mcp251x.c 32.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
 *
 * MCP2510 support and bug fixes by Christian Pellegrin
 * <chripell@evolware.org>
 *
 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
 *
 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
 * Written under contract by:
 *   Chris Elston, Katalix Systems, Ltd.
 *
 * Based on Microchip MCP251x CAN controller driver written by
 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
 *
 * Based on CAN bus driver for the CCAN controller written by
 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
 * - Simon Kallweit, intefo AG
 * Copyright 2007
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the version 2 of the GNU General Public License
 * as published by the Free Software Foundation
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
31
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
32 33 34 35 36 37 38 39 40 41 42
 *
 *
 *
 * Your platform definition file should specify something like:
 *
 * static struct mcp251x_platform_data mcp251x_info = {
 *         .oscillator_frequency = 8000000,
 * };
 *
 * static struct spi_board_info spi_board_info[] = {
 *         {
43 44
 *                 .modalias = "mcp2510",
 *			// or "mcp2515" depending on your controller
45 46 47 48 49 50 51 52 53 54 55 56 57 58
 *                 .platform_data = &mcp251x_info,
 *                 .irq = IRQ_EINT13,
 *                 .max_speed_hz = 2*1000*1000,
 *                 .chip_select = 2,
 *         },
 * };
 *
 * Please see mcp251x.h for a description of the fields in
 * struct mcp251x_platform_data.
 *
 */

#include <linux/can/core.h>
#include <linux/can/dev.h>
59
#include <linux/can/led.h>
60
#include <linux/can/platform/mcp251x.h>
61
#include <linux/clk.h>
62 63 64 65 66 67 68 69 70 71
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/freezer.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
72 73
#include <linux/of.h>
#include <linux/of_device.h>
74
#include <linux/platform_device.h>
75
#include <linux/slab.h>
76 77
#include <linux/spi/spi.h>
#include <linux/uaccess.h>
78
#include <linux/regulator/consumer.h>
79 80 81 82 83 84 85 86

/* SPI interface instruction set */
#define INSTRUCTION_WRITE	0x02
#define INSTRUCTION_READ	0x03
#define INSTRUCTION_BIT_MODIFY	0x05
#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
#define INSTRUCTION_RESET	0xC0
87 88 89 90 91
#define RTS_TXB0		0x01
#define RTS_TXB1		0x02
#define RTS_TXB2		0x04
#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

/* MPC251x registers */
#define CANSTAT	      0x0e
#define CANCTRL	      0x0f
#  define CANCTRL_REQOP_MASK	    0xe0
#  define CANCTRL_REQOP_CONF	    0x80
#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
#  define CANCTRL_REQOP_LOOPBACK    0x40
#  define CANCTRL_REQOP_SLEEP	    0x20
#  define CANCTRL_REQOP_NORMAL	    0x00
#  define CANCTRL_OSM		    0x08
#  define CANCTRL_ABAT		    0x10
#define TEC	      0x1c
#define REC	      0x1d
#define CNF1	      0x2a
#  define CNF1_SJW_SHIFT   6
#define CNF2	      0x29
#  define CNF2_BTLMODE	   0x80
#  define CNF2_SAM         0x40
#  define CNF2_PS1_SHIFT   3
#define CNF3	      0x28
#  define CNF3_SOF	   0x08
#  define CNF3_WAKFIL	   0x04
#  define CNF3_PHSEG2_MASK 0x07
#define CANINTE	      0x2b
#  define CANINTE_MERRE 0x80
#  define CANINTE_WAKIE 0x40
#  define CANINTE_ERRIE 0x20
#  define CANINTE_TX2IE 0x10
#  define CANINTE_TX1IE 0x08
#  define CANINTE_TX0IE 0x04
#  define CANINTE_RX1IE 0x02
#  define CANINTE_RX0IE 0x01
#define CANINTF	      0x2c
#  define CANINTF_MERRF 0x80
#  define CANINTF_WAKIF 0x40
#  define CANINTF_ERRIF 0x20
#  define CANINTF_TX2IF 0x10
#  define CANINTF_TX1IF 0x08
#  define CANINTF_TX0IF 0x04
#  define CANINTF_RX1IF 0x02
#  define CANINTF_RX0IF 0x01
134 135 136
#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
#  define CANINTF_ERR (CANINTF_ERRIF)
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
#define EFLG	      0x2d
#  define EFLG_EWARN	0x01
#  define EFLG_RXWAR	0x02
#  define EFLG_TXWAR	0x04
#  define EFLG_RXEP	0x08
#  define EFLG_TXEP	0x10
#  define EFLG_TXBO	0x20
#  define EFLG_RX0OVR	0x40
#  define EFLG_RX1OVR	0x80
#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
#  define TXBCTRL_ABTF	0x40
#  define TXBCTRL_MLOA	0x20
#  define TXBCTRL_TXERR 0x10
#  define TXBCTRL_TXREQ 0x08
#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
#  define SIDH_SHIFT    3
#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
#  define SIDL_SID_MASK    7
#  define SIDL_SID_SHIFT   5
#  define SIDL_EXIDE_SHIFT 3
#  define SIDL_EID_SHIFT   16
#  define SIDL_EID_MASK    3
#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
#  define DLC_RTR_SHIFT    6
#define TXBCTRL_OFF 0
#define TXBSIDH_OFF 1
#define TXBSIDL_OFF 2
#define TXBEID8_OFF 3
#define TXBEID0_OFF 4
#define TXBDLC_OFF  5
#define TXBDAT_OFF  6
#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
#  define RXBCTRL_BUKT	0x04
#  define RXBCTRL_RXM0	0x20
#  define RXBCTRL_RXM1	0x40
#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
#  define RXBSIDH_SHIFT 3
#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
#  define RXBSIDL_IDE   0x08
178
#  define RXBSIDL_SRR   0x10
179 180 181 182 183 184 185 186 187 188 189 190 191 192
#  define RXBSIDL_EID   3
#  define RXBSIDL_SHIFT 5
#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
#  define RXBDLC_LEN_MASK  0x0f
#  define RXBDLC_RTR       0x40
#define RXBCTRL_OFF 0
#define RXBSIDH_OFF 1
#define RXBSIDL_OFF 2
#define RXBEID8_OFF 3
#define RXBEID0_OFF 4
#define RXBDLC_OFF  5
#define RXBDAT_OFF  6
193 194 195 196 197 198 199 200
#define RXFSIDH(n) ((n) * 4)
#define RXFSIDL(n) ((n) * 4 + 1)
#define RXFEID8(n) ((n) * 4 + 2)
#define RXFEID0(n) ((n) * 4 + 3)
#define RXMSIDH(n) ((n) * 4 + 0x20)
#define RXMSIDL(n) ((n) * 4 + 0x21)
#define RXMEID8(n) ((n) * 4 + 0x22)
#define RXMEID0(n) ((n) * 4 + 0x23)
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

#define GET_BYTE(val, byte)			\
	(((val) >> ((byte) * 8)) & 0xff)
#define SET_BYTE(val, byte)			\
	(((val) & 0xff) << ((byte) * 8))

/*
 * Buffer size required for the largest SPI transfer (i.e., reading a
 * frame)
 */
#define CAN_FRAME_MAX_DATA_LEN	8
#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
#define CAN_FRAME_MAX_BITS	128

#define TX_ECHO_SKB_MAX	1

217 218
#define MCP251X_OST_DELAY_MS	(5)

219 220 221 222 223 224
#define DEVICE_NAME "mcp251x"

static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
module_param(mcp251x_enable_dma, int, S_IRUGO);
MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");

225
static const struct can_bittiming_const mcp251x_bittiming_const = {
226 227 228 229 230 231 232 233 234 235 236
	.name = DEVICE_NAME,
	.tseg1_min = 3,
	.tseg1_max = 16,
	.tseg2_min = 2,
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 64,
	.brp_inc = 1,
};

237 238 239 240 241
enum mcp251x_model {
	CAN_MCP251X_MCP2510	= 0x2510,
	CAN_MCP251X_MCP2515	= 0x2515,
};

242 243 244 245
struct mcp251x_priv {
	struct can_priv	   can;
	struct net_device *net;
	struct spi_device *spi;
246
	enum mcp251x_model model;
247

248 249
	struct mutex mcp_lock; /* SPI device lock */

250 251 252 253 254 255 256
	u8 *spi_tx_buf;
	u8 *spi_rx_buf;
	dma_addr_t spi_tx_dma;
	dma_addr_t spi_rx_dma;

	struct sk_buff *tx_skb;
	int tx_len;
257

258 259
	struct workqueue_struct *wq;
	struct work_struct tx_work;
260 261
	struct work_struct restart_work;

262 263 264 265 266 267 268
	int force_quit;
	int after_suspend;
#define AFTER_SUSPEND_UP 1
#define AFTER_SUSPEND_DOWN 2
#define AFTER_SUSPEND_POWER 4
#define AFTER_SUSPEND_RESTART 8
	int restart_tx;
269 270
	struct regulator *power;
	struct regulator *transceiver;
271
	struct clk *clk;
272 273
};

274 275 276
#define MCP251X_IS(_model) \
static inline int mcp251x_is_##_model(struct spi_device *spi) \
{ \
277
	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
278 279 280 281 282 283
	return priv->model == CAN_MCP251X_MCP##_model; \
}

MCP251X_IS(2510);
MCP251X_IS(2515);

284 285 286 287
static void mcp251x_clean(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);

288 289
	if (priv->tx_skb || priv->tx_len)
		net->stats.tx_errors++;
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	if (priv->tx_skb)
		dev_kfree_skb(priv->tx_skb);
	if (priv->tx_len)
		can_free_echo_skb(priv->net, 0);
	priv->tx_skb = NULL;
	priv->tx_len = 0;
}

/*
 * Note about handling of error return of mcp251x_spi_trans: accessing
 * registers via SPI is not really different conceptually than using
 * normal I/O assembler instructions, although it's much more
 * complicated from a practical POV. So it's not advisable to always
 * check the return value of this function. Imagine that every
 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 * error();", it would be a great mess (well there are some situation
 * when exception handling C++ like could be useful after all). So we
 * just check that transfers are OK at the beginning of our
 * conversation with the chip and to avoid doing really nasty things
 * (like injecting bogus packets in the network stack).
 */
static int mcp251x_spi_trans(struct spi_device *spi, int len)
{
313
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
	struct spi_transfer t = {
		.tx_buf = priv->spi_tx_buf,
		.rx_buf = priv->spi_rx_buf,
		.len = len,
		.cs_change = 0,
	};
	struct spi_message m;
	int ret;

	spi_message_init(&m);

	if (mcp251x_enable_dma) {
		t.tx_dma = priv->spi_tx_dma;
		t.rx_dma = priv->spi_rx_dma;
		m.is_dma_mapped = 1;
	}

	spi_message_add_tail(&t, &m);

	ret = spi_sync(spi, &m);
	if (ret)
		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
	return ret;
}

static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
{
341
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
342 343 344 345 346 347 348 349 350 351 352
	u8 val = 0;

	priv->spi_tx_buf[0] = INSTRUCTION_READ;
	priv->spi_tx_buf[1] = reg;

	mcp251x_spi_trans(spi, 3);
	val = priv->spi_rx_buf[2];

	return val;
}

353 354 355
static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
		uint8_t *v1, uint8_t *v2)
{
356
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
357 358 359 360 361 362 363 364 365 366

	priv->spi_tx_buf[0] = INSTRUCTION_READ;
	priv->spi_tx_buf[1] = reg;

	mcp251x_spi_trans(spi, 4);

	*v1 = priv->spi_rx_buf[2];
	*v2 = priv->spi_rx_buf[3];
}

367 368
static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
{
369
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
370 371 372 373 374 375 376 377 378 379 380

	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
	priv->spi_tx_buf[1] = reg;
	priv->spi_tx_buf[2] = val;

	mcp251x_spi_trans(spi, 3);
}

static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
			       u8 mask, uint8_t val)
{
381
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
382 383 384 385 386 387 388 389 390 391 392 393

	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
	priv->spi_tx_buf[1] = reg;
	priv->spi_tx_buf[2] = mask;
	priv->spi_tx_buf[3] = val;

	mcp251x_spi_trans(spi, 4);
}

static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
				int len, int tx_buf_idx)
{
394
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
395

396
	if (mcp251x_is_2510(spi)) {
397 398 399 400 401 402 403 404 405 406 407 408 409 410
		int i;

		for (i = 1; i < TXBDAT_OFF + len; i++)
			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
					  buf[i]);
	} else {
		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
	}
}

static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
			  int tx_buf_idx)
{
411
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	u32 sid, eid, exide, rtr;
	u8 buf[SPI_TRANSFER_BUF_LEN];

	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
	if (exide)
		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
	else
		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */

	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
		(exide << SIDL_EXIDE_SHIFT) |
		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
433 434 435 436

	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
	mcp251x_spi_trans(priv->spi, 1);
437 438 439 440 441
}

static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
				int buf_idx)
{
442
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
443

444
	if (mcp251x_is_2510(spi)) {
445 446 447 448
		int i, len;

		for (i = 1; i < RXBDAT_OFF; i++)
			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
449 450

		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
451 452 453 454 455 456 457 458 459 460 461
		for (; i < (RXBDAT_OFF + len); i++)
			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
	} else {
		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
		mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
		memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
	}
}

static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
{
462
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	struct sk_buff *skb;
	struct can_frame *frame;
	u8 buf[SPI_TRANSFER_BUF_LEN];

	skb = alloc_can_skb(priv->net, &frame);
	if (!skb) {
		dev_err(&spi->dev, "cannot allocate RX skb\n");
		priv->net->stats.rx_dropped++;
		return;
	}

	mcp251x_hw_rx_frame(spi, buf, buf_idx);
	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
		/* Extended ID format */
		frame->can_id = CAN_EFF_FLAG;
		frame->can_id |=
			/* Extended ID part */
			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
			SET_BYTE(buf[RXBEID8_OFF], 1) |
			SET_BYTE(buf[RXBEID0_OFF], 0) |
			/* Standard ID part */
			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
		/* Remote transmission request */
		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
			frame->can_id |= CAN_RTR_FLAG;
	} else {
		/* Standard ID format */
		frame->can_id =
			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
494 495
		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
			frame->can_id |= CAN_RTR_FLAG;
496 497
	}
	/* Data length */
498
	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
499 500 501 502
	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);

	priv->net->stats.rx_packets++;
	priv->net->stats.rx_bytes += frame->can_dlc;
503 504 505

	can_led_event(priv->net, CAN_LED_EVENT_RX);

506
	netif_rx_ni(skb);
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
}

static void mcp251x_hw_sleep(struct spi_device *spi)
{
	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
}

static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
					   struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;

	if (priv->tx_skb || priv->tx_len) {
		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
		return NETDEV_TX_BUSY;
	}

525
	if (can_dropped_invalid_skb(net, skb))
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
		return NETDEV_TX_OK;

	netif_stop_queue(net);
	priv->tx_skb = skb;
	queue_work(priv->wq, &priv->tx_work);

	return NETDEV_TX_OK;
}

static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
{
	struct mcp251x_priv *priv = netdev_priv(net);

	switch (mode) {
	case CAN_MODE_START:
541
		mcp251x_clean(net);
542 543 544 545 546
		/* We have to delay work since SPI I/O may sleep */
		priv->can.state = CAN_STATE_ERROR_ACTIVE;
		priv->restart_tx = 1;
		if (priv->can.restart_ms == 0)
			priv->after_suspend = AFTER_SUSPEND_RESTART;
547
		queue_work(priv->wq, &priv->restart_work);
548 549 550 551 552 553 554 555
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

556
static int mcp251x_set_normal_mode(struct spi_device *spi)
557
{
558
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
559 560 561 562 563
	unsigned long timeout;

	/* Enable interrupts */
	mcp251x_write_reg(spi, CANINTE,
			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
564
			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
565 566 567 568

	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
		/* Put device into loopback mode */
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
569 570 571
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
		/* Put device into listen-only mode */
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
572 573
	} else {
		/* Put device into normal mode */
574
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
575 576 577 578 579 580 581 582

		/* Wait for the device to enter normal mode */
		timeout = jiffies + HZ;
		while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
			schedule();
			if (time_after(jiffies, timeout)) {
				dev_err(&spi->dev, "MCP251x didn't"
					" enter in normal mode\n");
583
				return -EBUSY;
584 585 586 587
			}
		}
	}
	priv->can.state = CAN_STATE_ERROR_ACTIVE;
588
	return 0;
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
}

static int mcp251x_do_set_bittiming(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct can_bittiming *bt = &priv->can.bittiming;
	struct spi_device *spi = priv->spi;

	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
			  (bt->brp - 1));
	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
			   CNF2_SAM : 0) |
			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
			  (bt->prop_seg - 1));
	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
			   (bt->phase_seg2 - 1));
606 607 608 609
	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
		mcp251x_read_reg(spi, CNF1),
		mcp251x_read_reg(spi, CNF2),
		mcp251x_read_reg(spi, CNF3));
610 611 612 613 614 615 616

	return 0;
}

static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
			 struct spi_device *spi)
{
617
	mcp251x_do_set_bittiming(net);
618

619 620 621 622
	mcp251x_write_reg(spi, RXBCTRL(0),
			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
	mcp251x_write_reg(spi, RXBCTRL(1),
			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
623 624 625
	return 0;
}

626
static int mcp251x_hw_reset(struct spi_device *spi)
627
{
628
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
629
	u8 reg;
630
	int ret;
631 632 633

	/* Wait for oscillator startup timer after power up */
	mdelay(MCP251X_OST_DELAY_MS);
634 635

	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
636 637 638 639 640 641 642 643 644 645
	ret = mcp251x_spi_trans(spi, 1);
	if (ret)
		return ret;

	/* Wait for oscillator startup timer after reset */
	mdelay(MCP251X_OST_DELAY_MS);
	
	reg = mcp251x_read_reg(spi, CANSTAT);
	if ((reg & CANCTRL_REQOP_MASK) != CANCTRL_REQOP_CONF)
		return -ENODEV;
646 647

	return 0;
648 649 650 651
}

static int mcp251x_hw_probe(struct spi_device *spi)
{
652 653 654 655 656 657
	u8 ctrl;
	int ret;

	ret = mcp251x_hw_reset(spi);
	if (ret)
		return ret;
658

659
	ctrl = mcp251x_read_reg(spi, CANCTRL);
660

661
	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
662

663 664 665
	/* Check for power up default value */
	if ((ctrl & 0x17) != 0x07)
		return -ENODEV;
666

667
	return 0;
668 669
}

670 671
static int mcp251x_power_enable(struct regulator *reg, int enable)
{
672
	if (IS_ERR_OR_NULL(reg))
673 674 675 676 677 678 679 680
		return 0;

	if (enable)
		return regulator_enable(reg);
	else
		return regulator_disable(reg);
}

681
static void mcp251x_open_clean(struct net_device *net)
682 683 684
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;
685

686 687
	free_irq(spi->irq, priv);
	mcp251x_hw_sleep(spi);
688
	mcp251x_power_enable(priv->transceiver, 0);
689
	close_candev(net);
690 691 692 693 694 695 696 697 698
}

static int mcp251x_stop(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;

	close_candev(net);

699 700 701 702 703 704 705
	priv->force_quit = 1;
	free_irq(spi->irq, priv);
	destroy_workqueue(priv->wq);
	priv->wq = NULL;

	mutex_lock(&priv->mcp_lock);

706 707 708 709 710
	/* Disable and clear pending interrupts */
	mcp251x_write_reg(spi, CANINTE, 0x00);
	mcp251x_write_reg(spi, CANINTF, 0x00);

	mcp251x_write_reg(spi, TXBCTRL(0), 0);
711
	mcp251x_clean(net);
712 713 714

	mcp251x_hw_sleep(spi);

715
	mcp251x_power_enable(priv->transceiver, 0);
716 717 718

	priv->can.state = CAN_STATE_STOPPED;

719 720
	mutex_unlock(&priv->mcp_lock);

721 722
	can_led_event(net, CAN_LED_EVENT_STOP);

723 724 725
	return 0;
}

726 727 728 729 730 731 732
static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
{
	struct sk_buff *skb;
	struct can_frame *frame;

	skb = alloc_can_err_skb(net, &frame);
	if (skb) {
733
		frame->can_id |= can_id;
734
		frame->data[1] = data1;
735
		netif_rx_ni(skb);
736
	} else {
737
		netdev_err(net, "cannot allocate error skb\n");
738 739 740
	}
}

741 742 743 744 745 746 747 748
static void mcp251x_tx_work_handler(struct work_struct *ws)
{
	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
						 tx_work);
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;
	struct can_frame *frame;

749
	mutex_lock(&priv->mcp_lock);
750 751 752
	if (priv->tx_skb) {
		if (priv->can.state == CAN_STATE_BUS_OFF) {
			mcp251x_clean(net);
753 754 755 756 757 758 759 760 761
		} else {
			frame = (struct can_frame *)priv->tx_skb->data;

			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
			mcp251x_hw_tx(spi, frame, 0);
			priv->tx_len = 1 + frame->can_dlc;
			can_put_echo_skb(priv->tx_skb, net, 0);
			priv->tx_skb = NULL;
762 763
		}
	}
764
	mutex_unlock(&priv->mcp_lock);
765 766
}

767
static void mcp251x_restart_work_handler(struct work_struct *ws)
768 769
{
	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
770
						 restart_work);
771 772 773
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;

774
	mutex_lock(&priv->mcp_lock);
775 776 777 778 779 780 781
	if (priv->after_suspend) {
		mcp251x_hw_reset(spi);
		mcp251x_setup(net, priv, spi);
		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
			mcp251x_set_normal_mode(spi);
		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
			netif_device_attach(net);
782
			mcp251x_clean(net);
783
			mcp251x_set_normal_mode(spi);
784
			netif_wake_queue(net);
785 786 787 788
		} else {
			mcp251x_hw_sleep(spi);
		}
		priv->after_suspend = 0;
789
		priv->force_quit = 0;
790 791
	}

792 793 794 795 796 797 798 799 800
	if (priv->restart_tx) {
		priv->restart_tx = 0;
		mcp251x_write_reg(spi, TXBCTRL(0), 0);
		mcp251x_clean(net);
		netif_wake_queue(net);
		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
	}
	mutex_unlock(&priv->mcp_lock);
}
801

802 803 804 805 806
static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
{
	struct mcp251x_priv *priv = dev_id;
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;
807

808 809 810
	mutex_lock(&priv->mcp_lock);
	while (!priv->force_quit) {
		enum can_state new_state;
811
		u8 intf, eflag;
812
		u8 clear_intf = 0;
813
		int can_id = 0, data1 = 0;
814

815 816
		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);

817 818 819
		/* mask out flags we don't care about */
		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;

820
		/* receive buffer 0 */
821 822
		if (intf & CANINTF_RX0IF) {
			mcp251x_hw_rx(spi, 0);
823 824 825 826 827 828
			/*
			 * Free one buffer ASAP
			 * (The MCP2515 does this automatically.)
			 */
			if (mcp251x_is_2510(spi))
				mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
829 830
		}

831 832
		/* receive buffer 1 */
		if (intf & CANINTF_RX1IF) {
833
			mcp251x_hw_rx(spi, 1);
834 835 836
			/* the MCP2515 does this automatically */
			if (mcp251x_is_2510(spi))
				clear_intf |= CANINTF_RX1IF;
837
		}
838

839
		/* any error or tx interrupt we need to clear? */
840 841
		if (intf & (CANINTF_ERR | CANINTF_TX))
			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
842 843
		if (clear_intf)
			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
844

845 846
		if (eflag)
			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
847

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
		/* Update can state */
		if (eflag & EFLG_TXBO) {
			new_state = CAN_STATE_BUS_OFF;
			can_id |= CAN_ERR_BUSOFF;
		} else if (eflag & EFLG_TXEP) {
			new_state = CAN_STATE_ERROR_PASSIVE;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
		} else if (eflag & EFLG_RXEP) {
			new_state = CAN_STATE_ERROR_PASSIVE;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
		} else if (eflag & EFLG_TXWAR) {
			new_state = CAN_STATE_ERROR_WARNING;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_TX_WARNING;
		} else if (eflag & EFLG_RXWAR) {
			new_state = CAN_STATE_ERROR_WARNING;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_RX_WARNING;
		} else {
			new_state = CAN_STATE_ERROR_ACTIVE;
		}

		/* Update can state statistics */
		switch (priv->can.state) {
		case CAN_STATE_ERROR_ACTIVE:
			if (new_state >= CAN_STATE_ERROR_WARNING &&
			    new_state <= CAN_STATE_BUS_OFF)
				priv->can.can_stats.error_warning++;
		case CAN_STATE_ERROR_WARNING:	/* fallthrough */
			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
			    new_state <= CAN_STATE_BUS_OFF)
				priv->can.can_stats.error_passive++;
			break;
		default:
			break;
		}
		priv->can.state = new_state;

888 889 890
		if (intf & CANINTF_ERRIF) {
			/* Handle overflow counters */
			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
891
				if (eflag & EFLG_RX0OVR) {
892
					net->stats.rx_over_errors++;
893 894 895
					net->stats.rx_errors++;
				}
				if (eflag & EFLG_RX1OVR) {
896
					net->stats.rx_over_errors++;
897 898
					net->stats.rx_errors++;
				}
899 900
				can_id |= CAN_ERR_CRTL;
				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
901
			}
902
			mcp251x_error_skb(net, can_id, data1);
903 904 905 906
		}

		if (priv->can.state == CAN_STATE_BUS_OFF) {
			if (priv->can.restart_ms == 0) {
907
				priv->force_quit = 1;
908 909
				can_bus_off(net);
				mcp251x_hw_sleep(spi);
910
				break;
911 912 913 914 915 916
			}
		}

		if (intf == 0)
			break;

917
		if (intf & CANINTF_TX) {
918 919
			net->stats.tx_packets++;
			net->stats.tx_bytes += priv->tx_len - 1;
920
			can_led_event(net, CAN_LED_EVENT_TX);
921 922 923 924 925 926 927
			if (priv->tx_len) {
				can_get_echo_skb(net, 0);
				priv->tx_len = 0;
			}
			netif_wake_queue(net);
		}

928 929 930 931
	}
	mutex_unlock(&priv->mcp_lock);
	return IRQ_HANDLED;
}
932

933 934 935 936
static int mcp251x_open(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;
937
	unsigned long flags = IRQF_ONESHOT | IRQF_TRIGGER_FALLING;
938 939 940 941 942 943 944 945 946
	int ret;

	ret = open_candev(net);
	if (ret) {
		dev_err(&spi->dev, "unable to set initial baudrate!\n");
		return ret;
	}

	mutex_lock(&priv->mcp_lock);
947
	mcp251x_power_enable(priv->transceiver, 1);
948 949 950 951 952 953

	priv->force_quit = 0;
	priv->tx_skb = NULL;
	priv->tx_len = 0;

	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
954
				   flags | IRQF_ONESHOT, DEVICE_NAME, priv);
955 956
	if (ret) {
		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
957
		mcp251x_power_enable(priv->transceiver, 0);
958 959 960 961
		close_candev(net);
		goto open_unlock;
	}

962
	priv->wq = create_freezable_workqueue("mcp251x_wq");
963 964 965 966 967 968 969 970 971 972 973 974
	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);

	ret = mcp251x_hw_reset(spi);
	if (ret) {
		mcp251x_open_clean(net);
		goto open_unlock;
	}
	ret = mcp251x_setup(net, priv, spi);
	if (ret) {
		mcp251x_open_clean(net);
		goto open_unlock;
975
	}
976 977 978 979 980
	ret = mcp251x_set_normal_mode(spi);
	if (ret) {
		mcp251x_open_clean(net);
		goto open_unlock;
	}
981 982 983

	can_led_event(net, CAN_LED_EVENT_OPEN);

984 985 986 987 988
	netif_wake_queue(net);

open_unlock:
	mutex_unlock(&priv->mcp_lock);
	return ret;
989 990 991 992 993 994
}

static const struct net_device_ops mcp251x_netdev_ops = {
	.ndo_open = mcp251x_open,
	.ndo_stop = mcp251x_stop,
	.ndo_start_xmit = mcp251x_hard_start_xmit,
995
	.ndo_change_mtu = can_change_mtu,
996 997
};

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
static const struct of_device_id mcp251x_of_match[] = {
	{
		.compatible	= "microchip,mcp2510",
		.data		= (void *)CAN_MCP251X_MCP2510,
	},
	{
		.compatible	= "microchip,mcp2515",
		.data		= (void *)CAN_MCP251X_MCP2515,
	},
	{ }
};
MODULE_DEVICE_TABLE(of, mcp251x_of_match);

static const struct spi_device_id mcp251x_id_table[] = {
	{
		.name		= "mcp2510",
		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
	},
	{
		.name		= "mcp2515",
		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
	},
	{ }
};
MODULE_DEVICE_TABLE(spi, mcp251x_id_table);

B
Bill Pemberton 已提交
1024
static int mcp251x_can_probe(struct spi_device *spi)
1025
{
1026 1027 1028
	const struct of_device_id *of_id = of_match_device(mcp251x_of_match,
							   &spi->dev);
	struct mcp251x_platform_data *pdata = dev_get_platdata(&spi->dev);
1029 1030
	struct net_device *net;
	struct mcp251x_priv *priv;
1031
	struct clk *clk;
1032
	int freq, ret;
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

	clk = devm_clk_get(&spi->dev, NULL);
	if (IS_ERR(clk)) {
		if (pdata)
			freq = pdata->oscillator_frequency;
		else
			return PTR_ERR(clk);
	} else {
		freq = clk_get_rate(clk);
	}
1043

1044 1045 1046
	/* Sanity check */
	if (freq < 1000000 || freq > 25000000)
		return -ERANGE;
1047 1048 1049

	/* Allocate can/net device */
	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1050 1051 1052 1053 1054 1055 1056
	if (!net)
		return -ENOMEM;

	if (!IS_ERR(clk)) {
		ret = clk_prepare_enable(clk);
		if (ret)
			goto out_free;
1057 1058 1059 1060 1061 1062 1063 1064
	}

	net->netdev_ops = &mcp251x_netdev_ops;
	net->flags |= IFF_ECHO;

	priv = netdev_priv(net);
	priv->can.bittiming_const = &mcp251x_bittiming_const;
	priv->can.do_set_mode = mcp251x_do_set_mode;
1065
	priv->can.clock.freq = freq / 2;
1066 1067
	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1068 1069 1070 1071
	if (of_id)
		priv->model = (enum mcp251x_model)of_id->data;
	else
		priv->model = spi_get_device_id(spi)->driver_data;
1072
	priv->net = net;
1073
	priv->clk = clk;
1074

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	spi_set_drvdata(spi, priv);

	/* Configure the SPI bus */
	spi->bits_per_word = 8;
	if (mcp251x_is_2510(spi))
		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
	else
		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
	ret = spi_setup(spi);
	if (ret)
		goto out_clk;

1087 1088 1089 1090 1091
	priv->power = devm_regulator_get(&spi->dev, "vdd");
	priv->transceiver = devm_regulator_get(&spi->dev, "xceiver");
	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
		ret = -EPROBE_DEFER;
1092
		goto out_clk;
1093 1094 1095 1096
	}

	ret = mcp251x_power_enable(priv->power, 1);
	if (ret)
1097
		goto out_clk;
1098

1099
	priv->spi = spi;
1100
	mutex_init(&priv->mcp_lock);
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

	/* If requested, allocate DMA buffers */
	if (mcp251x_enable_dma) {
		spi->dev.coherent_dma_mask = ~0;

		/*
		 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
		 * that much and share it between Tx and Rx DMA buffers.
		 */
		priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
						      PAGE_SIZE,
						      &priv->spi_tx_dma,
						      GFP_DMA);

		if (priv->spi_tx_buf) {
1116
			priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2));
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
			priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
							(PAGE_SIZE / 2));
		} else {
			/* Fall back to non-DMA */
			mcp251x_enable_dma = 0;
		}
	}

	/* Allocate non-DMA buffers */
	if (!mcp251x_enable_dma) {
1127 1128
		priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
						GFP_KERNEL);
1129 1130
		if (!priv->spi_tx_buf) {
			ret = -ENOMEM;
1131
			goto error_probe;
1132
		}
1133 1134
		priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
						GFP_KERNEL);
1135
		if (!priv->spi_rx_buf) {
1136
			ret = -ENOMEM;
1137
			goto error_probe;
1138 1139 1140 1141 1142
		}
	}

	SET_NETDEV_DEV(net, &spi->dev);

1143
	/* Here is OK to not lock the MCP, no one knows about it yet */
1144 1145
	ret = mcp251x_hw_probe(spi);
	if (ret)
1146
		goto error_probe;
1147

1148 1149 1150
	mcp251x_hw_sleep(spi);

	ret = register_candev(net);
1151 1152 1153 1154 1155
	if (ret)
		goto error_probe;

	devm_can_led_init(net);

1156
	return 0;
1157

1158 1159 1160 1161
error_probe:
	if (mcp251x_enable_dma)
		dma_free_coherent(&spi->dev, PAGE_SIZE,
				  priv->spi_tx_buf, priv->spi_tx_dma);
1162
	mcp251x_power_enable(priv->power, 0);
1163 1164 1165 1166 1167 1168

out_clk:
	if (!IS_ERR(clk))
		clk_disable_unprepare(clk);

out_free:
1169
	free_candev(net);
1170

1171 1172 1173
	return ret;
}

B
Bill Pemberton 已提交
1174
static int mcp251x_can_remove(struct spi_device *spi)
1175
{
1176
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1177 1178 1179 1180 1181 1182 1183 1184 1185
	struct net_device *net = priv->net;

	unregister_candev(net);

	if (mcp251x_enable_dma) {
		dma_free_coherent(&spi->dev, PAGE_SIZE,
				  priv->spi_tx_buf, priv->spi_tx_dma);
	}

1186 1187
	mcp251x_power_enable(priv->power, 0);

1188 1189 1190
	if (!IS_ERR(priv->clk))
		clk_disable_unprepare(priv->clk);

1191
	free_candev(net);
1192 1193 1194 1195

	return 0;
}

1196
static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1197
{
1198
	struct spi_device *spi = to_spi_device(dev);
1199
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1200 1201
	struct net_device *net = priv->net;

1202 1203 1204 1205 1206 1207
	priv->force_quit = 1;
	disable_irq(spi->irq);
	/*
	 * Note: at this point neither IST nor workqueues are running.
	 * open/stop cannot be called anyway so locking is not needed
	 */
1208 1209 1210 1211
	if (netif_running(net)) {
		netif_device_detach(net);

		mcp251x_hw_sleep(spi);
1212
		mcp251x_power_enable(priv->transceiver, 0);
1213 1214 1215 1216 1217
		priv->after_suspend = AFTER_SUSPEND_UP;
	} else {
		priv->after_suspend = AFTER_SUSPEND_DOWN;
	}

1218
	if (!IS_ERR_OR_NULL(priv->power)) {
1219
		regulator_disable(priv->power);
1220 1221 1222 1223 1224 1225
		priv->after_suspend |= AFTER_SUSPEND_POWER;
	}

	return 0;
}

1226
static int __maybe_unused mcp251x_can_resume(struct device *dev)
1227
{
1228
	struct spi_device *spi = to_spi_device(dev);
1229
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1230 1231

	if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1232
		mcp251x_power_enable(priv->power, 1);
1233
		queue_work(priv->wq, &priv->restart_work);
1234 1235
	} else {
		if (priv->after_suspend & AFTER_SUSPEND_UP) {
1236
			mcp251x_power_enable(priv->transceiver, 1);
1237
			queue_work(priv->wq, &priv->restart_work);
1238 1239 1240 1241
		} else {
			priv->after_suspend = 0;
		}
	}
1242 1243
	priv->force_quit = 0;
	enable_irq(spi->irq);
1244 1245
	return 0;
}
1246 1247 1248

static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
	mcp251x_can_resume);
1249 1250 1251 1252 1253

static struct spi_driver mcp251x_can_driver = {
	.driver = {
		.name = DEVICE_NAME,
		.owner = THIS_MODULE,
1254
		.of_match_table = mcp251x_of_match,
1255
		.pm = &mcp251x_can_pm_ops,
1256
	},
1257
	.id_table = mcp251x_id_table,
1258
	.probe = mcp251x_can_probe,
B
Bill Pemberton 已提交
1259
	.remove = mcp251x_can_remove,
1260
};
1261
module_spi_driver(mcp251x_can_driver);
1262 1263 1264 1265 1266

MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
	      "Christian Pellegrin <chripell@evolware.org>");
MODULE_DESCRIPTION("Microchip 251x CAN driver");
MODULE_LICENSE("GPL v2");