intel_lrc.c 75.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133 134 135 136 137
 */

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
138
#include "intel_mocs.h"
139

140
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 142 143
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

144 145 146 147 148 149 150 151 152 153 154 155 156
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

187 188 189 190 191
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
192 193

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
194
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
195 196 197 198
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
}

199 200 201 202 203
#define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
}

204 205
enum {
	ADVANCED_CONTEXT = 0,
206
	LEGACY_32B_CONTEXT,
207 208 209
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
210 211 212 213
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
214 215 216 217 218 219 220
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
221
#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
222

223
static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
224

225 226 227 228 229 230
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
231
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
232 233 234
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
235 236
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
237 238
	WARN_ON(i915.enable_ppgtt == -1);

239 240 241 242 243 244
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
		return 1;

245 246 247
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

248 249 250
	if (enable_execlists == 0)
		return 0;

251 252
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
253 254 255 256
		return 1;

	return 0;
}
257

258 259 260 261 262 263 264 265 266 267 268 269
/**
 * intel_execlists_ctx_id() - get the Execlists Context ID
 * @ctx_obj: Logical Ring Context backing object.
 *
 * Do not confuse with ctx->id! Unfortunately we have a name overload
 * here: the old context ID we pass to userspace as a handler so that
 * they can refer to a context, and the new context ID we pass to the
 * ELSP so that the GPU can inform us of the context status via
 * interrupts.
 *
 * Return: 20-bits globally unique context ID.
 */
270 271
u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
{
272 273
	u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
			LRC_PPHWSP_PN * PAGE_SIZE;
274 275 276 277 278 279

	/* LRCA is required to be 4K aligned so the more significant 20 bits
	 * are globally unique */
	return lrca >> 12;
}

280 281
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
				     struct intel_engine_cs *ring)
282
{
283
	struct drm_device *dev = ring->dev;
284
	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
285
	uint64_t desc;
286 287
	uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
			LRC_PPHWSP_PN * PAGE_SIZE;
288 289

	WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
290 291

	desc = GEN8_CTX_VALID;
292
	desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
293 294
	if (IS_GEN8(ctx_obj->base.dev))
		desc |= GEN8_CTX_L3LLC_COHERENT;
295 296 297 298 299 300 301 302
	desc |= GEN8_CTX_PRIVILEGE;
	desc |= lrca;
	desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* desc |= GEN8_CTX_FORCE_RESTORE; */

303 304 305 306 307 308 309
	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	if (IS_GEN9(dev) &&
	    INTEL_REVID(dev) <= SKL_REVID_B0 &&
	    (ring->id == BCS || ring->id == VCS ||
	    ring->id == VECS || ring->id == VCS2))
		desc |= GEN8_CTX_FORCE_RESTORE;

310 311 312
	return desc;
}

313 314
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
315
{
316 317

	struct intel_engine_cs *ring = rq0->ring;
318 319
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
320
	uint64_t desc[2];
321

322
	if (rq1) {
323
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
324 325 326 327
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
328

329
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
330
	rq0->elsp_submitted++;
331

332
	/* You must always write both descriptors in the order below. */
333 334
	spin_lock(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
335 336
	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
337

338
	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
339
	/* The context is automatically loaded after the following */
340
	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
341

342
	/* ELSP is a wo register, use another nearby reg for posting */
343 344 345
	POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
	intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
	spin_unlock(&dev_priv->uncore.lock);
346 347
}

348
static int execlists_update_context(struct drm_i915_gem_request *rq)
349
{
350 351 352 353
	struct intel_engine_cs *ring = rq->ring;
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
	struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
354 355 356
	struct page *page;
	uint32_t *reg_state;

357 358 359 360
	BUG_ON(!ctx_obj);
	WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
	WARN_ON(!i915_gem_obj_is_pinned(rb_obj));

361
	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
362 363
	reg_state = kmap_atomic(page);

364 365
	reg_state[CTX_RING_TAIL+1] = rq->tail;
	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
366

367 368 369 370 371 372
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* True 32b PPGTT with dynamic page allocation: update PDP
		 * registers and point the unallocated PDPs to scratch page.
		 * PML4 is allocated during ppgtt init, so this is not needed
		 * in 48-bit mode.
		 */
373 374 375 376 377 378
		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
	}

379 380 381 382 383
	kunmap_atomic(reg_state);

	return 0;
}

384 385
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
386
{
387
	execlists_update_context(rq0);
388

389
	if (rq1)
390
		execlists_update_context(rq1);
391

392
	execlists_elsp_write(rq0, rq1);
393 394
}

395 396
static void execlists_context_unqueue(struct intel_engine_cs *ring)
{
397 398
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
399 400

	assert_spin_locked(&ring->execlist_lock);
401

402 403 404 405 406 407
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
	WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));

408 409 410 411 412 413 414 415
	if (list_empty(&ring->execlist_queue))
		return;

	/* Try to read in pairs */
	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
416
		} else if (req0->ctx == cursor->ctx) {
417 418
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
419
			cursor->elsp_submitted = req0->elsp_submitted;
420
			list_del(&req0->execlist_link);
421 422
			list_add_tail(&req0->execlist_link,
				&ring->execlist_retired_req_list);
423 424 425 426 427 428 429
			req0 = cursor;
		} else {
			req1 = cursor;
			break;
		}
	}

430 431 432 433 434
	if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
		/*
		 * WaIdleLiteRestore: make sure we never cause a lite
		 * restore with HEAD==TAIL
		 */
435
		if (req0->elsp_submitted) {
436 437 438 439 440 441 442 443 444 445 446 447 448 449
			/*
			 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
			 * as we resubmit the request. See gen8_emit_request()
			 * for where we prepare the padding after the end of the
			 * request.
			 */
			struct intel_ringbuffer *ringbuf;

			ringbuf = req0->ctx->engine[ring->id].ringbuf;
			req0->tail += 8;
			req0->tail &= ringbuf->size - 1;
		}
	}

450 451
	WARN_ON(req1 && req1->elsp_submitted);

452
	execlists_submit_requests(req0, req1);
453 454
}

455 456 457
static bool execlists_check_remove_request(struct intel_engine_cs *ring,
					   u32 request_id)
{
458
	struct drm_i915_gem_request *head_req;
459 460 461 462

	assert_spin_locked(&ring->execlist_lock);

	head_req = list_first_entry_or_null(&ring->execlist_queue,
463
					    struct drm_i915_gem_request,
464 465 466 467
					    execlist_link);

	if (head_req != NULL) {
		struct drm_i915_gem_object *ctx_obj =
468
				head_req->ctx->engine[ring->id].state;
469
		if (intel_execlists_ctx_id(ctx_obj) == request_id) {
470 471 472 473 474
			WARN(head_req->elsp_submitted == 0,
			     "Never submitted head request\n");

			if (--head_req->elsp_submitted <= 0) {
				list_del(&head_req->execlist_link);
475 476
				list_add_tail(&head_req->execlist_link,
					&ring->execlist_retired_req_list);
477 478
				return true;
			}
479 480 481 482 483 484
		}
	}

	return false;
}

485
/**
486
 * intel_lrc_irq_handler() - handle Context Switch interrupts
487 488 489 490 491
 * @ring: Engine Command Streamer to handle.
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
492
void intel_lrc_irq_handler(struct intel_engine_cs *ring)
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	u32 status_pointer;
	u8 read_pointer;
	u8 write_pointer;
	u32 status;
	u32 status_id;
	u32 submit_contexts = 0;

	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));

	read_pointer = ring->next_context_status_buffer;
	write_pointer = status_pointer & 0x07;
	if (read_pointer > write_pointer)
		write_pointer += 6;

	spin_lock(&ring->execlist_lock);

	while (read_pointer < write_pointer) {
		read_pointer++;
		status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
				(read_pointer % 6) * 8);
		status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
				(read_pointer % 6) * 8 + 4);

518 519 520
		if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
			continue;

521 522 523 524 525 526 527 528 529 530
		if (status & GEN8_CTX_STATUS_PREEMPTED) {
			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(ring, status_id))
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

		 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
		     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
531 532 533 534 535 536 537 538 539 540 541 542 543 544
			if (execlists_check_remove_request(ring, status_id))
				submit_contexts++;
		}
	}

	if (submit_contexts != 0)
		execlists_context_unqueue(ring);

	spin_unlock(&ring->execlist_lock);

	WARN(submit_contexts > 2, "More than two context complete events?\n");
	ring->next_context_status_buffer = write_pointer % 6;

	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
545
		   _MASKED_FIELD(0x07 << 8, ((u32)ring->next_context_status_buffer & 0x07) << 8));
546 547
}

548
static int execlists_context_queue(struct drm_i915_gem_request *request)
549
{
550
	struct intel_engine_cs *ring = request->ring;
551
	struct drm_i915_gem_request *cursor;
552
	int num_elements = 0;
553

554
	if (request->ctx != ring->default_context)
555
		intel_lr_context_pin(request);
556 557 558

	i915_gem_request_reference(request);

559
	spin_lock_irq(&ring->execlist_lock);
560

561 562 563 564 565
	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
566
		struct drm_i915_gem_request *tail_req;
567 568

		tail_req = list_last_entry(&ring->execlist_queue,
569
					   struct drm_i915_gem_request,
570 571
					   execlist_link);

572
		if (request->ctx == tail_req->ctx) {
573
			WARN(tail_req->elsp_submitted != 0,
574
				"More than 2 already-submitted reqs queued\n");
575
			list_del(&tail_req->execlist_link);
576 577
			list_add_tail(&tail_req->execlist_link,
				&ring->execlist_retired_req_list);
578 579 580
		}
	}

581
	list_add_tail(&request->execlist_link, &ring->execlist_queue);
582
	if (num_elements == 0)
583 584
		execlists_context_unqueue(ring);

585
	spin_unlock_irq(&ring->execlist_lock);
586 587 588 589

	return 0;
}

590
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
591
{
592
	struct intel_engine_cs *ring = req->ring;
593 594 595 596 597 598 599
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
	if (ring->gpu_caches_dirty)
		flush_domains = I915_GEM_GPU_DOMAINS;

600
	ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
601 602 603 604 605 606 607
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

608
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
609 610
				 struct list_head *vmas)
{
611
	const unsigned other_rings = ~intel_ring_flag(req->ring);
612 613 614 615 616 617 618 619
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

620
		if (obj->active & other_rings) {
621
			ret = i915_gem_object_sync(obj, req->ring, &req);
622 623 624
			if (ret)
				return ret;
		}
625 626 627 628 629 630 631 632 633 634 635 636 637

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
638
	return logical_ring_invalidate_all_caches(req);
639 640
}

641
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
642 643 644
{
	int ret;

645 646
	request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;

647
	if (request->ctx != request->ring->default_context) {
648
		ret = intel_lr_context_pin(request);
649
		if (ret)
650 651 652 653 654 655
			return ret;
	}

	return 0;
}

656
static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
657
				       int bytes)
658
{
659 660 661
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	struct intel_engine_cs *ring = req->ring;
	struct drm_i915_gem_request *target;
662 663
	unsigned space;
	int ret;
664 665 666 667

	if (intel_ring_space(ringbuf) >= bytes)
		return 0;

668 669 670
	/* The whole point of reserving space is to not wait! */
	WARN_ON(ringbuf->reserved_in_use);

671
	list_for_each_entry(target, &ring->request_list, list) {
672 673 674 675 676
		/*
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
		 */
677
		if (target->ringbuf != ringbuf)
678 679 680
			continue;

		/* Would completion of this request free enough space? */
681
		space = __intel_ring_space(target->postfix, ringbuf->tail,
682 683
					   ringbuf->size);
		if (space >= bytes)
684 685 686
			break;
	}

687
	if (WARN_ON(&target->list == &ring->request_list))
688 689
		return -ENOSPC;

690
	ret = i915_wait_request(target);
691 692 693
	if (ret)
		return ret;

694 695
	ringbuf->space = space;
	return 0;
696 697 698 699
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
700
 * @request: Request to advance the logical ringbuffer of.
701 702 703 704 705 706 707
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
static void
708
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
709
{
710
	struct intel_engine_cs *ring = request->ring;
711
	struct drm_i915_private *dev_priv = request->i915;
712

713
	intel_logical_ring_advance(request->ringbuf);
714

715 716
	request->tail = request->ringbuf->tail;

717 718 719
	if (intel_ring_stopped(ring))
		return;

720 721 722 723
	if (dev_priv->guc.execbuf_client)
		i915_guc_submit(dev_priv->guc.execbuf_client, request);
	else
		execlists_context_queue(request);
724 725
}

726
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
727 728 729 730 731 732 733 734 735 736 737 738 739
{
	uint32_t __iomem *virt;
	int rem = ringbuf->size - ringbuf->tail;

	virt = ringbuf->virtual_start + ringbuf->tail;
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

	ringbuf->tail = 0;
	intel_ring_update_space(ringbuf);
}

740
static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
741
{
742
	struct intel_ringbuffer *ringbuf = req->ringbuf;
743 744 745 746
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int remain_actual = ringbuf->size - ringbuf->tail;
	int ret, total_bytes, wait_bytes = 0;
	bool need_wrap = false;
747

748 749 750 751
	if (ringbuf->reserved_in_use)
		total_bytes = bytes;
	else
		total_bytes = bytes + ringbuf->reserved_size;
752

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
	} else {
		if (unlikely(total_bytes > remain_usable)) {
			/*
			 * The base request will fit but the reserved space
			 * falls off the end. So only need to to wait for the
			 * reserved size after flushing out the remainder.
			 */
			wait_bytes = remain_actual + ringbuf->reserved_size;
			need_wrap = true;
		} else if (total_bytes > ringbuf->space) {
			/* No wrapping required, just waiting. */
			wait_bytes = total_bytes;
772
		}
773 774
	}

775 776
	if (wait_bytes) {
		ret = logical_ring_wait_for_space(req, wait_bytes);
777 778
		if (unlikely(ret))
			return ret;
779 780 781

		if (need_wrap)
			__wrap_ring_buffer(ringbuf);
782 783 784 785 786 787 788 789
	}

	return 0;
}

/**
 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
 *
790
 * @request: The request to start some new work for
791
 * @ctx: Logical ring context whose ringbuffer is being prepared.
792 793 794 795 796 797 798 799 800
 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
 *
 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
 * and also preallocates a request (every workload submission is still mediated through
 * requests, same as it did with legacy ringbuffer submission).
 *
 * Return: non-zero if the ringbuffer is not ready to be written to.
 */
801
int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
802
{
803
	struct drm_i915_private *dev_priv;
804 805
	int ret;

806 807 808
	WARN_ON(req == NULL);
	dev_priv = req->ring->dev->dev_private;

809 810 811 812 813
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
	if (ret)
		return ret;

814
	ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
815 816 817
	if (ret)
		return ret;

818
	req->ringbuf->space -= num_dwords * sizeof(uint32_t);
819 820 821
	return 0;
}

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
{
	/*
	 * The first call merely notes the reserve request and is common for
	 * all back ends. The subsequent localised _begin() call actually
	 * ensures that the reservation is available. Without the begin, if
	 * the request creator immediately submitted the request without
	 * adding any commands to it then there might not actually be
	 * sufficient room for the submission commands.
	 */
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

	return intel_logical_ring_begin(request, 0);
}

837 838 839 840 841 842 843 844 845 846
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
847
 * @dispatch_flags: translated execbuffer call flags.
848 849 850 851 852 853
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
854
int intel_execlists_submission(struct i915_execbuffer_params *params,
855
			       struct drm_i915_gem_execbuffer2 *args,
856
			       struct list_head *vmas)
857
{
858 859
	struct drm_device       *dev = params->dev;
	struct intel_engine_cs  *ring = params->ring;
860
	struct drm_i915_private *dev_priv = dev->dev_private;
861 862
	struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
	u64 exec_start;
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
		DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
		return -EINVAL;
	} else {
		if (args->DR4 == 0xffffffff) {
			DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
			args->DR4 = 0;
		}

		if (args->DR1 || args->DR4 || args->cliprects_ptr) {
			DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
			return -EINVAL;
		}
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

913
	ret = execlists_move_to_gpu(params->request, vmas);
914 915 916 917 918
	if (ret)
		return ret;

	if (ring == &dev_priv->ring[RCS] &&
	    instp_mode != dev_priv->relative_constants_mode) {
919
		ret = intel_logical_ring_begin(params->request, 4);
920 921 922 923 924 925 926 927 928 929 930 931
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
		intel_logical_ring_emit(ringbuf, INSTPM);
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

932 933 934
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

935
	ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
936 937 938
	if (ret)
		return ret;

939
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
940

941
	i915_gem_execbuffer_move_to_active(vmas, params->request);
942
	i915_gem_execbuffer_retire_commands(params);
943

944 945 946
	return 0;
}

947 948
void intel_execlists_retire_requests(struct intel_engine_cs *ring)
{
949
	struct drm_i915_gem_request *req, *tmp;
950 951 952 953 954 955 956
	struct list_head retired_list;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
	if (list_empty(&ring->execlist_retired_req_list))
		return;

	INIT_LIST_HEAD(&retired_list);
957
	spin_lock_irq(&ring->execlist_lock);
958
	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
959
	spin_unlock_irq(&ring->execlist_lock);
960 961

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
962
		struct intel_context *ctx = req->ctx;
963 964 965 966
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;

		if (ctx_obj && (ctx != ring->default_context))
967
			intel_lr_context_unpin(req);
968
		list_del(&req->execlist_link);
969
		i915_gem_request_unreference(req);
970 971 972
	}
}

973 974
void intel_logical_ring_stop(struct intel_engine_cs *ring)
{
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	int ret;

	if (!intel_ring_initialized(ring))
		return;

	ret = intel_ring_idle(ring);
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
			  ring->name, ret);

	/* TODO: Is this correct with Execlists enabled? */
	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
		return;
	}
	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
993 994
}

995
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
996
{
997
	struct intel_engine_cs *ring = req->ring;
998 999 1000 1001 1002
	int ret;

	if (!ring->gpu_caches_dirty)
		return 0;

1003
	ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1004 1005 1006 1007 1008 1009 1010
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

1011
static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1012
{
1013
	struct drm_i915_private *dev_priv = rq->i915;
1014 1015 1016
	struct intel_engine_cs *ring = rq->ring;
	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf = rq->ringbuf;
1017 1018 1019
	int ret = 0;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1020
	if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1021 1022
		ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
				PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1023
		if (ret)
1024
			goto reset_pin_count;
1025 1026 1027 1028

		ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
		if (ret)
			goto unpin_ctx_obj;
1029

1030
		ctx_obj->dirty = true;
1031

1032 1033 1034
		/* Invalidate GuC TLB. */
		if (i915.enable_guc_submission)
			I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1035 1036
	}

1037 1038 1039 1040
	return ret;

unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
1041
reset_pin_count:
1042
	rq->ctx->engine[ring->id].pin_count = 0;
1043

1044 1045 1046
	return ret;
}

1047
void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1048
{
1049 1050 1051
	struct intel_engine_cs *ring = rq->ring;
	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf = rq->ringbuf;
1052 1053 1054

	if (ctx_obj) {
		WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1055
		if (--rq->ctx->engine[ring->id].pin_count == 0) {
1056
			intel_unpin_ringbuffer_obj(ringbuf);
1057
			i915_gem_object_ggtt_unpin(ctx_obj);
1058
		}
1059 1060 1061
	}
}

1062
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1063 1064
{
	int ret, i;
1065 1066
	struct intel_engine_cs *ring = req->ring;
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1067 1068 1069 1070
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1071
	if (WARN_ON_ONCE(w->count == 0))
1072 1073 1074
		return 0;

	ring->gpu_caches_dirty = true;
1075
	ret = logical_ring_flush_all_caches(req);
1076 1077 1078
	if (ret)
		return ret;

1079
	ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
		intel_logical_ring_emit(ringbuf, w->reg[i].addr);
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

	ring->gpu_caches_dirty = true;
1093
	ret = logical_ring_flush_all_caches(req);
1094 1095 1096 1097 1098 1099
	if (ret)
		return ret;

	return 0;
}

1100
#define wa_ctx_emit(batch, index, cmd)					\
1101
	do {								\
1102 1103
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1104 1105
			return -ENOSPC;					\
		}							\
1106
		batch[__index] = (cmd);					\
1107 1108
	} while (0)

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1132 1133 1134 1135 1136 1137 1138 1139 1140
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
	if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1141
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
				   MI_SRM_LRM_GLOBAL_GTT));
	wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1159
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1160 1161 1162 1163
				   MI_SRM_LRM_GLOBAL_GTT));
	wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
	wa_ctx_emit(batch, index, 0);
1164 1165 1166 1167

	return index;
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1206
 *
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1220
	uint32_t scratch_addr;
1221 1222
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1223
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1224
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1225

1226 1227
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
	if (IS_BROADWELL(ring->dev)) {
1228 1229 1230
		index = gen8_emit_flush_coherentl3_wa(ring, batch, index);
		if (index < 0)
			return index;
1231 1232
	}

1233 1234 1235 1236
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
	scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;

1237 1238 1239 1240 1241 1242 1243 1244 1245
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1246

1247 1248
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1249
		wa_ctx_emit(batch, index, MI_NOOP);
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1267
 * @batch: page in which WA are loaded
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1284
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1285
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1286

1287
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1288 1289 1290 1291

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1292 1293 1294 1295 1296
static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1297
	int ret;
1298
	struct drm_device *dev = ring->dev;
1299 1300
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1301 1302 1303 1304
	/* WaDisableCtxRestoreArbitration:skl,bxt */
	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
	    (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1305

1306 1307 1308 1309 1310 1311
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
	ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
	if (ret < 0)
		return ret;
	index = ret;

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
1324
	struct drm_device *dev = ring->dev;
1325 1326
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
	    (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
		wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1337 1338 1339 1340 1341
	/* WaDisableCtxRestoreArbitration:skl,bxt */
	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
	    (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1342 1343 1344 1345 1346
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
{
	int ret;

	ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
	if (!ring->wa_ctx.obj) {
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
		return -ENOMEM;
	}

	ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
		return ret;
	}

	return 0;
}

static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
{
	if (ring->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
		ring->wa_ctx.obj = NULL;
	}
}

static int intel_init_workaround_bb(struct intel_engine_cs *ring)
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
	struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;

	WARN_ON(ring->id != RCS);

1387
	/* update this when WA for higher Gen are added */
1388 1389 1390
	if (INTEL_INFO(ring->dev)->gen > 9) {
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
			  INTEL_INFO(ring->dev)->gen);
1391
		return 0;
1392
	}
1393

1394 1395 1396 1397 1398 1399
	/* some WA perform writes to scratch page, ensure it is valid */
	if (ring->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", ring->name);
		return -EINVAL;
	}

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

	page = i915_gem_object_get_page(wa_ctx->obj, 0);
	batch = kmap_atomic(page);
	offset = 0;

	if (INTEL_INFO(ring->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(ring,
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

		ret = gen8_init_perctx_bb(ring,
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	} else if (INTEL_INFO(ring->dev)->gen == 9) {
		ret = gen9_init_indirectctx_bb(ring,
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

		ret = gen9_init_perctx_bb(ring,
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	}

out:
	kunmap_atomic(batch);
	if (ret)
		lrc_destroy_wa_ctx_obj(ring);

	return ret;
}

1448 1449 1450 1451 1452
static int gen8_init_common_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1453 1454 1455
	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);

1456 1457 1458 1459 1460 1461
	if (ring->status_page.obj) {
		I915_WRITE(RING_HWS_PGA(ring->mmio_base),
			   (u32)ring->status_page.gfx_addr);
		POSTING_READ(RING_HWS_PGA(ring->mmio_base));
	}

1462 1463 1464 1465
	I915_WRITE(RING_MODE_GEN7(ring),
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
	POSTING_READ(RING_MODE_GEN7(ring));
1466
	ring->next_context_status_buffer = 0;
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);

	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));

	return 0;
}

static int gen8_init_render_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1494
	return init_workarounds_ring(ring);
1495 1496
}

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
static int gen9_init_render_ring(struct intel_engine_cs *ring)
{
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	return init_workarounds_ring(ring);
}

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
	struct intel_engine_cs *ring = req->ring;
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

	ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

		intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
		intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1536
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1537
			      u64 offset, unsigned dispatch_flags)
1538
{
1539
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1540
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1541 1542
	int ret;

1543 1544 1545 1546
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1547 1548
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1549 1550
	if (req->ctx->ppgtt &&
	    (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1551 1552
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
		    !intel_vgpu_active(req->i915->dev)) {
1553 1554 1555 1556
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1557 1558 1559 1560

		req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
	}

1561
	ret = intel_logical_ring_begin(req, 4);
1562 1563 1564 1565
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1566 1567 1568 1569
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1570 1571 1572 1573 1574 1575 1576 1577
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1578 1579 1580 1581 1582 1583
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1584
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (ring->irq_refcount++ == 0) {
		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (--ring->irq_refcount == 0) {
		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1611
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1612 1613 1614
			   u32 invalidate_domains,
			   u32 unused)
{
1615
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1616 1617 1618 1619 1620 1621
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1622
	ret = intel_logical_ring_begin(request, 4);
1623 1624 1625 1626 1627
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
		if (ring == &dev_priv->ring[VCS])
			cmd |= MI_INVALIDATE_BSD;
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1652
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1653 1654 1655
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1656
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1657 1658
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1659
	bool vf_flush_wa;
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
	}

1681 1682 1683 1684 1685 1686 1687
	/*
	 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
	 * control.
	 */
	vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
		      flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;

1688
	ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1689 1690 1691
	if (ret)
		return ret;

1692 1693 1694 1695 1696 1697 1698 1699 1700
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
}

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{

	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */

	if (!lazy_coherency)
		intel_flush_status_page(ring, I915_GEM_HWS_INDEX);

	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
	intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
}

1750
static int gen8_emit_request(struct drm_i915_gem_request *request)
1751
{
1752
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1753 1754 1755 1756
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 cmd;
	int ret;

1757 1758 1759 1760 1761
	/*
	 * Reserve space for 2 NOOPs at the end of each request to be
	 * used as a workaround for not being allowed to do lite
	 * restore with HEAD==TAIL (WaIdleLiteRestore).
	 */
1762
	ret = intel_logical_ring_begin(request, 8);
1763 1764 1765
	if (ret)
		return ret;

1766
	cmd = MI_STORE_DWORD_IMM_GEN4;
1767 1768 1769 1770 1771 1772 1773
	cmd |= MI_GLOBAL_GTT;

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				(ring->status_page.gfx_addr +
				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
	intel_logical_ring_emit(ringbuf, 0);
1774
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1775 1776
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1777
	intel_logical_ring_advance_and_submit(request);
1778

1779 1780 1781 1782 1783 1784 1785 1786
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

1787 1788 1789
	return 0;
}

1790
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1791 1792 1793 1794
{
	struct render_state so;
	int ret;

1795
	ret = i915_gem_render_state_prepare(req->ring, &so);
1796 1797 1798 1799 1800 1801
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1802
	ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1803
				       I915_DISPATCH_SECURE);
1804 1805 1806
	if (ret)
		goto out;

1807 1808 1809 1810 1811 1812
	ret = req->ring->emit_bb_start(req,
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1813
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1814 1815 1816 1817 1818 1819

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1820
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1821 1822 1823
{
	int ret;

1824
	ret = intel_logical_ring_workarounds_emit(req);
1825 1826 1827
	if (ret)
		return ret;

1828 1829 1830 1831 1832 1833 1834 1835
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1836
	return intel_lr_context_render_state_init(req);
1837 1838
}

1839 1840 1841 1842 1843 1844
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1845 1846
void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
{
1847
	struct drm_i915_private *dev_priv;
1848

1849 1850 1851
	if (!intel_ring_initialized(ring))
		return;

1852 1853
	dev_priv = ring->dev->dev_private;

1854 1855
	intel_logical_ring_stop(ring);
	WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1856 1857 1858 1859 1860

	if (ring->cleanup)
		ring->cleanup(ring);

	i915_cmd_parser_fini_ring(ring);
1861
	i915_gem_batch_pool_fini(&ring->batch_pool);
1862 1863 1864 1865 1866

	if (ring->status_page.obj) {
		kunmap(sg_page(ring->status_page.obj->pages->sgl));
		ring->status_page.obj = NULL;
	}
1867 1868

	lrc_destroy_wa_ctx_obj(ring);
1869 1870 1871 1872
}

static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
{
1873 1874 1875 1876 1877 1878 1879 1880
	int ret;

	/* Intentionally left blank. */
	ring->buffer = NULL;

	ring->dev = dev;
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
1881
	i915_gem_batch_pool_init(dev, &ring->batch_pool);
1882 1883
	init_waitqueue_head(&ring->irq_queue);

1884
	INIT_LIST_HEAD(&ring->execlist_queue);
1885
	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1886 1887
	spin_lock_init(&ring->execlist_lock);

1888 1889 1890 1891
	ret = i915_cmd_parser_init_ring(ring);
	if (ret)
		return ret;

1892 1893 1894
	ret = intel_lr_context_deferred_create(ring->default_context, ring);

	return ret;
1895 1896 1897 1898 1899 1900
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1901
	int ret;
1902 1903 1904 1905 1906 1907

	ring->name = "render ring";
	ring->id = RCS;
	ring->mmio_base = RENDER_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1908 1909 1910 1911
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
	if (HAS_L3_DPF(dev))
		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1912

1913 1914 1915 1916
	if (INTEL_INFO(dev)->gen >= 9)
		ring->init_hw = gen9_init_render_ring;
	else
		ring->init_hw = gen8_init_render_ring;
1917
	ring->init_context = gen8_init_rcs_context;
1918
	ring->cleanup = intel_fini_pipe_control;
1919 1920 1921 1922 1923 1924 1925
	if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
		ring->get_seqno = bxt_a_get_seqno;
		ring->set_seqno = bxt_a_set_seqno;
	} else {
		ring->get_seqno = gen8_get_seqno;
		ring->set_seqno = gen8_set_seqno;
	}
1926
	ring->emit_request = gen8_emit_request;
1927
	ring->emit_flush = gen8_emit_flush_render;
1928 1929
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1930
	ring->emit_bb_start = gen8_emit_bb_start;
1931

1932
	ring->dev = dev;
1933 1934

	ret = intel_init_pipe_control(ring);
1935 1936 1937
	if (ret)
		return ret;

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
	ret = intel_init_workaround_bb(ring);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1949 1950
	ret = logical_ring_init(dev, ring);
	if (ret) {
1951
		lrc_destroy_wa_ctx_obj(ring);
1952
	}
1953 1954

	return ret;
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];

	ring->name = "bsd ring";
	ring->id = VCS;
	ring->mmio_base = GEN6_BSD_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1967 1968
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1969

1970
	ring->init_hw = gen8_init_common_ring;
1971 1972 1973 1974 1975 1976 1977
	if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
		ring->get_seqno = bxt_a_get_seqno;
		ring->set_seqno = bxt_a_set_seqno;
	} else {
		ring->get_seqno = gen8_get_seqno;
		ring->set_seqno = gen8_set_seqno;
	}
1978
	ring->emit_request = gen8_emit_request;
1979
	ring->emit_flush = gen8_emit_flush;
1980 1981
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1982
	ring->emit_bb_start = gen8_emit_bb_start;
1983

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	return logical_ring_init(dev, ring);
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];

	ring->name = "bds2 ring";
	ring->id = VCS2;
	ring->mmio_base = GEN8_BSD2_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1997 1998
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1999

2000
	ring->init_hw = gen8_init_common_ring;
2001 2002
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
2003
	ring->emit_request = gen8_emit_request;
2004
	ring->emit_flush = gen8_emit_flush;
2005 2006
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
2007
	ring->emit_bb_start = gen8_emit_bb_start;
2008

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
	return logical_ring_init(dev, ring);
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];

	ring->name = "blitter ring";
	ring->id = BCS;
	ring->mmio_base = BLT_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2022 2023
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2024

2025
	ring->init_hw = gen8_init_common_ring;
2026 2027 2028 2029 2030 2031 2032
	if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
		ring->get_seqno = bxt_a_get_seqno;
		ring->set_seqno = bxt_a_set_seqno;
	} else {
		ring->get_seqno = gen8_get_seqno;
		ring->set_seqno = gen8_set_seqno;
	}
2033
	ring->emit_request = gen8_emit_request;
2034
	ring->emit_flush = gen8_emit_flush;
2035 2036
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
2037
	ring->emit_bb_start = gen8_emit_bb_start;
2038

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	return logical_ring_init(dev, ring);
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];

	ring->name = "video enhancement ring";
	ring->id = VECS;
	ring->mmio_base = VEBOX_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2052 2053
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2054

2055
	ring->init_hw = gen8_init_common_ring;
2056 2057 2058 2059 2060 2061 2062
	if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
		ring->get_seqno = bxt_a_get_seqno;
		ring->set_seqno = bxt_a_set_seqno;
	} else {
		ring->get_seqno = gen8_get_seqno;
		ring->set_seqno = gen8_set_seqno;
	}
2063
	ring->emit_request = gen8_emit_request;
2064
	ring->emit_flush = gen8_emit_flush;
2065 2066
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
2067
	ring->emit_bb_start = gen8_emit_bb_start;
2068

2069 2070 2071
	return logical_ring_init(dev, ring);
}

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
	if (ret)
		goto cleanup_bsd2_ring;

	return 0;

cleanup_bsd2_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
cleanup_vebox_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
cleanup_blt_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);

	return ret;
}

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2178 2179 2180 2181
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
{
2182 2183
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2184
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2185 2186 2187 2188
	struct page *page;
	uint32_t *reg_state;
	int ret;

2189 2190 2191
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	ret = i915_gem_object_get_pages(ctx_obj);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not get object pages\n");
		return ret;
	}

	i915_gem_object_pin_pages(ctx_obj);

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2208
	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
	reg_state = kmap_atomic(page);

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
	if (ring->id == RCS)
		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
	else
		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
	reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
	reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
	reg_state[CTX_CONTEXT_CONTROL+1] =
2223
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2224 2225
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   CTX_CTRL_RS_CTX_ENABLE);
2226 2227 2228 2229 2230
	reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
	reg_state[CTX_RING_HEAD+1] = 0;
	reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
	reg_state[CTX_RING_TAIL+1] = 0;
	reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2231 2232 2233
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
	reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
	reg_state[CTX_RING_BUFFER_CONTROL+1] =
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
	reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
	reg_state[CTX_BB_HEAD_U+1] = 0;
	reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
	reg_state[CTX_BB_HEAD_L+1] = 0;
	reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
	reg_state[CTX_BB_STATE+1] = (1<<5);
	reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
	reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
	reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
	reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
	reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
	reg_state[CTX_SECOND_BB_STATE+1] = 0;
	if (ring->id == RCS) {
		reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
		reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
		reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
		reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
		if (ring->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
				CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	}
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
	reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
	reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
	reg_state[CTX_CTX_TIMESTAMP+1] = 0;
	reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
	reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
	reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
	reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
	reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
	reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
	reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
	reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2284

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
	}

2303 2304
	if (ring->id == RCS) {
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2305 2306
		reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
		reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
	}

	kunmap_atomic(reg_state);

	ctx_obj->dirty = 1;
	set_page_dirty(page);
	i915_gem_object_unpin_pages(ctx_obj);

	return 0;
}

2318 2319 2320 2321 2322 2323 2324 2325
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2326 2327
void intel_lr_context_free(struct intel_context *ctx)
{
2328 2329 2330 2331
	int i;

	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2332

2333
		if (ctx_obj) {
2334 2335 2336 2337
			struct intel_ringbuffer *ringbuf =
					ctx->engine[i].ringbuf;
			struct intel_engine_cs *ring = ringbuf->ring;

2338 2339 2340 2341
			if (ctx == ring->default_context) {
				intel_unpin_ringbuffer_obj(ringbuf);
				i915_gem_object_ggtt_unpin(ctx_obj);
			}
2342
			WARN_ON(ctx->engine[ring->id].pin_count);
2343
			intel_ringbuffer_free(ringbuf);
2344 2345 2346 2347 2348 2349 2350 2351 2352
			drm_gem_object_unreference(&ctx_obj->base);
		}
	}
}

static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
{
	int ret = 0;

2353
	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2354 2355 2356

	switch (ring->id) {
	case RCS:
2357 2358 2359 2360
		if (INTEL_INFO(ring->dev)->gen >= 9)
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2371 2372
}

2373
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2374 2375 2376
		struct drm_i915_gem_object *default_ctx_obj)
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2377
	struct page *page;
2378

2379 2380 2381 2382 2383
	/* The HWSP is part of the default context object in LRC mode. */
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
			+ LRC_PPHWSP_PN * PAGE_SIZE;
	page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
	ring->status_page.page_addr = kmap(page);
2384 2385 2386 2387 2388 2389 2390
	ring->status_page.obj = default_ctx_obj;

	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
			(u32)ring->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
}

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
/**
 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2402
 * Return: non-zero on error.
2403
 */
2404 2405 2406
int intel_lr_context_deferred_create(struct intel_context *ctx,
				     struct intel_engine_cs *ring)
{
2407
	const bool is_global_default_ctx = (ctx == ring->default_context);
2408
	struct drm_device *dev = ring->dev;
2409
	struct drm_i915_private *dev_priv = dev->dev_private;
2410 2411
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2412
	struct intel_ringbuffer *ringbuf;
2413 2414
	int ret;

2415
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2416
	WARN_ON(ctx->engine[ring->id].state);
2417

2418 2419
	context_size = round_up(get_lr_context_size(ring), 4096);

2420 2421 2422
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2423
	ctx_obj = i915_gem_alloc_object(dev, context_size);
2424 2425 2426
	if (!ctx_obj) {
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
		return -ENOMEM;
2427 2428
	}

2429
	if (is_global_default_ctx) {
2430 2431
		ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
				PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
2432 2433 2434 2435 2436 2437
		if (ret) {
			DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
					ret);
			drm_gem_object_unreference(&ctx_obj->base);
			return ret;
		}
2438 2439 2440 2441

		/* Invalidate GuC TLB. */
		if (i915.enable_guc_submission)
			I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
2442 2443
	}

2444 2445 2446
	ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2447
		goto error_unpin_ctx;
2448 2449
	}

2450 2451
	if (is_global_default_ctx) {
		ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2452
		if (ret) {
2453 2454 2455 2456
			DRM_ERROR(
				  "Failed to pin and map ringbuffer %s: %d\n",
				  ring->name, ret);
			goto error_ringbuf;
2457
		}
2458 2459 2460 2461 2462 2463
	}

	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
		goto error;
2464 2465 2466
	}

	ctx->engine[ring->id].ringbuf = ringbuf;
2467
	ctx->engine[ring->id].state = ctx_obj;
2468

2469 2470
	if (ctx == ring->default_context)
		lrc_setup_hardware_status_page(ring, ctx_obj);
2471
	else if (ring->id == RCS && !ctx->rcs_initialized) {
2472
		if (ring->init_context) {
2473 2474 2475 2476 2477 2478
			struct drm_i915_gem_request *req;

			ret = i915_gem_request_alloc(ring, ctx, &req);
			if (ret)
				return ret;

2479
			ret = ring->init_context(req);
2480
			if (ret) {
2481
				DRM_ERROR("ring init context: %d\n", ret);
2482
				i915_gem_request_cancel(req);
2483 2484 2485 2486
				ctx->engine[ring->id].ringbuf = NULL;
				ctx->engine[ring->id].state = NULL;
				goto error;
			}
2487

2488
			i915_add_request_no_flush(req);
2489 2490
		}

2491 2492 2493
		ctx->rcs_initialized = true;
	}

2494
	return 0;
2495 2496

error:
2497 2498
	if (is_global_default_ctx)
		intel_unpin_ringbuffer_obj(ringbuf);
2499 2500
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2501
error_unpin_ctx:
2502 2503
	if (is_global_default_ctx)
		i915_gem_object_ggtt_unpin(ctx_obj);
2504 2505
	drm_gem_object_unreference(&ctx_obj->base);
	return ret;
2506
}
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529

void intel_lr_context_reset(struct drm_device *dev,
			struct intel_context *ctx)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	int i;

	for_each_ring(ring, dev_priv, i) {
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;
		struct intel_ringbuffer *ringbuf =
				ctx->engine[ring->id].ringbuf;
		uint32_t *reg_state;
		struct page *page;

		if (!ctx_obj)
			continue;

		if (i915_gem_object_get_pages(ctx_obj)) {
			WARN(1, "Failed get_pages for context obj\n");
			continue;
		}
2530
		page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
		reg_state = kmap_atomic(page);

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

		kunmap_atomic(reg_state);

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}