine_phy_address(hw);
B
Bruce Allan 已提交
583 584
		if (ret_val) {
			e_dbg("Cannot determine PHY addr. Erroring out\n");
585
			return ret_val;
B
Bruce Allan 已提交
586
		}
587 588
	}

589 590 591
	phy->id = 0;
	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
	       (i++ < 100)) {
592
		usleep_range(1000, 2000);
593 594 595 596 597 598 599 600 601 602
		ret_val = e1000e_get_phy_id(hw);
		if (ret_val)
			return ret_val;
	}

	/* Verify phy id */
	switch (phy->id) {
	case IGP03E1000_E_PHY_ID:
		phy->type = e1000_phy_igp_3;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
603 604
		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
605 606 607
		phy->ops.get_info = e1000e_get_phy_info_igp;
		phy->ops.check_polarity = e1000_check_polarity_igp;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
608 609 610 611 612 613
		break;
	case IFE_E_PHY_ID:
	case IFE_PLUS_E_PHY_ID:
	case IFE_C_E_PHY_ID:
		phy->type = e1000_phy_ife;
		phy->autoneg_mask = E1000_ALL_NOT_GIG;
614 615 616
		phy->ops.get_info = e1000_get_phy_info_ife;
		phy->ops.check_polarity = e1000_check_polarity_ife;
		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
617
		break;
618 619 620
	case BME1000_E_PHY_ID:
		phy->type = e1000_phy_bm;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
621 622 623
		phy->ops.read_reg = e1000e_read_phy_reg_bm;
		phy->ops.write_reg = e1000e_write_phy_reg_bm;
		phy->ops.commit = e1000e_phy_sw_reset;
624 625 626
		phy->ops.get_info = e1000e_get_phy_info_m88;
		phy->ops.check_polarity = e1000_check_polarity_m88;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
627
		break;
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
	default:
		return -E1000_ERR_PHY;
		break;
	}

	return 0;
}

/**
 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific NVM parameters and function
 *  pointers.
 **/
static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
647
	u32 gfpreg, sector_base_addr, sector_end_addr;
648 649
	u16 i;

650
	/* Can't read flash registers if the register set isn't mapped. */
651
	if (!hw->flash_address) {
652
		e_dbg("ERROR: Flash registers not mapped\n");
653 654 655 656 657 658 659
		return -E1000_ERR_CONFIG;
	}

	nvm->type = e1000_nvm_flash_sw;

	gfpreg = er32flash(ICH_FLASH_GFPREG);

660 661
	/*
	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
662
	 * Add 1 to sector_end_addr since this sector is included in
663 664
	 * the overall size.
	 */
665 666 667 668 669 670
	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;

	/* flash_base_addr is byte-aligned */
	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;

671 672 673 674
	/*
	 * find total size of the NVM, then cut in half since the total
	 * size represents two separate NVM banks.
	 */
675 676 677 678 679 680 681 682 683 684
	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
				<< FLASH_SECTOR_ADDR_SHIFT;
	nvm->flash_bank_size /= 2;
	/* Adjust to word count */
	nvm->flash_bank_size /= sizeof(u16);

	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;

	/* Clear shadow ram */
	for (i = 0; i < nvm->word_size; i++) {
685
		dev_spec->shadow_ram[i].modified = false;
686 687 688 689 690 691 692 693 694 695 696 697 698
		dev_spec->shadow_ram[i].value    = 0xFFFF;
	}

	return 0;
}

/**
 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific MAC parameters and function
 *  pointers.
 **/
699
static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
700 701 702 703
{
	struct e1000_mac_info *mac = &hw->mac;

	/* Set media type function pointer */
704
	hw->phy.media_type = e1000_media_type_copper;
705 706 707 708 709 710 711

	/* Set mta register count */
	mac->mta_reg_count = 32;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
	if (mac->type == e1000_ich8lan)
		mac->rar_entry_count--;
712 713 714 715
	/* FWSM register */
	mac->has_fwsm = true;
	/* ARC subsystem not supported */
	mac->arc_subsystem_valid = false;
716 717
	/* Adaptive IFS supported */
	mac->adaptive_ifs = true;
718

B
Bruce Allan 已提交
719
	/* LED and other operations */
720 721 722 723
	switch (mac->type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
	case e1000_ich10lan:
724 725
		/* check management mode */
		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
726
		/* ID LED init */
727
		mac->ops.id_led_init = e1000e_id_led_init_generic;
728 729
		/* blink LED */
		mac->ops.blink_led = e1000e_blink_led_generic;
730 731 732 733 734 735 736 737
		/* setup LED */
		mac->ops.setup_led = e1000e_setup_led_generic;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_ich8lan;
		mac->ops.led_off = e1000_led_off_ich8lan;
		break;
738
	case e1000_pch2lan:
739 740 741
		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
		mac->ops.rar_set = e1000_rar_set_pch2lan;
		/* fall-through */
B
Bruce Allan 已提交
742
	case e1000_pch_lpt:
743
	case e1000_pchlan:
744 745
		/* check management mode */
		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
746 747 748 749 750 751 752 753 754 755 756 757 758 759
		/* ID LED init */
		mac->ops.id_led_init = e1000_id_led_init_pchlan;
		/* setup LED */
		mac->ops.setup_led = e1000_setup_led_pchlan;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_pchlan;
		mac->ops.led_off = e1000_led_off_pchlan;
		break;
	default:
		break;
	}

B
Bruce Allan 已提交
760 761 762 763 764
	if (mac->type == e1000_pch_lpt) {
		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
		mac->ops.rar_set = e1000_rar_set_pch_lpt;
	}

765 766
	/* Enable PCS Lock-loss workaround for ICH8 */
	if (mac->type == e1000_ich8lan)
767
		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
768

B
Bruce Allan 已提交
769 770 771 772 773
	/*
	 * Gate automatic PHY configuration by hardware on managed
	 * 82579 and i217
	 */
	if ((mac->type == e1000_pch2lan || mac->type == e1000_pch_lpt) &&
774 775
	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		e1000_gate_hw_phy_config_ich8lan(hw, true);
776

777 778 779
	return 0;
}

780 781 782 783 784 785 786 787 788
/**
 *  e1000_set_eee_pchlan - Enable/disable EEE support
 *  @hw: pointer to the HW structure
 *
 *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
 *  the LPI Control register will remain set only if/when link is up.
 **/
static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
{
B
Bruce Allan 已提交
789
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
790 791 792
	s32 ret_val = 0;
	u16 phy_reg;

B
Bruce Allan 已提交
793 794
	if ((hw->phy.type != e1000_phy_82579) &&
	    (hw->phy.type != e1000_phy_i217))
795
		return 0;
796 797 798

	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
	if (ret_val)
799
		return ret_val;
800

B
Bruce Allan 已提交
801
	if (dev_spec->eee_disable)
802 803 804 805
		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
	else
		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;

B
Bruce Allan 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
	ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
	if (ret_val)
		return ret_val;

	if ((hw->phy.type == e1000_phy_i217) && !dev_spec->eee_disable) {
		/* Save off link partner's EEE ability */
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return ret_val;
		ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
					  I217_EEE_LP_ABILITY);
		if (ret_val)
			goto release;
		e1e_rphy_locked(hw, I82579_EMI_DATA, &dev_spec->eee_lp_ability);

		/*
		 * EEE is not supported in 100Half, so ignore partner's EEE
		 * in 100 ability if full-duplex is not advertised.
		 */
		e1e_rphy_locked(hw, PHY_LP_ABILITY, &phy_reg);
		if (!(phy_reg & NWAY_LPAR_100TX_FD_CAPS))
			dev_spec->eee_lp_ability &= ~I217_EEE_100_SUPPORTED;
release:
		hw->phy.ops.release(hw);
	}

	return 0;
833 834
}

835 836 837 838 839 840 841 842 843 844 845 846 847
/**
 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
 *  @hw: pointer to the HW structure
 *
 *  Checks to see of the link status of the hardware has changed.  If a
 *  change in link status has been detected, then we read the PHY registers
 *  to get the current speed/duplex if link exists.
 **/
static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	bool link;
848
	u16 phy_reg;
849 850 851 852 853 854 855

	/*
	 * We only want to go out to the PHY registers to see if Auto-Neg
	 * has completed and/or if our link status has changed.  The
	 * get_link_status flag is set upon receiving a Link Status
	 * Change or Rx Sequence Error interrupt.
	 */
856 857
	if (!mac->get_link_status)
		return 0;
858 859 860 861 862 863 864 865

	/*
	 * First we want to see if the MII Status Register reports
	 * link.  If so, then we want to get the current speed/duplex
	 * of the PHY.
	 */
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
866
		return ret_val;
867

868 869 870
	if (hw->mac.type == e1000_pchlan) {
		ret_val = e1000_k1_gig_workaround_hv(hw, link);
		if (ret_val)
871
			return ret_val;
872 873
	}

B
Bruce Allan 已提交
874 875 876
	/* Clear link partner's EEE ability */
	hw->dev_spec.ich8lan.eee_lp_ability = 0;

877
	if (!link)
878
		return 0; /* No link detected */
879 880 881

	mac->get_link_status = false;

882 883
	switch (hw->mac.type) {
	case e1000_pch2lan:
884 885
		ret_val = e1000_k1_workaround_lv(hw);
		if (ret_val)
886
			return ret_val;
887 888 889 890 891
		/* fall-thru */
	case e1000_pchlan:
		if (hw->phy.type == e1000_phy_82578) {
			ret_val = e1000_link_stall_workaround_hv(hw);
			if (ret_val)
892
				return ret_val;
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
		}

		/*
		 * Workaround for PCHx parts in half-duplex:
		 * Set the number of preambles removed from the packet
		 * when it is passed from the PHY to the MAC to prevent
		 * the MAC from misinterpreting the packet type.
		 */
		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;

		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);

		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
		break;
	default:
		break;
911 912
	}

913 914 915 916 917 918
	/*
	 * Check if there was DownShift, must be checked
	 * immediately after link-up
	 */
	e1000e_check_downshift(hw);

919 920 921
	/* Enable/Disable EEE after link up */
	ret_val = e1000_set_eee_pchlan(hw);
	if (ret_val)
922
		return ret_val;
923

924 925 926 927
	/*
	 * If we are forcing speed/duplex, then we simply return since
	 * we have already determined whether we have link or not.
	 */
928 929
	if (!mac->autoneg)
		return -E1000_ERR_CONFIG;
930 931 932 933 934 935

	/*
	 * Auto-Neg is enabled.  Auto Speed Detection takes care
	 * of MAC speed/duplex configuration.  So we only need to
	 * configure Collision Distance in the MAC.
	 */
936
	mac->ops.config_collision_dist(hw);
937 938 939 940 941 942 943 944 945

	/*
	 * Configure Flow Control now that Auto-Neg has completed.
	 * First, we need to restore the desired flow control
	 * settings because we may have had to re-autoneg with a
	 * different link partner.
	 */
	ret_val = e1000e_config_fc_after_link_up(hw);
	if (ret_val)
946
		e_dbg("Error configuring flow control\n");
947 948 949 950

	return ret_val;
}

J
Jeff Kirsher 已提交
951
static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
952 953 954 955
{
	struct e1000_hw *hw = &adapter->hw;
	s32 rc;

956
	rc = e1000_init_mac_params_ich8lan(hw);
957 958 959 960 961 962 963
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_ich8lan(hw);
	if (rc)
		return rc;

964 965 966 967
	switch (hw->mac.type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
	case e1000_ich10lan:
968
		rc = e1000_init_phy_params_ich8lan(hw);
969 970 971
		break;
	case e1000_pchlan:
	case e1000_pch2lan:
B
Bruce Allan 已提交
972
	case e1000_pch_lpt:
973 974 975 976 977
		rc = e1000_init_phy_params_pchlan(hw);
		break;
	default:
		break;
	}
978 979 980
	if (rc)
		return rc;

981 982 983 984 985 986 987
	/*
	 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
	 */
	if ((adapter->hw.phy.type == e1000_phy_ife) ||
	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
988 989
		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
990 991

		hw->mac.ops.blink_led = NULL;
992 993
	}

994
	if ((adapter->hw.mac.type == e1000_ich8lan) &&
995
	    (adapter->hw.phy.type != e1000_phy_ife))
996 997
		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;

998 999 1000 1001 1002
	/* Enable workaround for 82579 w/ ME enabled */
	if ((adapter->hw.mac.type == e1000_pch2lan) &&
	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;

1003 1004 1005 1006
	/* Disable EEE by default until IEEE802.3az spec is finalized */
	if (adapter->flags2 & FLAG2_HAS_EEE)
		adapter->hw.dev_spec.ich8lan.eee_disable = true;

1007 1008 1009
	return 0;
}

1010 1011
static DEFINE_MUTEX(nvm_mutex);

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
/**
 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
 *  @hw: pointer to the HW structure
 *
 *  Acquires the mutex for performing NVM operations.
 **/
static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
{
	mutex_lock(&nvm_mutex);

	return 0;
}

/**
 *  e1000_release_nvm_ich8lan - Release NVM mutex
 *  @hw: pointer to the HW structure
 *
 *  Releases the mutex used while performing NVM operations.
 **/
static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
{
	mutex_unlock(&nvm_mutex);
}

1036 1037 1038 1039
/**
 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
 *  @hw: pointer to the HW structure
 *
1040 1041
 *  Acquires the software control flag for performing PHY and select
 *  MAC CSR accesses.
1042 1043 1044
 **/
static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
{
1045 1046
	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
	s32 ret_val = 0;
1047

1048 1049
	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
			     &hw->adapter->state)) {
1050
		e_dbg("contention for Phy access\n");
1051 1052
		return -E1000_ERR_PHY;
	}
1053

1054 1055
	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);
1056 1057
		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
			break;
1058

1059 1060 1061 1062 1063
		mdelay(1);
		timeout--;
	}

	if (!timeout) {
1064
		e_dbg("SW has already locked the resource.\n");
1065 1066 1067 1068
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

1069
	timeout = SW_FLAG_TIMEOUT;
1070 1071 1072 1073 1074 1075 1076 1077

	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
	ew32(EXTCNF_CTRL, extcnf_ctrl);

	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);
		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
			break;
1078

1079 1080 1081 1082 1083
		mdelay(1);
		timeout--;
	}

	if (!timeout) {
1084
		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1085
		      er32(FWSM), extcnf_ctrl);
1086 1087
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
		ew32(EXTCNF_CTRL, extcnf_ctrl);
1088 1089
		ret_val = -E1000_ERR_CONFIG;
		goto out;
1090 1091
	}

1092 1093
out:
	if (ret_val)
1094
		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1095 1096

	return ret_val;
1097 1098 1099 1100 1101 1102
}

/**
 *  e1000_release_swflag_ich8lan - Release software control flag
 *  @hw: pointer to the HW structure
 *
1103 1104
 *  Releases the software control flag for performing PHY and select
 *  MAC CSR accesses.
1105 1106 1107 1108 1109 1110
 **/
static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
{
	u32 extcnf_ctrl;

	extcnf_ctrl = er32(EXTCNF_CTRL);
1111 1112 1113 1114 1115 1116 1117

	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
		ew32(EXTCNF_CTRL, extcnf_ctrl);
	} else {
		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
	}
1118

1119
	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1120 1121
}

1122 1123 1124 1125
/**
 *  e1000_check_mng_mode_ich8lan - Checks management mode
 *  @hw: pointer to the HW structure
 *
1126
 *  This checks if the adapter has any manageability enabled.
1127 1128 1129 1130 1131
 *  This is a function pointer entry point only called by read/write
 *  routines for the PHY and NVM parts.
 **/
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
{
1132 1133 1134
	u32 fwsm;

	fwsm = er32(FWSM);
1135 1136 1137 1138
	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
	       ((fwsm & E1000_FWSM_MODE_MASK) ==
		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
}
1139

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
/**
 *  e1000_check_mng_mode_pchlan - Checks management mode
 *  @hw: pointer to the HW structure
 *
 *  This checks if the adapter has iAMT enabled.
 *  This is a function pointer entry point only called by read/write
 *  routines for the PHY and NVM parts.
 **/
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
{
	u32 fwsm;

	fwsm = er32(FWSM);
	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1155 1156
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
/**
 *  e1000_rar_set_pch2lan - Set receive address register
 *  @hw: pointer to the HW structure
 *  @addr: pointer to the receive address
 *  @index: receive address array register
 *
 *  Sets the receive address array register at index to the address passed
 *  in by addr.  For 82579, RAR[0] is the base address register that is to
 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
 *  Use SHRA[0-3] in place of those reserved for ME.
 **/
static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
{
	u32 rar_low, rar_high;

	/*
	 * HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32)addr[0] |
		   ((u32)addr[1] << 8) |
		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));

	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));

	/* If MAC address zero, no need to set the AV bit */
	if (rar_low || rar_high)
		rar_high |= E1000_RAH_AV;

	if (index == 0) {
		ew32(RAL(index), rar_low);
		e1e_flush();
		ew32(RAH(index), rar_high);
		e1e_flush();
		return;
	}

	if (index < hw->mac.rar_entry_count) {
		s32 ret_val;

		ret_val = e1000_acquire_swflag_ich8lan(hw);
		if (ret_val)
			goto out;

		ew32(SHRAL(index - 1), rar_low);
		e1e_flush();
		ew32(SHRAH(index - 1), rar_high);
		e1e_flush();

		e1000_release_swflag_ich8lan(hw);

		/* verify the register updates */
		if ((er32(SHRAL(index - 1)) == rar_low) &&
		    (er32(SHRAH(index - 1)) == rar_high))
			return;

		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
		      (index - 1), er32(FWSM));
	}

out:
	e_dbg("Failed to write receive address at index %d\n", index);
}

B
Bruce Allan 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
/**
 *  e1000_rar_set_pch_lpt - Set receive address registers
 *  @hw: pointer to the HW structure
 *  @addr: pointer to the receive address
 *  @index: receive address array register
 *
 *  Sets the receive address register array at index to the address passed
 *  in by addr. For LPT, RAR[0] is the base address register that is to
 *  contain the MAC address. SHRA[0-10] are the shared receive address
 *  registers that are shared between the Host and manageability engine (ME).
 **/
static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
{
	u32 rar_low, rar_high;
	u32 wlock_mac;

	/*
	 * HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));

	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));

	/* If MAC address zero, no need to set the AV bit */
	if (rar_low || rar_high)
		rar_high |= E1000_RAH_AV;

	if (index == 0) {
		ew32(RAL(index), rar_low);
		e1e_flush();
		ew32(RAH(index), rar_high);
		e1e_flush();
		return;
	}

	/*
	 * The manageability engine (ME) can lock certain SHRAR registers that
	 * it is using - those registers are unavailable for use.
	 */
	if (index < hw->mac.rar_entry_count) {
		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;

		/* Check if all SHRAR registers are locked */
		if (wlock_mac == 1)
			goto out;

		if ((wlock_mac == 0) || (index <= wlock_mac)) {
			s32 ret_val;

			ret_val = e1000_acquire_swflag_ich8lan(hw);

			if (ret_val)
				goto out;

			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
			e1e_flush();
			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
			e1e_flush();

			e1000_release_swflag_ich8lan(hw);

			/* verify the register updates */
			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
				return;
		}
	}

out:
	e_dbg("Failed to write receive address at index %d\n", index);
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
/**
 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
 *  @hw: pointer to the HW structure
 *
 *  Checks if firmware is blocking the reset of the PHY.
 *  This is a function pointer entry point only called by
 *  reset routines.
 **/
static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
{
	u32 fwsm;

	fwsm = er32(FWSM);

	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
/**
 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
 *  @hw: pointer to the HW structure
 *
 *  Assumes semaphore already acquired.
 *
 **/
static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
{
	u16 phy_data;
	u32 strap = er32(STRAP);
B
Bruce Allan 已提交
1324 1325
	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
	    E1000_STRAP_SMT_FREQ_SHIFT;
1326 1327 1328 1329 1330 1331
	s32 ret_val = 0;

	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;

	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
	if (ret_val)
1332
		return ret_val;
1333 1334 1335 1336 1337

	phy_data &= ~HV_SMB_ADDR_MASK;
	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;

B
Bruce Allan 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	if (hw->phy.type == e1000_phy_i217) {
		/* Restore SMBus frequency */
		if (freq--) {
			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
			phy_data |= (freq & (1 << 0)) <<
			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
			phy_data |= (freq & (1 << 1)) <<
			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
		} else {
			e_dbg("Unsupported SMB frequency in PHY\n");
		}
	}

1351
	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1352 1353
}

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
/**
 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
 *  @hw:   pointer to the HW structure
 *
 *  SW should configure the LCD from the NVM extended configuration region
 *  as a workaround for certain parts.
 **/
static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1365
	s32 ret_val = 0;
1366 1367 1368 1369 1370 1371 1372 1373 1374
	u16 word_addr, reg_data, reg_addr, phy_page = 0;

	/*
	 * Initialize the PHY from the NVM on ICH platforms.  This
	 * is needed due to an issue where the NVM configuration is
	 * not properly autoloaded after power transitions.
	 * Therefore, after each PHY reset, we will load the
	 * configuration data out of the NVM manually.
	 */
1375 1376 1377 1378 1379
	switch (hw->mac.type) {
	case e1000_ich8lan:
		if (phy->type != e1000_phy_igp_3)
			return ret_val;

B
Bruce Allan 已提交
1380 1381
		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1382 1383 1384 1385 1386
			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
			break;
		}
		/* Fall-thru */
	case e1000_pchlan:
1387
	case e1000_pch2lan:
B
Bruce Allan 已提交
1388
	case e1000_pch_lpt:
1389
		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1390 1391 1392 1393 1394 1395 1396 1397
		break;
	default:
		return ret_val;
	}

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;
1398 1399 1400

	data = er32(FEXTNVM);
	if (!(data & sw_cfg_mask))
1401
		goto release;
1402

1403 1404 1405 1406 1407
	/*
	 * Make sure HW does not configure LCD from PHY
	 * extended configuration before SW configuration
	 */
	data = er32(EXTCNF_CTRL);
B
Bruce Allan 已提交
1408 1409 1410
	if ((hw->mac.type < e1000_pch2lan) &&
	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
		goto release;
1411 1412 1413 1414 1415

	cnf_size = er32(EXTCNF_SIZE);
	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
	if (!cnf_size)
1416
		goto release;
1417 1418 1419 1420

	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;

B
Bruce Allan 已提交
1421 1422 1423
	if (((hw->mac.type == e1000_pchlan) &&
	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
	    (hw->mac.type > e1000_pchlan)) {
1424
		/*
1425 1426 1427 1428
		 * HW configures the SMBus address and LEDs when the
		 * OEM and LCD Write Enable bits are set in the NVM.
		 * When both NVM bits are cleared, SW will configure
		 * them instead.
1429
		 */
1430
		ret_val = e1000_write_smbus_addr(hw);
1431
		if (ret_val)
1432
			goto release;
1433

1434 1435 1436 1437
		data = er32(LEDCTL);
		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
							(u16)data);
		if (ret_val)
1438
			goto release;
1439
	}
1440

1441 1442 1443 1444 1445 1446 1447 1448 1449
	/* Configure LCD from extended configuration region. */

	/* cnf_base_addr is in DWORD */
	word_addr = (u16)(cnf_base_addr << 1);

	for (i = 0; i < cnf_size; i++) {
		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
					 &reg_data);
		if (ret_val)
1450
			goto release;
1451 1452 1453 1454

		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
					 1, &reg_addr);
		if (ret_val)
1455
			goto release;
1456 1457 1458 1459 1460

		/* Save off the PHY page for future writes. */
		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
			phy_page = reg_data;
			continue;
1461
		}
1462 1463 1464 1465

		reg_addr &= PHY_REG_MASK;
		reg_addr |= phy_page;

1466
		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1467
		if (ret_val)
1468
			goto release;
1469 1470
	}

1471
release:
1472
	hw->phy.ops.release(hw);
1473 1474 1475
	return ret_val;
}

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
/**
 *  e1000_k1_gig_workaround_hv - K1 Si workaround
 *  @hw:   pointer to the HW structure
 *  @link: link up bool flag
 *
 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
 *  If link is down, the function will restore the default K1 setting located
 *  in the NVM.
 **/
static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
{
	s32 ret_val = 0;
	u16 status_reg = 0;
	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;

	if (hw->mac.type != e1000_pchlan)
1493
		return 0;
1494 1495

	/* Wrap the whole flow with the sw flag */
1496
	ret_val = hw->phy.ops.acquire(hw);
1497
	if (ret_val)
1498
		return ret_val;
1499 1500 1501 1502

	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
	if (link) {
		if (hw->phy.type == e1000_phy_82578) {
1503 1504
			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
						  &status_reg);
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
			if (ret_val)
				goto release;

			status_reg &= BM_CS_STATUS_LINK_UP |
			              BM_CS_STATUS_RESOLVED |
			              BM_CS_STATUS_SPEED_MASK;

			if (status_reg == (BM_CS_STATUS_LINK_UP |
			                   BM_CS_STATUS_RESOLVED |
			                   BM_CS_STATUS_SPEED_1000))
				k1_enable = false;
		}

		if (hw->phy.type == e1000_phy_82577) {
1519
			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
			if (ret_val)
				goto release;

			status_reg &= HV_M_STATUS_LINK_UP |
			              HV_M_STATUS_AUTONEG_COMPLETE |
			              HV_M_STATUS_SPEED_MASK;

			if (status_reg == (HV_M_STATUS_LINK_UP |
			                   HV_M_STATUS_AUTONEG_COMPLETE |
			                   HV_M_STATUS_SPEED_1000))
				k1_enable = false;
		}

		/* Link stall fix for link up */
1534
		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1535 1536 1537 1538 1539
		if (ret_val)
			goto release;

	} else {
		/* Link stall fix for link down */
1540
		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1541 1542 1543 1544 1545 1546 1547
		if (ret_val)
			goto release;
	}

	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);

release:
1548
	hw->phy.ops.release(hw);
1549

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	return ret_val;
}

/**
 *  e1000_configure_k1_ich8lan - Configure K1 power state
 *  @hw: pointer to the HW structure
 *  @enable: K1 state to configure
 *
 *  Configure the K1 power state based on the provided parameter.
 *  Assumes semaphore already acquired.
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 **/
1563
s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1564 1565 1566 1567 1568 1569 1570
{
	s32 ret_val = 0;
	u32 ctrl_reg = 0;
	u32 ctrl_ext = 0;
	u32 reg = 0;
	u16 kmrn_reg = 0;

1571 1572
	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
					      &kmrn_reg);
1573
	if (ret_val)
1574
		return ret_val;
1575 1576 1577 1578 1579 1580

	if (k1_enable)
		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
	else
		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;

1581 1582
	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
					       kmrn_reg);
1583
	if (ret_val)
1584
		return ret_val;
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594

	udelay(20);
	ctrl_ext = er32(CTRL_EXT);
	ctrl_reg = er32(CTRL);

	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
	reg |= E1000_CTRL_FRCSPD;
	ew32(CTRL, reg);

	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1595
	e1e_flush();
1596 1597 1598
	udelay(20);
	ew32(CTRL, ctrl_reg);
	ew32(CTRL_EXT, ctrl_ext);
1599
	e1e_flush();
1600 1601
	udelay(20);

1602
	return 0;
1603 1604
}

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
/**
 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
 *  @hw:       pointer to the HW structure
 *  @d0_state: boolean if entering d0 or d3 device state
 *
 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
 **/
static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
{
	s32 ret_val = 0;
	u32 mac_reg;
	u16 oem_reg;

B
Bruce Allan 已提交
1620
	if (hw->mac.type < e1000_pchlan)
1621 1622
		return ret_val;

1623
	ret_val = hw->phy.ops.acquire(hw);
1624 1625 1626
	if (ret_val)
		return ret_val;

B
Bruce Allan 已提交
1627
	if (hw->mac.type == e1000_pchlan) {
1628 1629
		mac_reg = er32(EXTCNF_CTRL);
		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1630
			goto release;
1631
	}
1632 1633 1634

	mac_reg = er32(FEXTNVM);
	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1635
		goto release;
1636 1637 1638

	mac_reg = er32(PHY_CTRL);

1639
	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1640
	if (ret_val)
1641
		goto release;
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651

	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);

	if (d0_state) {
		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
			oem_reg |= HV_OEM_BITS_GBE_DIS;

		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
			oem_reg |= HV_OEM_BITS_LPLU;
	} else {
B
Bruce Allan 已提交
1652 1653
		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1654 1655
			oem_reg |= HV_OEM_BITS_GBE_DIS;

B
Bruce Allan 已提交
1656 1657
		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
			       E1000_PHY_CTRL_NOND0A_LPLU))
1658 1659
			oem_reg |= HV_OEM_BITS_LPLU;
	}
B
Bruce Allan 已提交
1660

B
Bruce Allan 已提交
1661 1662 1663 1664 1665
	/* Set Restart auto-neg to activate the bits */
	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
	    !hw->phy.ops.check_reset_block(hw))
		oem_reg |= HV_OEM_BITS_RESTART_AN;

1666
	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1667

1668
release:
1669
	hw->phy.ops.release(hw);
1670 1671 1672 1673 1674

	return ret_val;
}


1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
/**
 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
 *  @hw:   pointer to the HW structure
 **/
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
	if (ret_val)
		return ret_val;

	data |= HV_KMRN_MDIO_SLOW;

	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);

	return ret_val;
}

1695 1696 1697 1698 1699 1700 1701
/**
 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
 *  done after every PHY reset.
 **/
static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;
1702
	u16 phy_data;
1703 1704

	if (hw->mac.type != e1000_pchlan)
1705
		return 0;
1706

1707 1708 1709 1710
	/* Set MDIO slow mode before any other MDIO access */
	if (hw->phy.type == e1000_phy_82577) {
		ret_val = e1000_set_mdio_slow_mode_hv(hw);
		if (ret_val)
1711
			return ret_val;
1712 1713
	}

1714 1715 1716 1717 1718 1719 1720 1721 1722
	if (((hw->phy.type == e1000_phy_82577) &&
	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
		/* Disable generation of early preamble */
		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
		if (ret_val)
			return ret_val;

		/* Preamble tuning for SSC */
1723
		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
		if (ret_val)
			return ret_val;
	}

	if (hw->phy.type == e1000_phy_82578) {
		/*
		 * Return registers to default by doing a soft reset then
		 * writing 0x3140 to the control register.
		 */
		if (hw->phy.revision < 2) {
			e1000e_phy_sw_reset(hw);
			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
		}
	}

	/* Select page 0 */
1740
	ret_val = hw->phy.ops.acquire(hw);
1741 1742
	if (ret_val)
		return ret_val;
1743

1744
	hw->phy.addr = 1;
1745
	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1746
	hw->phy.ops.release(hw);
1747
	if (ret_val)
1748
		return ret_val;
1749

1750 1751 1752 1753 1754
	/*
	 * Configure the K1 Si workaround during phy reset assuming there is
	 * link so that it disables K1 if link is in 1Gbps.
	 */
	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1755
	if (ret_val)
1756
		return ret_val;
1757

1758 1759 1760
	/* Workaround for link disconnects on a busy hub in half duplex */
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
1761
		return ret_val;
1762
	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1763 1764
	if (ret_val)
		goto release;
1765
	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
1766 1767
release:
	hw->phy.ops.release(hw);
1768

1769 1770 1771
	return ret_val;
}

1772 1773 1774 1775 1776 1777 1778
/**
 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
 *  @hw:   pointer to the HW structure
 **/
void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
{
	u32 mac_reg;
1779 1780 1781 1782 1783 1784 1785 1786 1787
	u16 i, phy_reg = 0;
	s32 ret_val;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;
	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
	if (ret_val)
		goto release;
1788 1789 1790 1791

	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
		mac_reg = er32(RAL(i));
1792 1793 1794 1795 1796
		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
					   (u16)((mac_reg >> 16) & 0xFFFF));

1797
		mac_reg = er32(RAH(i));
1798 1799 1800 1801 1802
		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
					   (u16)((mac_reg & E1000_RAH_AV)
						 >> 16));
1803
	}
1804 1805 1806 1807 1808

	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);

release:
	hw->phy.ops.release(hw);
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
}

/**
 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
 *  with 82579 PHY
 *  @hw: pointer to the HW structure
 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
 **/
s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
{
	s32 ret_val = 0;
	u16 phy_reg, data;
	u32 mac_reg;
	u16 i;

B
Bruce Allan 已提交
1824
	if (hw->mac.type < e1000_pch2lan)
1825
		return 0;
1826 1827 1828 1829 1830

	/* disable Rx path while enabling/disabling workaround */
	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
	if (ret_val)
1831
		return ret_val;
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852

	if (enable) {
		/*
		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
		 * SHRAL/H) and initial CRC values to the MAC
		 */
		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
			u8 mac_addr[ETH_ALEN] = {0};
			u32 addr_high, addr_low;

			addr_high = er32(RAH(i));
			if (!(addr_high & E1000_RAH_AV))
				continue;
			addr_low = er32(RAL(i));
			mac_addr[0] = (addr_low & 0xFF);
			mac_addr[1] = ((addr_low >> 8) & 0xFF);
			mac_addr[2] = ((addr_low >> 16) & 0xFF);
			mac_addr[3] = ((addr_low >> 24) & 0xFF);
			mac_addr[4] = (addr_high & 0xFF);
			mac_addr[5] = ((addr_high >> 8) & 0xFF);

1853
			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
		}

		/* Write Rx addresses to the PHY */
		e1000_copy_rx_addrs_to_phy_ich8lan(hw);

		/* Enable jumbo frame workaround in the MAC */
		mac_reg = er32(FFLT_DBG);
		mac_reg &= ~(1 << 14);
		mac_reg |= (7 << 15);
		ew32(FFLT_DBG, mac_reg);

		mac_reg = er32(RCTL);
		mac_reg |= E1000_RCTL_SECRC;
		ew32(RCTL, mac_reg);

		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						&data);
		if (ret_val)
1873
			return ret_val;
1874 1875 1876 1877
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						data | (1 << 0));
		if (ret_val)
1878
			return ret_val;
1879 1880 1881 1882
		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						&data);
		if (ret_val)
1883
			return ret_val;
1884 1885 1886 1887 1888 1889
		data &= ~(0xF << 8);
		data |= (0xB << 8);
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						data);
		if (ret_val)
1890
			return ret_val;
1891 1892 1893 1894 1895 1896 1897

		/* Enable jumbo frame workaround in the PHY */
		e1e_rphy(hw, PHY_REG(769, 23), &data);
		data &= ~(0x7F << 5);
		data |= (0x37 << 5);
		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
		if (ret_val)
1898
			return ret_val;
1899 1900 1901 1902
		e1e_rphy(hw, PHY_REG(769, 16), &data);
		data &= ~(1 << 13);
		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
		if (ret_val)
1903
			return ret_val;
1904 1905 1906 1907 1908
		e1e_rphy(hw, PHY_REG(776, 20), &data);
		data &= ~(0x3FF << 2);
		data |= (0x1A << 2);
		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
		if (ret_val)
1909
			return ret_val;
1910
		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1911
		if (ret_val)
1912
			return ret_val;
1913 1914 1915
		e1e_rphy(hw, HV_PM_CTRL, &data);
		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
		if (ret_val)
1916
			return ret_val;
1917 1918 1919 1920 1921 1922 1923 1924
	} else {
		/* Write MAC register values back to h/w defaults */
		mac_reg = er32(FFLT_DBG);
		mac_reg &= ~(0xF << 14);
		ew32(FFLT_DBG, mac_reg);

		mac_reg = er32(RCTL);
		mac_reg &= ~E1000_RCTL_SECRC;
1925
		ew32(RCTL, mac_reg);
1926 1927 1928 1929 1930

		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						&data);
		if (ret_val)
1931
			return ret_val;
1932 1933 1934 1935
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						data & ~(1 << 0));
		if (ret_val)
1936
			return ret_val;
1937 1938 1939 1940
		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						&data);
		if (ret_val)
1941
			return ret_val;
1942 1943 1944 1945 1946 1947
		data &= ~(0xF << 8);
		data |= (0xB << 8);
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						data);
		if (ret_val)
1948
			return ret_val;
1949 1950 1951 1952 1953 1954

		/* Write PHY register values back to h/w defaults */
		e1e_rphy(hw, PHY_REG(769, 23), &data);
		data &= ~(0x7F << 5);
		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
		if (ret_val)
1955
			return ret_val;
1956 1957 1958 1959
		e1e_rphy(hw, PHY_REG(769, 16), &data);
		data |= (1 << 13);
		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
		if (ret_val)
1960
			return ret_val;
1961 1962 1963 1964 1965
		e1e_rphy(hw, PHY_REG(776, 20), &data);
		data &= ~(0x3FF << 2);
		data |= (0x8 << 2);
		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
		if (ret_val)
1966
			return ret_val;
1967 1968
		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
		if (ret_val)
1969
			return ret_val;
1970 1971 1972
		e1e_rphy(hw, HV_PM_CTRL, &data);
		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
		if (ret_val)
1973
			return ret_val;
1974 1975 1976
	}

	/* re-enable Rx path after enabling/disabling workaround */
1977
	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
}

/**
 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
 *  done after every PHY reset.
 **/
static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;

	if (hw->mac.type != e1000_pch2lan)
1989
		return 0;
1990 1991 1992 1993

	/* Set MDIO slow mode before any other MDIO access */
	ret_val = e1000_set_mdio_slow_mode_hv(hw);

1994 1995
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
1996
		return ret_val;
1997
	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_THRESHOLD);
1998 1999 2000
	if (ret_val)
		goto release;
	/* set MSE higher to enable link to stay up when noise is high */
2001
	ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0034);
2002 2003
	if (ret_val)
		goto release;
2004
	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_LINK_DOWN);
2005 2006 2007
	if (ret_val)
		goto release;
	/* drop link after 5 times MSE threshold was reached */
2008
	ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0005);
2009 2010 2011
release:
	hw->phy.ops.release(hw);

2012 2013 2014
	return ret_val;
}

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
/**
 *  e1000_k1_gig_workaround_lv - K1 Si workaround
 *  @hw:   pointer to the HW structure
 *
 *  Workaround to set the K1 beacon duration for 82579 parts
 **/
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 status_reg = 0;
	u32 mac_reg;
2026
	u16 phy_reg;
2027 2028

	if (hw->mac.type != e1000_pch2lan)
2029
		return 0;
2030 2031 2032 2033

	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
	if (ret_val)
2034
		return ret_val;
2035 2036 2037 2038 2039 2040

	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
		mac_reg = er32(FEXTNVM4);
		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;

2041 2042
		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
		if (ret_val)
2043
			return ret_val;
2044 2045

		if (status_reg & HV_M_STATUS_SPEED_1000) {
2046 2047
			u16 pm_phy_reg;

2048
			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
2049
			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2050 2051 2052 2053 2054 2055 2056 2057
			/* LV 1G Packet drop issue wa  */
			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
			if (ret_val)
				return ret_val;
			pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
			if (ret_val)
				return ret_val;
2058
		} else {
2059
			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2060 2061
			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
		}
2062
		ew32(FEXTNVM4, mac_reg);
2063
		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
2064 2065 2066 2067 2068
	}

	return ret_val;
}

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
/**
 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
 *  @hw:   pointer to the HW structure
 *  @gate: boolean set to true to gate, false to ungate
 *
 *  Gate/ungate the automatic PHY configuration via hardware; perform
 *  the configuration via software instead.
 **/
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
{
	u32 extcnf_ctrl;

B
Bruce Allan 已提交
2081
	if (hw->mac.type < e1000_pch2lan)
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
		return;

	extcnf_ctrl = er32(EXTCNF_CTRL);

	if (gate)
		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
	else
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;

	ew32(EXTCNF_CTRL, extcnf_ctrl);
}

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
/**
 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
 *  @hw: pointer to the HW structure
 *
 *  Check the appropriate indication the MAC has finished configuring the
 *  PHY after a software reset.
 **/
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
{
	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;

	/* Wait for basic configuration completes before proceeding */
	do {
		data = er32(STATUS);
		data &= E1000_STATUS_LAN_INIT_DONE;
		udelay(100);
	} while ((!data) && --loop);

	/*
	 * If basic configuration is incomplete before the above loop
	 * count reaches 0, loading the configuration from NVM will
	 * leave the PHY in a bad state possibly resulting in no link.
	 */
	if (loop == 0)
2118
		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2119 2120 2121 2122 2123 2124 2125

	/* Clear the Init Done bit for the next init event */
	data = er32(STATUS);
	data &= ~E1000_STATUS_LAN_INIT_DONE;
	ew32(STATUS, data);
}

2126
/**
2127
 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2128 2129
 *  @hw: pointer to the HW structure
 **/
2130
static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2131
{
2132 2133
	s32 ret_val = 0;
	u16 reg;
2134

2135
	if (hw->phy.ops.check_reset_block(hw))
2136
		return 0;
2137

B
Bruce Allan 已提交
2138
	/* Allow time for h/w to get to quiescent state after reset */
2139
	usleep_range(10000, 20000);
B
Bruce Allan 已提交
2140

2141
	/* Perform any necessary post-reset workarounds */
2142 2143
	switch (hw->mac.type) {
	case e1000_pchlan:
2144 2145
		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
		if (ret_val)
2146
			return ret_val;
2147
		break;
2148 2149 2150
	case e1000_pch2lan:
		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
		if (ret_val)
2151
			return ret_val;
2152
		break;
2153 2154
	default:
		break;
2155 2156
	}

2157 2158 2159 2160 2161 2162
	/* Clear the host wakeup bit after lcd reset */
	if (hw->mac.type >= e1000_pchlan) {
		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
		reg &= ~BM_WUC_HOST_WU_BIT;
		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
	}
2163

2164 2165 2166
	/* Configure the LCD with the extended configuration region in NVM */
	ret_val = e1000_sw_lcd_config_ich8lan(hw);
	if (ret_val)
2167
		return ret_val;
2168

2169
	/* Configure the LCD with the OEM bits in NVM */
2170
	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2171

2172 2173 2174
	if (hw->mac.type == e1000_pch2lan) {
		/* Ungate automatic PHY configuration on non-managed 82579 */
		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2175
			usleep_range(10000, 20000);
2176 2177 2178 2179 2180 2181
			e1000_gate_hw_phy_config_ich8lan(hw, false);
		}

		/* Set EEE LPI Update Timer to 200usec */
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
2182
			return ret_val;
2183 2184
		ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
					  I82579_LPI_UPDATE_TIMER);
2185
		if (!ret_val)
2186
			ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x1387);
2187
		hw->phy.ops.release(hw);
2188 2189
	}

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	return ret_val;
}

/**
 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
 *  @hw: pointer to the HW structure
 *
 *  Resets the PHY
 *  This is a function pointer entry point called by drivers
 *  or other shared routines.
 **/
static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;

2205 2206 2207 2208 2209
	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
	if ((hw->mac.type == e1000_pch2lan) &&
	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		e1000_gate_hw_phy_config_ich8lan(hw, true);

2210 2211
	ret_val = e1000e_phy_hw_reset_generic(hw);
	if (ret_val)
2212
		return ret_val;
2213

2214
	return e1000_post_phy_reset_ich8lan(hw);
2215 2216
}

2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
/**
 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
 *  the phy speed. This function will manually set the LPLU bit and restart
 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
 *  since it configures the same bit.
 **/
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
{
	s32 ret_val = 0;
	u16 oem_reg;

	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
	if (ret_val)
2235
		return ret_val;
2236 2237 2238 2239 2240 2241

	if (active)
		oem_reg |= HV_OEM_BITS_LPLU;
	else
		oem_reg &= ~HV_OEM_BITS_LPLU;

2242
	if (!hw->phy.ops.check_reset_block(hw))
2243 2244
		oem_reg |= HV_OEM_BITS_RESTART_AN;

2245
	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2246 2247
}

2248 2249 2250
/**
 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
2251
 *  @active: true to enable LPLU, false to disable
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
 *
 *  Sets the LPLU D0 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
	s32 ret_val = 0;
	u16 data;

2268
	if (phy->type == e1000_phy_ife)
B
Bruce Allan 已提交
2269
		return 0;
2270 2271 2272 2273 2274 2275 2276

	phy_ctrl = er32(PHY_CTRL);

	if (active) {
		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

2277 2278 2279
		if (phy->type != e1000_phy_igp_3)
			return 0;

2280 2281 2282 2283
		/*
		 * Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
2284
		if (hw->mac.type == e1000_ich8lan)
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
		if (ret_val)
			return ret_val;
	} else {
		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

2297 2298 2299
		if (phy->type != e1000_phy_igp_3)
			return 0;

2300 2301
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2302 2303
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
2304 2305
		 * SmartSpeed, so performance is maintained.
		 */
2306 2307
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2308
					   &data);
2309 2310 2311 2312 2313
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2314
					   data);
2315 2316 2317 2318
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2319
					   &data);
2320 2321 2322 2323 2324
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2325
					   data);
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
 *  @hw: pointer to the HW structure
2337
 *  @active: true to enable LPLU, false to disable
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
 *
 *  Sets the LPLU D3 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
2351
	s32 ret_val = 0;
2352 2353 2354 2355 2356 2357 2358
	u16 data;

	phy_ctrl = er32(PHY_CTRL);

	if (!active) {
		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);
2359 2360 2361 2362

		if (phy->type != e1000_phy_igp_3)
			return 0;

2363 2364
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2365 2366
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
2367 2368
		 * SmartSpeed, so performance is maintained.
		 */
2369
		if (phy->smart_speed == e1000_smart_speed_on) {
2370 2371
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
2372 2373 2374 2375
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
2376 2377
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
2378 2379 2380
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
2381 2382
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
2383 2384 2385 2386
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2387 2388
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
2389 2390 2391 2392 2393 2394 2395 2396 2397
			if (ret_val)
				return ret_val;
		}
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

2398 2399 2400
		if (phy->type != e1000_phy_igp_3)
			return 0;

2401 2402 2403 2404
		/*
		 * Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
2405
		if (hw->mac.type == e1000_ich8lan)
2406 2407 2408
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
2409
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2410 2411 2412 2413
		if (ret_val)
			return ret_val;

		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2414
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2415 2416
	}

2417
	return ret_val;
2418 2419
}

2420 2421 2422 2423 2424 2425
/**
 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
 *  @hw: pointer to the HW structure
 *  @bank:  pointer to the variable that returns the active bank
 *
 *  Reads signature byte from the NVM using the flash access registers.
2426
 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2427 2428 2429
 **/
static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
{
2430
	u32 eecd;
2431 2432 2433
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2434
	u8 sig_byte = 0;
2435
	s32 ret_val;
2436

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
	switch (hw->mac.type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
		eecd = er32(EECD);
		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
		    E1000_EECD_SEC1VAL_VALID_MASK) {
			if (eecd & E1000_EECD_SEC1VAL)
				*bank = 1;
			else
				*bank = 0;

			return 0;
		}
2450
		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
		/* fall-thru */
	default:
		/* set bank to 0 in case flash read fails */
		*bank = 0;

		/* Check bank 0 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
		                                        &sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
2463
			*bank = 0;
2464 2465
			return 0;
		}
2466

2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
		/* Check bank 1 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
		                                        bank1_offset,
		                                        &sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
			*bank = 1;
			return 0;
2477
		}
2478

2479
		e_dbg("ERROR: No valid NVM bank present\n");
2480
		return -E1000_ERR_NVM;
2481 2482 2483
	}
}

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
/**
 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to read.
 *  @words: Size of data to read in words
 *  @data: Pointer to the word(s) to read at offset.
 *
 *  Reads a word(s) from the NVM using the flash access registers.
 **/
static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				  u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 act_offset;
2499
	s32 ret_val = 0;
2500
	u32 bank = 0;
2501 2502 2503 2504
	u16 i, word;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
2505
		e_dbg("nvm parameter(s) out of bounds\n");
2506 2507
		ret_val = -E1000_ERR_NVM;
		goto out;
2508 2509
	}

2510
	nvm->ops.acquire(hw);
2511

2512
	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2513
	if (ret_val) {
2514
		e_dbg("Could not detect valid bank, assuming bank 0\n");
2515 2516
		bank = 0;
	}
2517 2518

	act_offset = (bank) ? nvm->flash_bank_size : 0;
2519 2520
	act_offset += offset;

2521
	ret_val = 0;
2522
	for (i = 0; i < words; i++) {
2523
		if (dev_spec->shadow_ram[offset+i].modified) {
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
			data[i] = dev_spec->shadow_ram[offset+i].value;
		} else {
			ret_val = e1000_read_flash_word_ich8lan(hw,
								act_offset + i,
								&word);
			if (ret_val)
				break;
			data[i] = word;
		}
	}

2535
	nvm->ops.release(hw);
2536

2537 2538
out:
	if (ret_val)
2539
		e_dbg("NVM read error: %d\n", ret_val);
2540

2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	return ret_val;
}

/**
 *  e1000_flash_cycle_init_ich8lan - Initialize flash
 *  @hw: pointer to the HW structure
 *
 *  This function does initial flash setup so that a new read/write/erase cycle
 *  can be started.
 **/
static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
{
	union ich8_hws_flash_status hsfsts;
	s32 ret_val = -E1000_ERR_NVM;

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

	/* Check if the flash descriptor is valid */
B
Bruce Allan 已提交
2559
	if (!hsfsts.hsf_status.fldesvalid) {
2560
		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2561 2562 2563 2564 2565 2566 2567 2568 2569
		return -E1000_ERR_NVM;
	}

	/* Clear FCERR and DAEL in hw status by writing 1 */
	hsfsts.hsf_status.flcerr = 1;
	hsfsts.hsf_status.dael = 1;

	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);

2570 2571
	/*
	 * Either we should have a hardware SPI cycle in progress
2572 2573
	 * bit to check against, in order to start a new cycle or
	 * FDONE bit should be changed in the hardware so that it
2574
	 * is 1 after hardware reset, which can then be used as an
2575 2576 2577 2578
	 * indication whether a cycle is in progress or has been
	 * completed.
	 */

B
Bruce Allan 已提交
2579
	if (!hsfsts.hsf_status.flcinprog) {
2580 2581
		/*
		 * There is no cycle running at present,
B
Bruce Allan 已提交
2582
		 * so we can start a cycle.
2583 2584
		 * Begin by setting Flash Cycle Done.
		 */
2585 2586 2587 2588
		hsfsts.hsf_status.flcdone = 1;
		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		ret_val = 0;
	} else {
2589
		s32 i;
2590

2591
		/*
B
Bruce Allan 已提交
2592
		 * Otherwise poll for sometime so the current
2593 2594
		 * cycle has a chance to end before giving up.
		 */
2595
		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2596
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
B
Bruce Allan 已提交
2597
			if (!hsfsts.hsf_status.flcinprog) {
2598 2599 2600 2601 2602
				ret_val = 0;
				break;
			}
			udelay(1);
		}
2603
		if (!ret_val) {
2604 2605 2606 2607
			/*
			 * Successful in waiting for previous cycle to timeout,
			 * now set the Flash Cycle Done.
			 */
2608 2609 2610
			hsfsts.hsf_status.flcdone = 1;
			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		} else {
J
Joe Perches 已提交
2611
			e_dbg("Flash controller busy, cannot get access\n");
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
		}
	}

	return ret_val;
}

/**
 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
 *  @hw: pointer to the HW structure
 *  @timeout: maximum time to wait for completion
 *
 *  This function starts a flash cycle and waits for its completion.
 **/
static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
{
	union ich8_hws_flash_ctrl hsflctl;
	union ich8_hws_flash_status hsfsts;
	u32 i = 0;

	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
	hsflctl.hsf_ctrl.flcgo = 1;
	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

	/* wait till FDONE bit is set to 1 */
	do {
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
B
Bruce Allan 已提交
2639
		if (hsfsts.hsf_status.flcdone)
2640 2641 2642 2643
			break;
		udelay(1);
	} while (i++ < timeout);

B
Bruce Allan 已提交
2644
	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2645 2646
		return 0;

2647
	return -E1000_ERR_NVM;
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
}

/**
 *  e1000_read_flash_word_ich8lan - Read word from flash
 *  @hw: pointer to the HW structure
 *  @offset: offset to data location
 *  @data: pointer to the location for storing the data
 *
 *  Reads the flash word at offset into data.  Offset is converted
 *  to bytes before read.
 **/
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data)
{
	/* Must convert offset into bytes. */
	offset <<= 1;

	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
}

2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
/**
 *  e1000_read_flash_byte_ich8lan - Read byte from flash
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to read.
 *  @data: Pointer to a byte to store the value read.
 *
 *  Reads a single byte from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data)
{
	s32 ret_val;
	u16 word = 0;

	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
	if (ret_val)
		return ret_val;

	*data = (u8)word;

	return 0;
}

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
/**
 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte or word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: Pointer to the word to store the value read.
 *
 *  Reads a byte or word from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val = -E1000_ERR_NVM;
	u8 count = 0;

	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			    hw->nvm.flash_base_addr;

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2720
		if (ret_val)
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size - 1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		ret_val = e1000_flash_cycle_ich8lan(hw,
						ICH_FLASH_READ_COMMAND_TIMEOUT);

2734 2735
		/*
		 * Check if FCERR is set to 1, if set to 1, clear it
2736 2737
		 * and try the whole sequence a few more times, else
		 * read in (shift in) the Flash Data0, the order is
2738 2739
		 * least significant byte first msb to lsb
		 */
2740
		if (!ret_val) {
2741
			flash_data = er32flash(ICH_FLASH_FDATA0);
B
Bruce Allan 已提交
2742
			if (size == 1)
2743
				*data = (u8)(flash_data & 0x000000FF);
B
Bruce Allan 已提交
2744
			else if (size == 2)
2745 2746 2747
				*data = (u16)(flash_data & 0x0000FFFF);
			break;
		} else {
2748 2749
			/*
			 * If we've gotten here, then things are probably
2750 2751 2752 2753 2754
			 * completely hosed, but if the error condition is
			 * detected, it won't hurt to give it another try...
			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
			 */
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
B
Bruce Allan 已提交
2755
			if (hsfsts.hsf_status.flcerr) {
2756 2757
				/* Repeat for some time before giving up. */
				continue;
B
Bruce Allan 已提交
2758
			} else if (!hsfsts.hsf_status.flcdone) {
2759
				e_dbg("Timeout error - flash cycle did not complete.\n");
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
				break;
			}
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to write.
 *  @words: Size of data to write in words
 *  @data: Pointer to the word(s) to write at offset.
 *
 *  Writes a byte or word to the NVM using the flash access registers.
 **/
static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				   u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u16 i;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
2786
		e_dbg("nvm parameter(s) out of bounds\n");
2787 2788 2789
		return -E1000_ERR_NVM;
	}

2790
	nvm->ops.acquire(hw);
2791

2792
	for (i = 0; i < words; i++) {
2793
		dev_spec->shadow_ram[offset+i].modified = true;
2794 2795 2796
		dev_spec->shadow_ram[offset+i].value = data[i];
	}

2797
	nvm->ops.release(hw);
2798

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
	return 0;
}

/**
 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
 *  @hw: pointer to the HW structure
 *
 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
 *  which writes the checksum to the shadow ram.  The changes in the shadow
 *  ram are then committed to the EEPROM by processing each bank at a time
 *  checking for the modified bit and writing only the pending changes.
2810
 *  After a successful commit, the shadow ram is cleared and is ready for
2811 2812 2813 2814 2815 2816
 *  future writes.
 **/
static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2817
	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2818 2819 2820 2821 2822
	s32 ret_val;
	u16 data;

	ret_val = e1000e_update_nvm_checksum_generic(hw);
	if (ret_val)
2823
		goto out;
2824 2825

	if (nvm->type != e1000_nvm_flash_sw)
2826
		goto out;
2827

2828
	nvm->ops.acquire(hw);
2829

2830 2831
	/*
	 * We're writing to the opposite bank so if we're on bank 1,
2832
	 * write to bank 0 etc.  We also need to erase the segment that
2833 2834
	 * is going to be written
	 */
2835
	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2836
	if (ret_val) {
2837
		e_dbg("Could not detect valid bank, assuming bank 0\n");
2838
		bank = 0;
2839
	}
2840 2841

	if (bank == 0) {
2842 2843
		new_bank_offset = nvm->flash_bank_size;
		old_bank_offset = 0;
2844
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2845 2846
		if (ret_val)
			goto release;
2847 2848 2849
	} else {
		old_bank_offset = nvm->flash_bank_size;
		new_bank_offset = 0;
2850
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2851 2852
		if (ret_val)
			goto release;
2853 2854 2855
	}

	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2856 2857
		/*
		 * Determine whether to write the value stored
2858
		 * in the other NVM bank or a modified value stored
2859 2860
		 * in the shadow RAM
		 */
2861 2862 2863
		if (dev_spec->shadow_ram[i].modified) {
			data = dev_spec->shadow_ram[i].value;
		} else {
2864 2865 2866 2867 2868
			ret_val = e1000_read_flash_word_ich8lan(hw, i +
			                                        old_bank_offset,
			                                        &data);
			if (ret_val)
				break;
2869 2870
		}

2871 2872
		/*
		 * If the word is 0x13, then make sure the signature bits
2873 2874 2875 2876
		 * (15:14) are 11b until the commit has completed.
		 * This will allow us to write 10b which indicates the
		 * signature is valid.  We want to do this after the write
		 * has completed so that we don't mark the segment valid
2877 2878
		 * while the write is still in progress
		 */
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
		if (i == E1000_ICH_NVM_SIG_WORD)
			data |= E1000_ICH_NVM_SIG_MASK;

		/* Convert offset to bytes. */
		act_offset = (i + new_bank_offset) << 1;

		udelay(100);
		/* Write the bytes to the new bank. */
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							       act_offset,
							       (u8)data);
		if (ret_val)
			break;

		udelay(100);
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							  act_offset + 1,
							  (u8)(data >> 8));
		if (ret_val)
			break;
	}

2901 2902 2903 2904
	/*
	 * Don't bother writing the segment valid bits if sector
	 * programming failed.
	 */
2905
	if (ret_val) {
2906
		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2907
		e_dbg("Flash commit failed.\n");
2908
		goto release;
2909 2910
	}

2911 2912
	/*
	 * Finally validate the new segment by setting bit 15:14
2913 2914
	 * to 10b in word 0x13 , this can be done without an
	 * erase as well since these bits are 11 to start with
2915 2916
	 * and we need to change bit 14 to 0b
	 */
2917
	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2918
	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2919 2920 2921
	if (ret_val)
		goto release;

2922 2923 2924 2925
	data &= 0xBFFF;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
						       act_offset * 2 + 1,
						       (u8)(data >> 8));
2926 2927
	if (ret_val)
		goto release;
2928

2929 2930
	/*
	 * And invalidate the previously valid segment by setting
2931 2932
	 * its signature word (0x13) high_byte to 0b. This can be
	 * done without an erase because flash erase sets all bits
2933 2934
	 * to 1's. We can write 1's to 0's without an erase
	 */
2935 2936
	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2937 2938
	if (ret_val)
		goto release;
2939 2940 2941

	/* Great!  Everything worked, we can now clear the cached entries. */
	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2942
		dev_spec->shadow_ram[i].modified = false;
2943 2944 2945
		dev_spec->shadow_ram[i].value = 0xFFFF;
	}

2946
release:
2947
	nvm->ops.release(hw);
2948

2949 2950
	/*
	 * Reload the EEPROM, or else modifications will not appear
2951 2952
	 * until after the next adapter reset.
	 */
2953
	if (!ret_val) {
2954
		nvm->ops.reload(hw);
2955
		usleep_range(10000, 20000);
2956
	}
2957

2958 2959
out:
	if (ret_val)
2960
		e_dbg("NVM update error: %d\n", ret_val);
2961

2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
	return ret_val;
}

/**
 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
 *  calculated, in which case we need to calculate the checksum and set bit 6.
 **/
static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 data;

2978 2979
	/*
	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2980 2981 2982 2983 2984 2985 2986 2987
	 * needs to be fixed.  This bit is an indication that the NVM
	 * was prepared by OEM software and did not calculate the
	 * checksum...a likely scenario.
	 */
	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
	if (ret_val)
		return ret_val;

B
Bruce Allan 已提交
2988
	if (!(data & 0x40)) {
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
		data |= 0x40;
		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
		if (ret_val)
			return ret_val;
		ret_val = e1000e_update_nvm_checksum(hw);
		if (ret_val)
			return ret_val;
	}

	return e1000e_validate_nvm_checksum_generic(hw);
}

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
/**
 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
 *  @hw: pointer to the HW structure
 *
 *  To prevent malicious write/erase of the NVM, set it to be read-only
 *  so that the hardware ignores all write/erase cycles of the NVM via
 *  the flash control registers.  The shadow-ram copy of the NVM will
 *  still be updated, however any updates to this copy will not stick
 *  across driver reloads.
 **/
void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
{
3013
	struct e1000_nvm_info *nvm = &hw->nvm;
3014 3015 3016 3017
	union ich8_flash_protected_range pr0;
	union ich8_hws_flash_status hsfsts;
	u32 gfpreg;

3018
	nvm->ops.acquire(hw);
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038

	gfpreg = er32flash(ICH_FLASH_GFPREG);

	/* Write-protect GbE Sector of NVM */
	pr0.regval = er32flash(ICH_FLASH_PR0);
	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
	pr0.range.wpe = true;
	ew32flash(ICH_FLASH_PR0, pr0.regval);

	/*
	 * Lock down a subset of GbE Flash Control Registers, e.g.
	 * PR0 to prevent the write-protection from being lifted.
	 * Once FLOCKDN is set, the registers protected by it cannot
	 * be written until FLOCKDN is cleared by a hardware reset.
	 */
	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
	hsfsts.hsf_status.flockdn = true;
	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);

3039
	nvm->ops.release(hw);
3040 3041
}

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
/**
 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte/word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: The byte(s) to write to the NVM.
 *
 *  Writes one/two bytes to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 size, u16 data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val;
	u8 count = 0;

	if (size < 1 || size > 2 || data > size * 0xff ||
	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			    hw->nvm.flash_base_addr;

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
		if (ret_val)
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size -1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		if (size == 1)
			flash_data = (u32)data & 0x00FF;
		else
			flash_data = (u32)data;

		ew32flash(ICH_FLASH_FDATA0, flash_data);

3090 3091 3092 3093
		/*
		 * check if FCERR is set to 1 , if set to 1, clear it
		 * and try the whole sequence a few more times else done
		 */
3094 3095 3096 3097 3098
		ret_val = e1000_flash_cycle_ich8lan(hw,
					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
		if (!ret_val)
			break;

3099 3100
		/*
		 * If we're here, then things are most likely
3101 3102 3103 3104 3105
		 * completely hosed, but if the error condition
		 * is detected, it won't hurt to give it another
		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
		 */
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
B
Bruce Allan 已提交
3106
		if (hsfsts.hsf_status.flcerr)
3107 3108
			/* Repeat for some time before giving up. */
			continue;
B
Bruce Allan 已提交
3109
		if (!hsfsts.hsf_status.flcdone) {
3110
			e_dbg("Timeout error - flash cycle did not complete.\n");
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
			break;
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The index of the byte to read.
 *  @data: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 data)
{
	u16 word = (u16)data;

	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
}

/**
 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to write.
 *  @byte: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 *  Goes through a retry algorithm before giving up.
 **/
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte)
{
	s32 ret_val;
	u16 program_retries;

	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
	if (!ret_val)
		return ret_val;

	for (program_retries = 0; program_retries < 100; program_retries++) {
3154
		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
		udelay(100);
		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
		if (!ret_val)
			break;
	}
	if (program_retries == 100)
		return -E1000_ERR_NVM;

	return 0;
}

/**
 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
 *  @hw: pointer to the HW structure
 *  @bank: 0 for first bank, 1 for second bank, etc.
 *
 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
 *  bank N is 4096 * N + flash_reg_addr.
 **/
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	/* bank size is in 16bit words - adjust to bytes */
	u32 flash_bank_size = nvm->flash_bank_size * 2;
	s32 ret_val;
	s32 count = 0;
3184
	s32 j, iteration, sector_size;
3185 3186 3187

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

3188 3189 3190 3191
	/*
	 * Determine HW Sector size: Read BERASE bits of hw flash status
	 * register
	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
	 *     consecutive sectors.  The start index for the nth Hw sector
	 *     can be calculated as = bank * 4096 + n * 256
	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
	 *     The start index for the nth Hw sector can be calculated
	 *     as = bank * 4096
	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
	 *     (ich9 only, otherwise error condition)
	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
	 */
	switch (hsfsts.hsf_status.berasesz) {
	case 0:
		/* Hw sector size 256 */
		sector_size = ICH_FLASH_SEG_SIZE_256;
		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
		break;
	case 1:
		sector_size = ICH_FLASH_SEG_SIZE_4K;
3209
		iteration = 1;
3210 3211
		break;
	case 2:
3212 3213
		sector_size = ICH_FLASH_SEG_SIZE_8K;
		iteration = 1;
3214 3215 3216
		break;
	case 3:
		sector_size = ICH_FLASH_SEG_SIZE_64K;
3217
		iteration = 1;
3218 3219 3220 3221 3222 3223 3224
		break;
	default:
		return -E1000_ERR_NVM;
	}

	/* Start with the base address, then add the sector offset. */
	flash_linear_addr = hw->nvm.flash_base_addr;
3225
	flash_linear_addr += (bank) ? flash_bank_size : 0;
3226 3227 3228 3229 3230 3231 3232 3233

	for (j = 0; j < iteration ; j++) {
		do {
			/* Steps */
			ret_val = e1000_flash_cycle_init_ich8lan(hw);
			if (ret_val)
				return ret_val;

3234 3235 3236 3237
			/*
			 * Write a value 11 (block Erase) in Flash
			 * Cycle field in hw flash control
			 */
3238 3239 3240 3241
			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

3242 3243
			/*
			 * Write the last 24 bits of an index within the
3244 3245 3246 3247 3248 3249 3250 3251
			 * block into Flash Linear address field in Flash
			 * Address.
			 */
			flash_linear_addr += (j * sector_size);
			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

			ret_val = e1000_flash_cycle_ich8lan(hw,
					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
3252
			if (!ret_val)
3253 3254
				break;

3255 3256
			/*
			 * Check if FCERR is set to 1.  If 1,
3257
			 * clear it and try the whole sequence
3258 3259
			 * a few more times else Done
			 */
3260
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
B
Bruce Allan 已提交
3261
			if (hsfsts.hsf_status.flcerr)
3262
				/* repeat for some time before giving up */
3263
				continue;
B
Bruce Allan 已提交
3264
			else if (!hsfsts.hsf_status.flcdone)
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
				return ret_val;
		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
	}

	return 0;
}

/**
 *  e1000_valid_led_default_ich8lan - Set the default LED settings
 *  @hw: pointer to the HW structure
 *  @data: Pointer to the LED settings
 *
 *  Reads the LED default settings from the NVM to data.  If the NVM LED
 *  settings is all 0's or F's, set the LED default to a valid LED default
 *  setting.
 **/
static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
3287
		e_dbg("NVM Read Error\n");
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
		return ret_val;
	}

	if (*data == ID_LED_RESERVED_0000 ||
	    *data == ID_LED_RESERVED_FFFF)
		*data = ID_LED_DEFAULT_ICH8LAN;

	return 0;
}

3298 3299 3300 3301 3302 3303 3304 3305 3306
/**
 *  e1000_id_led_init_pchlan - store LED configurations
 *  @hw: pointer to the HW structure
 *
 *  PCH does not control LEDs via the LEDCTL register, rather it uses
 *  the PHY LED configuration register.
 *
 *  PCH also does not have an "always on" or "always off" mode which
 *  complicates the ID feature.  Instead of using the "on" mode to indicate
3307
 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
 *  use "link_up" mode.  The LEDs will still ID on request if there is no
 *  link based on logic in e1000_led_[on|off]_pchlan().
 **/
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
	u16 data, i, temp, shift;

	/* Get default ID LED modes */
	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
	if (ret_val)
3322
		return ret_val;
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366

	mac->ledctl_default = er32(LEDCTL);
	mac->ledctl_mode1 = mac->ledctl_default;
	mac->ledctl_mode2 = mac->ledctl_default;

	for (i = 0; i < 4; i++) {
		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
		shift = (i * 5);
		switch (temp) {
		case ID_LED_ON1_DEF2:
		case ID_LED_ON1_ON2:
		case ID_LED_ON1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_on << shift);
			break;
		case ID_LED_OFF1_DEF2:
		case ID_LED_OFF1_ON2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
		switch (temp) {
		case ID_LED_DEF1_ON2:
		case ID_LED_ON1_ON2:
		case ID_LED_OFF1_ON2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_on << shift);
			break;
		case ID_LED_DEF1_OFF2:
		case ID_LED_ON1_OFF2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
	}

3367
	return 0;
3368 3369
}

3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
/**
 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
 *  @hw: pointer to the HW structure
 *
 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
 *  register, so the the bus width is hard coded.
 **/
static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;
	s32 ret_val;

	ret_val = e1000e_get_bus_info_pcie(hw);

3384 3385
	/*
	 * ICH devices are "PCI Express"-ish.  They have
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
	 * a configuration space, but do not contain
	 * PCI Express Capability registers, so bus width
	 * must be hardcoded.
	 */
	if (bus->width == e1000_bus_width_unknown)
		bus->width = e1000_bus_width_pcie_x1;

	return ret_val;
}

/**
 *  e1000_reset_hw_ich8lan - Reset the hardware
 *  @hw: pointer to the HW structure
 *
 *  Does a full reset of the hardware which includes a reset of the PHY and
 *  MAC.
 **/
static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
{
3405
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3406 3407
	u16 kum_cfg;
	u32 ctrl, reg;
3408 3409
	s32 ret_val;

3410 3411
	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
3412 3413 3414
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
3415
	if (ret_val)
3416
		e_dbg("PCI-E Master disable polling has failed.\n");
3417

3418
	e_dbg("Masking off all interrupts\n");
3419 3420
	ew32(IMC, 0xffffffff);

3421 3422
	/*
	 * Disable the Transmit and Receive units.  Then delay to allow
3423 3424 3425 3426 3427 3428 3429
	 * any pending transactions to complete before we hit the MAC
	 * with the global reset.
	 */
	ew32(RCTL, 0);
	ew32(TCTL, E1000_TCTL_PSP);
	e1e_flush();

3430
	usleep_range(10000, 20000);
3431 3432 3433 3434 3435 3436 3437 3438 3439

	/* Workaround for ICH8 bit corruption issue in FIFO memory */
	if (hw->mac.type == e1000_ich8lan) {
		/* Set Tx and Rx buffer allocation to 8k apiece. */
		ew32(PBA, E1000_PBA_8K);
		/* Set Packet Buffer Size to 16k. */
		ew32(PBS, E1000_PBS_16K);
	}

3440
	if (hw->mac.type == e1000_pchlan) {
3441 3442
		/* Save the NVM K1 bit setting */
		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3443 3444 3445
		if (ret_val)
			return ret_val;

3446
		if (kum_cfg & E1000_NVM_K1_ENABLE)
3447 3448 3449 3450 3451
			dev_spec->nvm_k1_enabled = true;
		else
			dev_spec->nvm_k1_enabled = false;
	}

3452 3453
	ctrl = er32(CTRL);

3454
	if (!hw->phy.ops.check_reset_block(hw)) {
3455
		/*
3456
		 * Full-chip reset requires MAC and PHY reset at the same
3457 3458 3459 3460
		 * time to make sure the interface between MAC and the
		 * external PHY is reset.
		 */
		ctrl |= E1000_CTRL_PHY_RST;
3461 3462 3463 3464 3465 3466 3467 3468

		/*
		 * Gate automatic PHY configuration by hardware on
		 * non-managed 82579
		 */
		if ((hw->mac.type == e1000_pch2lan) &&
		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
			e1000_gate_hw_phy_config_ich8lan(hw, true);
3469 3470
	}
	ret_val = e1000_acquire_swflag_ich8lan(hw);
3471
	e_dbg("Issuing a global reset to ich8lan\n");
3472
	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3473
	/* cannot issue a flush here because it hangs the hardware */
3474 3475
	msleep(20);

3476 3477 3478 3479 3480 3481 3482 3483
	/* Set Phy Config Counter to 50msec */
	if (hw->mac.type == e1000_pch2lan) {
		reg = er32(FEXTNVM3);
		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
		ew32(FEXTNVM3, reg);
	}

3484
	if (!ret_val)
3485
		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3486

3487
	if (ctrl & E1000_CTRL_PHY_RST) {
3488
		ret_val = hw->phy.ops.get_cfg_done(hw);
3489
		if (ret_val)
3490
			return ret_val;
3491

3492
		ret_val = e1000_post_phy_reset_ich8lan(hw);
3493
		if (ret_val)
3494
			return ret_val;
3495
	}
3496

3497 3498 3499 3500 3501 3502 3503 3504
	/*
	 * For PCH, this write will make sure that any noise
	 * will be detected as a CRC error and be dropped rather than show up
	 * as a bad packet to the DMA engine.
	 */
	if (hw->mac.type == e1000_pchlan)
		ew32(CRC_OFFSET, 0x65656565);

3505
	ew32(IMC, 0xffffffff);
3506
	er32(ICR);
3507

3508 3509 3510
	reg = er32(KABGTXD);
	reg |= E1000_KABGTXD_BGSQLBIAS;
	ew32(KABGTXD, reg);
3511

3512
	return 0;
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
}

/**
 *  e1000_init_hw_ich8lan - Initialize the hardware
 *  @hw: pointer to the HW structure
 *
 *  Prepares the hardware for transmit and receive by doing the following:
 *   - initialize hardware bits
 *   - initialize LED identification
 *   - setup receive address registers
 *   - setup flow control
3524
 *   - setup transmit descriptors
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
 *   - clear statistics
 **/
static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 ctrl_ext, txdctl, snoop;
	s32 ret_val;
	u16 i;

	e1000_initialize_hw_bits_ich8lan(hw);

	/* Initialize identification LED */
3537
	ret_val = mac->ops.id_led_init(hw);
3538
	if (ret_val)
3539
		e_dbg("Error initializing identification LED\n");
3540
		/* This is not fatal and we should not stop init due to this */
3541 3542 3543 3544 3545

	/* Setup the receive address. */
	e1000e_init_rx_addrs(hw, mac->rar_entry_count);

	/* Zero out the Multicast HASH table */
3546
	e_dbg("Zeroing the MTA\n");
3547 3548 3549
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

3550 3551
	/*
	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3552
	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3553 3554 3555
	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
	 */
	if (hw->phy.type == e1000_phy_82578) {
3556 3557 3558
		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
		i &= ~BM_WUC_HOST_WU_BIT;
		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3559 3560 3561 3562 3563
		ret_val = e1000_phy_hw_reset_ich8lan(hw);
		if (ret_val)
			return ret_val;
	}

3564
	/* Setup link and flow control */
3565
	ret_val = mac->ops.setup_link(hw);
3566 3567

	/* Set the transmit descriptor write-back policy for both queues */
3568
	txdctl = er32(TXDCTL(0));
3569 3570 3571 3572
	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
		 E1000_TXDCTL_FULL_TX_DESC_WB;
	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3573 3574
	ew32(TXDCTL(0), txdctl);
	txdctl = er32(TXDCTL(1));
3575 3576 3577 3578
	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
		 E1000_TXDCTL_FULL_TX_DESC_WB;
	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3579
	ew32(TXDCTL(1), txdctl);
3580

3581 3582 3583 3584
	/*
	 * ICH8 has opposite polarity of no_snoop bits.
	 * By default, we should use snoop behavior.
	 */
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
	if (mac->type == e1000_ich8lan)
		snoop = PCIE_ICH8_SNOOP_ALL;
	else
		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
	e1000e_set_pcie_no_snoop(hw, snoop);

	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
	ew32(CTRL_EXT, ctrl_ext);

3595 3596
	/*
	 * Clear all of the statistics registers (clear on read).  It is
3597 3598 3599 3600 3601 3602
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_ich8lan(hw);

3603
	return ret_val;
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
}
/**
 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
 *  @hw: pointer to the HW structure
 *
 *  Sets/Clears required hardware bits necessary for correctly setting up the
 *  hardware for transmit and receive.
 **/
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
{
	u32 reg;

	/* Extended Device Control */
	reg = er32(CTRL_EXT);
	reg |= (1 << 22);
3619 3620 3621
	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
	if (hw->mac.type >= e1000_pchlan)
		reg |= E1000_CTRL_EXT_PHYPDEN;
3622 3623 3624
	ew32(CTRL_EXT, reg);

	/* Transmit Descriptor Control 0 */
3625
	reg = er32(TXDCTL(0));
3626
	reg |= (1 << 22);
3627
	ew32(TXDCTL(0), reg);
3628 3629

	/* Transmit Descriptor Control 1 */
3630
	reg = er32(TXDCTL(1));
3631
	reg |= (1 << 22);
3632
	ew32(TXDCTL(1), reg);
3633 3634

	/* Transmit Arbitration Control 0 */
3635
	reg = er32(TARC(0));
3636 3637 3638
	if (hw->mac.type == e1000_ich8lan)
		reg |= (1 << 28) | (1 << 29);
	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3639
	ew32(TARC(0), reg);
3640 3641

	/* Transmit Arbitration Control 1 */
3642
	reg = er32(TARC(1));
3643 3644 3645 3646 3647
	if (er32(TCTL) & E1000_TCTL_MULR)
		reg &= ~(1 << 28);
	else
		reg |= (1 << 28);
	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3648
	ew32(TARC(1), reg);
3649 3650 3651 3652 3653 3654 3655

	/* Device Status */
	if (hw->mac.type == e1000_ich8lan) {
		reg = er32(STATUS);
		reg &= ~(1 << 31);
		ew32(STATUS, reg);
	}
3656 3657 3658 3659 3660 3661 3662

	/*
	 * work-around descriptor data corruption issue during nfs v2 udp
	 * traffic, just disable the nfs filtering capability
	 */
	reg = er32(RFCTL);
	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3663 3664 3665 3666 3667 3668 3669

	/*
	 * Disable IPv6 extension header parsing because some malformed
	 * IPv6 headers can hang the Rx.
	 */
	if (hw->mac.type == e1000_ich8lan)
		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
3670
	ew32(RFCTL, reg);
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
}

/**
 *  e1000_setup_link_ich8lan - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;

3687
	if (hw->phy.ops.check_reset_block(hw))
3688 3689
		return 0;

3690 3691
	/*
	 * ICH parts do not have a word in the NVM to determine
3692 3693 3694
	 * the default flow control setting, so we explicitly
	 * set it to full.
	 */
3695 3696 3697 3698 3699 3700 3701
	if (hw->fc.requested_mode == e1000_fc_default) {
		/* Workaround h/w hang when Tx flow control enabled */
		if (hw->mac.type == e1000_pchlan)
			hw->fc.requested_mode = e1000_fc_rx_pause;
		else
			hw->fc.requested_mode = e1000_fc_full;
	}
3702

3703 3704 3705 3706 3707
	/*
	 * Save off the requested flow control mode for use later.  Depending
	 * on the link partner's capabilities, we may or may not use this mode.
	 */
	hw->fc.current_mode = hw->fc.requested_mode;
3708

3709
	e_dbg("After fix-ups FlowControl is now = %x\n",
3710
		hw->fc.current_mode);
3711 3712

	/* Continue to configure the copper link. */
3713
	ret_val = hw->mac.ops.setup_physical_interface(hw);
3714 3715 3716
	if (ret_val)
		return ret_val;

3717
	ew32(FCTTV, hw->fc.pause_time);
3718
	if ((hw->phy.type == e1000_phy_82578) ||
3719
	    (hw->phy.type == e1000_phy_82579) ||
B
Bruce Allan 已提交
3720
	    (hw->phy.type == e1000_phy_i217) ||
3721
	    (hw->phy.type == e1000_phy_82577)) {
3722 3723
		ew32(FCRTV_PCH, hw->fc.refresh_time);

3724 3725
		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
				   hw->fc.pause_time);
3726 3727 3728
		if (ret_val)
			return ret_val;
	}
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751

	return e1000e_set_fc_watermarks(hw);
}

/**
 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
 *  @hw: pointer to the HW structure
 *
 *  Configures the kumeran interface to the PHY to wait the appropriate time
 *  when polling the PHY, then call the generic setup_copper_link to finish
 *  configuring the copper link.
 **/
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;
	u16 reg_data;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

3752 3753
	/*
	 * Set the mac to wait the maximum time between each iteration
3754
	 * and increase the max iterations when polling the phy;
3755 3756
	 * this fixes erroneous timeouts at 10Mbps.
	 */
3757
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3758 3759
	if (ret_val)
		return ret_val;
3760 3761
	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
	                               &reg_data);
3762 3763 3764
	if (ret_val)
		return ret_val;
	reg_data |= 0x3F;
3765 3766
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
	                                reg_data);
3767 3768 3769
	if (ret_val)
		return ret_val;

3770 3771
	switch (hw->phy.type) {
	case e1000_phy_igp_3:
3772 3773 3774
		ret_val = e1000e_copper_link_setup_igp(hw);
		if (ret_val)
			return ret_val;
3775 3776 3777
		break;
	case e1000_phy_bm:
	case e1000_phy_82578:
3778 3779 3780
		ret_val = e1000e_copper_link_setup_m88(hw);
		if (ret_val)
			return ret_val;
3781 3782
		break;
	case e1000_phy_82577:
3783
	case e1000_phy_82579:
B
Bruce Allan 已提交
3784
	case e1000_phy_i217:
3785 3786 3787 3788 3789
		ret_val = e1000_copper_link_setup_82577(hw);
		if (ret_val)
			return ret_val;
		break;
	case e1000_phy_ife:
3790
		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
		if (ret_val)
			return ret_val;

		reg_data &= ~IFE_PMC_AUTO_MDIX;

		switch (hw->phy.mdix) {
		case 1:
			reg_data &= ~IFE_PMC_FORCE_MDIX;
			break;
		case 2:
			reg_data |= IFE_PMC_FORCE_MDIX;
			break;
		case 0:
		default:
			reg_data |= IFE_PMC_AUTO_MDIX;
			break;
		}
3808
		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3809 3810
		if (ret_val)
			return ret_val;
3811 3812 3813
		break;
	default:
		break;
3814
	}
3815

3816 3817 3818 3819 3820 3821 3822 3823 3824
	return e1000e_setup_copper_link(hw);
}

/**
 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
 *  @hw: pointer to the HW structure
 *  @speed: pointer to store current link speed
 *  @duplex: pointer to store the current link duplex
 *
3825
 *  Calls the generic get_speed_and_duplex to retrieve the current link
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
 *  information and then calls the Kumeran lock loss workaround for links at
 *  gigabit speeds.
 **/
static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
					  u16 *duplex)
{
	s32 ret_val;

	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
	if (ret_val)
		return ret_val;

	if ((hw->mac.type == e1000_ich8lan) &&
	    (hw->phy.type == e1000_phy_igp_3) &&
	    (*speed == SPEED_1000)) {
		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
	}

	return ret_val;
}

/**
 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
 *  @hw: pointer to the HW structure
 *
 *  Work-around for 82566 Kumeran PCS lock loss:
 *  On link status change (i.e. PCI reset, speed change) and link is up and
 *  speed is gigabit-
 *    0) if workaround is optionally disabled do nothing
 *    1) wait 1ms for Kumeran link to come up
 *    2) check Kumeran Diagnostic register PCS lock loss bit
 *    3) if not set the link is locked (all is good), otherwise...
 *    4) reset the PHY
 *    5) repeat up to 10 times
 *  Note: this is only called for IGP3 copper when speed is 1gb.
 **/
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 phy_ctrl;
	s32 ret_val;
	u16 i, data;
	bool link;

	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
		return 0;

3873 3874
	/*
	 * Make sure link is up before proceeding.  If not just return.
3875
	 * Attempting this while link is negotiating fouled up link
3876 3877
	 * stability
	 */
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (!link)
		return 0;

	for (i = 0; i < 10; i++) {
		/* read once to clear */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;
		/* and again to get new status */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;

		/* check for PCS lock */
		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
			return 0;

		/* Issue PHY reset */
		e1000_phy_hw_reset(hw);
		mdelay(5);
	}
	/* Disable GigE link negotiation */
	phy_ctrl = er32(PHY_CTRL);
	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
	ew32(PHY_CTRL, phy_ctrl);

3906 3907 3908 3909
	/*
	 * Call gig speed drop workaround on Gig disable before accessing
	 * any PHY registers
	 */
3910 3911 3912 3913 3914 3915 3916
	e1000e_gig_downshift_workaround_ich8lan(hw);

	/* unable to acquire PCS lock */
	return -E1000_ERR_PHY;
}

/**
3917
 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3918
 *  @hw: pointer to the HW structure
3919
 *  @state: boolean value used to set the current Kumeran workaround state
3920
 *
3921 3922
 *  If ICH8, set the current Kumeran workaround state (enabled - true
 *  /disabled - false).
3923 3924 3925 3926 3927 3928 3929
 **/
void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
						 bool state)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;

	if (hw->mac.type != e1000_ich8lan) {
3930
		e_dbg("Workaround applies to ICH8 only.\n");
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
		return;
	}

	dev_spec->kmrn_lock_loss_workaround_enabled = state;
}

/**
 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
 *  @hw: pointer to the HW structure
 *
 *  Workaround for 82566 power-down on D3 entry:
 *    1) disable gigabit link
 *    2) write VR power-down enable
 *    3) read it back
 *  Continue if successful, else issue LCD reset and repeat
 **/
void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
{
	u32 reg;
	u16 data;
	u8  retry = 0;

	if (hw->phy.type != e1000_phy_igp_3)
		return;

	/* Try the workaround twice (if needed) */
	do {
		/* Disable link */
		reg = er32(PHY_CTRL);
		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
		ew32(PHY_CTRL, reg);

3964 3965 3966 3967
		/*
		 * Call gig speed drop workaround on Gig disable before
		 * accessing any PHY registers
		 */
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
		if (hw->mac.type == e1000_ich8lan)
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* Write VR power-down enable */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);

		/* Read it back and test */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
			break;

		/* Issue PHY reset and repeat at most one more time */
		reg = er32(CTRL);
		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
		retry++;
	} while (retry);
}

/**
 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
 *  @hw: pointer to the HW structure
 *
 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3994
 *  LPLU, Gig disable, MDIC PHY reset):
3995 3996
 *    1) Set Kumeran Near-end loopback
 *    2) Clear Kumeran Near-end loopback
3997
 *  Should only be called for ICH8[m] devices with any 1G Phy.
3998 3999 4000 4001 4002 4003
 **/
void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 reg_data;

4004
	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
		return;

	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				      &reg_data);
	if (ret_val)
		return;
	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				       reg_data);
	if (ret_val)
		return;
	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				       reg_data);
}

4021
/**
4022
 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4023 4024 4025 4026
 *  @hw: pointer to the HW structure
 *
 *  During S0 to Sx transition, it is possible the link remains at gig
 *  instead of negotiating to a lower speed.  Before going to Sx, set
4027 4028 4029 4030
 *  'Gig Disable' to force link speed negotiation to a lower speed based on
 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
 *  needs to be written.
B
Bruce Allan 已提交
4031 4032 4033
 *  Parts that support (and are linked to a partner which support) EEE in
 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
 *  than 10Mbps w/o EEE.
4034
 **/
4035
void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4036
{
B
Bruce Allan 已提交
4037
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4038
	u32 phy_ctrl;
4039
	s32 ret_val;
4040

4041
	phy_ctrl = er32(PHY_CTRL);
4042
	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
B
Bruce Allan 已提交
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
	if (hw->phy.type == e1000_phy_i217) {
		u16 phy_reg;

		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			goto out;

		if (!dev_spec->eee_disable) {
			u16 eee_advert;

			ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
						  I217_EEE_ADVERTISEMENT);
			if (ret_val)
				goto release;
			e1e_rphy_locked(hw, I82579_EMI_DATA, &eee_advert);

			/*
			 * Disable LPLU if both link partners support 100BaseT
			 * EEE and 100Full is advertised on both ends of the
			 * link.
			 */
			if ((eee_advert & I217_EEE_100_SUPPORTED) &&
			    (dev_spec->eee_lp_ability &
			     I217_EEE_100_SUPPORTED) &&
			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
					      E1000_PHY_CTRL_NOND0A_LPLU);
		}

		/*
		 * For i217 Intel Rapid Start Technology support,
		 * when the system is going into Sx and no manageability engine
		 * is present, the driver must configure proxy to reset only on
		 * power good.  LPI (Low Power Idle) state must also reset only
		 * on power good, as well as the MTA (Multicast table array).
		 * The SMBus release must also be disabled on LCD reset.
		 */
		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {

			/* Enable proxy to reset only on power good. */
			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);

			/*
			 * Set bit enable LPI (EEE) to reset only on
			 * power good.
			 */
			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4092
			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
B
Bruce Allan 已提交
4093 4094 4095 4096
			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);

			/* Disable the SMB release on LCD reset. */
			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4097
			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
B
Bruce Allan 已提交
4098 4099 4100 4101 4102 4103 4104 4105
			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
		}

		/*
		 * Enable MTA to reset for Intel Rapid Start Technology
		 * Support
		 */
		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4106
		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
B
Bruce Allan 已提交
4107 4108 4109 4110 4111 4112
		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);

release:
		hw->phy.ops.release(hw);
	}
out:
4113
	ew32(PHY_CTRL, phy_ctrl);
4114

4115 4116 4117
	if (hw->mac.type == e1000_ich8lan)
		e1000e_gig_downshift_workaround_ich8lan(hw);

4118
	if (hw->mac.type >= e1000_pchlan) {
4119
		e1000_oem_bits_config_ich8lan(hw, false);
B
Bruce Allan 已提交
4120 4121 4122 4123 4124

		/* Reset PHY to activate OEM bits on 82577/8 */
		if (hw->mac.type == e1000_pchlan)
			e1000e_phy_hw_reset_generic(hw);

4125 4126 4127 4128 4129 4130
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return;
		e1000_write_smbus_addr(hw);
		hw->phy.ops.release(hw);
	}
4131 4132
}

4133 4134 4135 4136 4137 4138 4139 4140
/**
 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
 *  @hw: pointer to the HW structure
 *
 *  During Sx to S0 transitions on non-managed devices or managed devices
 *  on which PHY resets are not blocked, if the PHY registers cannot be
 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
 *  the PHY.
B
Bruce Allan 已提交
4141
 *  On i217, setup Intel Rapid Start Technology.
4142 4143 4144
 **/
void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
{
4145
	s32 ret_val;
4146

4147
	if (hw->mac.type < e1000_pch2lan)
4148 4149
		return;

4150
	ret_val = e1000_init_phy_workarounds_pchlan(hw);
4151
	if (ret_val) {
4152
		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4153 4154
		return;
	}
B
Bruce Allan 已提交
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178

	/*
	 * For i217 Intel Rapid Start Technology support when the system
	 * is transitioning from Sx and no manageability engine is present
	 * configure SMBus to restore on reset, disable proxy, and enable
	 * the reset on MTA (Multicast table array).
	 */
	if (hw->phy.type == e1000_phy_i217) {
		u16 phy_reg;

		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val) {
			e_dbg("Failed to setup iRST\n");
			return;
		}

		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
			/*
			 * Restore clear on SMB if no manageability engine
			 * is present
			 */
			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
			if (ret_val)
				goto release;
4179
			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
B
Bruce Allan 已提交
4180 4181 4182 4183 4184 4185 4186 4187 4188
			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);

			/* Disable Proxy */
			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
		}
		/* Enable reset on MTA */
		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
		if (ret_val)
			goto release;
4189
		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
B
Bruce Allan 已提交
4190 4191 4192 4193 4194 4195
		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
release:
		if (ret_val)
			e_dbg("Error %d in resume workarounds\n", ret_val);
		hw->phy.ops.release(hw);
	}
4196 4197
}

4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
/**
 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.
 **/
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);

	ew32(LEDCTL, hw->mac.ledctl_default);
	return 0;
}

/**
4214
 *  e1000_led_on_ich8lan - Turn LEDs on
4215 4216
 *  @hw: pointer to the HW structure
 *
4217
 *  Turn on the LEDs.
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
 **/
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));

	ew32(LEDCTL, hw->mac.ledctl_mode2);
	return 0;
}

/**
4230
 *  e1000_led_off_ich8lan - Turn LEDs off
4231 4232
 *  @hw: pointer to the HW structure
 *
4233
 *  Turn off the LEDs.
4234 4235 4236 4237 4238
 **/
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4239 4240
				(IFE_PSCL_PROBE_MODE |
				 IFE_PSCL_PROBE_LEDS_OFF));
4241 4242 4243 4244 4245

	ew32(LEDCTL, hw->mac.ledctl_mode1);
	return 0;
}

4246 4247 4248 4249 4250 4251 4252 4253
/**
 *  e1000_setup_led_pchlan - Configures SW controllable LED
 *  @hw: pointer to the HW structure
 *
 *  This prepares the SW controllable LED for use.
 **/
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
{
4254
	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
}

/**
 *  e1000_cleanup_led_pchlan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.
 **/
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
{
4265
	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
}

/**
 *  e1000_led_on_pchlan - Turn LEDs on
 *  @hw: pointer to the HW structure
 *
 *  Turn on the LEDs.
 **/
static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
{
	u16 data = (u16)hw->mac.ledctl_mode2;
	u32 i, led;

	/*
	 * If no link, then turn LED on by setting the invert bit
	 * for each LED that's mode is "link_up" in ledctl_mode2.
	 */
	if (!(er32(STATUS) & E1000_STATUS_LU)) {
		for (i = 0; i < 3; i++) {
			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
			if ((led & E1000_PHY_LED0_MODE_MASK) !=
			    E1000_LEDCTL_MODE_LINK_UP)
				continue;
			if (led & E1000_PHY_LED0_IVRT)
				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
			else
				data |= (E1000_PHY_LED0_IVRT << (i * 5));
		}
	}

4296
	return e1e_wphy(hw, HV_LED_CONFIG, data);
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
}

/**
 *  e1000_led_off_pchlan - Turn LEDs off
 *  @hw: pointer to the HW structure
 *
 *  Turn off the LEDs.
 **/
static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
{
	u16 data = (u16)hw->mac.ledctl_mode1;
	u32 i, led;

	/*
	 * If no link, then turn LED off by clearing the invert bit
	 * for each LED that's mode is "link_up" in ledctl_mode1.
	 */
	if (!(er32(STATUS) & E1000_STATUS_LU)) {
		for (i = 0; i < 3; i++) {
			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
			if ((led & E1000_PHY_LED0_MODE_MASK) !=
			    E1000_LEDCTL_MODE_LINK_UP)
				continue;
			if (led & E1000_PHY_LED0_IVRT)
				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
			else
				data |= (E1000_PHY_LED0_IVRT << (i * 5));
		}
	}

4327
	return e1e_wphy(hw, HV_LED_CONFIG, data);
4328 4329
}

4330
/**
4331
 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4332 4333
 *  @hw: pointer to the HW structure
 *
4334 4335 4336 4337 4338 4339 4340
 *  Read appropriate register for the config done bit for completion status
 *  and configure the PHY through s/w for EEPROM-less parts.
 *
 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
 *  config done bit, so only an error is logged and continues.  If we were
 *  to return with error, EEPROM-less silicon would not be able to be reset
 *  or change link.
4341 4342 4343
 **/
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
{
4344
	s32 ret_val = 0;
4345
	u32 bank = 0;
4346
	u32 status;
4347

4348
	e1000e_get_cfg_done(hw);
4349

4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
	/* Wait for indication from h/w that it has completed basic config */
	if (hw->mac.type >= e1000_ich10lan) {
		e1000_lan_init_done_ich8lan(hw);
	} else {
		ret_val = e1000e_get_auto_rd_done(hw);
		if (ret_val) {
			/*
			 * When auto config read does not complete, do not
			 * return with an error. This can happen in situations
			 * where there is no eeprom and prevents getting link.
			 */
			e_dbg("Auto Read Done did not complete\n");
			ret_val = 0;
		}
4364 4365
	}

4366 4367 4368 4369 4370 4371
	/* Clear PHY Reset Asserted bit */
	status = er32(STATUS);
	if (status & E1000_STATUS_PHYRA)
		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
	else
		e_dbg("PHY Reset Asserted not set - needs delay\n");
4372 4373

	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
4374
	if (hw->mac.type <= e1000_ich9lan) {
B
Bruce Allan 已提交
4375
		if (!(er32(EECD) & E1000_EECD_PRES) &&
4376 4377 4378 4379 4380 4381
		    (hw->phy.type == e1000_phy_igp_3)) {
			e1000e_phy_init_script_igp3(hw);
		}
	} else {
		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
			/* Maybe we should do a basic PHY config */
4382
			e_dbg("EEPROM not present\n");
4383
			ret_val = -E1000_ERR_CONFIG;
4384 4385 4386
		}
	}

4387
	return ret_val;
4388 4389
}

4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
/**
 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 **/
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
{
	/* If the management interface is not enabled, then power down */
	if (!(hw->mac.ops.check_mng_mode(hw) ||
	      hw->phy.ops.check_reset_block(hw)))
		e1000_power_down_phy_copper(hw);
}

4405 4406 4407 4408 4409 4410 4411 4412 4413
/**
 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
 *  @hw: pointer to the HW structure
 *
 *  Clears hardware counters specific to the silicon family and calls
 *  clear_hw_cntrs_generic to clear all general purpose counters.
 **/
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
{
4414
	u16 phy_data;
4415
	s32 ret_val;
4416 4417 4418

	e1000e_clear_hw_cntrs_base(hw);

4419 4420 4421 4422 4423 4424
	er32(ALGNERRC);
	er32(RXERRC);
	er32(TNCRS);
	er32(CEXTERR);
	er32(TSCTC);
	er32(TSCTFC);
4425

4426 4427 4428
	er32(MGTPRC);
	er32(MGTPDC);
	er32(MGTPTC);
4429

4430 4431
	er32(IAC);
	er32(ICRXOC);
4432

4433 4434
	/* Clear PHY statistics registers */
	if ((hw->phy.type == e1000_phy_82578) ||
4435
	    (hw->phy.type == e1000_phy_82579) ||
B
Bruce Allan 已提交
4436
	    (hw->phy.type == e1000_phy_i217) ||
4437
	    (hw->phy.type == e1000_phy_82577)) {
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return;
		ret_val = hw->phy.ops.set_page(hw,
					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
		if (ret_val)
			goto release;
		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
release:
		hw->phy.ops.release(hw);
4461
	}
4462 4463
}

J
Jeff Kirsher 已提交
4464
static const struct e1000_mac_operations ich8_mac_ops = {
4465
	/* check_mng_mode dependent on mac type */
4466
	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4467
	/* cleanup_led dependent on mac type */
4468 4469
	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
	.get_bus_info		= e1000_get_bus_info_ich8lan,
4470
	.set_lan_id		= e1000_set_lan_id_single_port,
4471
	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4472 4473
	/* led_on dependent on mac type */
	/* led_off dependent on mac type */
4474
	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4475 4476 4477 4478
	.reset_hw		= e1000_reset_hw_ich8lan,
	.init_hw		= e1000_init_hw_ich8lan,
	.setup_link		= e1000_setup_link_ich8lan,
	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
4479
	/* id_led_init dependent on mac type */
4480
	.config_collision_dist	= e1000e_config_collision_dist_generic,
4481
	.rar_set		= e1000e_rar_set_generic,
4482 4483
};

J
Jeff Kirsher 已提交
4484
static const struct e1000_phy_operations ich8_phy_ops = {
4485
	.acquire		= e1000_acquire_swflag_ich8lan,
4486
	.check_reset_block	= e1000_check_reset_block_ich8lan,
4487
	.commit			= NULL,
4488
	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4489
	.get_cable_length	= e1000e_get_cable_length_igp_2,
4490 4491 4492
	.read_reg		= e1000e_read_phy_reg_igp,
	.release		= e1000_release_swflag_ich8lan,
	.reset			= e1000_phy_hw_reset_ich8lan,
4493 4494
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4495
	.write_reg		= e1000e_write_phy_reg_igp,
4496 4497
};

J
Jeff Kirsher 已提交
4498
static const struct e1000_nvm_operations ich8_nvm_ops = {
4499 4500 4501
	.acquire		= e1000_acquire_nvm_ich8lan,
	.read		 	= e1000_read_nvm_ich8lan,
	.release		= e1000_release_nvm_ich8lan,
4502
	.reload			= e1000e_reload_nvm_generic,
4503
	.update			= e1000_update_nvm_checksum_ich8lan,
4504
	.valid_led_default	= e1000_valid_led_default_ich8lan,
4505 4506
	.validate		= e1000_validate_nvm_checksum_ich8lan,
	.write			= e1000_write_nvm_ich8lan,
4507 4508
};

J
Jeff Kirsher 已提交
4509
const struct e1000_info e1000_ich8_info = {
4510 4511
	.mac			= e1000_ich8lan,
	.flags			= FLAG_HAS_WOL
4512
				  | FLAG_IS_ICH
4513 4514 4515 4516 4517
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 8,
4518
	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
J
Jeff Kirsher 已提交
4519
	.get_variants		= e1000_get_variants_ich8lan,
4520 4521 4522 4523 4524
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

J
Jeff Kirsher 已提交
4525
const struct e1000_info e1000_ich9_info = {
4526 4527
	.mac			= e1000_ich9lan,
	.flags			= FLAG_HAS_JUMBO_FRAMES
4528
				  | FLAG_IS_ICH
4529 4530 4531 4532 4533
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
4534
	.pba			= 18,
4535
	.max_hw_frame_size	= DEFAULT_JUMBO,
J
Jeff Kirsher 已提交
4536
	.get_variants		= e1000_get_variants_ich8lan,
4537 4538 4539 4540 4541
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

J
Jeff Kirsher 已提交
4542
const struct e1000_info e1000_ich10_info = {
4543 4544 4545 4546 4547 4548 4549 4550
	.mac			= e1000_ich10lan,
	.flags			= FLAG_HAS_JUMBO_FRAMES
				  | FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
4551
	.pba			= 18,
4552
	.max_hw_frame_size	= DEFAULT_JUMBO,
4553 4554 4555 4556 4557
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};
4558

J
Jeff Kirsher 已提交
4559
const struct e1000_info e1000_pch_info = {
4560 4561 4562 4563 4564 4565 4566
	.mac			= e1000_pchlan,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
4567
				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4568
				  | FLAG_APME_IN_WUC,
4569
	.flags2			= FLAG2_HAS_PHY_STATS,
4570 4571 4572 4573 4574 4575 4576
	.pba			= 26,
	.max_hw_frame_size	= 4096,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};
4577

J
Jeff Kirsher 已提交
4578
const struct e1000_info e1000_pch2_info = {
4579 4580 4581 4582 4583 4584 4585 4586
	.mac			= e1000_pch2lan,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_APME_IN_WUC,
4587 4588
	.flags2			= FLAG2_HAS_PHY_STATS
				  | FLAG2_HAS_EEE,
4589
	.pba			= 26,
4590 4591 4592 4593 4594 4595
	.max_hw_frame_size	= DEFAULT_JUMBO,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};
B
Bruce Allan 已提交
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614

const struct e1000_info e1000_pch_lpt_info = {
	.mac			= e1000_pch_lpt,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_APME_IN_WUC,
	.flags2			= FLAG2_HAS_PHY_STATS
				  | FLAG2_HAS_EEE,
	.pba			= 26,
	.max_hw_frame_size	= DEFAULT_JUMBO,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};