memcontrol.c 186.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
57
#include "internal.h"
G
Glauber Costa 已提交
58
#include <net/sock.h>
M
Michal Hocko 已提交
59
#include <net/ip.h>
G
Glauber Costa 已提交
60
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
61

62 63
#include <asm/uaccess.h>

64 65
#include <trace/events/vmscan.h>

66
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 68
EXPORT_SYMBOL(mem_cgroup_subsys);

69
#define MEM_CGROUP_RECLAIM_RETRIES	5
70
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
71

A
Andrew Morton 已提交
72
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
73
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74
int do_swap_account __read_mostly;
75 76

/* for remember boot option*/
A
Andrew Morton 已提交
77
#ifdef CONFIG_MEMCG_SWAP_ENABLED
78 79 80 81 82
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

83
#else
84
#define do_swap_account		0
85 86 87
#endif


88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
95 96 97 98 99
	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
100 101 102
	MEM_CGROUP_STAT_NSTATS,
};

103 104 105
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
106
	"rss_huge",
107 108 109 110
	"mapped_file",
	"swap",
};

111 112 113
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
114 115
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
116 117
	MEM_CGROUP_EVENTS_NSTATS,
};
118 119 120 121 122 123 124 125

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

126 127 128 129 130 131 132 133
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

134 135 136 137 138 139 140 141 142
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
143
	MEM_CGROUP_TARGET_NUMAINFO,
144 145
	MEM_CGROUP_NTARGETS,
};
146 147 148
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
149

150
struct mem_cgroup_stat_cpu {
151
	long count[MEM_CGROUP_STAT_NSTATS];
152
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153
	unsigned long nr_page_events;
154
	unsigned long targets[MEM_CGROUP_NTARGETS];
155 156
};

157
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
158 159 160 161
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
162
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
163 164
	unsigned long last_dead_count;

165 166 167 168
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

169 170 171 172
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
173
	struct lruvec		lruvec;
174
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
175

176 177
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

178 179 180 181
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
182
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
183
						/* use container_of	   */
184 185 186 187 188 189
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

210 211 212 213 214
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
215
/* For threshold */
216
struct mem_cgroup_threshold_ary {
217
	/* An array index points to threshold just below or equal to usage. */
218
	int current_threshold;
219 220 221 222 223
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
224 225 226 227 228 229 230 231 232 233 234 235

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
236 237 238 239 240
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
241

242 243
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
244

B
Balbir Singh 已提交
245 246 247 248 249 250 251
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
252 253 254
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
255 256 257 258 259 260 261
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
262

263 264 265
	/* vmpressure notifications */
	struct vmpressure vmpressure;

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
283 284
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
285 286 287 288
		 */
		struct work_struct work_freeing;
	};

289 290 291 292
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
293 294 295 296
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
297
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
298 299 300 301

	bool		oom_lock;
	atomic_t	under_oom;

302
	atomic_t	refcnt;
303

304
	int	swappiness;
305 306
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
307

308 309 310
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

311 312 313 314
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
315
	struct mem_cgroup_thresholds thresholds;
316

317
	/* thresholds for mem+swap usage. RCU-protected */
318
	struct mem_cgroup_thresholds memsw_thresholds;
319

K
KAMEZAWA Hiroyuki 已提交
320 321
	/* For oom notifier event fd */
	struct list_head oom_notify;
322

323 324 325 326 327
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
328 329 330 331
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
332 333
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
334
	/*
335
	 * percpu counter.
336
	 */
337
	struct mem_cgroup_stat_cpu __percpu *stat;
338 339 340 341 342 343
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
344

M
Michal Hocko 已提交
345
	atomic_t	dead_count;
M
Michal Hocko 已提交
346
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
347 348
	struct tcp_memcontrol tcp_mem;
#endif
349 350 351 352 353 354 355 356
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
357 358 359 360 361 362 363

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
364

365 366
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
367 368
};

369 370 371 372 373 374
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

375 376 377
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
378
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
379
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
380 381
};

382 383 384
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
385 386 387 388 389 390

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
391 392 393 394 395 396

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

397 398 399 400 401
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

402 403 404 405 406
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

407 408 409 410 411 412 413 414 415 416 417
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
418 419
#endif

420 421
/* Stuffs for move charges at task migration. */
/*
422 423
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
424 425
 */
enum move_type {
426
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
427
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
428 429 430
	NR_MOVE_TYPE,
};

431 432
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
433
	spinlock_t	  lock; /* for from, to */
434 435
	struct mem_cgroup *from;
	struct mem_cgroup *to;
436
	unsigned long immigrate_flags;
437
	unsigned long precharge;
438
	unsigned long moved_charge;
439
	unsigned long moved_swap;
440 441 442
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
443
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
444 445
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
446

D
Daisuke Nishimura 已提交
447 448
static bool move_anon(void)
{
449
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
450 451
}

452 453
static bool move_file(void)
{
454
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
455 456
}

457 458 459 460
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
461 462
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
463

464 465
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
466
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
467
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
468
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
469 470 471
	NR_CHARGE_TYPE,
};

472
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
473 474 475 476
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
477
	_KMEM,
G
Glauber Costa 已提交
478 479
};

480 481
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
482
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
483 484
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
485

486 487 488 489 490 491 492 493
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

494 495 496 497 498 499 500
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

501 502
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
503

504 505 506 507 508 509
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

528 529 530 531 532
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
533
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
534
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
535 536 537

void sock_update_memcg(struct sock *sk)
{
538
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
539
		struct mem_cgroup *memcg;
540
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
541 542 543

		BUG_ON(!sk->sk_prot->proto_cgroup);

544 545 546 547 548 549 550 551 552 553 554 555 556 557
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
558 559
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
560 561
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
562
			mem_cgroup_get(memcg);
563
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
564 565 566 567 568 569 570 571
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
572
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
573 574 575 576 577 578
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
579 580 581 582 583 584 585 586 587

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
588

589 590 591 592 593 594 595 596 597 598 599 600
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

601
#ifdef CONFIG_MEMCG_KMEM
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
620 621
int memcg_limited_groups_array_size;

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

637 638 639 640 641 642
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
643
struct static_key memcg_kmem_enabled_key;
644
EXPORT_SYMBOL(memcg_kmem_enabled_key);
645 646 647

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
648
	if (memcg_kmem_is_active(memcg)) {
649
		static_key_slow_dec(&memcg_kmem_enabled_key);
650 651
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
652 653 654 655 656
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
657 658 659 660 661 662 663 664 665 666 667 668 669
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

670
static void drain_all_stock_async(struct mem_cgroup *memcg);
671

672
static struct mem_cgroup_per_zone *
673
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
674
{
675
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
676
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
677 678
}

679
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
680
{
681
	return &memcg->css;
682 683
}

684
static struct mem_cgroup_per_zone *
685
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
686
{
687 688
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
689

690
	return mem_cgroup_zoneinfo(memcg, nid, zid);
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
709
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
710
				struct mem_cgroup_per_zone *mz,
711 712
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
713 714 715 716 717 718 719 720
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

721 722 723
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
740 741 742
}

static void
743
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
744 745 746 747 748 749 750 751 752
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

753
static void
754
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
755 756 757 758
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
759
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
760 761 762 763
	spin_unlock(&mctz->lock);
}


764
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
765
{
766
	unsigned long long excess;
767 768
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
769 770
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
771 772 773
	mctz = soft_limit_tree_from_page(page);

	/*
774 775
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
776
	 */
777 778 779
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
780 781 782 783
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
784
		if (excess || mz->on_tree) {
785 786 787
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
788
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
789
			/*
790 791
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
792
			 */
793
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
794 795
			spin_unlock(&mctz->lock);
		}
796 797 798
	}
}

799
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
800 801 802 803 804
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
805
	for_each_node(node) {
806
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
807
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
808
			mctz = soft_limit_tree_node_zone(node, zone);
809
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
810 811 812 813
		}
	}
}

814 815 816 817
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
818
	struct mem_cgroup_per_zone *mz;
819 820

retry:
821
	mz = NULL;
822 823 824 825 826 827 828 829 830 831
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
832 833 834
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
870
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
871
				 enum mem_cgroup_stat_index idx)
872
{
873
	long val = 0;
874 875
	int cpu;

876 877
	get_online_cpus();
	for_each_online_cpu(cpu)
878
		val += per_cpu(memcg->stat->count[idx], cpu);
879
#ifdef CONFIG_HOTPLUG_CPU
880 881 882
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
883 884
#endif
	put_online_cpus();
885 886 887
	return val;
}

888
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
889 890 891
					 bool charge)
{
	int val = (charge) ? 1 : -1;
892
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
893 894
}

895
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
896 897 898 899 900 901
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
902
		val += per_cpu(memcg->stat->events[idx], cpu);
903
#ifdef CONFIG_HOTPLUG_CPU
904 905 906
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
907 908 909 910
#endif
	return val;
}

911
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
912
					 struct page *page,
913
					 bool anon, int nr_pages)
914
{
915 916
	preempt_disable();

917 918 919 920 921 922
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
923
				nr_pages);
924
	else
925
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
926
				nr_pages);
927

928 929 930 931
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

932 933
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
934
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
935
	else {
936
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
937 938
		nr_pages = -nr_pages; /* for event */
	}
939

940
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
941

942
	preempt_enable();
943 944
}

945
unsigned long
946
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
947 948 949 950 951 952 953 954
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
955
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
956
			unsigned int lru_mask)
957 958
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
959
	enum lru_list lru;
960 961
	unsigned long ret = 0;

962
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
963

H
Hugh Dickins 已提交
964 965 966
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
967 968 969 970 971
	}
	return ret;
}

static unsigned long
972
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
973 974
			int nid, unsigned int lru_mask)
{
975 976 977
	u64 total = 0;
	int zid;

978
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
979 980
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
981

982 983
	return total;
}
984

985
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
986
			unsigned int lru_mask)
987
{
988
	int nid;
989 990
	u64 total = 0;

991
	for_each_node_state(nid, N_MEMORY)
992
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
993
	return total;
994 995
}

996 997
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
998 999 1000
{
	unsigned long val, next;

1001
	val = __this_cpu_read(memcg->stat->nr_page_events);
1002
	next = __this_cpu_read(memcg->stat->targets[target]);
1003
	/* from time_after() in jiffies.h */
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1020
	}
1021
	return false;
1022 1023 1024 1025 1026 1027
}

/*
 * Check events in order.
 *
 */
1028
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1029
{
1030
	preempt_disable();
1031
	/* threshold event is triggered in finer grain than soft limit */
1032 1033
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1034 1035
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
1036 1037 1038 1039 1040 1041 1042 1043 1044

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1045
		mem_cgroup_threshold(memcg);
1046
		if (unlikely(do_softlimit))
1047
			mem_cgroup_update_tree(memcg, page);
1048
#if MAX_NUMNODES > 1
1049
		if (unlikely(do_numainfo))
1050
			atomic_inc(&memcg->numainfo_events);
1051
#endif
1052 1053
	} else
		preempt_enable();
1054 1055
}

G
Glauber Costa 已提交
1056
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
1057
{
1058 1059
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
1060 1061
}

1062
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1063
{
1064 1065 1066 1067 1068 1069 1070 1071
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1072
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1073 1074
}

1075
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1076
{
1077
	struct mem_cgroup *memcg = NULL;
1078 1079 1080

	if (!mm)
		return NULL;
1081 1082 1083 1084 1085 1086 1087
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1088 1089
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1090
			break;
1091
	} while (!css_tryget(&memcg->css));
1092
	rcu_read_unlock();
1093
	return memcg;
1094 1095
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
		struct mem_cgroup *last_visited)
{
	struct cgroup *prev_cgroup, *next_cgroup;

	/*
	 * Root is not visited by cgroup iterators so it needs an
	 * explicit visit.
	 */
	if (!last_visited)
		return root;

	prev_cgroup = (last_visited == root) ? NULL
		: last_visited->css.cgroup;
skip_node:
	next_cgroup = cgroup_next_descendant_pre(
			prev_cgroup, root->css.cgroup);

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
	if (next_cgroup) {
		struct mem_cgroup *mem = mem_cgroup_from_cont(
				next_cgroup);
		if (css_tryget(&mem->css))
			return mem;
		else {
			prev_cgroup = next_cgroup;
			goto skip_node;
		}
	}

	return NULL;
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1213
{
1214
	struct mem_cgroup *memcg = NULL;
1215
	struct mem_cgroup *last_visited = NULL;
1216

1217 1218 1219
	if (mem_cgroup_disabled())
		return NULL;

1220 1221
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1222

1223
	if (prev && !reclaim)
1224
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1225

1226 1227
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1228
			goto out_css_put;
1229 1230
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1231

1232
	rcu_read_lock();
1233
	while (!memcg) {
1234
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1235
		int uninitialized_var(seq);
1236

1237 1238 1239 1240 1241 1242 1243
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1244
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1245
				iter->last_visited = NULL;
1246 1247
				goto out_unlock;
			}
M
Michal Hocko 已提交
1248

1249
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1250
		}
K
KAMEZAWA Hiroyuki 已提交
1251

1252
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1253

1254
		if (reclaim) {
1255
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1256

M
Michal Hocko 已提交
1257
			if (!memcg)
1258 1259 1260 1261
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1262

M
Michal Hocko 已提交
1263
		if (prev && !memcg)
1264
			goto out_unlock;
1265
	}
1266 1267
out_unlock:
	rcu_read_unlock();
1268 1269 1270 1271
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1272
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1273
}
K
KAMEZAWA Hiroyuki 已提交
1274

1275 1276 1277 1278 1279 1280 1281
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1282 1283 1284 1285 1286 1287
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1288

1289 1290 1291 1292 1293 1294
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1295
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1296
	     iter != NULL;				\
1297
	     iter = mem_cgroup_iter(root, iter, NULL))
1298

1299
#define for_each_mem_cgroup(iter)			\
1300
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1301
	     iter != NULL;				\
1302
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1303

1304
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1305
{
1306
	struct mem_cgroup *memcg;
1307 1308

	rcu_read_lock();
1309 1310
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1311 1312 1313 1314
		goto out;

	switch (idx) {
	case PGFAULT:
1315 1316 1317 1318
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1319 1320 1321 1322 1323 1324 1325
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1326
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1327

1328 1329 1330
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1331
 * @memcg: memcg of the wanted lruvec
1332 1333 1334 1335 1336 1337 1338 1339 1340
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1341
	struct lruvec *lruvec;
1342

1343 1344 1345 1346
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1347 1348

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1359 1360
}

K
KAMEZAWA Hiroyuki 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1374

1375
/**
1376
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1377
 * @page: the page
1378
 * @zone: zone of the page
1379
 */
1380
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1381 1382
{
	struct mem_cgroup_per_zone *mz;
1383 1384
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1385
	struct lruvec *lruvec;
1386

1387 1388 1389 1390
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1391

K
KAMEZAWA Hiroyuki 已提交
1392
	pc = lookup_page_cgroup(page);
1393
	memcg = pc->mem_cgroup;
1394 1395

	/*
1396
	 * Surreptitiously switch any uncharged offlist page to root:
1397 1398 1399 1400 1401 1402 1403
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1404
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1405 1406
		pc->mem_cgroup = memcg = root_mem_cgroup;

1407
	mz = page_cgroup_zoneinfo(memcg, page);
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1418
}
1419

1420
/**
1421 1422 1423 1424
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1425
 *
1426 1427
 * This function must be called when a page is added to or removed from an
 * lru list.
1428
 */
1429 1430
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1431 1432
{
	struct mem_cgroup_per_zone *mz;
1433
	unsigned long *lru_size;
1434 1435 1436 1437

	if (mem_cgroup_disabled())
		return;

1438 1439 1440 1441
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1442
}
1443

1444
/*
1445
 * Checks whether given mem is same or in the root_mem_cgroup's
1446 1447
 * hierarchy subtree
 */
1448 1449
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1450
{
1451 1452
	if (root_memcg == memcg)
		return true;
1453
	if (!root_memcg->use_hierarchy || !memcg)
1454
		return false;
1455 1456 1457 1458 1459 1460 1461 1462
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1463
	rcu_read_lock();
1464
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1465 1466
	rcu_read_unlock();
	return ret;
1467 1468
}

1469 1470
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1471
{
1472
	struct mem_cgroup *curr = NULL;
1473
	struct task_struct *p;
1474
	bool ret;
1475

1476
	p = find_lock_task_mm(task);
1477 1478 1479 1480 1481 1482 1483 1484 1485
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1486
		rcu_read_lock();
1487 1488 1489
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1490
		rcu_read_unlock();
1491
	}
1492
	if (!curr)
1493
		return false;
1494
	/*
1495
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1496
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1497 1498
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1499
	 */
1500
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1501
	css_put(&curr->css);
1502 1503 1504
	return ret;
}

1505
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1506
{
1507
	unsigned long inactive_ratio;
1508
	unsigned long inactive;
1509
	unsigned long active;
1510
	unsigned long gb;
1511

1512 1513
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1514

1515 1516 1517 1518 1519 1520
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1521
	return inactive * inactive_ratio < active;
1522 1523
}

1524 1525 1526
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1527
/**
1528
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1529
 * @memcg: the memory cgroup
1530
 *
1531
 * Returns the maximum amount of memory @mem can be charged with, in
1532
 * pages.
1533
 */
1534
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1535
{
1536 1537
	unsigned long long margin;

1538
	margin = res_counter_margin(&memcg->res);
1539
	if (do_swap_account)
1540
		margin = min(margin, res_counter_margin(&memcg->memsw));
1541
	return margin >> PAGE_SHIFT;
1542 1543
}

1544
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1545 1546 1547 1548 1549 1550 1551
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1552
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1553 1554
}

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1569 1570 1571 1572

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1573
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1574
{
1575
	atomic_inc(&memcg_moving);
1576
	atomic_inc(&memcg->moving_account);
1577 1578 1579
	synchronize_rcu();
}

1580
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1581
{
1582 1583 1584 1585
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1586 1587
	if (memcg) {
		atomic_dec(&memcg_moving);
1588
		atomic_dec(&memcg->moving_account);
1589
	}
1590
}
1591

1592 1593 1594
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1595 1596
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1597 1598 1599 1600 1601 1602 1603
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1604
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1605 1606
{
	VM_BUG_ON(!rcu_read_lock_held());
1607
	return atomic_read(&memcg->moving_account) > 0;
1608
}
1609

1610
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1611
{
1612 1613
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1614
	bool ret = false;
1615 1616 1617 1618 1619 1620 1621 1622 1623
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1624

1625 1626
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1627 1628
unlock:
	spin_unlock(&mc.lock);
1629 1630 1631
	return ret;
}

1632
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1633 1634
{
	if (mc.moving_task && current != mc.moving_task) {
1635
		if (mem_cgroup_under_move(memcg)) {
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1648 1649 1650 1651
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1652
 * see mem_cgroup_stolen(), too.
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1666
#define K(x) ((x) << (PAGE_SHIFT-10))
1667
/**
1668
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1686 1687
	struct mem_cgroup *iter;
	unsigned int i;
1688

1689
	if (!p)
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1708
	pr_info("Task in %s killed", memcg_name);
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1721
	pr_cont(" as a result of limit of %s\n", memcg_name);
1722 1723
done:

1724
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1725 1726 1727
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1728
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1729 1730 1731
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1732
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1733 1734 1735
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1760 1761
}

1762 1763 1764 1765
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1766
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1767 1768
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1769 1770
	struct mem_cgroup *iter;

1771
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1772
		num++;
1773 1774 1775
	return num;
}

D
David Rientjes 已提交
1776 1777 1778
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1779
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1780 1781 1782
{
	u64 limit;

1783 1784
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1785
	/*
1786
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1787
	 */
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1802 1803
}

1804 1805
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1806 1807 1808 1809 1810 1811 1812
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1813
	/*
1814 1815 1816
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1817
	 */
1818
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1819 1820 1821 1822 1823
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1907 1908
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1909
 * @memcg: the target memcg
1910 1911 1912 1913 1914 1915 1916
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1917
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1918 1919
		int nid, bool noswap)
{
1920
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1921 1922 1923
		return true;
	if (noswap || !total_swap_pages)
		return false;
1924
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1925 1926 1927 1928
		return true;
	return false;

}
1929 1930 1931 1932 1933 1934 1935 1936
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1937
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1938 1939
{
	int nid;
1940 1941 1942 1943
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1944
	if (!atomic_read(&memcg->numainfo_events))
1945
		return;
1946
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1947 1948 1949
		return;

	/* make a nodemask where this memcg uses memory from */
1950
	memcg->scan_nodes = node_states[N_MEMORY];
1951

1952
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1953

1954 1955
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1956
	}
1957

1958 1959
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1974
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1975 1976 1977
{
	int node;

1978 1979
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1980

1981
	node = next_node(node, memcg->scan_nodes);
1982
	if (node == MAX_NUMNODES)
1983
		node = first_node(memcg->scan_nodes);
1984 1985 1986 1987 1988 1989 1990 1991 1992
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1993
	memcg->last_scanned_node = node;
1994 1995 1996
	return node;
}

1997 1998 1999 2000 2001 2002
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
2003
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2004 2005 2006 2007 2008 2009 2010
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
2011 2012
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
2013
		     nid < MAX_NUMNODES;
2014
		     nid = next_node(nid, memcg->scan_nodes)) {
2015

2016
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2017 2018 2019 2020 2021 2022
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
2023
	for_each_node_state(nid, N_MEMORY) {
2024
		if (node_isset(nid, memcg->scan_nodes))
2025
			continue;
2026
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2027 2028 2029 2030 2031
			return true;
	}
	return false;
}

2032
#else
2033
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2034 2035 2036
{
	return 0;
}
2037

2038
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2039
{
2040
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2041
}
2042 2043
#endif

2044 2045 2046 2047
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
2048
{
2049
	struct mem_cgroup *victim = NULL;
2050
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
2051
	int loop = 0;
2052
	unsigned long excess;
2053
	unsigned long nr_scanned;
2054 2055 2056 2057
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
2058

2059
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
2060

2061
	while (1) {
2062
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2063
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
2064
			loop++;
2065 2066 2067 2068 2069 2070
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
2071
				if (!total)
2072 2073
					break;
				/*
L
Lucas De Marchi 已提交
2074
				 * We want to do more targeted reclaim.
2075 2076 2077 2078 2079
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
2080
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2081 2082
					break;
			}
2083
			continue;
2084
		}
2085
		if (!mem_cgroup_reclaimable(victim, false))
2086
			continue;
2087 2088 2089 2090
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
2091
			break;
2092
	}
2093
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
2094
	return total;
2095 2096
}

K
KAMEZAWA Hiroyuki 已提交
2097 2098 2099
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
2100
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
2101
 */
2102
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2103
{
2104
	struct mem_cgroup *iter, *failed = NULL;
2105

2106
	for_each_mem_cgroup_tree(iter, memcg) {
2107
		if (iter->oom_lock) {
2108 2109 2110 2111 2112
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2113 2114
			mem_cgroup_iter_break(memcg, iter);
			break;
2115 2116
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2117
	}
K
KAMEZAWA Hiroyuki 已提交
2118

2119
	if (!failed)
2120
		return true;
2121 2122 2123 2124 2125

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
2126
	for_each_mem_cgroup_tree(iter, memcg) {
2127
		if (iter == failed) {
2128 2129
			mem_cgroup_iter_break(memcg, iter);
			break;
2130 2131 2132
		}
		iter->oom_lock = false;
	}
2133
	return false;
2134
}
2135

2136
/*
2137
 * Has to be called with memcg_oom_lock
2138
 */
2139
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2140
{
K
KAMEZAWA Hiroyuki 已提交
2141 2142
	struct mem_cgroup *iter;

2143
	for_each_mem_cgroup_tree(iter, memcg)
2144 2145 2146 2147
		iter->oom_lock = false;
	return 0;
}

2148
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2149 2150 2151
{
	struct mem_cgroup *iter;

2152
	for_each_mem_cgroup_tree(iter, memcg)
2153 2154 2155
		atomic_inc(&iter->under_oom);
}

2156
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2157 2158 2159
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2160 2161 2162 2163 2164
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2165
	for_each_mem_cgroup_tree(iter, memcg)
2166
		atomic_add_unless(&iter->under_oom, -1, 0);
2167 2168
}

2169
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2170 2171
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2172
struct oom_wait_info {
2173
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2174 2175 2176 2177 2178 2179
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2180 2181
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2182 2183 2184
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2185
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2186 2187

	/*
2188
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2189 2190
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2191 2192
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2193 2194 2195 2196
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2197
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2198
{
2199 2200
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2201 2202
}

2203
static void memcg_oom_recover(struct mem_cgroup *memcg)
2204
{
2205 2206
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2207 2208
}

K
KAMEZAWA Hiroyuki 已提交
2209 2210 2211
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2212 2213
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2214
{
K
KAMEZAWA Hiroyuki 已提交
2215
	struct oom_wait_info owait;
2216
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2217

2218
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2219 2220 2221 2222
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2223
	need_to_kill = true;
2224
	mem_cgroup_mark_under_oom(memcg);
2225

2226
	/* At first, try to OOM lock hierarchy under memcg.*/
2227
	spin_lock(&memcg_oom_lock);
2228
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2229 2230 2231 2232 2233
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2234
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2235
	if (!locked || memcg->oom_kill_disable)
2236 2237
		need_to_kill = false;
	if (locked)
2238
		mem_cgroup_oom_notify(memcg);
2239
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2240

2241 2242
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2243
		mem_cgroup_out_of_memory(memcg, mask, order);
2244
	} else {
K
KAMEZAWA Hiroyuki 已提交
2245
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2246
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2247
	}
2248
	spin_lock(&memcg_oom_lock);
2249
	if (locked)
2250 2251
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2252
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2253

2254
	mem_cgroup_unmark_under_oom(memcg);
2255

K
KAMEZAWA Hiroyuki 已提交
2256 2257 2258
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2259
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2260
	return true;
2261 2262
}

2263 2264 2265
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2283 2284
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2285
 */
2286

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2300
	 * need to take move_lock_mem_cgroup(). Because we already hold
2301
	 * rcu_read_lock(), any calls to move_account will be delayed until
2302
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2303
	 */
2304
	if (!mem_cgroup_stolen(memcg))
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2322
	 * should take move_lock_mem_cgroup().
2323 2324 2325 2326
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2327 2328
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2329
{
2330
	struct mem_cgroup *memcg;
2331
	struct page_cgroup *pc = lookup_page_cgroup(page);
2332
	unsigned long uninitialized_var(flags);
2333

2334
	if (mem_cgroup_disabled())
2335
		return;
2336

2337 2338
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2339
		return;
2340 2341

	switch (idx) {
2342 2343
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2344 2345 2346
		break;
	default:
		BUG();
2347
	}
2348

2349
	this_cpu_add(memcg->stat->count[idx], val);
2350
}
2351

2352 2353 2354 2355
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2356
#define CHARGE_BATCH	32U
2357 2358
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2359
	unsigned int nr_pages;
2360
	struct work_struct work;
2361
	unsigned long flags;
2362
#define FLUSHING_CACHED_CHARGE	0
2363 2364
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2365
static DEFINE_MUTEX(percpu_charge_mutex);
2366

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2377
 */
2378
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2379 2380 2381 2382
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2383 2384 2385
	if (nr_pages > CHARGE_BATCH)
		return false;

2386
	stock = &get_cpu_var(memcg_stock);
2387 2388
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2402 2403 2404 2405
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2406
		if (do_swap_account)
2407 2408
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2421
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2422 2423
}

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2435 2436
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2437
 * This will be consumed by consume_stock() function, later.
2438
 */
2439
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2440 2441 2442
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2443
	if (stock->cached != memcg) { /* reset if necessary */
2444
		drain_stock(stock);
2445
		stock->cached = memcg;
2446
	}
2447
	stock->nr_pages += nr_pages;
2448 2449 2450 2451
	put_cpu_var(memcg_stock);
}

/*
2452
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2453 2454
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2455
 */
2456
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2457
{
2458
	int cpu, curcpu;
2459

2460 2461
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2462
	curcpu = get_cpu();
2463 2464
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2465
		struct mem_cgroup *memcg;
2466

2467 2468
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2469
			continue;
2470
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2471
			continue;
2472 2473 2474 2475 2476 2477
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2478
	}
2479
	put_cpu();
2480 2481 2482 2483 2484 2485

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2486
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2487 2488 2489
			flush_work(&stock->work);
	}
out:
2490
 	put_online_cpus();
2491 2492 2493 2494 2495 2496 2497 2498
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2499
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2500
{
2501 2502 2503 2504 2505
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2506
	drain_all_stock(root_memcg, false);
2507
	mutex_unlock(&percpu_charge_mutex);
2508 2509 2510
}

/* This is a synchronous drain interface. */
2511
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2512 2513
{
	/* called when force_empty is called */
2514
	mutex_lock(&percpu_charge_mutex);
2515
	drain_all_stock(root_memcg, true);
2516
	mutex_unlock(&percpu_charge_mutex);
2517 2518
}

2519 2520 2521 2522
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2523
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2524 2525 2526
{
	int i;

2527
	spin_lock(&memcg->pcp_counter_lock);
2528
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2529
		long x = per_cpu(memcg->stat->count[i], cpu);
2530

2531 2532
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2533
	}
2534
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2535
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2536

2537 2538
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2539
	}
2540
	spin_unlock(&memcg->pcp_counter_lock);
2541 2542 2543
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2544 2545 2546 2547 2548
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2549
	struct mem_cgroup *iter;
2550

2551
	if (action == CPU_ONLINE)
2552 2553
		return NOTIFY_OK;

2554
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2555
		return NOTIFY_OK;
2556

2557
	for_each_mem_cgroup(iter)
2558 2559
		mem_cgroup_drain_pcp_counter(iter, cpu);

2560 2561 2562 2563 2564
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2575
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2576 2577
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2578
{
2579
	unsigned long csize = nr_pages * PAGE_SIZE;
2580 2581 2582 2583 2584
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2585
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2586 2587 2588 2589

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2590
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2591 2592 2593
		if (likely(!ret))
			return CHARGE_OK;

2594
		res_counter_uncharge(&memcg->res, csize);
2595 2596 2597 2598
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2599 2600 2601 2602
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2603
	if (nr_pages > min_pages)
2604 2605 2606 2607 2608
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2609 2610 2611
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2612
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2613
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2614
		return CHARGE_RETRY;
2615
	/*
2616 2617 2618 2619 2620 2621 2622
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2623
	 */
2624
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2638
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2639 2640 2641 2642 2643
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2644
/*
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2664
 */
2665
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2666
				   gfp_t gfp_mask,
2667
				   unsigned int nr_pages,
2668
				   struct mem_cgroup **ptr,
2669
				   bool oom)
2670
{
2671
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2672
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2673
	struct mem_cgroup *memcg = NULL;
2674
	int ret;
2675

K
KAMEZAWA Hiroyuki 已提交
2676 2677 2678 2679 2680 2681 2682 2683
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2684

2685
	/*
2686 2687
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2688
	 * thread group leader migrates. It's possible that mm is not
2689
	 * set, if so charge the root memcg (happens for pagecache usage).
2690
	 */
2691
	if (!*ptr && !mm)
2692
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2693
again:
2694 2695 2696
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2697
			goto done;
2698
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2699
			goto done;
2700
		css_get(&memcg->css);
2701
	} else {
K
KAMEZAWA Hiroyuki 已提交
2702
		struct task_struct *p;
2703

K
KAMEZAWA Hiroyuki 已提交
2704 2705 2706
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2707
		 * Because we don't have task_lock(), "p" can exit.
2708
		 * In that case, "memcg" can point to root or p can be NULL with
2709 2710 2711 2712 2713 2714
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2715
		 */
2716
		memcg = mem_cgroup_from_task(p);
2717 2718 2719
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2720 2721 2722
			rcu_read_unlock();
			goto done;
		}
2723
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2736
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2737 2738 2739 2740 2741
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2742

2743 2744
	do {
		bool oom_check;
2745

2746
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2747
		if (fatal_signal_pending(current)) {
2748
			css_put(&memcg->css);
2749
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2750
		}
2751

2752 2753 2754 2755
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2756
		}
2757

2758 2759
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2760 2761 2762 2763
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2764
			batch = nr_pages;
2765 2766
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2767
			goto again;
2768
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2769
			css_put(&memcg->css);
2770 2771
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2772
			if (!oom) {
2773
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2774
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2775
			}
2776 2777 2778 2779
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2780
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2781
			goto bypass;
2782
		}
2783 2784
	} while (ret != CHARGE_OK);

2785
	if (batch > nr_pages)
2786 2787
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2788
done:
2789
	*ptr = memcg;
2790 2791
	return 0;
nomem:
2792
	*ptr = NULL;
2793
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2794
bypass:
2795 2796
	*ptr = root_mem_cgroup;
	return -EINTR;
2797
}
2798

2799 2800 2801 2802 2803
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2804
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2805
				       unsigned int nr_pages)
2806
{
2807
	if (!mem_cgroup_is_root(memcg)) {
2808 2809
		unsigned long bytes = nr_pages * PAGE_SIZE;

2810
		res_counter_uncharge(&memcg->res, bytes);
2811
		if (do_swap_account)
2812
			res_counter_uncharge(&memcg->memsw, bytes);
2813
	}
2814 2815
}

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2834 2835
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2836 2837 2838
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2850
	return mem_cgroup_from_css(css);
2851 2852
}

2853
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2854
{
2855
	struct mem_cgroup *memcg = NULL;
2856
	struct page_cgroup *pc;
2857
	unsigned short id;
2858 2859
	swp_entry_t ent;

2860 2861 2862
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2863
	lock_page_cgroup(pc);
2864
	if (PageCgroupUsed(pc)) {
2865 2866 2867
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2868
	} else if (PageSwapCache(page)) {
2869
		ent.val = page_private(page);
2870
		id = lookup_swap_cgroup_id(ent);
2871
		rcu_read_lock();
2872 2873 2874
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2875
		rcu_read_unlock();
2876
	}
2877
	unlock_page_cgroup(pc);
2878
	return memcg;
2879 2880
}

2881
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2882
				       struct page *page,
2883
				       unsigned int nr_pages,
2884 2885
				       enum charge_type ctype,
				       bool lrucare)
2886
{
2887
	struct page_cgroup *pc = lookup_page_cgroup(page);
2888
	struct zone *uninitialized_var(zone);
2889
	struct lruvec *lruvec;
2890
	bool was_on_lru = false;
2891
	bool anon;
2892

2893
	lock_page_cgroup(pc);
2894
	VM_BUG_ON(PageCgroupUsed(pc));
2895 2896 2897 2898
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2899 2900 2901 2902 2903 2904 2905 2906 2907

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2908
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2909
			ClearPageLRU(page);
2910
			del_page_from_lru_list(page, lruvec, page_lru(page));
2911 2912 2913 2914
			was_on_lru = true;
		}
	}

2915
	pc->mem_cgroup = memcg;
2916 2917 2918 2919 2920 2921 2922
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2923
	smp_wmb();
2924
	SetPageCgroupUsed(pc);
2925

2926 2927
	if (lrucare) {
		if (was_on_lru) {
2928
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2929 2930
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2931
			add_page_to_lru_list(page, lruvec, page_lru(page));
2932 2933 2934 2935
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2936
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2937 2938 2939 2940
		anon = true;
	else
		anon = false;

2941
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2942
	unlock_page_cgroup(pc);
2943

2944 2945 2946 2947 2948
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2949
	memcg_check_events(memcg, page);
2950
}
2951

2952 2953
static DEFINE_MUTEX(set_limit_mutex);

2954 2955 2956 2957 2958 2959 2960
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
#ifdef CONFIG_SLABINFO
static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
					struct seq_file *m)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3048 3049 3050 3051 3052 3053 3054

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
3055 3056
}

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3140 3141
static void kmem_cache_destroy_work_func(struct work_struct *w);

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3193 3194
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3195 3196 3197 3198 3199 3200
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

3201 3202 3203
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

3204 3205 3206 3207
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

3208 3209
	INIT_WORK(&s->memcg_params->destroy,
			kmem_cache_destroy_work_func);
G
Glauber Costa 已提交
3210
	if (memcg) {
3211
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3212
		s->memcg_params->root_cache = root_cache;
3213 3214 3215
	} else
		s->memcg_params->is_root_cache = true;

3216 3217 3218 3219 3220
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3245
	mem_cgroup_put(memcg);
3246
out:
3247 3248 3249
	kfree(s->memcg_params);
}

3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3281 3282 3283 3284 3285 3286 3287 3288 3289
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3311 3312 3313 3314 3315 3316 3317 3318
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3339 3340 3341 3342 3343 3344 3345
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3346 3347 3348 3349 3350 3351 3352 3353 3354
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3355

3356 3357 3358
/*
 * Called with memcg_cache_mutex held
 */
3359 3360 3361 3362
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3363
	static char *tmp_name = NULL;
3364

3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3383

3384
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3385
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3386

3387 3388 3389
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
	if (new_cachep)
		goto out;

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
		goto out;
	}

	mem_cgroup_get(memcg);
G
Glauber Costa 已提交
3415
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3467
		cancel_work_sync(&c->memcg_params->destroy);
3468 3469 3470 3471 3472
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3473 3474 3475 3476 3477 3478
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	/* Drop the reference gotten when we enqueued. */
	css_put(&cw->memcg->css);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3510 3511
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3512 3513 3514 3515
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3516 3517
	if (cw == NULL) {
		css_put(&memcg->css);
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3568 3569 3570
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3571 3572 3573 3574
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3575
		goto out;
3576 3577 3578 3579 3580 3581 3582 3583

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3584 3585 3586
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3587 3588
	}

3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3616 3617 3618
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
	 * 	memcg_stop_kmem_account();
	 * 	kmalloc(<large_number>)
	 * 	memcg_resume_kmem_account();
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3742 3743 3744 3745
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3746 3747
#endif /* CONFIG_MEMCG_KMEM */

3748 3749
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3750
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3751 3752
/*
 * Because tail pages are not marked as "used", set it. We're under
3753 3754 3755
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3756
 */
3757
void mem_cgroup_split_huge_fixup(struct page *head)
3758 3759
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3760
	struct page_cgroup *pc;
3761
	struct mem_cgroup *memcg;
3762
	int i;
3763

3764 3765
	if (mem_cgroup_disabled())
		return;
3766 3767

	memcg = head_pc->mem_cgroup;
3768 3769
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3770
		pc->mem_cgroup = memcg;
3771 3772 3773
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3774 3775
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3776
}
3777
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3778

3779
/**
3780
 * mem_cgroup_move_account - move account of the page
3781
 * @page: the page
3782
 * @nr_pages: number of regular pages (>1 for huge pages)
3783 3784 3785 3786 3787
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3788
 * - page is not on LRU (isolate_page() is useful.)
3789
 * - compound_lock is held when nr_pages > 1
3790
 *
3791 3792
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3793
 */
3794 3795 3796 3797
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3798
				   struct mem_cgroup *to)
3799
{
3800 3801
	unsigned long flags;
	int ret;
3802
	bool anon = PageAnon(page);
3803

3804
	VM_BUG_ON(from == to);
3805
	VM_BUG_ON(PageLRU(page));
3806 3807 3808 3809 3810 3811 3812
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3813
	if (nr_pages > 1 && !PageTransHuge(page))
3814 3815 3816 3817 3818 3819 3820 3821
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3822
	move_lock_mem_cgroup(from, &flags);
3823

3824
	if (!anon && page_mapped(page)) {
3825 3826 3827 3828 3829
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3830
	}
3831
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3832

3833
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3834
	pc->mem_cgroup = to;
3835
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3836
	move_unlock_mem_cgroup(from, &flags);
3837 3838
	ret = 0;
unlock:
3839
	unlock_page_cgroup(pc);
3840 3841 3842
	/*
	 * check events
	 */
3843 3844
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3845
out:
3846 3847 3848
	return ret;
}

3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3869
 */
3870 3871
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3872
				  struct mem_cgroup *child)
3873 3874
{
	struct mem_cgroup *parent;
3875
	unsigned int nr_pages;
3876
	unsigned long uninitialized_var(flags);
3877 3878
	int ret;

3879
	VM_BUG_ON(mem_cgroup_is_root(child));
3880

3881 3882 3883 3884 3885
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3886

3887
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3888

3889 3890 3891 3892 3893 3894
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3895

3896 3897
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3898
		flags = compound_lock_irqsave(page);
3899
	}
3900

3901
	ret = mem_cgroup_move_account(page, nr_pages,
3902
				pc, child, parent);
3903 3904
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3905

3906
	if (nr_pages > 1)
3907
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3908
	putback_lru_page(page);
3909
put:
3910
	put_page(page);
3911
out:
3912 3913 3914
	return ret;
}

3915 3916 3917 3918 3919 3920 3921
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3922
				gfp_t gfp_mask, enum charge_type ctype)
3923
{
3924
	struct mem_cgroup *memcg = NULL;
3925
	unsigned int nr_pages = 1;
3926
	bool oom = true;
3927
	int ret;
A
Andrea Arcangeli 已提交
3928

A
Andrea Arcangeli 已提交
3929
	if (PageTransHuge(page)) {
3930
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3931
		VM_BUG_ON(!PageTransHuge(page));
3932 3933 3934 3935 3936
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3937
	}
3938

3939
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3940
	if (ret == -ENOMEM)
3941
		return ret;
3942
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3943 3944 3945
	return 0;
}

3946 3947
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3948
{
3949
	if (mem_cgroup_disabled())
3950
		return 0;
3951 3952 3953
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3954
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3955
					MEM_CGROUP_CHARGE_TYPE_ANON);
3956 3957
}

3958 3959 3960
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3961
 * struct page_cgroup is acquired. This refcnt will be consumed by
3962 3963
 * "commit()" or removed by "cancel()"
 */
3964 3965 3966 3967
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3968
{
3969
	struct mem_cgroup *memcg;
3970
	struct page_cgroup *pc;
3971
	int ret;
3972

3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3983 3984
	if (!do_swap_account)
		goto charge_cur_mm;
3985 3986
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3987
		goto charge_cur_mm;
3988 3989
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3990
	css_put(&memcg->css);
3991 3992
	if (ret == -EINTR)
		ret = 0;
3993
	return ret;
3994
charge_cur_mm:
3995 3996 3997 3998
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3999 4000
}

4001 4002 4003 4004 4005 4006
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
4021 4022 4023
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

4024 4025 4026 4027 4028 4029 4030 4031 4032
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4033
static void
4034
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4035
					enum charge_type ctype)
4036
{
4037
	if (mem_cgroup_disabled())
4038
		return;
4039
	if (!memcg)
4040
		return;
4041

4042
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4043 4044 4045
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4046 4047 4048
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4049
	 */
4050
	if (do_swap_account && PageSwapCache(page)) {
4051
		swp_entry_t ent = {.val = page_private(page)};
4052
		mem_cgroup_uncharge_swap(ent);
4053
	}
4054 4055
}

4056 4057
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4058
{
4059
	__mem_cgroup_commit_charge_swapin(page, memcg,
4060
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4061 4062
}

4063 4064
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4065
{
4066 4067 4068 4069
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4070
	if (mem_cgroup_disabled())
4071 4072 4073 4074 4075 4076 4077
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4078 4079
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4080 4081 4082 4083
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4084 4085
}

4086
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4087 4088
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4089 4090 4091
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4092

4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4104
		batch->memcg = memcg;
4105 4106
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4107
	 * In those cases, all pages freed continuously can be expected to be in
4108 4109 4110 4111 4112 4113 4114 4115
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4116
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4117 4118
		goto direct_uncharge;

4119 4120 4121 4122 4123
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4124
	if (batch->memcg != memcg)
4125 4126
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4127
	batch->nr_pages++;
4128
	if (uncharge_memsw)
4129
		batch->memsw_nr_pages++;
4130 4131
	return;
direct_uncharge:
4132
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4133
	if (uncharge_memsw)
4134 4135 4136
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4137
}
4138

4139
/*
4140
 * uncharge if !page_mapped(page)
4141
 */
4142
static struct mem_cgroup *
4143 4144
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4145
{
4146
	struct mem_cgroup *memcg = NULL;
4147 4148
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4149
	bool anon;
4150

4151
	if (mem_cgroup_disabled())
4152
		return NULL;
4153

A
Andrea Arcangeli 已提交
4154
	if (PageTransHuge(page)) {
4155
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4156 4157
		VM_BUG_ON(!PageTransHuge(page));
	}
4158
	/*
4159
	 * Check if our page_cgroup is valid
4160
	 */
4161
	pc = lookup_page_cgroup(page);
4162
	if (unlikely(!PageCgroupUsed(pc)))
4163
		return NULL;
4164

4165
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4166

4167
	memcg = pc->mem_cgroup;
4168

K
KAMEZAWA Hiroyuki 已提交
4169 4170 4171
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4172 4173
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4174
	switch (ctype) {
4175
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4176 4177 4178 4179 4180
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4181 4182
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4183
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4184
		/* See mem_cgroup_prepare_migration() */
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4206
	}
K
KAMEZAWA Hiroyuki 已提交
4207

4208
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4209

4210
	ClearPageCgroupUsed(pc);
4211 4212 4213 4214 4215 4216
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4217

4218
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4219
	/*
4220
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
4221 4222
	 * will never be freed.
	 */
4223
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4224
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4225 4226
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
4227
	}
4228 4229 4230 4231 4232 4233
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4234
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4235

4236
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4237 4238 4239

unlock_out:
	unlock_page_cgroup(pc);
4240
	return NULL;
4241 4242
}

4243 4244
void mem_cgroup_uncharge_page(struct page *page)
{
4245 4246 4247
	/* early check. */
	if (page_mapped(page))
		return;
4248
	VM_BUG_ON(page->mapping && !PageAnon(page));
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4261 4262
	if (PageSwapCache(page))
		return;
4263
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4264 4265 4266 4267 4268
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4269
	VM_BUG_ON(page->mapping);
4270
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4271 4272
}

4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4287 4288
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4309 4310 4311 4312 4313 4314
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4315
	memcg_oom_recover(batch->memcg);
4316 4317 4318 4319
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4320
#ifdef CONFIG_SWAP
4321
/*
4322
 * called after __delete_from_swap_cache() and drop "page" account.
4323 4324
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4325 4326
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4327 4328
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4329 4330 4331 4332 4333
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4334
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4335

K
KAMEZAWA Hiroyuki 已提交
4336 4337 4338 4339 4340
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
4341
		swap_cgroup_record(ent, css_id(&memcg->css));
4342
}
4343
#endif
4344

A
Andrew Morton 已提交
4345
#ifdef CONFIG_MEMCG_SWAP
4346 4347 4348 4349 4350
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4351
{
4352
	struct mem_cgroup *memcg;
4353
	unsigned short id;
4354 4355 4356 4357

	if (!do_swap_account)
		return;

4358 4359 4360
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4361
	if (memcg) {
4362 4363 4364 4365
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4366
		if (!mem_cgroup_is_root(memcg))
4367
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4368
		mem_cgroup_swap_statistics(memcg, false);
4369 4370
		mem_cgroup_put(memcg);
	}
4371
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4372
}
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4389
				struct mem_cgroup *from, struct mem_cgroup *to)
4390 4391 4392 4393 4394 4395 4396 4397
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4398
		mem_cgroup_swap_statistics(to, true);
4399
		/*
4400 4401 4402 4403 4404 4405
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
4406 4407 4408 4409 4410 4411 4412 4413
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4414
				struct mem_cgroup *from, struct mem_cgroup *to)
4415 4416 4417
{
	return -EINVAL;
}
4418
#endif
K
KAMEZAWA Hiroyuki 已提交
4419

4420
/*
4421 4422
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4423
 */
4424 4425
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4426
{
4427
	struct mem_cgroup *memcg = NULL;
4428
	unsigned int nr_pages = 1;
4429
	struct page_cgroup *pc;
4430
	enum charge_type ctype;
4431

4432
	*memcgp = NULL;
4433

4434
	if (mem_cgroup_disabled())
4435
		return;
4436

4437 4438 4439
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4440 4441 4442
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4443 4444
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4476
	}
4477
	unlock_page_cgroup(pc);
4478 4479 4480 4481
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4482
	if (!memcg)
4483
		return;
4484

4485
	*memcgp = memcg;
4486 4487 4488 4489 4490 4491 4492
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4493
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4494
	else
4495
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4496 4497 4498 4499 4500
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4501
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4502
}
4503

4504
/* remove redundant charge if migration failed*/
4505
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4506
	struct page *oldpage, struct page *newpage, bool migration_ok)
4507
{
4508
	struct page *used, *unused;
4509
	struct page_cgroup *pc;
4510
	bool anon;
4511

4512
	if (!memcg)
4513
		return;
4514

4515
	if (!migration_ok) {
4516 4517
		used = oldpage;
		unused = newpage;
4518
	} else {
4519
		used = newpage;
4520 4521
		unused = oldpage;
	}
4522
	anon = PageAnon(used);
4523 4524 4525 4526
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4527
	css_put(&memcg->css);
4528
	/*
4529 4530 4531
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4532
	 */
4533 4534 4535 4536 4537
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4538
	/*
4539 4540 4541 4542 4543 4544
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4545
	 */
4546
	if (anon)
4547
		mem_cgroup_uncharge_page(used);
4548
}
4549

4550 4551 4552 4553 4554 4555 4556 4557
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4558
	struct mem_cgroup *memcg = NULL;
4559 4560 4561 4562 4563 4564 4565 4566 4567
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4568 4569
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4570
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4571 4572
		ClearPageCgroupUsed(pc);
	}
4573 4574
	unlock_page_cgroup(pc);

4575 4576 4577 4578 4579 4580
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4581 4582 4583 4584 4585
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4586
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4587 4588
}

4589 4590 4591 4592 4593 4594
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4595 4596 4597 4598 4599
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4619 4620
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4621 4622 4623 4624
	}
}
#endif

4625
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4626
				unsigned long long val)
4627
{
4628
	int retry_count;
4629
	u64 memswlimit, memlimit;
4630
	int ret = 0;
4631 4632
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4633
	int enlarge;
4634 4635 4636 4637 4638 4639 4640 4641 4642

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4643

4644
	enlarge = 0;
4645
	while (retry_count) {
4646 4647 4648 4649
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4650 4651 4652
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4653
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4654 4655 4656 4657 4658 4659
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4660 4661
			break;
		}
4662 4663 4664 4665 4666

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4667
		ret = res_counter_set_limit(&memcg->res, val);
4668 4669 4670 4671 4672 4673
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4674 4675 4676 4677 4678
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4679 4680
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4681 4682 4683 4684 4685 4686
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4687
	}
4688 4689
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4690

4691 4692 4693
	return ret;
}

L
Li Zefan 已提交
4694 4695
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4696
{
4697
	int retry_count;
4698
	u64 memlimit, memswlimit, oldusage, curusage;
4699 4700
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4701
	int enlarge = 0;
4702

4703 4704 4705
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4706 4707 4708 4709 4710 4711 4712 4713
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4714
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4715 4716 4717 4718 4719 4720 4721 4722
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4723 4724 4725
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4726
		ret = res_counter_set_limit(&memcg->memsw, val);
4727 4728 4729 4730 4731 4732
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4733 4734 4735 4736 4737
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4738 4739 4740
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4741
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4742
		/* Usage is reduced ? */
4743
		if (curusage >= oldusage)
4744
			retry_count--;
4745 4746
		else
			oldusage = curusage;
4747
	}
4748 4749
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4750 4751 4752
	return ret;
}

4753
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4754 4755
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4756 4757 4758 4759 4760 4761
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4762
	unsigned long long excess;
4763
	unsigned long nr_scanned;
4764 4765 4766 4767

	if (order > 0)
		return 0;

4768
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4782
		nr_scanned = 0;
4783
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4784
						    gfp_mask, &nr_scanned);
4785
		nr_reclaimed += reclaimed;
4786
		*total_scanned += nr_scanned;
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4809
				if (next_mz == mz)
4810
					css_put(&next_mz->memcg->css);
4811
				else /* next_mz == NULL or other memcg */
4812 4813 4814
					break;
			} while (1);
		}
4815 4816
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4817 4818 4819 4820 4821 4822 4823 4824
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4825
		/* If excess == 0, no tree ops */
4826
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4827
		spin_unlock(&mctz->lock);
4828
		css_put(&mz->memcg->css);
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4841
		css_put(&next_mz->memcg->css);
4842 4843 4844
	return nr_reclaimed;
}

4845 4846 4847 4848 4849 4850 4851
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4852
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4853 4854
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4855
 */
4856
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4857
				int node, int zid, enum lru_list lru)
4858
{
4859
	struct lruvec *lruvec;
4860
	unsigned long flags;
4861
	struct list_head *list;
4862 4863
	struct page *busy;
	struct zone *zone;
4864

K
KAMEZAWA Hiroyuki 已提交
4865
	zone = &NODE_DATA(node)->node_zones[zid];
4866 4867
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4868

4869
	busy = NULL;
4870
	do {
4871
		struct page_cgroup *pc;
4872 4873
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4874
		spin_lock_irqsave(&zone->lru_lock, flags);
4875
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4876
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4877
			break;
4878
		}
4879 4880 4881
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4882
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4883
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4884 4885
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4886
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4887

4888
		pc = lookup_page_cgroup(page);
4889

4890
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4891
			/* found lock contention or "pc" is obsolete. */
4892
			busy = page;
4893 4894 4895
			cond_resched();
		} else
			busy = NULL;
4896
	} while (!list_empty(list));
4897 4898 4899
}

/*
4900 4901
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4902
 * This enables deleting this mem_cgroup.
4903 4904
 *
 * Caller is responsible for holding css reference on the memcg.
4905
 */
4906
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4907
{
4908
	int node, zid;
4909
	u64 usage;
4910

4911
	do {
4912 4913
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4914 4915
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4916
		for_each_node_state(node, N_MEMORY) {
4917
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4918 4919
				enum lru_list lru;
				for_each_lru(lru) {
4920
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4921
							node, zid, lru);
4922
				}
4923
			}
4924
		}
4925 4926
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4927
		cond_resched();
4928

4929
		/*
4930 4931 4932 4933 4934
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4935 4936 4937 4938 4939 4940
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4941 4942 4943
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4944 4945
}

4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
	struct cgroup *pos;

	/* bounce at first found */
	cgroup_for_each_child(pos, memcg->css.cgroup)
		return true;
	return false;
}

/*
4962 4963
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4964 4965 4966 4967 4968 4969 4970 4971 4972
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4983

4984
	/* returns EBUSY if there is a task or if we come here twice. */
4985 4986 4987
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4988 4989
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4990
	/* try to free all pages in this cgroup */
4991
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4992
		int progress;
4993

4994 4995 4996
		if (signal_pending(current))
			return -EINTR;

4997
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4998
						false);
4999
		if (!progress) {
5000
			nr_retries--;
5001
			/* maybe some writeback is necessary */
5002
			congestion_wait(BLK_RW_ASYNC, HZ/10);
5003
		}
5004 5005

	}
K
KAMEZAWA Hiroyuki 已提交
5006
	lru_add_drain();
5007 5008 5009
	mem_cgroup_reparent_charges(memcg);

	return 0;
5010 5011
}

5012
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
5013
{
5014 5015 5016
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

5017 5018
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
5019 5020 5021 5022 5023
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
5024 5025 5026
}


5027 5028 5029 5030 5031 5032 5033 5034 5035
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
5036
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5037
	struct cgroup *parent = cont->parent;
5038
	struct mem_cgroup *parent_memcg = NULL;
5039 5040

	if (parent)
5041
		parent_memcg = mem_cgroup_from_cont(parent);
5042

5043
	mutex_lock(&memcg_create_mutex);
5044 5045 5046 5047

	if (memcg->use_hierarchy == val)
		goto out;

5048
	/*
5049
	 * If parent's use_hierarchy is set, we can't make any modifications
5050 5051 5052 5053 5054 5055
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5056
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5057
				(val == 1 || val == 0)) {
5058
		if (!__memcg_has_children(memcg))
5059
			memcg->use_hierarchy = val;
5060 5061 5062 5063
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5064 5065

out:
5066
	mutex_unlock(&memcg_create_mutex);
5067 5068 5069 5070

	return retval;
}

5071

5072
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5073
					       enum mem_cgroup_stat_index idx)
5074
{
K
KAMEZAWA Hiroyuki 已提交
5075
	struct mem_cgroup *iter;
5076
	long val = 0;
5077

5078
	/* Per-cpu values can be negative, use a signed accumulator */
5079
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5080 5081 5082 5083 5084
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5085 5086
}

5087
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5088
{
K
KAMEZAWA Hiroyuki 已提交
5089
	u64 val;
5090

5091
	if (!mem_cgroup_is_root(memcg)) {
5092
		if (!swap)
5093
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5094
		else
5095
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5096 5097
	}

5098 5099 5100 5101
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5102 5103
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5104

K
KAMEZAWA Hiroyuki 已提交
5105
	if (swap)
5106
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5107 5108 5109 5110

	return val << PAGE_SHIFT;
}

5111 5112 5113
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5114
{
5115
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5116
	char str[64];
5117
	u64 val;
G
Glauber Costa 已提交
5118 5119
	int name, len;
	enum res_type type;
5120 5121 5122

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5123

5124 5125
	switch (type) {
	case _MEM:
5126
		if (name == RES_USAGE)
5127
			val = mem_cgroup_usage(memcg, false);
5128
		else
5129
			val = res_counter_read_u64(&memcg->res, name);
5130 5131
		break;
	case _MEMSWAP:
5132
		if (name == RES_USAGE)
5133
			val = mem_cgroup_usage(memcg, true);
5134
		else
5135
			val = res_counter_read_u64(&memcg->memsw, name);
5136
		break;
5137 5138 5139
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5140 5141 5142
	default:
		BUG();
	}
5143 5144 5145

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5146
}
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5165
	mutex_lock(&memcg_create_mutex);
5166 5167
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5168
		if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5169 5170 5171 5172 5173 5174
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5175 5176 5177 5178 5179
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
5180 5181 5182 5183 5184 5185 5186
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);

5187 5188 5189 5190 5191 5192 5193
		/*
		 * kmem charges can outlive the cgroup. In the case of slab
		 * pages, for instance, a page contain objects from various
		 * processes, so it is unfeasible to migrate them away. We
		 * need to reference count the memcg because of that.
		 */
		mem_cgroup_get(memcg);
5194 5195 5196 5197
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5198
	mutex_unlock(&memcg_create_mutex);
5199 5200 5201 5202
#endif
	return ret;
}

5203
#ifdef CONFIG_MEMCG_KMEM
5204
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5205
{
5206
	int ret = 0;
5207 5208
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5209 5210
		goto out;

5211
	memcg->kmem_account_flags = parent->kmem_account_flags;
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
	 * destroy(), called if we fail, will issue static_key_slow_inc() and
	 * mem_cgroup_put() if kmem is enabled. We have to either call them
	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
	 * this more consistent, since it always leads to the same destroy path
	 */
	mem_cgroup_get(memcg);
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
	ret = memcg_update_cache_sizes(memcg);
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5239
}
5240
#endif /* CONFIG_MEMCG_KMEM */
5241

5242 5243 5244 5245
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5246 5247
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
5248
{
5249
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5250 5251
	enum res_type type;
	int name;
5252 5253 5254
	unsigned long long val;
	int ret;

5255 5256
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5257

5258
	switch (name) {
5259
	case RES_LIMIT:
5260 5261 5262 5263
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5264 5265
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5266 5267 5268
		if (ret)
			break;
		if (type == _MEM)
5269
			ret = mem_cgroup_resize_limit(memcg, val);
5270
		else if (type == _MEMSWAP)
5271
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5272 5273 5274 5275
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
5276
		break;
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5291 5292 5293 5294 5295
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5296 5297
}

5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5325
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5326
{
5327
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5328 5329
	int name;
	enum res_type type;
5330

5331 5332
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5333

5334
	switch (name) {
5335
	case RES_MAX_USAGE:
5336
		if (type == _MEM)
5337
			res_counter_reset_max(&memcg->res);
5338
		else if (type == _MEMSWAP)
5339
			res_counter_reset_max(&memcg->memsw);
5340 5341 5342 5343
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5344 5345
		break;
	case RES_FAILCNT:
5346
		if (type == _MEM)
5347
			res_counter_reset_failcnt(&memcg->res);
5348
		else if (type == _MEMSWAP)
5349
			res_counter_reset_failcnt(&memcg->memsw);
5350 5351 5352 5353
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5354 5355
		break;
	}
5356

5357
	return 0;
5358 5359
}

5360 5361 5362 5363 5364 5365
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

5366
#ifdef CONFIG_MMU
5367 5368 5369
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
5370
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5371 5372 5373

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5374

5375
	/*
5376 5377 5378 5379
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5380
	 */
5381
	memcg->move_charge_at_immigrate = val;
5382 5383
	return 0;
}
5384 5385 5386 5387 5388 5389 5390
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5391

5392
#ifdef CONFIG_NUMA
5393
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5394
				      struct seq_file *m)
5395 5396 5397 5398
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5399
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5400

5401
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5402
	seq_printf(m, "total=%lu", total_nr);
5403
	for_each_node_state(nid, N_MEMORY) {
5404
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5405 5406 5407 5408
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5409
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5410
	seq_printf(m, "file=%lu", file_nr);
5411
	for_each_node_state(nid, N_MEMORY) {
5412
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5413
				LRU_ALL_FILE);
5414 5415 5416 5417
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5418
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5419
	seq_printf(m, "anon=%lu", anon_nr);
5420
	for_each_node_state(nid, N_MEMORY) {
5421
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5422
				LRU_ALL_ANON);
5423 5424 5425 5426
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5427
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5428
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5429
	for_each_node_state(nid, N_MEMORY) {
5430
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5431
				BIT(LRU_UNEVICTABLE));
5432 5433 5434 5435 5436 5437 5438
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5439 5440 5441 5442 5443
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5444
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5445
				 struct seq_file *m)
5446
{
5447
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5448 5449
	struct mem_cgroup *mi;
	unsigned int i;
5450

5451
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5452
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5453
			continue;
5454 5455
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5456
	}
L
Lee Schermerhorn 已提交
5457

5458 5459 5460 5461 5462 5463 5464 5465
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5466
	/* Hierarchical information */
5467 5468
	{
		unsigned long long limit, memsw_limit;
5469
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5470
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5471
		if (do_swap_account)
5472 5473
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5474
	}
K
KOSAKI Motohiro 已提交
5475

5476 5477 5478
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5479
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5480
			continue;
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5501
	}
K
KAMEZAWA Hiroyuki 已提交
5502

K
KOSAKI Motohiro 已提交
5503 5504 5505 5506
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5507
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5508 5509 5510 5511 5512
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5513
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5514
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5515

5516 5517 5518 5519
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5520
			}
5521 5522 5523 5524
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5525 5526 5527
	}
#endif

5528 5529 5530
	return 0;
}

K
KOSAKI Motohiro 已提交
5531 5532 5533 5534
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

5535
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5536 5537 5538 5539 5540 5541 5542
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
5543

K
KOSAKI Motohiro 已提交
5544 5545 5546 5547 5548 5549 5550
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
5551

5552
	mutex_lock(&memcg_create_mutex);
5553

K
KOSAKI Motohiro 已提交
5554
	/* If under hierarchy, only empty-root can set this value */
5555
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5556
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5557
		return -EINVAL;
5558
	}
K
KOSAKI Motohiro 已提交
5559 5560 5561

	memcg->swappiness = val;

5562
	mutex_unlock(&memcg_create_mutex);
5563

K
KOSAKI Motohiro 已提交
5564 5565 5566
	return 0;
}

5567 5568 5569 5570 5571 5572 5573 5574
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5575
		t = rcu_dereference(memcg->thresholds.primary);
5576
	else
5577
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5578 5579 5580 5581 5582 5583 5584

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5585
	 * current_threshold points to threshold just below or equal to usage.
5586 5587 5588
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5589
	i = t->current_threshold;
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5613
	t->current_threshold = i - 1;
5614 5615 5616 5617 5618 5619
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5620 5621 5622 5623 5624 5625 5626
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5637
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5638 5639 5640
{
	struct mem_cgroup_eventfd_list *ev;

5641
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5642 5643 5644 5645
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5646
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5647
{
K
KAMEZAWA Hiroyuki 已提交
5648 5649
	struct mem_cgroup *iter;

5650
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5651
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5652 5653 5654 5655
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5656 5657
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5658 5659
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5660
	enum res_type type = MEMFILE_TYPE(cft->private);
5661
	u64 threshold, usage;
5662
	int i, size, ret;
5663 5664 5665 5666 5667 5668

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5669

5670
	if (type == _MEM)
5671
		thresholds = &memcg->thresholds;
5672
	else if (type == _MEMSWAP)
5673
		thresholds = &memcg->memsw_thresholds;
5674 5675 5676 5677 5678 5679
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5680
	if (thresholds->primary)
5681 5682
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5683
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5684 5685

	/* Allocate memory for new array of thresholds */
5686
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5687
			GFP_KERNEL);
5688
	if (!new) {
5689 5690 5691
		ret = -ENOMEM;
		goto unlock;
	}
5692
	new->size = size;
5693 5694

	/* Copy thresholds (if any) to new array */
5695 5696
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5697
				sizeof(struct mem_cgroup_threshold));
5698 5699
	}

5700
	/* Add new threshold */
5701 5702
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5703 5704

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5705
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5706 5707 5708
			compare_thresholds, NULL);

	/* Find current threshold */
5709
	new->current_threshold = -1;
5710
	for (i = 0; i < size; i++) {
5711
		if (new->entries[i].threshold <= usage) {
5712
			/*
5713 5714
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5715 5716
			 * it here.
			 */
5717
			++new->current_threshold;
5718 5719
		} else
			break;
5720 5721
	}

5722 5723 5724 5725 5726
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5727

5728
	/* To be sure that nobody uses thresholds */
5729 5730 5731 5732 5733 5734 5735 5736
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5737
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5738
	struct cftype *cft, struct eventfd_ctx *eventfd)
5739 5740
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5741 5742
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5743
	enum res_type type = MEMFILE_TYPE(cft->private);
5744
	u64 usage;
5745
	int i, j, size;
5746 5747 5748

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5749
		thresholds = &memcg->thresholds;
5750
	else if (type == _MEMSWAP)
5751
		thresholds = &memcg->memsw_thresholds;
5752 5753 5754
	else
		BUG();

5755 5756 5757
	if (!thresholds->primary)
		goto unlock;

5758 5759 5760 5761 5762 5763
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5764 5765 5766
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5767 5768 5769
			size++;
	}

5770
	new = thresholds->spare;
5771

5772 5773
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5774 5775
		kfree(new);
		new = NULL;
5776
		goto swap_buffers;
5777 5778
	}

5779
	new->size = size;
5780 5781

	/* Copy thresholds and find current threshold */
5782 5783 5784
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5785 5786
			continue;

5787
		new->entries[j] = thresholds->primary->entries[i];
5788
		if (new->entries[j].threshold <= usage) {
5789
			/*
5790
			 * new->current_threshold will not be used
5791 5792 5793
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5794
			++new->current_threshold;
5795 5796 5797 5798
		}
		j++;
	}

5799
swap_buffers:
5800 5801
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5802 5803 5804 5805 5806 5807
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5808
	rcu_assign_pointer(thresholds->primary, new);
5809

5810
	/* To be sure that nobody uses thresholds */
5811
	synchronize_rcu();
5812
unlock:
5813 5814
	mutex_unlock(&memcg->thresholds_lock);
}
5815

K
KAMEZAWA Hiroyuki 已提交
5816 5817 5818 5819 5820
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5821
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5822 5823 5824 5825 5826 5827

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5828
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5829 5830 5831 5832 5833

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5834
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5835
		eventfd_signal(eventfd, 1);
5836
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5837 5838 5839 5840

	return 0;
}

5841
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5842 5843
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5844
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
5845
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5846
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5847 5848 5849

	BUG_ON(type != _OOM_TYPE);

5850
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5851

5852
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5853 5854 5855 5856 5857 5858
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5859
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5860 5861
}

5862 5863 5864
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5865
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5866

5867
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5868

5869
	if (atomic_read(&memcg->under_oom))
5870 5871 5872 5873 5874 5875 5876 5877 5878
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
5879
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5880 5881 5882 5883 5884 5885 5886 5887
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

5888
	mutex_lock(&memcg_create_mutex);
5889
	/* oom-kill-disable is a flag for subhierarchy. */
5890
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5891
		mutex_unlock(&memcg_create_mutex);
5892 5893
		return -EINVAL;
	}
5894
	memcg->oom_kill_disable = val;
5895
	if (!val)
5896
		memcg_oom_recover(memcg);
5897
	mutex_unlock(&memcg_create_mutex);
5898 5899 5900
	return 0;
}

A
Andrew Morton 已提交
5901
#ifdef CONFIG_MEMCG_KMEM
5902
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5903
{
5904 5905
	int ret;

5906
	memcg->kmemcg_id = -1;
5907 5908 5909
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5910

5911
	return mem_cgroup_sockets_init(memcg, ss);
5912
}
5913

5914
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5915
{
5916
	mem_cgroup_sockets_destroy(memcg);
5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	/*
	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
	 * path here, being careful not to race with memcg_uncharge_kmem: it is
	 * possible that the charges went down to 0 between mark_dead and the
	 * res_counter read, so in that case, we don't need the put
	 */
	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
G
Glauber Costa 已提交
5931
}
5932
#else
5933
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5934 5935 5936
{
	return 0;
}
G
Glauber Costa 已提交
5937

5938
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5939 5940
{
}
5941 5942
#endif

B
Balbir Singh 已提交
5943 5944
static struct cftype mem_cgroup_files[] = {
	{
5945
		.name = "usage_in_bytes",
5946
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5947
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5948 5949
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5950
	},
5951 5952
	{
		.name = "max_usage_in_bytes",
5953
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5954
		.trigger = mem_cgroup_reset,
5955
		.read = mem_cgroup_read,
5956
	},
B
Balbir Singh 已提交
5957
	{
5958
		.name = "limit_in_bytes",
5959
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5960
		.write_string = mem_cgroup_write,
5961
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5962
	},
5963 5964 5965 5966
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5967
		.read = mem_cgroup_read,
5968
	},
B
Balbir Singh 已提交
5969 5970
	{
		.name = "failcnt",
5971
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5972
		.trigger = mem_cgroup_reset,
5973
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5974
	},
5975 5976
	{
		.name = "stat",
5977
		.read_seq_string = memcg_stat_show,
5978
	},
5979 5980 5981 5982
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5983 5984
	{
		.name = "use_hierarchy",
5985
		.flags = CFTYPE_INSANE,
5986 5987 5988
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5989 5990 5991 5992 5993
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5994 5995 5996 5997 5998
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5999 6000
	{
		.name = "oom_control",
6001 6002
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6003 6004 6005 6006
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6007 6008 6009 6010 6011
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
6012 6013 6014
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6015
		.read_seq_string = memcg_numa_stat_show,
6016 6017
	},
#endif
6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
6042 6043 6044 6045 6046 6047
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
6048
#endif
6049
	{ },	/* terminate */
6050
};
6051

6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
6082
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6083 6084
{
	struct mem_cgroup_per_node *pn;
6085
	struct mem_cgroup_per_zone *mz;
6086
	int zone, tmp = node;
6087 6088 6089 6090 6091 6092 6093 6094
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6095 6096
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6097
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6098 6099
	if (!pn)
		return 1;
6100 6101 6102

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6103
		lruvec_init(&mz->lruvec);
6104
		mz->usage_in_excess = 0;
6105
		mz->on_tree = false;
6106
		mz->memcg = memcg;
6107
	}
6108
	memcg->nodeinfo[node] = pn;
6109 6110 6111
	return 0;
}

6112
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6113
{
6114
	kfree(memcg->nodeinfo[node]);
6115 6116
}

6117 6118
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6119
	struct mem_cgroup *memcg;
6120
	size_t size = memcg_size();
6121

6122
	/* Can be very big if nr_node_ids is very big */
6123
	if (size < PAGE_SIZE)
6124
		memcg = kzalloc(size, GFP_KERNEL);
6125
	else
6126
		memcg = vzalloc(size);
6127

6128
	if (!memcg)
6129 6130
		return NULL;

6131 6132
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6133
		goto out_free;
6134 6135
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6136 6137 6138

out_free:
	if (size < PAGE_SIZE)
6139
		kfree(memcg);
6140
	else
6141
		vfree(memcg);
6142
	return NULL;
6143 6144
}

6145
/*
6146 6147 6148 6149 6150 6151 6152 6153
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6154
 */
6155 6156

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6157
{
6158
	int node;
6159
	size_t size = memcg_size();
6160

6161 6162 6163 6164 6165 6166 6167 6168
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6180
	disarm_static_keys(memcg);
6181 6182 6183 6184
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6185
}
6186

6187

6188
/*
6189 6190 6191
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
6192
 */
6193
static void free_work(struct work_struct *work)
6194
{
6195
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6196

6197 6198 6199
	memcg = container_of(work, struct mem_cgroup, work_freeing);
	__mem_cgroup_free(memcg);
}
K
KAMEZAWA Hiroyuki 已提交
6200

6201 6202 6203
static void free_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6204

6205 6206 6207
	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, free_work);
	schedule_work(&memcg->work_freeing);
6208 6209
}

6210
static void mem_cgroup_get(struct mem_cgroup *memcg)
6211
{
6212
	atomic_inc(&memcg->refcnt);
6213 6214
}

6215
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6216
{
6217 6218
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6219
		call_rcu(&memcg->rcu_freeing, free_rcu);
6220 6221 6222
		if (parent)
			mem_cgroup_put(parent);
	}
6223 6224
}

6225
static void mem_cgroup_put(struct mem_cgroup *memcg)
6226
{
6227
	__mem_cgroup_put(memcg, 1);
6228 6229
}

6230 6231 6232
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6233
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6234
{
6235
	if (!memcg->res.parent)
6236
		return NULL;
6237
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6238
}
G
Glauber Costa 已提交
6239
EXPORT_SYMBOL(parent_mem_cgroup);
6240

6241
static void __init mem_cgroup_soft_limit_tree_init(void)
6242 6243 6244 6245 6246
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6247
	for_each_node(node) {
6248 6249 6250 6251
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6252
		BUG_ON(!rtpn);
6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6264
static struct cgroup_subsys_state * __ref
6265
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
6266
{
6267
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6268
	long error = -ENOMEM;
6269
	int node;
B
Balbir Singh 已提交
6270

6271 6272
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6273
		return ERR_PTR(error);
6274

B
Bob Liu 已提交
6275
	for_each_node(node)
6276
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6277
			goto free_out;
6278

6279
	/* root ? */
6280
	if (cont->parent == NULL) {
6281
		root_mem_cgroup = memcg;
6282 6283 6284
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6285
	}
6286

6287 6288 6289 6290 6291 6292
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6293
	vmpressure_init(&memcg->vmpressure);
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
mem_cgroup_css_online(struct cgroup *cont)
{
	struct mem_cgroup *memcg, *parent;
	int error = 0;

	if (!cont->parent)
		return 0;

6311
	mutex_lock(&memcg_create_mutex);
6312 6313 6314 6315 6316 6317 6318 6319
	memcg = mem_cgroup_from_cont(cont);
	parent = mem_cgroup_from_cont(cont->parent);

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6320 6321
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6322
		res_counter_init(&memcg->kmem, &parent->kmem);
6323

6324 6325 6326 6327 6328 6329 6330
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
6331
	} else {
6332 6333
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6334
		res_counter_init(&memcg->kmem, NULL);
6335 6336 6337 6338 6339
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6340
		if (parent != root_mem_cgroup)
6341
			mem_cgroup_subsys.broken_hierarchy = true;
6342
	}
6343 6344

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6345
	mutex_unlock(&memcg_create_mutex);
6346 6347 6348 6349 6350 6351 6352
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
6353 6354
		if (parent->use_hierarchy)
			mem_cgroup_put(parent);
6355
	}
6356
	return error;
B
Balbir Singh 已提交
6357 6358
}

M
Michal Hocko 已提交
6359 6360 6361 6362 6363 6364 6365 6366
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6367
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6368 6369 6370 6371 6372 6373

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6374
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6375 6376
}

6377
static void mem_cgroup_css_offline(struct cgroup *cont)
6378
{
6379
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6380

M
Michal Hocko 已提交
6381
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6382
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6383
	mem_cgroup_destroy_all_caches(memcg);
6384 6385
}

6386
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
6387
{
6388
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6389

6390
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
6391

6392
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
6393 6394
}

6395
#ifdef CONFIG_MMU
6396
/* Handlers for move charge at task migration. */
6397 6398
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6399
{
6400 6401
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6402
	struct mem_cgroup *memcg = mc.to;
6403

6404
	if (mem_cgroup_is_root(memcg)) {
6405 6406 6407 6408 6409 6410 6411 6412
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6413
		 * "memcg" cannot be under rmdir() because we've already checked
6414 6415 6416 6417
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6418
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6419
			goto one_by_one;
6420
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6421
						PAGE_SIZE * count, &dummy)) {
6422
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6439 6440
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6441
		if (ret)
6442
			/* mem_cgroup_clear_mc() will do uncharge later */
6443
			return ret;
6444 6445
		mc.precharge++;
	}
6446 6447 6448 6449
	return ret;
}

/**
6450
 * get_mctgt_type - get target type of moving charge
6451 6452 6453
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6454
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6455 6456 6457 6458 6459 6460
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6461 6462 6463
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6464 6465 6466 6467 6468
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6469
	swp_entry_t	ent;
6470 6471 6472
};

enum mc_target_type {
6473
	MC_TARGET_NONE = 0,
6474
	MC_TARGET_PAGE,
6475
	MC_TARGET_SWAP,
6476 6477
};

D
Daisuke Nishimura 已提交
6478 6479
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6480
{
D
Daisuke Nishimura 已提交
6481
	struct page *page = vm_normal_page(vma, addr, ptent);
6482

D
Daisuke Nishimura 已提交
6483 6484 6485 6486
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6487
		if (!move_anon())
D
Daisuke Nishimura 已提交
6488
			return NULL;
6489 6490
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6491 6492 6493 6494 6495 6496 6497
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6498
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6499 6500 6501 6502 6503 6504 6505 6506
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6507 6508 6509 6510
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6511
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6512 6513 6514 6515 6516
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6517 6518 6519 6520 6521 6522 6523
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6524

6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6544 6545 6546 6547 6548 6549
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6550
		if (do_swap_account)
6551
			*entry = swap;
6552
		page = find_get_page(swap_address_space(swap), swap.val);
6553
	}
6554
#endif
6555 6556 6557
	return page;
}

6558
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6559 6560 6561 6562
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6563
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6564 6565 6566 6567 6568 6569
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6570 6571
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6572 6573

	if (!page && !ent.val)
6574
		return ret;
6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6590 6591
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6592
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6593 6594 6595
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6596 6597 6598 6599
	}
	return ret;
}

6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6635 6636 6637 6638 6639 6640 6641 6642
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6643 6644 6645 6646
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6647
		return 0;
6648
	}
6649

6650 6651
	if (pmd_trans_unstable(pmd))
		return 0;
6652 6653
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6654
		if (get_mctgt_type(vma, addr, *pte, NULL))
6655 6656 6657 6658
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6659 6660 6661
	return 0;
}

6662 6663 6664 6665 6666
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6667
	down_read(&mm->mmap_sem);
6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6679
	up_read(&mm->mmap_sem);
6680 6681 6682 6683 6684 6685 6686 6687 6688

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6689 6690 6691 6692 6693
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6694 6695
}

6696 6697
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6698
{
6699 6700 6701
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

6702
	/* we must uncharge all the leftover precharges from mc.to */
6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6714
	}
6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6749
	spin_lock(&mc.lock);
6750 6751
	mc.from = NULL;
	mc.to = NULL;
6752
	spin_unlock(&mc.lock);
6753
	mem_cgroup_end_move(from);
6754 6755
}

6756 6757
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6758
{
6759
	struct task_struct *p = cgroup_taskset_first(tset);
6760
	int ret = 0;
6761
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6762
	unsigned long move_charge_at_immigrate;
6763

6764 6765 6766 6767 6768 6769 6770
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6771 6772 6773
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6774
		VM_BUG_ON(from == memcg);
6775 6776 6777 6778 6779

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6780 6781 6782 6783
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6784
			VM_BUG_ON(mc.moved_charge);
6785
			VM_BUG_ON(mc.moved_swap);
6786
			mem_cgroup_start_move(from);
6787
			spin_lock(&mc.lock);
6788
			mc.from = from;
6789
			mc.to = memcg;
6790
			mc.immigrate_flags = move_charge_at_immigrate;
6791
			spin_unlock(&mc.lock);
6792
			/* We set mc.moving_task later */
6793 6794 6795 6796

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6797 6798
		}
		mmput(mm);
6799 6800 6801 6802
	}
	return ret;
}

6803 6804
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6805
{
6806
	mem_cgroup_clear_mc();
6807 6808
}

6809 6810 6811
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6812
{
6813 6814 6815 6816
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6817 6818 6819 6820
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6821

6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6833
		if (mc.precharge < HPAGE_PMD_NR) {
6834 6835 6836 6837 6838 6839 6840 6841 6842
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6843
							pc, mc.from, mc.to)) {
6844 6845 6846 6847 6848 6849 6850 6851
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6852
		return 0;
6853 6854
	}

6855 6856
	if (pmd_trans_unstable(pmd))
		return 0;
6857 6858 6859 6860
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6861
		swp_entry_t ent;
6862 6863 6864 6865

		if (!mc.precharge)
			break;

6866
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6867 6868 6869 6870 6871
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6872
			if (!mem_cgroup_move_account(page, 1, pc,
6873
						     mc.from, mc.to)) {
6874
				mc.precharge--;
6875 6876
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6877 6878
			}
			putback_lru_page(page);
6879
put:			/* get_mctgt_type() gets the page */
6880 6881
			put_page(page);
			break;
6882 6883
		case MC_TARGET_SWAP:
			ent = target.ent;
6884
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6885
				mc.precharge--;
6886 6887 6888
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6889
			break;
6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6904
		ret = mem_cgroup_do_precharge(1);
6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6948
	up_read(&mm->mmap_sem);
6949 6950
}

6951 6952
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6953
{
6954
	struct task_struct *p = cgroup_taskset_first(tset);
6955
	struct mm_struct *mm = get_task_mm(p);
6956 6957

	if (mm) {
6958 6959
		if (mc.to)
			mem_cgroup_move_charge(mm);
6960 6961
		mmput(mm);
	}
6962 6963
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6964
}
6965
#else	/* !CONFIG_MMU */
6966 6967
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6968 6969 6970
{
	return 0;
}
6971 6972
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6973 6974
{
}
6975 6976
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
6977 6978 6979
{
}
#endif
B
Balbir Singh 已提交
6980

6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
static void mem_cgroup_bind(struct cgroup *root)
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
	if (cgroup_sane_behavior(root))
		mem_cgroup_from_cont(root)->use_hierarchy = true;
}

B
Balbir Singh 已提交
6996 6997 6998
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6999
	.css_alloc = mem_cgroup_css_alloc,
7000
	.css_online = mem_cgroup_css_online,
7001 7002
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
7003 7004
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
7005
	.attach = mem_cgroup_move_task,
7006
	.bind = mem_cgroup_bind,
7007
	.base_cftypes = mem_cgroup_files,
7008
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
7009
	.use_id = 1,
B
Balbir Singh 已提交
7010
};
7011

A
Andrew Morton 已提交
7012
#ifdef CONFIG_MEMCG_SWAP
7013 7014 7015
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
7016
	if (!strcmp(s, "1"))
7017
		really_do_swap_account = 1;
7018
	else if (!strcmp(s, "0"))
7019 7020 7021
		really_do_swap_account = 0;
	return 1;
}
7022
__setup("swapaccount=", enable_swap_account);
7023

7024 7025
static void __init memsw_file_init(void)
{
7026 7027 7028 7029 7030 7031 7032 7033 7034
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
7035
}
7036

7037
#else
7038
static void __init enable_swap_cgroup(void)
7039 7040
{
}
7041
#endif
7042 7043

/*
7044 7045 7046 7047 7048 7049
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7050 7051 7052 7053
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7054
	enable_swap_cgroup();
7055
	mem_cgroup_soft_limit_tree_init();
7056
	memcg_stock_init();
7057 7058 7059
	return 0;
}
subsys_initcall(mem_cgroup_init);