ich8lan.c 115.8 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/*
30
 * 82562G 10/100 Network Connection
31 32 33 34 35 36 37 38 39 40 41
 * 82562G-2 10/100 Network Connection
 * 82562GT 10/100 Network Connection
 * 82562GT-2 10/100 Network Connection
 * 82562V 10/100 Network Connection
 * 82562V-2 10/100 Network Connection
 * 82566DC-2 Gigabit Network Connection
 * 82566DC Gigabit Network Connection
 * 82566DM-2 Gigabit Network Connection
 * 82566DM Gigabit Network Connection
 * 82566MC Gigabit Network Connection
 * 82566MM Gigabit Network Connection
42 43
 * 82567LM Gigabit Network Connection
 * 82567LF Gigabit Network Connection
44
 * 82567V Gigabit Network Connection
45 46 47
 * 82567LM-2 Gigabit Network Connection
 * 82567LF-2 Gigabit Network Connection
 * 82567V-2 Gigabit Network Connection
48 49
 * 82567LF-3 Gigabit Network Connection
 * 82567LM-3 Gigabit Network Connection
50
 * 82567LM-4 Gigabit Network Connection
51 52 53 54
 * 82577LM Gigabit Network Connection
 * 82577LC Gigabit Network Connection
 * 82578DM Gigabit Network Connection
 * 82578DC Gigabit Network Connection
55 56
 * 82579LM Gigabit Network Connection
 * 82579V Gigabit Network Connection
57 58 59 60 61 62 63 64 65
 */

#include "e1000.h"

#define ICH_FLASH_GFPREG		0x0000
#define ICH_FLASH_HSFSTS		0x0004
#define ICH_FLASH_HSFCTL		0x0006
#define ICH_FLASH_FADDR			0x0008
#define ICH_FLASH_FDATA0		0x0010
66
#define ICH_FLASH_PR0			0x0074
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

#define ICH_FLASH_READ_COMMAND_TIMEOUT	500
#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
#define ICH_FLASH_CYCLE_REPEAT_COUNT	10

#define ICH_CYCLE_READ			0
#define ICH_CYCLE_WRITE			2
#define ICH_CYCLE_ERASE			3

#define FLASH_GFPREG_BASE_MASK		0x1FFF
#define FLASH_SECTOR_ADDR_SHIFT		12

#define ICH_FLASH_SEG_SIZE_256		256
#define ICH_FLASH_SEG_SIZE_4K		4096
#define ICH_FLASH_SEG_SIZE_8K		8192
#define ICH_FLASH_SEG_SIZE_64K		65536


#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
88 89
/* FW established a valid mode */
#define E1000_ICH_FWSM_FW_VALID		0x00008000
90 91 92 93 94 95 96 97 98 99

#define E1000_ICH_MNG_IAMT_MODE		0x2

#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
				 (ID_LED_DEF1_OFF2 <<  8) | \
				 (ID_LED_DEF1_ON2  <<  4) | \
				 (ID_LED_DEF1_DEF2))

#define E1000_ICH_NVM_SIG_WORD		0x13
#define E1000_ICH_NVM_SIG_MASK		0xC000
100 101
#define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
#define E1000_ICH_NVM_SIG_VALUE         0x80
102 103 104 105 106 107

#define E1000_ICH8_LAN_INIT_TIMEOUT	1500

#define E1000_FEXTNVM_SW_CONFIG		1
#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */

108 109 110
#define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK    0x0C000000
#define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC  0x08000000

111 112 113 114
#define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
#define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
#define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3

115 116 117
#define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL

#define E1000_ICH_RAR_ENTRIES		7
118
#define E1000_PCH2_RAR_ENTRIES		5 /* RAR[0], SHRA[0-3] */
119 120 121 122 123 124 125 126 127 128 129

#define PHY_PAGE_SHIFT 5
#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
			   ((reg) & MAX_PHY_REG_ADDRESS))
#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */

#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
#define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200

130 131
#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */

132 133
#define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */

134 135
/* SMBus Address Phy Register */
#define HV_SMB_ADDR            PHY_REG(768, 26)
136
#define HV_SMB_ADDR_MASK       0x007F
137 138 139
#define HV_SMB_ADDR_PEC_EN     0x0200
#define HV_SMB_ADDR_VALID      0x0080

140 141
/* PHY Power Management Control */
#define HV_PM_CTRL		PHY_REG(770, 17)
142
#define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA	0x100
143

144
/* PHY Low Power Idle Control */
145 146 147
#define I82579_LPI_CTRL				PHY_REG(772, 20)
#define I82579_LPI_CTRL_ENABLE_MASK		0x6000
#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT	0x80
148

149 150 151 152
/* EMI Registers */
#define I82579_EMI_ADDR         0x10
#define I82579_EMI_DATA         0x11
#define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */
153 154
#define I82579_MSE_THRESHOLD    0x084F	/* Mean Square Error Threshold */
#define I82579_MSE_LINK_DOWN    0x2411	/* MSE count before dropping link */
155

156 157 158 159 160
/* Strapping Option Register - RO */
#define E1000_STRAP                     0x0000C
#define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17

161 162 163
/* OEM Bits Phy Register */
#define HV_OEM_BITS            PHY_REG(768, 25)
#define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
164
#define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
165 166
#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */

167 168 169
#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
#define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */

170 171 172 173
/* KMRN Mode Control */
#define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
#define HV_KMRN_MDIO_SLOW      0x0400

174 175 176 177 178
/* KMRN FIFO Control and Status */
#define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
/* Offset 04h HSFSTS */
union ich8_hws_flash_status {
	struct ich8_hsfsts {
		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
		u16 dael       :1; /* bit 2 Direct Access error Log */
		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
		u16 reserved1  :2; /* bit 13:6 Reserved */
		u16 reserved2  :6; /* bit 13:6 Reserved */
		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
	} hsf_status;
	u16 regval;
};

/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
/* Offset 06h FLCTL */
union ich8_hws_flash_ctrl {
	struct ich8_hsflctl {
		u16 flcgo      :1;   /* 0 Flash Cycle Go */
		u16 flcycle    :2;   /* 2:1 Flash Cycle */
		u16 reserved   :5;   /* 7:3 Reserved  */
		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
		u16 flockdn    :6;   /* 15:10 Reserved */
	} hsf_ctrl;
	u16 regval;
};

/* ICH Flash Region Access Permissions */
union ich8_hws_flash_regacc {
	struct ich8_flracc {
		u32 grra      :8; /* 0:7 GbE region Read Access */
		u32 grwa      :8; /* 8:15 GbE region Write Access */
		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
	} hsf_flregacc;
	u16 regval;
};

220 221 222 223 224 225 226 227 228 229 230 231 232
/* ICH Flash Protected Region */
union ich8_flash_protected_range {
	struct ich8_pr {
		u32 base:13;     /* 0:12 Protected Range Base */
		u32 reserved1:2; /* 13:14 Reserved */
		u32 rpe:1;       /* 15 Read Protection Enable */
		u32 limit:13;    /* 16:28 Protected Range Limit */
		u32 reserved2:2; /* 29:30 Reserved */
		u32 wpe:1;       /* 31 Write Protection Enable */
	} range;
	u32 regval;
};

233 234 235 236 237 238
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte);
239 240
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data);
241 242 243 244 245 246
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data);
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data);
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
247
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
248 249 250 251 252 253 254 255
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
256
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
257
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
258
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
259
static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
260
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
261 262
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
263
static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
264
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
265
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
{
	return readw(hw->flash_address + reg);
}

static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
{
	return readl(hw->flash_address + reg);
}

static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
{
	writew(val, hw->flash_address + reg);
}

static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
{
	writel(val, hw->flash_address + reg);
}

#define er16flash(reg)		__er16flash(hw, (reg))
#define er32flash(reg)		__er32flash(hw, (reg))
289 290
#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
291

292 293 294 295 296 297 298 299 300 301 302
/**
 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 *  @hw: pointer to the HW structure
 *
 *  Test access to the PHY registers by reading the PHY ID registers.  If
 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 *  otherwise assume the read PHY ID is correct if it is valid.
 *
 *  Assumes the sw/fw/hw semaphore is already acquired.
 **/
static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
303
{
304 305
	u16 phy_reg;
	u32 phy_id;
306

307
	e1e_rphy_locked(hw, PHY_ID1, &phy_reg);
308
	phy_id = (u32)(phy_reg << 16);
309
	e1e_rphy_locked(hw, PHY_ID2, &phy_reg);
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
	phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);

	if (hw->phy.id) {
		if (hw->phy.id == phy_id)
			return true;
	} else {
		if ((phy_id != 0) && (phy_id != PHY_REVISION_MASK))
			hw->phy.id = phy_id;
		return true;
	}

	return false;
}

/**
 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 *  @hw: pointer to the HW structure
 *
 *  Workarounds/flow necessary for PHY initialization during driver load
 *  and resume paths.
 **/
static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
{
	u32 mac_reg, fwsm = er32(FWSM);
	s32 ret_val;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val) {
		e_dbg("Failed to initialize PHY flow\n");
		return ret_val;
	}

	/*
	 * The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
	 * inaccessible and resetting the PHY is not blocked, toggle the
	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
	 */
	switch (hw->mac.type) {
	case e1000_pch2lan:
		/*
		 * Gate automatic PHY configuration by hardware on
		 * non-managed 82579
		 */
		if (!(fwsm & E1000_ICH_FWSM_FW_VALID))
			e1000_gate_hw_phy_config_ich8lan(hw, true);

		if (e1000_phy_is_accessible_pchlan(hw))
			break;

		/* fall-through */
	case e1000_pchlan:
		if ((hw->mac.type == e1000_pchlan) &&
		    (fwsm & E1000_ICH_FWSM_FW_VALID))
			break;

		if (hw->phy.ops.check_reset_block(hw)) {
			e_dbg("Required LANPHYPC toggle blocked by ME\n");
			break;
		}

		e_dbg("Toggling LANPHYPC\n");

		/* Set Phy Config Counter to 50msec */
		mac_reg = er32(FEXTNVM3);
		mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
		mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
		ew32(FEXTNVM3, mac_reg);

		/* Toggle LANPHYPC Value bit */
		mac_reg = er32(CTRL);
		mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
		mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
		ew32(CTRL, mac_reg);
		e1e_flush();
		udelay(10);
		mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
		ew32(CTRL, mac_reg);
		e1e_flush();
		msleep(50);
		break;
	default:
		break;
	}

	hw->phy.ops.release(hw);

	/*
	 * Reset the PHY before any access to it.  Doing so, ensures
	 * that the PHY is in a known good state before we read/write
	 * PHY registers.  The generic reset is sufficient here,
	 * because we haven't determined the PHY type yet.
	 */
	ret_val = e1000e_phy_hw_reset_generic(hw);

	/* Ungate automatic PHY configuration on non-managed 82579 */
	if ((hw->mac.type == e1000_pch2lan) &&
	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
		usleep_range(10000, 20000);
		e1000_gate_hw_phy_config_ich8lan(hw, false);
	}

	return ret_val;
412 413
}

414 415 416 417 418 419 420 421 422 423 424 425 426 427
/**
 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;

	phy->addr                     = 1;
	phy->reset_delay_us           = 100;

428
	phy->ops.set_page             = e1000_set_page_igp;
429 430
	phy->ops.read_reg             = e1000_read_phy_reg_hv;
	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
431
	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
432 433
	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
434 435
	phy->ops.write_reg            = e1000_write_phy_reg_hv;
	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
436
	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
437 438
	phy->ops.power_up             = e1000_power_up_phy_copper;
	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
439 440
	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;

441
	phy->id = e1000_phy_unknown;
442

443 444 445
	ret_val = e1000_init_phy_workarounds_pchlan(hw);
	if (ret_val)
		return ret_val;
446

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	if (phy->id == e1000_phy_unknown)
		switch (hw->mac.type) {
		default:
			ret_val = e1000e_get_phy_id(hw);
			if (ret_val)
				return ret_val;
			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
				break;
			/* fall-through */
		case e1000_pch2lan:
			/*
			 * In case the PHY needs to be in mdio slow mode,
			 * set slow mode and try to get the PHY id again.
			 */
			ret_val = e1000_set_mdio_slow_mode_hv(hw);
			if (ret_val)
				return ret_val;
			ret_val = e1000e_get_phy_id(hw);
			if (ret_val)
				return ret_val;
467
			break;
468
		}
469 470
	phy->type = e1000e_get_phy_type_from_id(phy->id);

471 472
	switch (phy->type) {
	case e1000_phy_82577:
473
	case e1000_phy_82579:
474 475
		phy->ops.check_polarity = e1000_check_polarity_82577;
		phy->ops.force_speed_duplex =
476
		    e1000_phy_force_speed_duplex_82577;
477
		phy->ops.get_cable_length = e1000_get_cable_length_82577;
478 479
		phy->ops.get_info = e1000_get_phy_info_82577;
		phy->ops.commit = e1000e_phy_sw_reset;
480
		break;
481 482 483 484 485 486 487 488 489
	case e1000_phy_82578:
		phy->ops.check_polarity = e1000_check_polarity_m88;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
		phy->ops.get_info = e1000e_get_phy_info_m88;
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		break;
490 491 492 493 494
	}

	return ret_val;
}

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
/**
 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 i = 0;

	phy->addr			= 1;
	phy->reset_delay_us		= 100;

510 511 512
	phy->ops.power_up               = e1000_power_up_phy_copper;
	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;

513 514 515 516 517 518
	/*
	 * We may need to do this twice - once for IGP and if that fails,
	 * we'll set BM func pointers and try again
	 */
	ret_val = e1000e_determine_phy_address(hw);
	if (ret_val) {
519 520
		phy->ops.write_reg = e1000e_write_phy_reg_bm;
		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
521
		ret_val = e1000e_determine_phy_address(hw);
B
Bruce Allan 已提交
522 523
		if (ret_val) {
			e_dbg("Cannot determine PHY addr. Erroring out\n");
524
			return ret_val;
B
Bruce Allan 已提交
525
		}
526 527
	}

528 529 530
	phy->id = 0;
	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
	       (i++ < 100)) {
531
		usleep_range(1000, 2000);
532 533 534 535 536 537 538 539 540 541
		ret_val = e1000e_get_phy_id(hw);
		if (ret_val)
			return ret_val;
	}

	/* Verify phy id */
	switch (phy->id) {
	case IGP03E1000_E_PHY_ID:
		phy->type = e1000_phy_igp_3;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
542 543
		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
544 545 546
		phy->ops.get_info = e1000e_get_phy_info_igp;
		phy->ops.check_polarity = e1000_check_polarity_igp;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
547 548 549 550 551 552
		break;
	case IFE_E_PHY_ID:
	case IFE_PLUS_E_PHY_ID:
	case IFE_C_E_PHY_ID:
		phy->type = e1000_phy_ife;
		phy->autoneg_mask = E1000_ALL_NOT_GIG;
553 554 555
		phy->ops.get_info = e1000_get_phy_info_ife;
		phy->ops.check_polarity = e1000_check_polarity_ife;
		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
556
		break;
557 558 559
	case BME1000_E_PHY_ID:
		phy->type = e1000_phy_bm;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
560 561 562
		phy->ops.read_reg = e1000e_read_phy_reg_bm;
		phy->ops.write_reg = e1000e_write_phy_reg_bm;
		phy->ops.commit = e1000e_phy_sw_reset;
563 564 565
		phy->ops.get_info = e1000e_get_phy_info_m88;
		phy->ops.check_polarity = e1000_check_polarity_m88;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
566
		break;
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	default:
		return -E1000_ERR_PHY;
		break;
	}

	return 0;
}

/**
 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific NVM parameters and function
 *  pointers.
 **/
static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
586
	u32 gfpreg, sector_base_addr, sector_end_addr;
587 588
	u16 i;

589
	/* Can't read flash registers if the register set isn't mapped. */
590
	if (!hw->flash_address) {
591
		e_dbg("ERROR: Flash registers not mapped\n");
592 593 594 595 596 597 598
		return -E1000_ERR_CONFIG;
	}

	nvm->type = e1000_nvm_flash_sw;

	gfpreg = er32flash(ICH_FLASH_GFPREG);

599 600
	/*
	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
601
	 * Add 1 to sector_end_addr since this sector is included in
602 603
	 * the overall size.
	 */
604 605 606 607 608 609
	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;

	/* flash_base_addr is byte-aligned */
	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;

610 611 612 613
	/*
	 * find total size of the NVM, then cut in half since the total
	 * size represents two separate NVM banks.
	 */
614 615 616 617 618 619 620 621 622 623
	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
				<< FLASH_SECTOR_ADDR_SHIFT;
	nvm->flash_bank_size /= 2;
	/* Adjust to word count */
	nvm->flash_bank_size /= sizeof(u16);

	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;

	/* Clear shadow ram */
	for (i = 0; i < nvm->word_size; i++) {
624
		dev_spec->shadow_ram[i].modified = false;
625 626 627 628 629 630 631 632 633 634 635 636 637
		dev_spec->shadow_ram[i].value    = 0xFFFF;
	}

	return 0;
}

/**
 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific MAC parameters and function
 *  pointers.
 **/
638
static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
639 640 641 642
{
	struct e1000_mac_info *mac = &hw->mac;

	/* Set media type function pointer */
643
	hw->phy.media_type = e1000_media_type_copper;
644 645 646 647 648 649 650

	/* Set mta register count */
	mac->mta_reg_count = 32;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
	if (mac->type == e1000_ich8lan)
		mac->rar_entry_count--;
651 652 653 654
	/* FWSM register */
	mac->has_fwsm = true;
	/* ARC subsystem not supported */
	mac->arc_subsystem_valid = false;
655 656
	/* Adaptive IFS supported */
	mac->adaptive_ifs = true;
657

658 659 660 661 662
	/* LED operations */
	switch (mac->type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
	case e1000_ich10lan:
663 664
		/* check management mode */
		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
665
		/* ID LED init */
666
		mac->ops.id_led_init = e1000e_id_led_init_generic;
667 668
		/* blink LED */
		mac->ops.blink_led = e1000e_blink_led_generic;
669 670 671 672 673 674 675 676
		/* setup LED */
		mac->ops.setup_led = e1000e_setup_led_generic;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_ich8lan;
		mac->ops.led_off = e1000_led_off_ich8lan;
		break;
677
	case e1000_pch2lan:
678 679 680 681
		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
		mac->ops.rar_set = e1000_rar_set_pch2lan;
		/* fall-through */
	case e1000_pchlan:
682 683
		/* check management mode */
		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
684 685 686 687 688 689 690 691 692 693 694 695 696 697
		/* ID LED init */
		mac->ops.id_led_init = e1000_id_led_init_pchlan;
		/* setup LED */
		mac->ops.setup_led = e1000_setup_led_pchlan;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_pchlan;
		mac->ops.led_off = e1000_led_off_pchlan;
		break;
	default:
		break;
	}

698 699
	/* Enable PCS Lock-loss workaround for ICH8 */
	if (mac->type == e1000_ich8lan)
700
		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
701

702 703 704 705
	/* Gate automatic PHY configuration by hardware on managed 82579 */
	if ((mac->type == e1000_pch2lan) &&
	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		e1000_gate_hw_phy_config_ich8lan(hw, true);
706

707 708 709
	return 0;
}

710 711 712 713 714 715 716 717 718 719 720 721 722
/**
 *  e1000_set_eee_pchlan - Enable/disable EEE support
 *  @hw: pointer to the HW structure
 *
 *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
 *  the LPI Control register will remain set only if/when link is up.
 **/
static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 phy_reg;

	if (hw->phy.type != e1000_phy_82579)
723
		return 0;
724 725 726

	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
	if (ret_val)
727
		return ret_val;
728 729 730 731 732 733

	if (hw->dev_spec.ich8lan.eee_disable)
		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
	else
		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;

734
	return e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
735 736
}

737 738 739 740 741 742 743 744 745 746 747 748 749
/**
 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
 *  @hw: pointer to the HW structure
 *
 *  Checks to see of the link status of the hardware has changed.  If a
 *  change in link status has been detected, then we read the PHY registers
 *  to get the current speed/duplex if link exists.
 **/
static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	bool link;
750
	u16 phy_reg;
751 752 753 754 755 756 757

	/*
	 * We only want to go out to the PHY registers to see if Auto-Neg
	 * has completed and/or if our link status has changed.  The
	 * get_link_status flag is set upon receiving a Link Status
	 * Change or Rx Sequence Error interrupt.
	 */
758 759
	if (!mac->get_link_status)
		return 0;
760 761 762 763 764 765 766 767

	/*
	 * First we want to see if the MII Status Register reports
	 * link.  If so, then we want to get the current speed/duplex
	 * of the PHY.
	 */
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
768
		return ret_val;
769

770 771 772
	if (hw->mac.type == e1000_pchlan) {
		ret_val = e1000_k1_gig_workaround_hv(hw, link);
		if (ret_val)
773
			return ret_val;
774 775
	}

776
	if (!link)
777
		return 0; /* No link detected */
778 779 780

	mac->get_link_status = false;

781 782
	switch (hw->mac.type) {
	case e1000_pch2lan:
783 784
		ret_val = e1000_k1_workaround_lv(hw);
		if (ret_val)
785
			return ret_val;
786 787 788 789 790
		/* fall-thru */
	case e1000_pchlan:
		if (hw->phy.type == e1000_phy_82578) {
			ret_val = e1000_link_stall_workaround_hv(hw);
			if (ret_val)
791
				return ret_val;
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
		}

		/*
		 * Workaround for PCHx parts in half-duplex:
		 * Set the number of preambles removed from the packet
		 * when it is passed from the PHY to the MAC to prevent
		 * the MAC from misinterpreting the packet type.
		 */
		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;

		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);

		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
		break;
	default:
		break;
810 811
	}

812 813 814 815 816 817
	/*
	 * Check if there was DownShift, must be checked
	 * immediately after link-up
	 */
	e1000e_check_downshift(hw);

818 819 820
	/* Enable/Disable EEE after link up */
	ret_val = e1000_set_eee_pchlan(hw);
	if (ret_val)
821
		return ret_val;
822

823 824 825 826
	/*
	 * If we are forcing speed/duplex, then we simply return since
	 * we have already determined whether we have link or not.
	 */
827 828
	if (!mac->autoneg)
		return -E1000_ERR_CONFIG;
829 830 831 832 833 834

	/*
	 * Auto-Neg is enabled.  Auto Speed Detection takes care
	 * of MAC speed/duplex configuration.  So we only need to
	 * configure Collision Distance in the MAC.
	 */
835
	mac->ops.config_collision_dist(hw);
836 837 838 839 840 841 842 843 844

	/*
	 * Configure Flow Control now that Auto-Neg has completed.
	 * First, we need to restore the desired flow control
	 * settings because we may have had to re-autoneg with a
	 * different link partner.
	 */
	ret_val = e1000e_config_fc_after_link_up(hw);
	if (ret_val)
845
		e_dbg("Error configuring flow control\n");
846 847 848 849

	return ret_val;
}

J
Jeff Kirsher 已提交
850
static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
851 852 853 854
{
	struct e1000_hw *hw = &adapter->hw;
	s32 rc;

855
	rc = e1000_init_mac_params_ich8lan(hw);
856 857 858 859 860 861 862
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_ich8lan(hw);
	if (rc)
		return rc;

863 864 865 866
	switch (hw->mac.type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
	case e1000_ich10lan:
867
		rc = e1000_init_phy_params_ich8lan(hw);
868 869 870 871 872 873 874 875
		break;
	case e1000_pchlan:
	case e1000_pch2lan:
		rc = e1000_init_phy_params_pchlan(hw);
		break;
	default:
		break;
	}
876 877 878
	if (rc)
		return rc;

879 880 881 882 883 884 885
	/*
	 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
	 */
	if ((adapter->hw.phy.type == e1000_phy_ife) ||
	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
886 887
		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
888 889

		hw->mac.ops.blink_led = NULL;
890 891
	}

892
	if ((adapter->hw.mac.type == e1000_ich8lan) &&
893
	    (adapter->hw.phy.type != e1000_phy_ife))
894 895
		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;

896 897 898 899 900
	/* Enable workaround for 82579 w/ ME enabled */
	if ((adapter->hw.mac.type == e1000_pch2lan) &&
	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;

901 902 903 904
	/* Disable EEE by default until IEEE802.3az spec is finalized */
	if (adapter->flags2 & FLAG2_HAS_EEE)
		adapter->hw.dev_spec.ich8lan.eee_disable = true;

905 906 907
	return 0;
}

908 909
static DEFINE_MUTEX(nvm_mutex);

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
/**
 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
 *  @hw: pointer to the HW structure
 *
 *  Acquires the mutex for performing NVM operations.
 **/
static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
{
	mutex_lock(&nvm_mutex);

	return 0;
}

/**
 *  e1000_release_nvm_ich8lan - Release NVM mutex
 *  @hw: pointer to the HW structure
 *
 *  Releases the mutex used while performing NVM operations.
 **/
static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
{
	mutex_unlock(&nvm_mutex);
}

934 935 936 937
/**
 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
 *  @hw: pointer to the HW structure
 *
938 939
 *  Acquires the software control flag for performing PHY and select
 *  MAC CSR accesses.
940 941 942
 **/
static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
{
943 944
	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
	s32 ret_val = 0;
945

946 947
	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
			     &hw->adapter->state)) {
948
		e_dbg("contention for Phy access\n");
949 950
		return -E1000_ERR_PHY;
	}
951

952 953
	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);
954 955
		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
			break;
956

957 958 959 960 961
		mdelay(1);
		timeout--;
	}

	if (!timeout) {
962
		e_dbg("SW has already locked the resource.\n");
963 964 965 966
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

967
	timeout = SW_FLAG_TIMEOUT;
968 969 970 971 972 973 974 975

	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
	ew32(EXTCNF_CTRL, extcnf_ctrl);

	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);
		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
			break;
976

977 978 979 980 981
		mdelay(1);
		timeout--;
	}

	if (!timeout) {
982
		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
983
		      er32(FWSM), extcnf_ctrl);
984 985
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
		ew32(EXTCNF_CTRL, extcnf_ctrl);
986 987
		ret_val = -E1000_ERR_CONFIG;
		goto out;
988 989
	}

990 991
out:
	if (ret_val)
992
		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
993 994

	return ret_val;
995 996 997 998 999 1000
}

/**
 *  e1000_release_swflag_ich8lan - Release software control flag
 *  @hw: pointer to the HW structure
 *
1001 1002
 *  Releases the software control flag for performing PHY and select
 *  MAC CSR accesses.
1003 1004 1005 1006 1007 1008
 **/
static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
{
	u32 extcnf_ctrl;

	extcnf_ctrl = er32(EXTCNF_CTRL);
1009 1010 1011 1012 1013 1014 1015

	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
		ew32(EXTCNF_CTRL, extcnf_ctrl);
	} else {
		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
	}
1016

1017
	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1018 1019
}

1020 1021 1022 1023
/**
 *  e1000_check_mng_mode_ich8lan - Checks management mode
 *  @hw: pointer to the HW structure
 *
1024
 *  This checks if the adapter has any manageability enabled.
1025 1026 1027 1028 1029
 *  This is a function pointer entry point only called by read/write
 *  routines for the PHY and NVM parts.
 **/
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
{
1030 1031 1032
	u32 fwsm;

	fwsm = er32(FWSM);
1033 1034 1035 1036
	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
	       ((fwsm & E1000_FWSM_MODE_MASK) ==
		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
}
1037

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
/**
 *  e1000_check_mng_mode_pchlan - Checks management mode
 *  @hw: pointer to the HW structure
 *
 *  This checks if the adapter has iAMT enabled.
 *  This is a function pointer entry point only called by read/write
 *  routines for the PHY and NVM parts.
 **/
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
{
	u32 fwsm;

	fwsm = er32(FWSM);
	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1053 1054
}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
/**
 *  e1000_rar_set_pch2lan - Set receive address register
 *  @hw: pointer to the HW structure
 *  @addr: pointer to the receive address
 *  @index: receive address array register
 *
 *  Sets the receive address array register at index to the address passed
 *  in by addr.  For 82579, RAR[0] is the base address register that is to
 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
 *  Use SHRA[0-3] in place of those reserved for ME.
 **/
static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
{
	u32 rar_low, rar_high;

	/*
	 * HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32)addr[0] |
		   ((u32)addr[1] << 8) |
		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));

	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));

	/* If MAC address zero, no need to set the AV bit */
	if (rar_low || rar_high)
		rar_high |= E1000_RAH_AV;

	if (index == 0) {
		ew32(RAL(index), rar_low);
		e1e_flush();
		ew32(RAH(index), rar_high);
		e1e_flush();
		return;
	}

	if (index < hw->mac.rar_entry_count) {
		s32 ret_val;

		ret_val = e1000_acquire_swflag_ich8lan(hw);
		if (ret_val)
			goto out;

		ew32(SHRAL(index - 1), rar_low);
		e1e_flush();
		ew32(SHRAH(index - 1), rar_high);
		e1e_flush();

		e1000_release_swflag_ich8lan(hw);

		/* verify the register updates */
		if ((er32(SHRAL(index - 1)) == rar_low) &&
		    (er32(SHRAH(index - 1)) == rar_high))
			return;

		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
		      (index - 1), er32(FWSM));
	}

out:
	e_dbg("Failed to write receive address at index %d\n", index);
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
/**
 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
 *  @hw: pointer to the HW structure
 *
 *  Checks if firmware is blocking the reset of the PHY.
 *  This is a function pointer entry point only called by
 *  reset routines.
 **/
static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
{
	u32 fwsm;

	fwsm = er32(FWSM);

	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
}

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
/**
 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
 *  @hw: pointer to the HW structure
 *
 *  Assumes semaphore already acquired.
 *
 **/
static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
{
	u16 phy_data;
	u32 strap = er32(STRAP);
	s32 ret_val = 0;

	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;

	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
	if (ret_val)
1153
		return ret_val;
1154 1155 1156 1157 1158

	phy_data &= ~HV_SMB_ADDR_MASK;
	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;

1159
	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1160 1161
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
/**
 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
 *  @hw:   pointer to the HW structure
 *
 *  SW should configure the LCD from the NVM extended configuration region
 *  as a workaround for certain parts.
 **/
static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1173
	s32 ret_val = 0;
1174 1175 1176 1177 1178 1179 1180 1181 1182
	u16 word_addr, reg_data, reg_addr, phy_page = 0;

	/*
	 * Initialize the PHY from the NVM on ICH platforms.  This
	 * is needed due to an issue where the NVM configuration is
	 * not properly autoloaded after power transitions.
	 * Therefore, after each PHY reset, we will load the
	 * configuration data out of the NVM manually.
	 */
1183 1184 1185 1186 1187
	switch (hw->mac.type) {
	case e1000_ich8lan:
		if (phy->type != e1000_phy_igp_3)
			return ret_val;

B
Bruce Allan 已提交
1188 1189
		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1190 1191 1192 1193 1194
			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
			break;
		}
		/* Fall-thru */
	case e1000_pchlan:
1195
	case e1000_pch2lan:
1196
		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1197 1198 1199 1200 1201 1202 1203 1204
		break;
	default:
		return ret_val;
	}

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;
1205 1206 1207

	data = er32(FEXTNVM);
	if (!(data & sw_cfg_mask))
1208
		goto release;
1209

1210 1211 1212 1213 1214
	/*
	 * Make sure HW does not configure LCD from PHY
	 * extended configuration before SW configuration
	 */
	data = er32(EXTCNF_CTRL);
1215 1216
	if (!(hw->mac.type == e1000_pch2lan)) {
		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1217
			goto release;
1218
	}
1219 1220 1221 1222 1223

	cnf_size = er32(EXTCNF_SIZE);
	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
	if (!cnf_size)
1224
		goto release;
1225 1226 1227 1228

	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;

1229 1230 1231
	if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
	    (hw->mac.type == e1000_pchlan)) ||
	     (hw->mac.type == e1000_pch2lan)) {
1232
		/*
1233 1234 1235 1236
		 * HW configures the SMBus address and LEDs when the
		 * OEM and LCD Write Enable bits are set in the NVM.
		 * When both NVM bits are cleared, SW will configure
		 * them instead.
1237
		 */
1238
		ret_val = e1000_write_smbus_addr(hw);
1239
		if (ret_val)
1240
			goto release;
1241

1242 1243 1244 1245
		data = er32(LEDCTL);
		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
							(u16)data);
		if (ret_val)
1246
			goto release;
1247
	}
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257
	/* Configure LCD from extended configuration region. */

	/* cnf_base_addr is in DWORD */
	word_addr = (u16)(cnf_base_addr << 1);

	for (i = 0; i < cnf_size; i++) {
		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
					 &reg_data);
		if (ret_val)
1258
			goto release;
1259 1260 1261 1262

		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
					 1, &reg_addr);
		if (ret_val)
1263
			goto release;
1264 1265 1266 1267 1268

		/* Save off the PHY page for future writes. */
		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
			phy_page = reg_data;
			continue;
1269
		}
1270 1271 1272 1273

		reg_addr &= PHY_REG_MASK;
		reg_addr |= phy_page;

1274
		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1275
		if (ret_val)
1276
			goto release;
1277 1278
	}

1279
release:
1280
	hw->phy.ops.release(hw);
1281 1282 1283
	return ret_val;
}

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
/**
 *  e1000_k1_gig_workaround_hv - K1 Si workaround
 *  @hw:   pointer to the HW structure
 *  @link: link up bool flag
 *
 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
 *  If link is down, the function will restore the default K1 setting located
 *  in the NVM.
 **/
static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
{
	s32 ret_val = 0;
	u16 status_reg = 0;
	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;

	if (hw->mac.type != e1000_pchlan)
1301
		return 0;
1302 1303

	/* Wrap the whole flow with the sw flag */
1304
	ret_val = hw->phy.ops.acquire(hw);
1305
	if (ret_val)
1306
		return ret_val;
1307 1308 1309 1310

	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
	if (link) {
		if (hw->phy.type == e1000_phy_82578) {
1311 1312
			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
						  &status_reg);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
			if (ret_val)
				goto release;

			status_reg &= BM_CS_STATUS_LINK_UP |
			              BM_CS_STATUS_RESOLVED |
			              BM_CS_STATUS_SPEED_MASK;

			if (status_reg == (BM_CS_STATUS_LINK_UP |
			                   BM_CS_STATUS_RESOLVED |
			                   BM_CS_STATUS_SPEED_1000))
				k1_enable = false;
		}

		if (hw->phy.type == e1000_phy_82577) {
1327
			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
			if (ret_val)
				goto release;

			status_reg &= HV_M_STATUS_LINK_UP |
			              HV_M_STATUS_AUTONEG_COMPLETE |
			              HV_M_STATUS_SPEED_MASK;

			if (status_reg == (HV_M_STATUS_LINK_UP |
			                   HV_M_STATUS_AUTONEG_COMPLETE |
			                   HV_M_STATUS_SPEED_1000))
				k1_enable = false;
		}

		/* Link stall fix for link up */
1342
		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1343 1344 1345 1346 1347
		if (ret_val)
			goto release;

	} else {
		/* Link stall fix for link down */
1348
		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1349 1350 1351 1352 1353 1354 1355
		if (ret_val)
			goto release;
	}

	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);

release:
1356
	hw->phy.ops.release(hw);
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	return ret_val;
}

/**
 *  e1000_configure_k1_ich8lan - Configure K1 power state
 *  @hw: pointer to the HW structure
 *  @enable: K1 state to configure
 *
 *  Configure the K1 power state based on the provided parameter.
 *  Assumes semaphore already acquired.
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 **/
1371
s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1372 1373 1374 1375 1376 1377 1378
{
	s32 ret_val = 0;
	u32 ctrl_reg = 0;
	u32 ctrl_ext = 0;
	u32 reg = 0;
	u16 kmrn_reg = 0;

1379 1380
	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
					      &kmrn_reg);
1381
	if (ret_val)
1382
		return ret_val;
1383 1384 1385 1386 1387 1388

	if (k1_enable)
		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
	else
		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;

1389 1390
	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
					       kmrn_reg);
1391
	if (ret_val)
1392
		return ret_val;
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

	udelay(20);
	ctrl_ext = er32(CTRL_EXT);
	ctrl_reg = er32(CTRL);

	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
	reg |= E1000_CTRL_FRCSPD;
	ew32(CTRL, reg);

	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1403
	e1e_flush();
1404 1405 1406
	udelay(20);
	ew32(CTRL, ctrl_reg);
	ew32(CTRL_EXT, ctrl_ext);
1407
	e1e_flush();
1408 1409
	udelay(20);

1410
	return 0;
1411 1412
}

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
/**
 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
 *  @hw:       pointer to the HW structure
 *  @d0_state: boolean if entering d0 or d3 device state
 *
 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
 **/
static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
{
	s32 ret_val = 0;
	u32 mac_reg;
	u16 oem_reg;

1428
	if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1429 1430
		return ret_val;

1431
	ret_val = hw->phy.ops.acquire(hw);
1432 1433 1434
	if (ret_val)
		return ret_val;

1435 1436 1437
	if (!(hw->mac.type == e1000_pch2lan)) {
		mac_reg = er32(EXTCNF_CTRL);
		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1438
			goto release;
1439
	}
1440 1441 1442

	mac_reg = er32(FEXTNVM);
	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1443
		goto release;
1444 1445 1446

	mac_reg = er32(PHY_CTRL);

1447
	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1448
	if (ret_val)
1449
		goto release;
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);

	if (d0_state) {
		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
			oem_reg |= HV_OEM_BITS_GBE_DIS;

		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
			oem_reg |= HV_OEM_BITS_LPLU;
	} else {
B
Bruce Allan 已提交
1460 1461
		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1462 1463
			oem_reg |= HV_OEM_BITS_GBE_DIS;

B
Bruce Allan 已提交
1464 1465
		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
			       E1000_PHY_CTRL_NOND0A_LPLU))
1466 1467
			oem_reg |= HV_OEM_BITS_LPLU;
	}
B
Bruce Allan 已提交
1468

B
Bruce Allan 已提交
1469 1470 1471 1472 1473
	/* Set Restart auto-neg to activate the bits */
	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
	    !hw->phy.ops.check_reset_block(hw))
		oem_reg |= HV_OEM_BITS_RESTART_AN;

1474
	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1475

1476
release:
1477
	hw->phy.ops.release(hw);
1478 1479 1480 1481 1482

	return ret_val;
}


1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
/**
 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
 *  @hw:   pointer to the HW structure
 **/
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
	if (ret_val)
		return ret_val;

	data |= HV_KMRN_MDIO_SLOW;

	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);

	return ret_val;
}

1503 1504 1505 1506 1507 1508 1509
/**
 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
 *  done after every PHY reset.
 **/
static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;
1510
	u16 phy_data;
1511 1512

	if (hw->mac.type != e1000_pchlan)
1513
		return 0;
1514

1515 1516 1517 1518
	/* Set MDIO slow mode before any other MDIO access */
	if (hw->phy.type == e1000_phy_82577) {
		ret_val = e1000_set_mdio_slow_mode_hv(hw);
		if (ret_val)
1519
			return ret_val;
1520 1521
	}

1522 1523 1524 1525 1526 1527 1528 1529 1530
	if (((hw->phy.type == e1000_phy_82577) &&
	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
		/* Disable generation of early preamble */
		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
		if (ret_val)
			return ret_val;

		/* Preamble tuning for SSC */
1531
		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
		if (ret_val)
			return ret_val;
	}

	if (hw->phy.type == e1000_phy_82578) {
		/*
		 * Return registers to default by doing a soft reset then
		 * writing 0x3140 to the control register.
		 */
		if (hw->phy.revision < 2) {
			e1000e_phy_sw_reset(hw);
			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
		}
	}

	/* Select page 0 */
1548
	ret_val = hw->phy.ops.acquire(hw);
1549 1550
	if (ret_val)
		return ret_val;
1551

1552
	hw->phy.addr = 1;
1553
	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1554
	hw->phy.ops.release(hw);
1555
	if (ret_val)
1556
		return ret_val;
1557

1558 1559 1560 1561 1562
	/*
	 * Configure the K1 Si workaround during phy reset assuming there is
	 * link so that it disables K1 if link is in 1Gbps.
	 */
	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1563
	if (ret_val)
1564
		return ret_val;
1565

1566 1567 1568
	/* Workaround for link disconnects on a busy hub in half duplex */
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
1569
		return ret_val;
1570
	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1571 1572
	if (ret_val)
		goto release;
1573
	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
1574 1575
release:
	hw->phy.ops.release(hw);
1576

1577 1578 1579
	return ret_val;
}

1580 1581 1582 1583 1584 1585 1586
/**
 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
 *  @hw:   pointer to the HW structure
 **/
void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
{
	u32 mac_reg;
1587 1588 1589 1590 1591 1592 1593 1594 1595
	u16 i, phy_reg = 0;
	s32 ret_val;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;
	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
	if (ret_val)
		goto release;
1596 1597 1598 1599

	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
		mac_reg = er32(RAL(i));
1600 1601 1602 1603 1604
		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
					   (u16)((mac_reg >> 16) & 0xFFFF));

1605
		mac_reg = er32(RAH(i));
1606 1607 1608 1609 1610
		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
					   (u16)((mac_reg & E1000_RAH_AV)
						 >> 16));
1611
	}
1612 1613 1614 1615 1616

	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);

release:
	hw->phy.ops.release(hw);
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
}

/**
 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
 *  with 82579 PHY
 *  @hw: pointer to the HW structure
 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
 **/
s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
{
	s32 ret_val = 0;
	u16 phy_reg, data;
	u32 mac_reg;
	u16 i;

	if (hw->mac.type != e1000_pch2lan)
1633
		return 0;
1634 1635 1636 1637 1638

	/* disable Rx path while enabling/disabling workaround */
	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
	if (ret_val)
1639
		return ret_val;
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660

	if (enable) {
		/*
		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
		 * SHRAL/H) and initial CRC values to the MAC
		 */
		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
			u8 mac_addr[ETH_ALEN] = {0};
			u32 addr_high, addr_low;

			addr_high = er32(RAH(i));
			if (!(addr_high & E1000_RAH_AV))
				continue;
			addr_low = er32(RAL(i));
			mac_addr[0] = (addr_low & 0xFF);
			mac_addr[1] = ((addr_low >> 8) & 0xFF);
			mac_addr[2] = ((addr_low >> 16) & 0xFF);
			mac_addr[3] = ((addr_low >> 24) & 0xFF);
			mac_addr[4] = (addr_high & 0xFF);
			mac_addr[5] = ((addr_high >> 8) & 0xFF);

1661
			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
		}

		/* Write Rx addresses to the PHY */
		e1000_copy_rx_addrs_to_phy_ich8lan(hw);

		/* Enable jumbo frame workaround in the MAC */
		mac_reg = er32(FFLT_DBG);
		mac_reg &= ~(1 << 14);
		mac_reg |= (7 << 15);
		ew32(FFLT_DBG, mac_reg);

		mac_reg = er32(RCTL);
		mac_reg |= E1000_RCTL_SECRC;
		ew32(RCTL, mac_reg);

		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						&data);
		if (ret_val)
1681
			return ret_val;
1682 1683 1684 1685
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						data | (1 << 0));
		if (ret_val)
1686
			return ret_val;
1687 1688 1689 1690
		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						&data);
		if (ret_val)
1691
			return ret_val;
1692 1693 1694 1695 1696 1697
		data &= ~(0xF << 8);
		data |= (0xB << 8);
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						data);
		if (ret_val)
1698
			return ret_val;
1699 1700 1701 1702 1703 1704 1705

		/* Enable jumbo frame workaround in the PHY */
		e1e_rphy(hw, PHY_REG(769, 23), &data);
		data &= ~(0x7F << 5);
		data |= (0x37 << 5);
		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
		if (ret_val)
1706
			return ret_val;
1707 1708 1709 1710
		e1e_rphy(hw, PHY_REG(769, 16), &data);
		data &= ~(1 << 13);
		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
		if (ret_val)
1711
			return ret_val;
1712 1713 1714 1715 1716
		e1e_rphy(hw, PHY_REG(776, 20), &data);
		data &= ~(0x3FF << 2);
		data |= (0x1A << 2);
		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
		if (ret_val)
1717
			return ret_val;
1718
		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1719
		if (ret_val)
1720
			return ret_val;
1721 1722 1723
		e1e_rphy(hw, HV_PM_CTRL, &data);
		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
		if (ret_val)
1724
			return ret_val;
1725 1726 1727 1728 1729 1730 1731 1732
	} else {
		/* Write MAC register values back to h/w defaults */
		mac_reg = er32(FFLT_DBG);
		mac_reg &= ~(0xF << 14);
		ew32(FFLT_DBG, mac_reg);

		mac_reg = er32(RCTL);
		mac_reg &= ~E1000_RCTL_SECRC;
1733
		ew32(RCTL, mac_reg);
1734 1735 1736 1737 1738

		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						&data);
		if (ret_val)
1739
			return ret_val;
1740 1741 1742 1743
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						data & ~(1 << 0));
		if (ret_val)
1744
			return ret_val;
1745 1746 1747 1748
		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						&data);
		if (ret_val)
1749
			return ret_val;
1750 1751 1752 1753 1754 1755
		data &= ~(0xF << 8);
		data |= (0xB << 8);
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						data);
		if (ret_val)
1756
			return ret_val;
1757 1758 1759 1760 1761 1762

		/* Write PHY register values back to h/w defaults */
		e1e_rphy(hw, PHY_REG(769, 23), &data);
		data &= ~(0x7F << 5);
		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
		if (ret_val)
1763
			return ret_val;
1764 1765 1766 1767
		e1e_rphy(hw, PHY_REG(769, 16), &data);
		data |= (1 << 13);
		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
		if (ret_val)
1768
			return ret_val;
1769 1770 1771 1772 1773
		e1e_rphy(hw, PHY_REG(776, 20), &data);
		data &= ~(0x3FF << 2);
		data |= (0x8 << 2);
		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
		if (ret_val)
1774
			return ret_val;
1775 1776
		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
		if (ret_val)
1777
			return ret_val;
1778 1779 1780
		e1e_rphy(hw, HV_PM_CTRL, &data);
		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
		if (ret_val)
1781
			return ret_val;
1782 1783 1784
	}

	/* re-enable Rx path after enabling/disabling workaround */
1785
	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
}

/**
 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
 *  done after every PHY reset.
 **/
static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;

	if (hw->mac.type != e1000_pch2lan)
1797
		return 0;
1798 1799 1800 1801

	/* Set MDIO slow mode before any other MDIO access */
	ret_val = e1000_set_mdio_slow_mode_hv(hw);

1802 1803
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
1804
		return ret_val;
1805
	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_THRESHOLD);
1806 1807 1808
	if (ret_val)
		goto release;
	/* set MSE higher to enable link to stay up when noise is high */
1809
	ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0034);
1810 1811
	if (ret_val)
		goto release;
1812
	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_LINK_DOWN);
1813 1814 1815
	if (ret_val)
		goto release;
	/* drop link after 5 times MSE threshold was reached */
1816
	ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0005);
1817 1818 1819
release:
	hw->phy.ops.release(hw);

1820 1821 1822
	return ret_val;
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
/**
 *  e1000_k1_gig_workaround_lv - K1 Si workaround
 *  @hw:   pointer to the HW structure
 *
 *  Workaround to set the K1 beacon duration for 82579 parts
 **/
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 status_reg = 0;
	u32 mac_reg;
1834
	u16 phy_reg;
1835 1836

	if (hw->mac.type != e1000_pch2lan)
1837
		return 0;
1838 1839 1840 1841

	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
	if (ret_val)
1842
		return ret_val;
1843 1844 1845 1846 1847 1848

	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
		mac_reg = er32(FEXTNVM4);
		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;

1849 1850
		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
		if (ret_val)
1851
			return ret_val;
1852 1853

		if (status_reg & HV_M_STATUS_SPEED_1000) {
1854 1855
			u16 pm_phy_reg;

1856
			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1857
			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1858 1859 1860 1861 1862 1863 1864 1865
			/* LV 1G Packet drop issue wa  */
			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
			if (ret_val)
				return ret_val;
			pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
			if (ret_val)
				return ret_val;
1866
		} else {
1867
			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1868 1869
			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
		}
1870
		ew32(FEXTNVM4, mac_reg);
1871
		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1872 1873 1874 1875 1876
	}

	return ret_val;
}

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
/**
 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
 *  @hw:   pointer to the HW structure
 *  @gate: boolean set to true to gate, false to ungate
 *
 *  Gate/ungate the automatic PHY configuration via hardware; perform
 *  the configuration via software instead.
 **/
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
{
	u32 extcnf_ctrl;

	if (hw->mac.type != e1000_pch2lan)
		return;

	extcnf_ctrl = er32(EXTCNF_CTRL);

	if (gate)
		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
	else
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;

	ew32(EXTCNF_CTRL, extcnf_ctrl);
}

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
/**
 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
 *  @hw: pointer to the HW structure
 *
 *  Check the appropriate indication the MAC has finished configuring the
 *  PHY after a software reset.
 **/
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
{
	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;

	/* Wait for basic configuration completes before proceeding */
	do {
		data = er32(STATUS);
		data &= E1000_STATUS_LAN_INIT_DONE;
		udelay(100);
	} while ((!data) && --loop);

	/*
	 * If basic configuration is incomplete before the above loop
	 * count reaches 0, loading the configuration from NVM will
	 * leave the PHY in a bad state possibly resulting in no link.
	 */
	if (loop == 0)
1926
		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1927 1928 1929 1930 1931 1932 1933

	/* Clear the Init Done bit for the next init event */
	data = er32(STATUS);
	data &= ~E1000_STATUS_LAN_INIT_DONE;
	ew32(STATUS, data);
}

1934
/**
1935
 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1936 1937
 *  @hw: pointer to the HW structure
 **/
1938
static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1939
{
1940 1941
	s32 ret_val = 0;
	u16 reg;
1942

1943
	if (hw->phy.ops.check_reset_block(hw))
1944
		return 0;
1945

B
Bruce Allan 已提交
1946
	/* Allow time for h/w to get to quiescent state after reset */
1947
	usleep_range(10000, 20000);
B
Bruce Allan 已提交
1948

1949
	/* Perform any necessary post-reset workarounds */
1950 1951
	switch (hw->mac.type) {
	case e1000_pchlan:
1952 1953
		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
		if (ret_val)
1954
			return ret_val;
1955
		break;
1956 1957 1958
	case e1000_pch2lan:
		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
		if (ret_val)
1959
			return ret_val;
1960
		break;
1961 1962
	default:
		break;
1963 1964
	}

1965 1966 1967 1968 1969 1970
	/* Clear the host wakeup bit after lcd reset */
	if (hw->mac.type >= e1000_pchlan) {
		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
		reg &= ~BM_WUC_HOST_WU_BIT;
		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
	}
1971

1972 1973 1974
	/* Configure the LCD with the extended configuration region in NVM */
	ret_val = e1000_sw_lcd_config_ich8lan(hw);
	if (ret_val)
1975
		return ret_val;
1976

1977
	/* Configure the LCD with the OEM bits in NVM */
1978
	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1979

1980 1981 1982
	if (hw->mac.type == e1000_pch2lan) {
		/* Ungate automatic PHY configuration on non-managed 82579 */
		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1983
			usleep_range(10000, 20000);
1984 1985 1986 1987 1988 1989
			e1000_gate_hw_phy_config_ich8lan(hw, false);
		}

		/* Set EEE LPI Update Timer to 200usec */
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
1990
			return ret_val;
1991 1992
		ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
					  I82579_LPI_UPDATE_TIMER);
1993
		if (!ret_val)
1994
			ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x1387);
1995
		hw->phy.ops.release(hw);
1996 1997
	}

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	return ret_val;
}

/**
 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
 *  @hw: pointer to the HW structure
 *
 *  Resets the PHY
 *  This is a function pointer entry point called by drivers
 *  or other shared routines.
 **/
static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;

2013 2014 2015 2016 2017
	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
	if ((hw->mac.type == e1000_pch2lan) &&
	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		e1000_gate_hw_phy_config_ich8lan(hw, true);

2018 2019
	ret_val = e1000e_phy_hw_reset_generic(hw);
	if (ret_val)
2020
		return ret_val;
2021

2022
	return e1000_post_phy_reset_ich8lan(hw);
2023 2024
}

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
/**
 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
 *  the phy speed. This function will manually set the LPLU bit and restart
 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
 *  since it configures the same bit.
 **/
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
{
	s32 ret_val = 0;
	u16 oem_reg;

	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
	if (ret_val)
2043
		return ret_val;
2044 2045 2046 2047 2048 2049

	if (active)
		oem_reg |= HV_OEM_BITS_LPLU;
	else
		oem_reg &= ~HV_OEM_BITS_LPLU;

2050
	if (!hw->phy.ops.check_reset_block(hw))
2051 2052
		oem_reg |= HV_OEM_BITS_RESTART_AN;

2053
	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2054 2055
}

2056 2057 2058
/**
 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
2059
 *  @active: true to enable LPLU, false to disable
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
 *
 *  Sets the LPLU D0 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
	s32 ret_val = 0;
	u16 data;

2076
	if (phy->type == e1000_phy_ife)
B
Bruce Allan 已提交
2077
		return 0;
2078 2079 2080 2081 2082 2083 2084

	phy_ctrl = er32(PHY_CTRL);

	if (active) {
		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

2085 2086 2087
		if (phy->type != e1000_phy_igp_3)
			return 0;

2088 2089 2090 2091
		/*
		 * Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
2092
		if (hw->mac.type == e1000_ich8lan)
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
		if (ret_val)
			return ret_val;
	} else {
		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

2105 2106 2107
		if (phy->type != e1000_phy_igp_3)
			return 0;

2108 2109
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2110 2111
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
2112 2113
		 * SmartSpeed, so performance is maintained.
		 */
2114 2115
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2116
					   &data);
2117 2118 2119 2120 2121
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2122
					   data);
2123 2124 2125 2126
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2127
					   &data);
2128 2129 2130 2131 2132
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2133
					   data);
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
 *  @hw: pointer to the HW structure
2145
 *  @active: true to enable LPLU, false to disable
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
 *
 *  Sets the LPLU D3 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
2159
	s32 ret_val = 0;
2160 2161 2162 2163 2164 2165 2166
	u16 data;

	phy_ctrl = er32(PHY_CTRL);

	if (!active) {
		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);
2167 2168 2169 2170

		if (phy->type != e1000_phy_igp_3)
			return 0;

2171 2172
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2173 2174
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
2175 2176
		 * SmartSpeed, so performance is maintained.
		 */
2177
		if (phy->smart_speed == e1000_smart_speed_on) {
2178 2179
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
2180 2181 2182 2183
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
2184 2185
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
2186 2187 2188
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
2189 2190
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
2191 2192 2193 2194
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2195 2196
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
2197 2198 2199 2200 2201 2202 2203 2204 2205
			if (ret_val)
				return ret_val;
		}
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

2206 2207 2208
		if (phy->type != e1000_phy_igp_3)
			return 0;

2209 2210 2211 2212
		/*
		 * Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
2213
		if (hw->mac.type == e1000_ich8lan)
2214 2215 2216
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
2217
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2218 2219 2220 2221
		if (ret_val)
			return ret_val;

		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2222
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2223 2224
	}

2225
	return ret_val;
2226 2227
}

2228 2229 2230 2231 2232 2233
/**
 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
 *  @hw: pointer to the HW structure
 *  @bank:  pointer to the variable that returns the active bank
 *
 *  Reads signature byte from the NVM using the flash access registers.
2234
 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2235 2236 2237
 **/
static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
{
2238
	u32 eecd;
2239 2240 2241
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2242
	u8 sig_byte = 0;
2243
	s32 ret_val;
2244

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
	switch (hw->mac.type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
		eecd = er32(EECD);
		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
		    E1000_EECD_SEC1VAL_VALID_MASK) {
			if (eecd & E1000_EECD_SEC1VAL)
				*bank = 1;
			else
				*bank = 0;

			return 0;
		}
2258
		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
		/* fall-thru */
	default:
		/* set bank to 0 in case flash read fails */
		*bank = 0;

		/* Check bank 0 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
		                                        &sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
2271
			*bank = 0;
2272 2273
			return 0;
		}
2274

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
		/* Check bank 1 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
		                                        bank1_offset,
		                                        &sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
			*bank = 1;
			return 0;
2285
		}
2286

2287
		e_dbg("ERROR: No valid NVM bank present\n");
2288
		return -E1000_ERR_NVM;
2289 2290 2291
	}
}

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
/**
 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to read.
 *  @words: Size of data to read in words
 *  @data: Pointer to the word(s) to read at offset.
 *
 *  Reads a word(s) from the NVM using the flash access registers.
 **/
static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				  u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 act_offset;
2307
	s32 ret_val = 0;
2308
	u32 bank = 0;
2309 2310 2311 2312
	u16 i, word;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
2313
		e_dbg("nvm parameter(s) out of bounds\n");
2314 2315
		ret_val = -E1000_ERR_NVM;
		goto out;
2316 2317
	}

2318
	nvm->ops.acquire(hw);
2319

2320
	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2321
	if (ret_val) {
2322
		e_dbg("Could not detect valid bank, assuming bank 0\n");
2323 2324
		bank = 0;
	}
2325 2326

	act_offset = (bank) ? nvm->flash_bank_size : 0;
2327 2328
	act_offset += offset;

2329
	ret_val = 0;
2330
	for (i = 0; i < words; i++) {
2331
		if (dev_spec->shadow_ram[offset+i].modified) {
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
			data[i] = dev_spec->shadow_ram[offset+i].value;
		} else {
			ret_val = e1000_read_flash_word_ich8lan(hw,
								act_offset + i,
								&word);
			if (ret_val)
				break;
			data[i] = word;
		}
	}

2343
	nvm->ops.release(hw);
2344

2345 2346
out:
	if (ret_val)
2347
		e_dbg("NVM read error: %d\n", ret_val);
2348

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
	return ret_val;
}

/**
 *  e1000_flash_cycle_init_ich8lan - Initialize flash
 *  @hw: pointer to the HW structure
 *
 *  This function does initial flash setup so that a new read/write/erase cycle
 *  can be started.
 **/
static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
{
	union ich8_hws_flash_status hsfsts;
	s32 ret_val = -E1000_ERR_NVM;

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

	/* Check if the flash descriptor is valid */
B
Bruce Allan 已提交
2367
	if (!hsfsts.hsf_status.fldesvalid) {
2368
		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2369 2370 2371 2372 2373 2374 2375 2376 2377
		return -E1000_ERR_NVM;
	}

	/* Clear FCERR and DAEL in hw status by writing 1 */
	hsfsts.hsf_status.flcerr = 1;
	hsfsts.hsf_status.dael = 1;

	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);

2378 2379
	/*
	 * Either we should have a hardware SPI cycle in progress
2380 2381
	 * bit to check against, in order to start a new cycle or
	 * FDONE bit should be changed in the hardware so that it
2382
	 * is 1 after hardware reset, which can then be used as an
2383 2384 2385 2386
	 * indication whether a cycle is in progress or has been
	 * completed.
	 */

B
Bruce Allan 已提交
2387
	if (!hsfsts.hsf_status.flcinprog) {
2388 2389
		/*
		 * There is no cycle running at present,
B
Bruce Allan 已提交
2390
		 * so we can start a cycle.
2391 2392
		 * Begin by setting Flash Cycle Done.
		 */
2393 2394 2395 2396
		hsfsts.hsf_status.flcdone = 1;
		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		ret_val = 0;
	} else {
2397
		s32 i;
2398

2399
		/*
B
Bruce Allan 已提交
2400
		 * Otherwise poll for sometime so the current
2401 2402
		 * cycle has a chance to end before giving up.
		 */
2403
		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2404
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
B
Bruce Allan 已提交
2405
			if (!hsfsts.hsf_status.flcinprog) {
2406 2407 2408 2409 2410
				ret_val = 0;
				break;
			}
			udelay(1);
		}
2411
		if (!ret_val) {
2412 2413 2414 2415
			/*
			 * Successful in waiting for previous cycle to timeout,
			 * now set the Flash Cycle Done.
			 */
2416 2417 2418
			hsfsts.hsf_status.flcdone = 1;
			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		} else {
J
Joe Perches 已提交
2419
			e_dbg("Flash controller busy, cannot get access\n");
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
		}
	}

	return ret_val;
}

/**
 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
 *  @hw: pointer to the HW structure
 *  @timeout: maximum time to wait for completion
 *
 *  This function starts a flash cycle and waits for its completion.
 **/
static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
{
	union ich8_hws_flash_ctrl hsflctl;
	union ich8_hws_flash_status hsfsts;
	u32 i = 0;

	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
	hsflctl.hsf_ctrl.flcgo = 1;
	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

	/* wait till FDONE bit is set to 1 */
	do {
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
B
Bruce Allan 已提交
2447
		if (hsfsts.hsf_status.flcdone)
2448 2449 2450 2451
			break;
		udelay(1);
	} while (i++ < timeout);

B
Bruce Allan 已提交
2452
	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2453 2454
		return 0;

2455
	return -E1000_ERR_NVM;
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
}

/**
 *  e1000_read_flash_word_ich8lan - Read word from flash
 *  @hw: pointer to the HW structure
 *  @offset: offset to data location
 *  @data: pointer to the location for storing the data
 *
 *  Reads the flash word at offset into data.  Offset is converted
 *  to bytes before read.
 **/
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data)
{
	/* Must convert offset into bytes. */
	offset <<= 1;

	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
}

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
/**
 *  e1000_read_flash_byte_ich8lan - Read byte from flash
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to read.
 *  @data: Pointer to a byte to store the value read.
 *
 *  Reads a single byte from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data)
{
	s32 ret_val;
	u16 word = 0;

	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
	if (ret_val)
		return ret_val;

	*data = (u8)word;

	return 0;
}

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
/**
 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte or word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: Pointer to the word to store the value read.
 *
 *  Reads a byte or word from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val = -E1000_ERR_NVM;
	u8 count = 0;

	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			    hw->nvm.flash_base_addr;

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2528
		if (ret_val)
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size - 1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		ret_val = e1000_flash_cycle_ich8lan(hw,
						ICH_FLASH_READ_COMMAND_TIMEOUT);

2542 2543
		/*
		 * Check if FCERR is set to 1, if set to 1, clear it
2544 2545
		 * and try the whole sequence a few more times, else
		 * read in (shift in) the Flash Data0, the order is
2546 2547
		 * least significant byte first msb to lsb
		 */
2548
		if (!ret_val) {
2549
			flash_data = er32flash(ICH_FLASH_FDATA0);
B
Bruce Allan 已提交
2550
			if (size == 1)
2551
				*data = (u8)(flash_data & 0x000000FF);
B
Bruce Allan 已提交
2552
			else if (size == 2)
2553 2554 2555
				*data = (u16)(flash_data & 0x0000FFFF);
			break;
		} else {
2556 2557
			/*
			 * If we've gotten here, then things are probably
2558 2559 2560 2561 2562
			 * completely hosed, but if the error condition is
			 * detected, it won't hurt to give it another try...
			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
			 */
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
B
Bruce Allan 已提交
2563
			if (hsfsts.hsf_status.flcerr) {
2564 2565
				/* Repeat for some time before giving up. */
				continue;
B
Bruce Allan 已提交
2566
			} else if (!hsfsts.hsf_status.flcdone) {
2567
				e_dbg("Timeout error - flash cycle did not complete.\n");
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
				break;
			}
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to write.
 *  @words: Size of data to write in words
 *  @data: Pointer to the word(s) to write at offset.
 *
 *  Writes a byte or word to the NVM using the flash access registers.
 **/
static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				   u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u16 i;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
2594
		e_dbg("nvm parameter(s) out of bounds\n");
2595 2596 2597
		return -E1000_ERR_NVM;
	}

2598
	nvm->ops.acquire(hw);
2599

2600
	for (i = 0; i < words; i++) {
2601
		dev_spec->shadow_ram[offset+i].modified = true;
2602 2603 2604
		dev_spec->shadow_ram[offset+i].value = data[i];
	}

2605
	nvm->ops.release(hw);
2606

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
	return 0;
}

/**
 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
 *  @hw: pointer to the HW structure
 *
 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
 *  which writes the checksum to the shadow ram.  The changes in the shadow
 *  ram are then committed to the EEPROM by processing each bank at a time
 *  checking for the modified bit and writing only the pending changes.
2618
 *  After a successful commit, the shadow ram is cleared and is ready for
2619 2620 2621 2622 2623 2624
 *  future writes.
 **/
static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2625
	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2626 2627 2628 2629 2630
	s32 ret_val;
	u16 data;

	ret_val = e1000e_update_nvm_checksum_generic(hw);
	if (ret_val)
2631
		goto out;
2632 2633

	if (nvm->type != e1000_nvm_flash_sw)
2634
		goto out;
2635

2636
	nvm->ops.acquire(hw);
2637

2638 2639
	/*
	 * We're writing to the opposite bank so if we're on bank 1,
2640
	 * write to bank 0 etc.  We also need to erase the segment that
2641 2642
	 * is going to be written
	 */
2643
	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2644
	if (ret_val) {
2645
		e_dbg("Could not detect valid bank, assuming bank 0\n");
2646
		bank = 0;
2647
	}
2648 2649

	if (bank == 0) {
2650 2651
		new_bank_offset = nvm->flash_bank_size;
		old_bank_offset = 0;
2652
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2653 2654
		if (ret_val)
			goto release;
2655 2656 2657
	} else {
		old_bank_offset = nvm->flash_bank_size;
		new_bank_offset = 0;
2658
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2659 2660
		if (ret_val)
			goto release;
2661 2662 2663
	}

	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2664 2665
		/*
		 * Determine whether to write the value stored
2666
		 * in the other NVM bank or a modified value stored
2667 2668
		 * in the shadow RAM
		 */
2669 2670 2671
		if (dev_spec->shadow_ram[i].modified) {
			data = dev_spec->shadow_ram[i].value;
		} else {
2672 2673 2674 2675 2676
			ret_val = e1000_read_flash_word_ich8lan(hw, i +
			                                        old_bank_offset,
			                                        &data);
			if (ret_val)
				break;
2677 2678
		}

2679 2680
		/*
		 * If the word is 0x13, then make sure the signature bits
2681 2682 2683 2684
		 * (15:14) are 11b until the commit has completed.
		 * This will allow us to write 10b which indicates the
		 * signature is valid.  We want to do this after the write
		 * has completed so that we don't mark the segment valid
2685 2686
		 * while the write is still in progress
		 */
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
		if (i == E1000_ICH_NVM_SIG_WORD)
			data |= E1000_ICH_NVM_SIG_MASK;

		/* Convert offset to bytes. */
		act_offset = (i + new_bank_offset) << 1;

		udelay(100);
		/* Write the bytes to the new bank. */
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							       act_offset,
							       (u8)data);
		if (ret_val)
			break;

		udelay(100);
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							  act_offset + 1,
							  (u8)(data >> 8));
		if (ret_val)
			break;
	}

2709 2710 2711 2712
	/*
	 * Don't bother writing the segment valid bits if sector
	 * programming failed.
	 */
2713
	if (ret_val) {
2714
		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2715
		e_dbg("Flash commit failed.\n");
2716
		goto release;
2717 2718
	}

2719 2720
	/*
	 * Finally validate the new segment by setting bit 15:14
2721 2722
	 * to 10b in word 0x13 , this can be done without an
	 * erase as well since these bits are 11 to start with
2723 2724
	 * and we need to change bit 14 to 0b
	 */
2725
	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2726
	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2727 2728 2729
	if (ret_val)
		goto release;

2730 2731 2732 2733
	data &= 0xBFFF;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
						       act_offset * 2 + 1,
						       (u8)(data >> 8));
2734 2735
	if (ret_val)
		goto release;
2736

2737 2738
	/*
	 * And invalidate the previously valid segment by setting
2739 2740
	 * its signature word (0x13) high_byte to 0b. This can be
	 * done without an erase because flash erase sets all bits
2741 2742
	 * to 1's. We can write 1's to 0's without an erase
	 */
2743 2744
	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2745 2746
	if (ret_val)
		goto release;
2747 2748 2749

	/* Great!  Everything worked, we can now clear the cached entries. */
	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2750
		dev_spec->shadow_ram[i].modified = false;
2751 2752 2753
		dev_spec->shadow_ram[i].value = 0xFFFF;
	}

2754
release:
2755
	nvm->ops.release(hw);
2756

2757 2758
	/*
	 * Reload the EEPROM, or else modifications will not appear
2759 2760
	 * until after the next adapter reset.
	 */
2761
	if (!ret_val) {
2762
		nvm->ops.reload(hw);
2763
		usleep_range(10000, 20000);
2764
	}
2765

2766 2767
out:
	if (ret_val)
2768
		e_dbg("NVM update error: %d\n", ret_val);
2769

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
	return ret_val;
}

/**
 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
 *  calculated, in which case we need to calculate the checksum and set bit 6.
 **/
static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 data;

2786 2787
	/*
	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2788 2789 2790 2791 2792 2793 2794 2795
	 * needs to be fixed.  This bit is an indication that the NVM
	 * was prepared by OEM software and did not calculate the
	 * checksum...a likely scenario.
	 */
	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
	if (ret_val)
		return ret_val;

B
Bruce Allan 已提交
2796
	if (!(data & 0x40)) {
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
		data |= 0x40;
		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
		if (ret_val)
			return ret_val;
		ret_val = e1000e_update_nvm_checksum(hw);
		if (ret_val)
			return ret_val;
	}

	return e1000e_validate_nvm_checksum_generic(hw);
}

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
/**
 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
 *  @hw: pointer to the HW structure
 *
 *  To prevent malicious write/erase of the NVM, set it to be read-only
 *  so that the hardware ignores all write/erase cycles of the NVM via
 *  the flash control registers.  The shadow-ram copy of the NVM will
 *  still be updated, however any updates to this copy will not stick
 *  across driver reloads.
 **/
void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
{
2821
	struct e1000_nvm_info *nvm = &hw->nvm;
2822 2823 2824 2825
	union ich8_flash_protected_range pr0;
	union ich8_hws_flash_status hsfsts;
	u32 gfpreg;

2826
	nvm->ops.acquire(hw);
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846

	gfpreg = er32flash(ICH_FLASH_GFPREG);

	/* Write-protect GbE Sector of NVM */
	pr0.regval = er32flash(ICH_FLASH_PR0);
	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
	pr0.range.wpe = true;
	ew32flash(ICH_FLASH_PR0, pr0.regval);

	/*
	 * Lock down a subset of GbE Flash Control Registers, e.g.
	 * PR0 to prevent the write-protection from being lifted.
	 * Once FLOCKDN is set, the registers protected by it cannot
	 * be written until FLOCKDN is cleared by a hardware reset.
	 */
	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
	hsfsts.hsf_status.flockdn = true;
	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);

2847
	nvm->ops.release(hw);
2848 2849
}

2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
/**
 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte/word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: The byte(s) to write to the NVM.
 *
 *  Writes one/two bytes to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 size, u16 data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val;
	u8 count = 0;

	if (size < 1 || size > 2 || data > size * 0xff ||
	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			    hw->nvm.flash_base_addr;

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
		if (ret_val)
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size -1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		if (size == 1)
			flash_data = (u32)data & 0x00FF;
		else
			flash_data = (u32)data;

		ew32flash(ICH_FLASH_FDATA0, flash_data);

2898 2899 2900 2901
		/*
		 * check if FCERR is set to 1 , if set to 1, clear it
		 * and try the whole sequence a few more times else done
		 */
2902 2903 2904 2905 2906
		ret_val = e1000_flash_cycle_ich8lan(hw,
					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
		if (!ret_val)
			break;

2907 2908
		/*
		 * If we're here, then things are most likely
2909 2910 2911 2912 2913
		 * completely hosed, but if the error condition
		 * is detected, it won't hurt to give it another
		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
		 */
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
B
Bruce Allan 已提交
2914
		if (hsfsts.hsf_status.flcerr)
2915 2916
			/* Repeat for some time before giving up. */
			continue;
B
Bruce Allan 已提交
2917
		if (!hsfsts.hsf_status.flcdone) {
2918
			e_dbg("Timeout error - flash cycle did not complete.\n");
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
			break;
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The index of the byte to read.
 *  @data: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 data)
{
	u16 word = (u16)data;

	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
}

/**
 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to write.
 *  @byte: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 *  Goes through a retry algorithm before giving up.
 **/
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte)
{
	s32 ret_val;
	u16 program_retries;

	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
	if (!ret_val)
		return ret_val;

	for (program_retries = 0; program_retries < 100; program_retries++) {
2962
		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
		udelay(100);
		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
		if (!ret_val)
			break;
	}
	if (program_retries == 100)
		return -E1000_ERR_NVM;

	return 0;
}

/**
 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
 *  @hw: pointer to the HW structure
 *  @bank: 0 for first bank, 1 for second bank, etc.
 *
 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
 *  bank N is 4096 * N + flash_reg_addr.
 **/
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	/* bank size is in 16bit words - adjust to bytes */
	u32 flash_bank_size = nvm->flash_bank_size * 2;
	s32 ret_val;
	s32 count = 0;
2992
	s32 j, iteration, sector_size;
2993 2994 2995

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

2996 2997 2998 2999
	/*
	 * Determine HW Sector size: Read BERASE bits of hw flash status
	 * register
	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
	 *     consecutive sectors.  The start index for the nth Hw sector
	 *     can be calculated as = bank * 4096 + n * 256
	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
	 *     The start index for the nth Hw sector can be calculated
	 *     as = bank * 4096
	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
	 *     (ich9 only, otherwise error condition)
	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
	 */
	switch (hsfsts.hsf_status.berasesz) {
	case 0:
		/* Hw sector size 256 */
		sector_size = ICH_FLASH_SEG_SIZE_256;
		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
		break;
	case 1:
		sector_size = ICH_FLASH_SEG_SIZE_4K;
3017
		iteration = 1;
3018 3019
		break;
	case 2:
3020 3021
		sector_size = ICH_FLASH_SEG_SIZE_8K;
		iteration = 1;
3022 3023 3024
		break;
	case 3:
		sector_size = ICH_FLASH_SEG_SIZE_64K;
3025
		iteration = 1;
3026 3027 3028 3029 3030 3031 3032
		break;
	default:
		return -E1000_ERR_NVM;
	}

	/* Start with the base address, then add the sector offset. */
	flash_linear_addr = hw->nvm.flash_base_addr;
3033
	flash_linear_addr += (bank) ? flash_bank_size : 0;
3034 3035 3036 3037 3038 3039 3040 3041

	for (j = 0; j < iteration ; j++) {
		do {
			/* Steps */
			ret_val = e1000_flash_cycle_init_ich8lan(hw);
			if (ret_val)
				return ret_val;

3042 3043 3044 3045
			/*
			 * Write a value 11 (block Erase) in Flash
			 * Cycle field in hw flash control
			 */
3046 3047 3048 3049
			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

3050 3051
			/*
			 * Write the last 24 bits of an index within the
3052 3053 3054 3055 3056 3057 3058 3059
			 * block into Flash Linear address field in Flash
			 * Address.
			 */
			flash_linear_addr += (j * sector_size);
			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

			ret_val = e1000_flash_cycle_ich8lan(hw,
					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
3060
			if (!ret_val)
3061 3062
				break;

3063 3064
			/*
			 * Check if FCERR is set to 1.  If 1,
3065
			 * clear it and try the whole sequence
3066 3067
			 * a few more times else Done
			 */
3068
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
B
Bruce Allan 已提交
3069
			if (hsfsts.hsf_status.flcerr)
3070
				/* repeat for some time before giving up */
3071
				continue;
B
Bruce Allan 已提交
3072
			else if (!hsfsts.hsf_status.flcdone)
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
				return ret_val;
		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
	}

	return 0;
}

/**
 *  e1000_valid_led_default_ich8lan - Set the default LED settings
 *  @hw: pointer to the HW structure
 *  @data: Pointer to the LED settings
 *
 *  Reads the LED default settings from the NVM to data.  If the NVM LED
 *  settings is all 0's or F's, set the LED default to a valid LED default
 *  setting.
 **/
static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
3095
		e_dbg("NVM Read Error\n");
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
		return ret_val;
	}

	if (*data == ID_LED_RESERVED_0000 ||
	    *data == ID_LED_RESERVED_FFFF)
		*data = ID_LED_DEFAULT_ICH8LAN;

	return 0;
}

3106 3107 3108 3109 3110 3111 3112 3113 3114
/**
 *  e1000_id_led_init_pchlan - store LED configurations
 *  @hw: pointer to the HW structure
 *
 *  PCH does not control LEDs via the LEDCTL register, rather it uses
 *  the PHY LED configuration register.
 *
 *  PCH also does not have an "always on" or "always off" mode which
 *  complicates the ID feature.  Instead of using the "on" mode to indicate
3115
 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
 *  use "link_up" mode.  The LEDs will still ID on request if there is no
 *  link based on logic in e1000_led_[on|off]_pchlan().
 **/
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
	u16 data, i, temp, shift;

	/* Get default ID LED modes */
	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
	if (ret_val)
3130
		return ret_val;
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174

	mac->ledctl_default = er32(LEDCTL);
	mac->ledctl_mode1 = mac->ledctl_default;
	mac->ledctl_mode2 = mac->ledctl_default;

	for (i = 0; i < 4; i++) {
		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
		shift = (i * 5);
		switch (temp) {
		case ID_LED_ON1_DEF2:
		case ID_LED_ON1_ON2:
		case ID_LED_ON1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_on << shift);
			break;
		case ID_LED_OFF1_DEF2:
		case ID_LED_OFF1_ON2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
		switch (temp) {
		case ID_LED_DEF1_ON2:
		case ID_LED_ON1_ON2:
		case ID_LED_OFF1_ON2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_on << shift);
			break;
		case ID_LED_DEF1_OFF2:
		case ID_LED_ON1_OFF2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
	}

3175
	return 0;
3176 3177
}

3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
/**
 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
 *  @hw: pointer to the HW structure
 *
 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
 *  register, so the the bus width is hard coded.
 **/
static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;
	s32 ret_val;

	ret_val = e1000e_get_bus_info_pcie(hw);

3192 3193
	/*
	 * ICH devices are "PCI Express"-ish.  They have
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
	 * a configuration space, but do not contain
	 * PCI Express Capability registers, so bus width
	 * must be hardcoded.
	 */
	if (bus->width == e1000_bus_width_unknown)
		bus->width = e1000_bus_width_pcie_x1;

	return ret_val;
}

/**
 *  e1000_reset_hw_ich8lan - Reset the hardware
 *  @hw: pointer to the HW structure
 *
 *  Does a full reset of the hardware which includes a reset of the PHY and
 *  MAC.
 **/
static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
{
3213
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3214 3215
	u16 kum_cfg;
	u32 ctrl, reg;
3216 3217
	s32 ret_val;

3218 3219
	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
3220 3221 3222
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
3223
	if (ret_val)
3224
		e_dbg("PCI-E Master disable polling has failed.\n");
3225

3226
	e_dbg("Masking off all interrupts\n");
3227 3228
	ew32(IMC, 0xffffffff);

3229 3230
	/*
	 * Disable the Transmit and Receive units.  Then delay to allow
3231 3232 3233 3234 3235 3236 3237
	 * any pending transactions to complete before we hit the MAC
	 * with the global reset.
	 */
	ew32(RCTL, 0);
	ew32(TCTL, E1000_TCTL_PSP);
	e1e_flush();

3238
	usleep_range(10000, 20000);
3239 3240 3241 3242 3243 3244 3245 3246 3247

	/* Workaround for ICH8 bit corruption issue in FIFO memory */
	if (hw->mac.type == e1000_ich8lan) {
		/* Set Tx and Rx buffer allocation to 8k apiece. */
		ew32(PBA, E1000_PBA_8K);
		/* Set Packet Buffer Size to 16k. */
		ew32(PBS, E1000_PBS_16K);
	}

3248
	if (hw->mac.type == e1000_pchlan) {
3249 3250
		/* Save the NVM K1 bit setting */
		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3251 3252 3253
		if (ret_val)
			return ret_val;

3254
		if (kum_cfg & E1000_NVM_K1_ENABLE)
3255 3256 3257 3258 3259
			dev_spec->nvm_k1_enabled = true;
		else
			dev_spec->nvm_k1_enabled = false;
	}

3260 3261
	ctrl = er32(CTRL);

3262
	if (!hw->phy.ops.check_reset_block(hw)) {
3263
		/*
3264
		 * Full-chip reset requires MAC and PHY reset at the same
3265 3266 3267 3268
		 * time to make sure the interface between MAC and the
		 * external PHY is reset.
		 */
		ctrl |= E1000_CTRL_PHY_RST;
3269 3270 3271 3272 3273 3274 3275 3276

		/*
		 * Gate automatic PHY configuration by hardware on
		 * non-managed 82579
		 */
		if ((hw->mac.type == e1000_pch2lan) &&
		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
			e1000_gate_hw_phy_config_ich8lan(hw, true);
3277 3278
	}
	ret_val = e1000_acquire_swflag_ich8lan(hw);
3279
	e_dbg("Issuing a global reset to ich8lan\n");
3280
	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3281
	/* cannot issue a flush here because it hangs the hardware */
3282 3283
	msleep(20);

3284 3285 3286 3287 3288 3289 3290 3291
	/* Set Phy Config Counter to 50msec */
	if (hw->mac.type == e1000_pch2lan) {
		reg = er32(FEXTNVM3);
		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
		ew32(FEXTNVM3, reg);
	}

3292
	if (!ret_val)
3293
		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3294

3295
	if (ctrl & E1000_CTRL_PHY_RST) {
3296
		ret_val = hw->phy.ops.get_cfg_done(hw);
3297
		if (ret_val)
3298
			return ret_val;
3299

3300
		ret_val = e1000_post_phy_reset_ich8lan(hw);
3301
		if (ret_val)
3302
			return ret_val;
3303
	}
3304

3305 3306 3307 3308 3309 3310 3311 3312
	/*
	 * For PCH, this write will make sure that any noise
	 * will be detected as a CRC error and be dropped rather than show up
	 * as a bad packet to the DMA engine.
	 */
	if (hw->mac.type == e1000_pchlan)
		ew32(CRC_OFFSET, 0x65656565);

3313
	ew32(IMC, 0xffffffff);
3314
	er32(ICR);
3315

3316 3317 3318
	reg = er32(KABGTXD);
	reg |= E1000_KABGTXD_BGSQLBIAS;
	ew32(KABGTXD, reg);
3319

3320
	return 0;
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
}

/**
 *  e1000_init_hw_ich8lan - Initialize the hardware
 *  @hw: pointer to the HW structure
 *
 *  Prepares the hardware for transmit and receive by doing the following:
 *   - initialize hardware bits
 *   - initialize LED identification
 *   - setup receive address registers
 *   - setup flow control
3332
 *   - setup transmit descriptors
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
 *   - clear statistics
 **/
static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 ctrl_ext, txdctl, snoop;
	s32 ret_val;
	u16 i;

	e1000_initialize_hw_bits_ich8lan(hw);

	/* Initialize identification LED */
3345
	ret_val = mac->ops.id_led_init(hw);
3346
	if (ret_val)
3347
		e_dbg("Error initializing identification LED\n");
3348
		/* This is not fatal and we should not stop init due to this */
3349 3350 3351 3352 3353

	/* Setup the receive address. */
	e1000e_init_rx_addrs(hw, mac->rar_entry_count);

	/* Zero out the Multicast HASH table */
3354
	e_dbg("Zeroing the MTA\n");
3355 3356 3357
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

3358 3359
	/*
	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3360
	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3361 3362 3363
	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
	 */
	if (hw->phy.type == e1000_phy_82578) {
3364 3365 3366
		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
		i &= ~BM_WUC_HOST_WU_BIT;
		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3367 3368 3369 3370 3371
		ret_val = e1000_phy_hw_reset_ich8lan(hw);
		if (ret_val)
			return ret_val;
	}

3372
	/* Setup link and flow control */
3373
	ret_val = mac->ops.setup_link(hw);
3374 3375

	/* Set the transmit descriptor write-back policy for both queues */
3376
	txdctl = er32(TXDCTL(0));
3377 3378 3379 3380
	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
		 E1000_TXDCTL_FULL_TX_DESC_WB;
	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3381 3382
	ew32(TXDCTL(0), txdctl);
	txdctl = er32(TXDCTL(1));
3383 3384 3385 3386
	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
		 E1000_TXDCTL_FULL_TX_DESC_WB;
	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3387
	ew32(TXDCTL(1), txdctl);
3388

3389 3390 3391 3392
	/*
	 * ICH8 has opposite polarity of no_snoop bits.
	 * By default, we should use snoop behavior.
	 */
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
	if (mac->type == e1000_ich8lan)
		snoop = PCIE_ICH8_SNOOP_ALL;
	else
		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
	e1000e_set_pcie_no_snoop(hw, snoop);

	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
	ew32(CTRL_EXT, ctrl_ext);

3403 3404
	/*
	 * Clear all of the statistics registers (clear on read).  It is
3405 3406 3407 3408 3409 3410
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_ich8lan(hw);

3411
	return ret_val;
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
}
/**
 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
 *  @hw: pointer to the HW structure
 *
 *  Sets/Clears required hardware bits necessary for correctly setting up the
 *  hardware for transmit and receive.
 **/
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
{
	u32 reg;

	/* Extended Device Control */
	reg = er32(CTRL_EXT);
	reg |= (1 << 22);
3427 3428 3429
	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
	if (hw->mac.type >= e1000_pchlan)
		reg |= E1000_CTRL_EXT_PHYPDEN;
3430 3431 3432
	ew32(CTRL_EXT, reg);

	/* Transmit Descriptor Control 0 */
3433
	reg = er32(TXDCTL(0));
3434
	reg |= (1 << 22);
3435
	ew32(TXDCTL(0), reg);
3436 3437

	/* Transmit Descriptor Control 1 */
3438
	reg = er32(TXDCTL(1));
3439
	reg |= (1 << 22);
3440
	ew32(TXDCTL(1), reg);
3441 3442

	/* Transmit Arbitration Control 0 */
3443
	reg = er32(TARC(0));
3444 3445 3446
	if (hw->mac.type == e1000_ich8lan)
		reg |= (1 << 28) | (1 << 29);
	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3447
	ew32(TARC(0), reg);
3448 3449

	/* Transmit Arbitration Control 1 */
3450
	reg = er32(TARC(1));
3451 3452 3453 3454 3455
	if (er32(TCTL) & E1000_TCTL_MULR)
		reg &= ~(1 << 28);
	else
		reg |= (1 << 28);
	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3456
	ew32(TARC(1), reg);
3457 3458 3459 3460 3461 3462 3463

	/* Device Status */
	if (hw->mac.type == e1000_ich8lan) {
		reg = er32(STATUS);
		reg &= ~(1 << 31);
		ew32(STATUS, reg);
	}
3464 3465 3466 3467 3468 3469 3470 3471

	/*
	 * work-around descriptor data corruption issue during nfs v2 udp
	 * traffic, just disable the nfs filtering capability
	 */
	reg = er32(RFCTL);
	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
	ew32(RFCTL, reg);
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
}

/**
 *  e1000_setup_link_ich8lan - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;

3488
	if (hw->phy.ops.check_reset_block(hw))
3489 3490
		return 0;

3491 3492
	/*
	 * ICH parts do not have a word in the NVM to determine
3493 3494 3495
	 * the default flow control setting, so we explicitly
	 * set it to full.
	 */
3496 3497 3498 3499 3500 3501 3502
	if (hw->fc.requested_mode == e1000_fc_default) {
		/* Workaround h/w hang when Tx flow control enabled */
		if (hw->mac.type == e1000_pchlan)
			hw->fc.requested_mode = e1000_fc_rx_pause;
		else
			hw->fc.requested_mode = e1000_fc_full;
	}
3503

3504 3505 3506 3507 3508
	/*
	 * Save off the requested flow control mode for use later.  Depending
	 * on the link partner's capabilities, we may or may not use this mode.
	 */
	hw->fc.current_mode = hw->fc.requested_mode;
3509

3510
	e_dbg("After fix-ups FlowControl is now = %x\n",
3511
		hw->fc.current_mode);
3512 3513

	/* Continue to configure the copper link. */
3514
	ret_val = hw->mac.ops.setup_physical_interface(hw);
3515 3516 3517
	if (ret_val)
		return ret_val;

3518
	ew32(FCTTV, hw->fc.pause_time);
3519
	if ((hw->phy.type == e1000_phy_82578) ||
3520
	    (hw->phy.type == e1000_phy_82579) ||
3521
	    (hw->phy.type == e1000_phy_82577)) {
3522 3523
		ew32(FCRTV_PCH, hw->fc.refresh_time);

3524 3525
		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
				   hw->fc.pause_time);
3526 3527 3528
		if (ret_val)
			return ret_val;
	}
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551

	return e1000e_set_fc_watermarks(hw);
}

/**
 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
 *  @hw: pointer to the HW structure
 *
 *  Configures the kumeran interface to the PHY to wait the appropriate time
 *  when polling the PHY, then call the generic setup_copper_link to finish
 *  configuring the copper link.
 **/
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;
	u16 reg_data;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

3552 3553
	/*
	 * Set the mac to wait the maximum time between each iteration
3554
	 * and increase the max iterations when polling the phy;
3555 3556
	 * this fixes erroneous timeouts at 10Mbps.
	 */
3557
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3558 3559
	if (ret_val)
		return ret_val;
3560 3561
	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
	                               &reg_data);
3562 3563 3564
	if (ret_val)
		return ret_val;
	reg_data |= 0x3F;
3565 3566
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
	                                reg_data);
3567 3568 3569
	if (ret_val)
		return ret_val;

3570 3571
	switch (hw->phy.type) {
	case e1000_phy_igp_3:
3572 3573 3574
		ret_val = e1000e_copper_link_setup_igp(hw);
		if (ret_val)
			return ret_val;
3575 3576 3577
		break;
	case e1000_phy_bm:
	case e1000_phy_82578:
3578 3579 3580
		ret_val = e1000e_copper_link_setup_m88(hw);
		if (ret_val)
			return ret_val;
3581 3582
		break;
	case e1000_phy_82577:
3583
	case e1000_phy_82579:
3584 3585 3586 3587 3588
		ret_val = e1000_copper_link_setup_82577(hw);
		if (ret_val)
			return ret_val;
		break;
	case e1000_phy_ife:
3589
		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
		if (ret_val)
			return ret_val;

		reg_data &= ~IFE_PMC_AUTO_MDIX;

		switch (hw->phy.mdix) {
		case 1:
			reg_data &= ~IFE_PMC_FORCE_MDIX;
			break;
		case 2:
			reg_data |= IFE_PMC_FORCE_MDIX;
			break;
		case 0:
		default:
			reg_data |= IFE_PMC_AUTO_MDIX;
			break;
		}
3607
		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3608 3609
		if (ret_val)
			return ret_val;
3610 3611 3612
		break;
	default:
		break;
3613
	}
3614

3615 3616 3617 3618 3619 3620 3621 3622 3623
	return e1000e_setup_copper_link(hw);
}

/**
 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
 *  @hw: pointer to the HW structure
 *  @speed: pointer to store current link speed
 *  @duplex: pointer to store the current link duplex
 *
3624
 *  Calls the generic get_speed_and_duplex to retrieve the current link
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
 *  information and then calls the Kumeran lock loss workaround for links at
 *  gigabit speeds.
 **/
static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
					  u16 *duplex)
{
	s32 ret_val;

	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
	if (ret_val)
		return ret_val;

	if ((hw->mac.type == e1000_ich8lan) &&
	    (hw->phy.type == e1000_phy_igp_3) &&
	    (*speed == SPEED_1000)) {
		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
	}

	return ret_val;
}

/**
 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
 *  @hw: pointer to the HW structure
 *
 *  Work-around for 82566 Kumeran PCS lock loss:
 *  On link status change (i.e. PCI reset, speed change) and link is up and
 *  speed is gigabit-
 *    0) if workaround is optionally disabled do nothing
 *    1) wait 1ms for Kumeran link to come up
 *    2) check Kumeran Diagnostic register PCS lock loss bit
 *    3) if not set the link is locked (all is good), otherwise...
 *    4) reset the PHY
 *    5) repeat up to 10 times
 *  Note: this is only called for IGP3 copper when speed is 1gb.
 **/
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 phy_ctrl;
	s32 ret_val;
	u16 i, data;
	bool link;

	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
		return 0;

3672 3673
	/*
	 * Make sure link is up before proceeding.  If not just return.
3674
	 * Attempting this while link is negotiating fouled up link
3675 3676
	 * stability
	 */
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (!link)
		return 0;

	for (i = 0; i < 10; i++) {
		/* read once to clear */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;
		/* and again to get new status */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;

		/* check for PCS lock */
		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
			return 0;

		/* Issue PHY reset */
		e1000_phy_hw_reset(hw);
		mdelay(5);
	}
	/* Disable GigE link negotiation */
	phy_ctrl = er32(PHY_CTRL);
	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
	ew32(PHY_CTRL, phy_ctrl);

3705 3706 3707 3708
	/*
	 * Call gig speed drop workaround on Gig disable before accessing
	 * any PHY registers
	 */
3709 3710 3711 3712 3713 3714 3715
	e1000e_gig_downshift_workaround_ich8lan(hw);

	/* unable to acquire PCS lock */
	return -E1000_ERR_PHY;
}

/**
3716
 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3717
 *  @hw: pointer to the HW structure
3718
 *  @state: boolean value used to set the current Kumeran workaround state
3719
 *
3720 3721
 *  If ICH8, set the current Kumeran workaround state (enabled - true
 *  /disabled - false).
3722 3723 3724 3725 3726 3727 3728
 **/
void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
						 bool state)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;

	if (hw->mac.type != e1000_ich8lan) {
3729
		e_dbg("Workaround applies to ICH8 only.\n");
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
		return;
	}

	dev_spec->kmrn_lock_loss_workaround_enabled = state;
}

/**
 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
 *  @hw: pointer to the HW structure
 *
 *  Workaround for 82566 power-down on D3 entry:
 *    1) disable gigabit link
 *    2) write VR power-down enable
 *    3) read it back
 *  Continue if successful, else issue LCD reset and repeat
 **/
void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
{
	u32 reg;
	u16 data;
	u8  retry = 0;

	if (hw->phy.type != e1000_phy_igp_3)
		return;

	/* Try the workaround twice (if needed) */
	do {
		/* Disable link */
		reg = er32(PHY_CTRL);
		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
		ew32(PHY_CTRL, reg);

3763 3764 3765 3766
		/*
		 * Call gig speed drop workaround on Gig disable before
		 * accessing any PHY registers
		 */
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
		if (hw->mac.type == e1000_ich8lan)
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* Write VR power-down enable */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);

		/* Read it back and test */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
			break;

		/* Issue PHY reset and repeat at most one more time */
		reg = er32(CTRL);
		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
		retry++;
	} while (retry);
}

/**
 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
 *  @hw: pointer to the HW structure
 *
 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3793
 *  LPLU, Gig disable, MDIC PHY reset):
3794 3795
 *    1) Set Kumeran Near-end loopback
 *    2) Clear Kumeran Near-end loopback
3796
 *  Should only be called for ICH8[m] devices with any 1G Phy.
3797 3798 3799 3800 3801 3802
 **/
void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 reg_data;

3803
	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
		return;

	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				      &reg_data);
	if (ret_val)
		return;
	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				       reg_data);
	if (ret_val)
		return;
	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				       reg_data);
}

3820
/**
3821
 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3822 3823 3824 3825
 *  @hw: pointer to the HW structure
 *
 *  During S0 to Sx transition, it is possible the link remains at gig
 *  instead of negotiating to a lower speed.  Before going to Sx, set
3826 3827 3828 3829
 *  'Gig Disable' to force link speed negotiation to a lower speed based on
 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
 *  needs to be written.
3830
 **/
3831
void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3832 3833
{
	u32 phy_ctrl;
3834
	s32 ret_val;
3835

3836
	phy_ctrl = er32(PHY_CTRL);
3837
	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
3838
	ew32(PHY_CTRL, phy_ctrl);
3839

3840 3841 3842
	if (hw->mac.type == e1000_ich8lan)
		e1000e_gig_downshift_workaround_ich8lan(hw);

3843
	if (hw->mac.type >= e1000_pchlan) {
3844
		e1000_oem_bits_config_ich8lan(hw, false);
B
Bruce Allan 已提交
3845 3846 3847 3848 3849

		/* Reset PHY to activate OEM bits on 82577/8 */
		if (hw->mac.type == e1000_pchlan)
			e1000e_phy_hw_reset_generic(hw);

3850 3851 3852 3853 3854 3855
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return;
		e1000_write_smbus_addr(hw);
		hw->phy.ops.release(hw);
	}
3856 3857
}

3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
/**
 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
 *  @hw: pointer to the HW structure
 *
 *  During Sx to S0 transitions on non-managed devices or managed devices
 *  on which PHY resets are not blocked, if the PHY registers cannot be
 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
 *  the PHY.
 **/
void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
{
3869
	s32 ret_val;
3870

3871
	if (hw->mac.type < e1000_pch2lan)
3872 3873
		return;

3874
	ret_val = e1000_init_phy_workarounds_pchlan(hw);
3875
	if (ret_val) {
3876
		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
3877 3878
		return;
	}
3879 3880
}

3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
/**
 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.
 **/
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);

	ew32(LEDCTL, hw->mac.ledctl_default);
	return 0;
}

/**
3897
 *  e1000_led_on_ich8lan - Turn LEDs on
3898 3899
 *  @hw: pointer to the HW structure
 *
3900
 *  Turn on the LEDs.
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
 **/
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));

	ew32(LEDCTL, hw->mac.ledctl_mode2);
	return 0;
}

/**
3913
 *  e1000_led_off_ich8lan - Turn LEDs off
3914 3915
 *  @hw: pointer to the HW structure
 *
3916
 *  Turn off the LEDs.
3917 3918 3919 3920 3921
 **/
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3922 3923
				(IFE_PSCL_PROBE_MODE |
				 IFE_PSCL_PROBE_LEDS_OFF));
3924 3925 3926 3927 3928

	ew32(LEDCTL, hw->mac.ledctl_mode1);
	return 0;
}

3929 3930 3931 3932 3933 3934 3935 3936
/**
 *  e1000_setup_led_pchlan - Configures SW controllable LED
 *  @hw: pointer to the HW structure
 *
 *  This prepares the SW controllable LED for use.
 **/
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
{
3937
	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
}

/**
 *  e1000_cleanup_led_pchlan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.
 **/
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
{
3948
	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
}

/**
 *  e1000_led_on_pchlan - Turn LEDs on
 *  @hw: pointer to the HW structure
 *
 *  Turn on the LEDs.
 **/
static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
{
	u16 data = (u16)hw->mac.ledctl_mode2;
	u32 i, led;

	/*
	 * If no link, then turn LED on by setting the invert bit
	 * for each LED that's mode is "link_up" in ledctl_mode2.
	 */
	if (!(er32(STATUS) & E1000_STATUS_LU)) {
		for (i = 0; i < 3; i++) {
			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
			if ((led & E1000_PHY_LED0_MODE_MASK) !=
			    E1000_LEDCTL_MODE_LINK_UP)
				continue;
			if (led & E1000_PHY_LED0_IVRT)
				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
			else
				data |= (E1000_PHY_LED0_IVRT << (i * 5));
		}
	}

3979
	return e1e_wphy(hw, HV_LED_CONFIG, data);
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
}

/**
 *  e1000_led_off_pchlan - Turn LEDs off
 *  @hw: pointer to the HW structure
 *
 *  Turn off the LEDs.
 **/
static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
{
	u16 data = (u16)hw->mac.ledctl_mode1;
	u32 i, led;

	/*
	 * If no link, then turn LED off by clearing the invert bit
	 * for each LED that's mode is "link_up" in ledctl_mode1.
	 */
	if (!(er32(STATUS) & E1000_STATUS_LU)) {
		for (i = 0; i < 3; i++) {
			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
			if ((led & E1000_PHY_LED0_MODE_MASK) !=
			    E1000_LEDCTL_MODE_LINK_UP)
				continue;
			if (led & E1000_PHY_LED0_IVRT)
				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
			else
				data |= (E1000_PHY_LED0_IVRT << (i * 5));
		}
	}

4010
	return e1e_wphy(hw, HV_LED_CONFIG, data);
4011 4012
}

4013
/**
4014
 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4015 4016
 *  @hw: pointer to the HW structure
 *
4017 4018 4019 4020 4021 4022 4023
 *  Read appropriate register for the config done bit for completion status
 *  and configure the PHY through s/w for EEPROM-less parts.
 *
 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
 *  config done bit, so only an error is logged and continues.  If we were
 *  to return with error, EEPROM-less silicon would not be able to be reset
 *  or change link.
4024 4025 4026
 **/
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
{
4027
	s32 ret_val = 0;
4028
	u32 bank = 0;
4029
	u32 status;
4030

4031
	e1000e_get_cfg_done(hw);
4032

4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
	/* Wait for indication from h/w that it has completed basic config */
	if (hw->mac.type >= e1000_ich10lan) {
		e1000_lan_init_done_ich8lan(hw);
	} else {
		ret_val = e1000e_get_auto_rd_done(hw);
		if (ret_val) {
			/*
			 * When auto config read does not complete, do not
			 * return with an error. This can happen in situations
			 * where there is no eeprom and prevents getting link.
			 */
			e_dbg("Auto Read Done did not complete\n");
			ret_val = 0;
		}
4047 4048
	}

4049 4050 4051 4052 4053 4054
	/* Clear PHY Reset Asserted bit */
	status = er32(STATUS);
	if (status & E1000_STATUS_PHYRA)
		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
	else
		e_dbg("PHY Reset Asserted not set - needs delay\n");
4055 4056

	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
4057
	if (hw->mac.type <= e1000_ich9lan) {
B
Bruce Allan 已提交
4058
		if (!(er32(EECD) & E1000_EECD_PRES) &&
4059 4060 4061 4062 4063 4064
		    (hw->phy.type == e1000_phy_igp_3)) {
			e1000e_phy_init_script_igp3(hw);
		}
	} else {
		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
			/* Maybe we should do a basic PHY config */
4065
			e_dbg("EEPROM not present\n");
4066
			ret_val = -E1000_ERR_CONFIG;
4067 4068 4069
		}
	}

4070
	return ret_val;
4071 4072
}

4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
/**
 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 **/
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
{
	/* If the management interface is not enabled, then power down */
	if (!(hw->mac.ops.check_mng_mode(hw) ||
	      hw->phy.ops.check_reset_block(hw)))
		e1000_power_down_phy_copper(hw);
}

4088 4089 4090 4091 4092 4093 4094 4095 4096
/**
 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
 *  @hw: pointer to the HW structure
 *
 *  Clears hardware counters specific to the silicon family and calls
 *  clear_hw_cntrs_generic to clear all general purpose counters.
 **/
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
{
4097
	u16 phy_data;
4098
	s32 ret_val;
4099 4100 4101

	e1000e_clear_hw_cntrs_base(hw);

4102 4103 4104 4105 4106 4107
	er32(ALGNERRC);
	er32(RXERRC);
	er32(TNCRS);
	er32(CEXTERR);
	er32(TSCTC);
	er32(TSCTFC);
4108

4109 4110 4111
	er32(MGTPRC);
	er32(MGTPDC);
	er32(MGTPTC);
4112

4113 4114
	er32(IAC);
	er32(ICRXOC);
4115

4116 4117
	/* Clear PHY statistics registers */
	if ((hw->phy.type == e1000_phy_82578) ||
4118
	    (hw->phy.type == e1000_phy_82579) ||
4119
	    (hw->phy.type == e1000_phy_82577)) {
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return;
		ret_val = hw->phy.ops.set_page(hw,
					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
		if (ret_val)
			goto release;
		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
release:
		hw->phy.ops.release(hw);
4143
	}
4144 4145
}

J
Jeff Kirsher 已提交
4146
static const struct e1000_mac_operations ich8_mac_ops = {
4147
	/* check_mng_mode dependent on mac type */
4148
	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4149
	/* cleanup_led dependent on mac type */
4150 4151
	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
	.get_bus_info		= e1000_get_bus_info_ich8lan,
4152
	.set_lan_id		= e1000_set_lan_id_single_port,
4153
	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4154 4155
	/* led_on dependent on mac type */
	/* led_off dependent on mac type */
4156
	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4157 4158 4159 4160
	.reset_hw		= e1000_reset_hw_ich8lan,
	.init_hw		= e1000_init_hw_ich8lan,
	.setup_link		= e1000_setup_link_ich8lan,
	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
4161
	/* id_led_init dependent on mac type */
4162
	.config_collision_dist	= e1000e_config_collision_dist_generic,
4163
	.rar_set		= e1000e_rar_set_generic,
4164 4165
};

J
Jeff Kirsher 已提交
4166
static const struct e1000_phy_operations ich8_phy_ops = {
4167
	.acquire		= e1000_acquire_swflag_ich8lan,
4168
	.check_reset_block	= e1000_check_reset_block_ich8lan,
4169
	.commit			= NULL,
4170
	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4171
	.get_cable_length	= e1000e_get_cable_length_igp_2,
4172 4173 4174
	.read_reg		= e1000e_read_phy_reg_igp,
	.release		= e1000_release_swflag_ich8lan,
	.reset			= e1000_phy_hw_reset_ich8lan,
4175 4176
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4177
	.write_reg		= e1000e_write_phy_reg_igp,
4178 4179
};

J
Jeff Kirsher 已提交
4180
static const struct e1000_nvm_operations ich8_nvm_ops = {
4181 4182 4183
	.acquire		= e1000_acquire_nvm_ich8lan,
	.read		 	= e1000_read_nvm_ich8lan,
	.release		= e1000_release_nvm_ich8lan,
4184
	.reload			= e1000e_reload_nvm_generic,
4185
	.update			= e1000_update_nvm_checksum_ich8lan,
4186
	.valid_led_default	= e1000_valid_led_default_ich8lan,
4187 4188
	.validate		= e1000_validate_nvm_checksum_ich8lan,
	.write			= e1000_write_nvm_ich8lan,
4189 4190
};

J
Jeff Kirsher 已提交
4191
const struct e1000_info e1000_ich8_info = {
4192 4193
	.mac			= e1000_ich8lan,
	.flags			= FLAG_HAS_WOL
4194
				  | FLAG_IS_ICH
4195 4196 4197 4198 4199
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 8,
4200
	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
J
Jeff Kirsher 已提交
4201
	.get_variants		= e1000_get_variants_ich8lan,
4202 4203 4204 4205 4206
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

J
Jeff Kirsher 已提交
4207
const struct e1000_info e1000_ich9_info = {
4208 4209
	.mac			= e1000_ich9lan,
	.flags			= FLAG_HAS_JUMBO_FRAMES
4210
				  | FLAG_IS_ICH
4211 4212 4213 4214 4215
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
4216
	.pba			= 18,
4217
	.max_hw_frame_size	= DEFAULT_JUMBO,
J
Jeff Kirsher 已提交
4218
	.get_variants		= e1000_get_variants_ich8lan,
4219 4220 4221 4222 4223
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

J
Jeff Kirsher 已提交
4224
const struct e1000_info e1000_ich10_info = {
4225 4226 4227 4228 4229 4230 4231 4232
	.mac			= e1000_ich10lan,
	.flags			= FLAG_HAS_JUMBO_FRAMES
				  | FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
4233
	.pba			= 18,
4234
	.max_hw_frame_size	= DEFAULT_JUMBO,
4235 4236 4237 4238 4239
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};
4240

J
Jeff Kirsher 已提交
4241
const struct e1000_info e1000_pch_info = {
4242 4243 4244 4245 4246 4247 4248
	.mac			= e1000_pchlan,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
4249
				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4250
				  | FLAG_APME_IN_WUC,
4251
	.flags2			= FLAG2_HAS_PHY_STATS,
4252 4253 4254 4255 4256 4257 4258
	.pba			= 26,
	.max_hw_frame_size	= 4096,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};
4259

J
Jeff Kirsher 已提交
4260
const struct e1000_info e1000_pch2_info = {
4261 4262 4263 4264 4265 4266 4267 4268
	.mac			= e1000_pch2lan,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_APME_IN_WUC,
4269 4270
	.flags2			= FLAG2_HAS_PHY_STATS
				  | FLAG2_HAS_EEE,
4271
	.pba			= 26,
4272 4273 4274 4275 4276 4277
	.max_hw_frame_size	= DEFAULT_JUMBO,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};