fsl_ssi.c 25.8 KB
Newer Older
1 2 3 4 5
/*
 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
 *
 * Author: Timur Tabi <timur@freescale.com>
 *
6 7 8 9 10
 * Copyright 2007-2010 Freescale Semiconductor, Inc.
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2.  This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.
11 12 13
 */

#include <linux/init.h>
14
#include <linux/io.h>
15 16
#include <linux/module.h>
#include <linux/interrupt.h>
17
#include <linux/clk.h>
18 19
#include <linux/device.h>
#include <linux/delay.h>
20
#include <linux/slab.h>
21 22
#include <linux/of_address.h>
#include <linux/of_irq.h>
23
#include <linux/of_platform.h>
24 25 26 27 28 29

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
30
#include <sound/dmaengine_pcm.h>
31 32

#include "fsl_ssi.h"
33
#include "imx-pcm.h"
34

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#ifdef PPC
#define read_ssi(addr)			 in_be32(addr)
#define write_ssi(val, addr)		 out_be32(addr, val)
#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
#elif defined ARM
#define read_ssi(addr)			 readl(addr)
#define write_ssi(val, addr)		 writel(val, addr)
/*
 * FIXME: Proper locking should be added at write_ssi_mask caller level
 * to ensure this register read/modify/write sequence is race free.
 */
static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
{
	u32 val = readl(addr);
	val = (val & ~clear) | set;
	writel(val, addr);
}
#endif

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
/**
 * FSLSSI_I2S_RATES: sample rates supported by the I2S
 *
 * This driver currently only supports the SSI running in I2S slave mode,
 * which means the codec determines the sample rate.  Therefore, we tell
 * ALSA that we support all rates and let the codec driver decide what rates
 * are really supported.
 */
#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
			  SNDRV_PCM_RATE_CONTINUOUS)

/**
 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
 *
 * This driver currently only supports the SSI running in I2S slave mode.
 *
 * The SSI has a limitation in that the samples must be in the same byte
 * order as the host CPU.  This is because when multiple bytes are written
 * to the STX register, the bytes and bits must be written in the same
 * order.  The STX is a shift register, so all the bits need to be aligned
 * (bit-endianness must match byte-endianness).  Processors typically write
 * the bits within a byte in the same order that the bytes of a word are
 * written in.  So if the host CPU is big-endian, then only big-endian
 * samples will be written to STX properly.
 */
#ifdef __BIG_ENDIAN
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
#else
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
#endif

89 90 91 92 93 94 95
/* SIER bitflag of interrupts to enable */
#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
		    CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
		    CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
		    CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
		    CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)

96 97 98 99 100 101
/**
 * fsl_ssi_private: per-SSI private data
 *
 * @ssi: pointer to the SSI's registers
 * @ssi_phys: physical address of the SSI registers
 * @irq: IRQ of this SSI
102 103
 * @first_stream: pointer to the stream that was opened first
 * @second_stream: pointer to second stream
104 105 106 107 108
 * @playback: the number of playback streams opened
 * @capture: the number of capture streams opened
 * @cpu_dai: the CPU DAI for this device
 * @dev_attr: the sysfs device attribute structure
 * @stats: SSI statistics
109
 * @name: name for this device
110 111 112 113 114
 */
struct fsl_ssi_private {
	struct ccsr_ssi __iomem *ssi;
	dma_addr_t ssi_phys;
	unsigned int irq;
115 116
	struct snd_pcm_substream *first_stream;
	struct snd_pcm_substream *second_stream;
117
	unsigned int fifo_depth;
118
	struct snd_soc_dai_driver cpu_dai_drv;
119
	struct device_attribute dev_attr;
120
	struct platform_device *pdev;
121

122 123
	bool new_binding;
	bool ssi_on_imx;
124
	struct clk *clk;
125
	struct platform_device *imx_pcm_pdev;
126 127 128 129
	struct snd_dmaengine_dai_dma_data dma_params_tx;
	struct snd_dmaengine_dai_dma_data dma_params_rx;
	struct imx_dma_data filter_data_tx;
	struct imx_dma_data filter_data_rx;
130

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
	struct {
		unsigned int rfrc;
		unsigned int tfrc;
		unsigned int cmdau;
		unsigned int cmddu;
		unsigned int rxt;
		unsigned int rdr1;
		unsigned int rdr0;
		unsigned int tde1;
		unsigned int tde0;
		unsigned int roe1;
		unsigned int roe0;
		unsigned int tue1;
		unsigned int tue0;
		unsigned int tfs;
		unsigned int rfs;
		unsigned int tls;
		unsigned int rls;
		unsigned int rff1;
		unsigned int rff0;
		unsigned int tfe1;
		unsigned int tfe0;
	} stats;
154 155

	char name[1];
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
};

/**
 * fsl_ssi_isr: SSI interrupt handler
 *
 * Although it's possible to use the interrupt handler to send and receive
 * data to/from the SSI, we use the DMA instead.  Programming is more
 * complicated, but the performance is much better.
 *
 * This interrupt handler is used only to gather statistics.
 *
 * @irq: IRQ of the SSI device
 * @dev_id: pointer to the ssi_private structure for this SSI device
 */
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
	struct fsl_ssi_private *ssi_private = dev_id;
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	irqreturn_t ret = IRQ_NONE;
	__be32 sisr;
	__be32 sisr2 = 0;

	/* We got an interrupt, so read the status register to see what we
	   were interrupted for.  We mask it with the Interrupt Enable register
	   so that we only check for events that we're interested in.
	 */
182
	sisr = read_ssi(&ssi->sisr) & SIER_FLAGS;
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

	if (sisr & CCSR_SSI_SISR_RFRC) {
		ssi_private->stats.rfrc++;
		sisr2 |= CCSR_SSI_SISR_RFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFRC) {
		ssi_private->stats.tfrc++;
		sisr2 |= CCSR_SSI_SISR_TFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDAU) {
		ssi_private->stats.cmdau++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDDU) {
		ssi_private->stats.cmddu++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RXT) {
		ssi_private->stats.rxt++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR1) {
		ssi_private->stats.rdr1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR0) {
		ssi_private->stats.rdr0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE1) {
		ssi_private->stats.tde1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE0) {
		ssi_private->stats.tde0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE1) {
		ssi_private->stats.roe1++;
		sisr2 |= CCSR_SSI_SISR_ROE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE0) {
		ssi_private->stats.roe0++;
		sisr2 |= CCSR_SSI_SISR_ROE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE1) {
		ssi_private->stats.tue1++;
		sisr2 |= CCSR_SSI_SISR_TUE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE0) {
		ssi_private->stats.tue0++;
		sisr2 |= CCSR_SSI_SISR_TUE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFS) {
		ssi_private->stats.tfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFS) {
		ssi_private->stats.rfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TLS) {
		ssi_private->stats.tls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RLS) {
		ssi_private->stats.rls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF1) {
		ssi_private->stats.rff1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF0) {
		ssi_private->stats.rff0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE1) {
		ssi_private->stats.tfe1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE0) {
		ssi_private->stats.tfe0++;
		ret = IRQ_HANDLED;
	}

	/* Clear the bits that we set */
	if (sisr2)
297
		write_ssi(sisr2, &ssi->sisr);
298 299 300 301 302 303 304 305 306 307 308 309

	return ret;
}

/**
 * fsl_ssi_startup: create a new substream
 *
 * This is the first function called when a stream is opened.
 *
 * If this is the first stream open, then grab the IRQ and program most of
 * the SSI registers.
 */
310 311
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
312 313
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
314 315 316
	struct fsl_ssi_private *ssi_private =
		snd_soc_dai_get_drvdata(rtd->cpu_dai);
	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
317 318 319 320 321

	/*
	 * If this is the first stream opened, then request the IRQ
	 * and initialize the SSI registers.
	 */
322
	if (!ssi_private->first_stream) {
323 324
		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

325 326
		ssi_private->first_stream = substream;

327 328 329 330 331
		/*
		 * Section 16.5 of the MPC8610 reference manual says that the
		 * SSI needs to be disabled before updating the registers we set
		 * here.
		 */
332
		write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
333 334 335 336 337 338 339

		/*
		 * Program the SSI into I2S Slave Non-Network Synchronous mode.
		 * Also enable the transmit and receive FIFO.
		 *
		 * FIXME: Little-endian samples require a different shift dir
		 */
340
		write_ssi_mask(&ssi->scr,
341 342
			CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
			CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
343
			| (synchronous ? CCSR_SSI_SCR_SYN : 0));
344

345
		write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
346
			 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
347
			 CCSR_SSI_STCR_TSCKP, &ssi->stcr);
348

349
		write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
350
			 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
351
			 CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
352 353 354 355 356 357

		/*
		 * The DC and PM bits are only used if the SSI is the clock
		 * master.
		 */

358
		/* Enable the interrupts and DMA requests */
359
		write_ssi(SIER_FLAGS, &ssi->sier);
360 361 362

		/*
		 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
363 364 365 366 367 368 369 370 371 372
		 * don't use FIFO 1.  We program the transmit water to signal a
		 * DMA transfer if there are only two (or fewer) elements left
		 * in the FIFO.  Two elements equals one frame (left channel,
		 * right channel).  This value, however, depends on the depth of
		 * the transmit buffer.
		 *
		 * We program the receive FIFO to notify us if at least two
		 * elements (one frame) have been written to the FIFO.  We could
		 * make this value larger (and maybe we should), but this way
		 * data will be written to memory as soon as it's available.
373
		 */
374 375 376
		write_ssi(CCSR_SSI_SFCSR_TFWM0(ssi_private->fifo_depth - 2) |
			CCSR_SSI_SFCSR_RFWM0(ssi_private->fifo_depth - 2),
			&ssi->sfcsr);
377 378 379 380 381 382 383 384 385 386

		/*
		 * We keep the SSI disabled because if we enable it, then the
		 * DMA controller will start.  It's not supposed to start until
		 * the SCR.TE (or SCR.RE) bit is set, but it does anyway.  The
		 * DMA controller will transfer one "BWC" of data (i.e. the
		 * amount of data that the MR.BWC bits are set to).  The reason
		 * this is bad is because at this point, the PCM driver has not
		 * finished initializing the DMA controller.
		 */
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
	} else {
		if (synchronous) {
			struct snd_pcm_runtime *first_runtime =
				ssi_private->first_stream->runtime;
			/*
			 * This is the second stream open, and we're in
			 * synchronous mode, so we need to impose sample
			 * sample size constraints. This is because STCCR is
			 * used for playback and capture in synchronous mode,
			 * so there's no way to specify different word
			 * lengths.
			 *
			 * Note that this can cause a race condition if the
			 * second stream is opened before the first stream is
			 * fully initialized.  We provide some protection by
			 * checking to make sure the first stream is
			 * initialized, but it's not perfect.  ALSA sometimes
			 * re-initializes the driver with a different sample
			 * rate or size.  If the second stream is opened
			 * before the first stream has received its final
			 * parameters, then the second stream may be
			 * constrained to the wrong sample rate or size.
			 */
			if (!first_runtime->sample_bits) {
				dev_err(substream->pcm->card->dev,
					"set sample size in %s stream first\n",
					substream->stream ==
					SNDRV_PCM_STREAM_PLAYBACK
					? "capture" : "playback");
				return -EAGAIN;
			}
418

419 420 421 422
			snd_pcm_hw_constraint_minmax(substream->runtime,
				SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
				first_runtime->sample_bits,
				first_runtime->sample_bits);
423
		}
424 425 426 427

		ssi_private->second_stream = substream;
	}

428 429 430 431
	return 0;
}

/**
432
 * fsl_ssi_hw_params - program the sample size
433 434 435 436 437 438 439 440 441 442 443
 *
 * Most of the SSI registers have been programmed in the startup function,
 * but the word length must be programmed here.  Unfortunately, programming
 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 * cause a problem with supporting simultaneous playback and capture.  If
 * the SSI is already playing a stream, then that stream may be temporarily
 * stopped when you start capture.
 *
 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 * clock master.
 */
444 445
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
446
{
447
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
448 449 450 451
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	unsigned int sample_size =
		snd_pcm_format_width(params_format(hw_params));
	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
452
	int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
453

454 455 456 457 458 459
	/*
	 * If we're in synchronous mode, and the SSI is already enabled,
	 * then STCCR is already set properly.
	 */
	if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
		return 0;
460

461 462 463 464 465 466 467 468 469
	/*
	 * FIXME: The documentation says that SxCCR[WL] should not be
	 * modified while the SSI is enabled.  The only time this can
	 * happen is if we're trying to do simultaneous playback and
	 * capture in asynchronous mode.  Unfortunately, I have been enable
	 * to get that to work at all on the P1022DS.  Therefore, we don't
	 * bother to disable/enable the SSI when setting SxCCR[WL], because
	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
	 */
470

471 472 473
	/* In synchronous mode, the SSI uses STCCR for capture */
	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
	    ssi_private->cpu_dai_drv.symmetric_rates)
474
		write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
475
	else
476
		write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
477 478 479 480 481 482 483 484 485 486 487 488 489

	return 0;
}

/**
 * fsl_ssi_trigger: start and stop the DMA transfer.
 *
 * This function is called by ALSA to start, stop, pause, and resume the DMA
 * transfer of data.
 *
 * The DMA channel is in external master start and pause mode, which
 * means the SSI completely controls the flow of data.
 */
490 491
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
492 493
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
494
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
495 496 497 498 499
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
500
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
501
			write_ssi_mask(&ssi->scr, 0,
502
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
503
		else
504
			write_ssi_mask(&ssi->scr, 0,
505
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
506 507 508 509 510
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
511
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TE, 0);
512
		else
513
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_RE, 0);
514 515 516 517 518 519 520 521 522 523 524 525 526 527
		break;

	default:
		return -EINVAL;
	}

	return 0;
}

/**
 * fsl_ssi_shutdown: shutdown the SSI
 *
 * Shutdown the SSI if there are no other substreams open.
 */
528 529
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
530 531
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
532
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
533

534 535 536 537 538
	if (ssi_private->first_stream == substream)
		ssi_private->first_stream = ssi_private->second_stream;

	ssi_private->second_stream = NULL;

539
	/*
540
	 * If this is the last active substream, disable the SSI.
541
	 */
542
	if (!ssi_private->first_stream) {
543 544
		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

545
		write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
546 547 548
	}
}

549 550 551 552 553 554 555 556 557 558 559 560
static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);

	if (ssi_private->ssi_on_imx) {
		dai->playback_dma_data = &ssi_private->dma_params_tx;
		dai->capture_dma_data = &ssi_private->dma_params_rx;
	}

	return 0;
}

561
static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
562 563 564 565 566 567
	.startup	= fsl_ssi_startup,
	.hw_params	= fsl_ssi_hw_params,
	.shutdown	= fsl_ssi_shutdown,
	.trigger	= fsl_ssi_trigger,
};

568 569
/* Template for the CPU dai driver structure */
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
570
	.probe = fsl_ssi_dai_probe,
571 572 573 574 575 576 577 578 579 580 581 582 583
	.playback = {
		/* The SSI does not support monaural audio. */
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
	.capture = {
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
584
	.ops = &fsl_ssi_dai_ops,
585 586
};

587 588 589 590
static const struct snd_soc_component_driver fsl_ssi_component = {
	.name		= "fsl-ssi",
};

591 592 593 594 595 596 597 598 599 600 601 602
/* Show the statistics of a flag only if its interrupt is enabled.  The
 * compiler will optimze this code to a no-op if the interrupt is not
 * enabled.
 */
#define SIER_SHOW(flag, name) \
	do { \
		if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
			length += sprintf(buf + length, #name "=%u\n", \
				ssi_private->stats.name); \
	} while (0)


603 604 605
/**
 * fsl_sysfs_ssi_show: display SSI statistics
 *
606 607
 * Display the statistics for the current SSI device.  To avoid confusion,
 * we only show those counts that are enabled.
608 609 610 611 612
 */
static ssize_t fsl_sysfs_ssi_show(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct fsl_ssi_private *ssi_private =
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
		container_of(attr, struct fsl_ssi_private, dev_attr);
	ssize_t length = 0;

	SIER_SHOW(RFRC_EN, rfrc);
	SIER_SHOW(TFRC_EN, tfrc);
	SIER_SHOW(CMDAU_EN, cmdau);
	SIER_SHOW(CMDDU_EN, cmddu);
	SIER_SHOW(RXT_EN, rxt);
	SIER_SHOW(RDR1_EN, rdr1);
	SIER_SHOW(RDR0_EN, rdr0);
	SIER_SHOW(TDE1_EN, tde1);
	SIER_SHOW(TDE0_EN, tde0);
	SIER_SHOW(ROE1_EN, roe1);
	SIER_SHOW(ROE0_EN, roe0);
	SIER_SHOW(TUE1_EN, tue1);
	SIER_SHOW(TUE0_EN, tue0);
	SIER_SHOW(TFS_EN, tfs);
	SIER_SHOW(RFS_EN, rfs);
	SIER_SHOW(TLS_EN, tls);
	SIER_SHOW(RLS_EN, rls);
	SIER_SHOW(RFF1_EN, rff1);
	SIER_SHOW(RFF0_EN, rff0);
	SIER_SHOW(TFE1_EN, tfe1);
	SIER_SHOW(TFE0_EN, tfe0);
637 638 639 640 641

	return length;
}

/**
642
 * Make every character in a string lower-case
643
 */
644 645 646 647 648 649 650 651 652 653 654 655
static void make_lowercase(char *s)
{
	char *p = s;
	char c;

	while ((c = *p)) {
		if ((c >= 'A') && (c <= 'Z'))
			*p = c + ('a' - 'A');
		p++;
	}
}

656
static int fsl_ssi_probe(struct platform_device *pdev)
657 658 659
{
	struct fsl_ssi_private *ssi_private;
	int ret = 0;
660
	struct device_attribute *dev_attr = NULL;
661
	struct device_node *np = pdev->dev.of_node;
662
	const char *p, *sprop;
663
	const uint32_t *iprop;
664 665
	struct resource res;
	char name[64];
666
	bool shared;
667

668 669 670
	/* SSIs that are not connected on the board should have a
	 *      status = "disabled"
	 * property in their device tree nodes.
671
	 */
672
	if (!of_device_is_available(np))
673 674 675 676 677
		return -ENODEV;

	/* We only support the SSI in "I2S Slave" mode */
	sprop = of_get_property(np, "fsl,mode", NULL);
	if (!sprop || strcmp(sprop, "i2s-slave")) {
678
		dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
679 680 681 682 683 684 685
		return -ENODEV;
	}

	/* The DAI name is the last part of the full name of the node. */
	p = strrchr(np->full_name, '/') + 1;
	ssi_private = kzalloc(sizeof(struct fsl_ssi_private) + strlen(p),
			      GFP_KERNEL);
686
	if (!ssi_private) {
687
		dev_err(&pdev->dev, "could not allocate DAI object\n");
688
		return -ENOMEM;
689 690
	}

691
	strcpy(ssi_private->name, p);
692

693 694 695 696 697 698 699 700
	/* Initialize this copy of the CPU DAI driver structure */
	memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
	       sizeof(fsl_ssi_dai_template));
	ssi_private->cpu_dai_drv.name = ssi_private->name;

	/* Get the addresses and IRQ */
	ret = of_address_to_resource(np, 0, &res);
	if (ret) {
701
		dev_err(&pdev->dev, "could not determine device resources\n");
702
		goto error_kmalloc;
703
	}
704 705 706
	ssi_private->ssi = of_iomap(np, 0);
	if (!ssi_private->ssi) {
		dev_err(&pdev->dev, "could not map device resources\n");
707 708
		ret = -ENOMEM;
		goto error_kmalloc;
709
	}
710
	ssi_private->ssi_phys = res.start;
711

712
	ssi_private->irq = irq_of_parse_and_map(np, 0);
713 714 715 716 717 718 719 720 721 722 723 724 725
	if (ssi_private->irq == NO_IRQ) {
		dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
		ret = -ENXIO;
		goto error_iomap;
	}

	/* The 'name' should not have any slashes in it. */
	ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0, ssi_private->name,
			  ssi_private);
	if (ret < 0) {
		dev_err(&pdev->dev, "could not claim irq %u\n", ssi_private->irq);
		goto error_irqmap;
	}
726

727
	/* Are the RX and the TX clocks locked? */
728
	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL))
729
		ssi_private->cpu_dai_drv.symmetric_rates = 1;
730

731 732 733
	/* Determine the FIFO depth. */
	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
	if (iprop)
734
		ssi_private->fifo_depth = be32_to_cpup(iprop);
735 736 737 738
	else
                /* Older 8610 DTs didn't have the fifo-depth property */
		ssi_private->fifo_depth = 8;

739 740 741
	if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx21-ssi")) {
		u32 dma_events[2];
		ssi_private->ssi_on_imx = true;
742 743 744 745 746 747 748 749 750

		ssi_private->clk = clk_get(&pdev->dev, NULL);
		if (IS_ERR(ssi_private->clk)) {
			ret = PTR_ERR(ssi_private->clk);
			dev_err(&pdev->dev, "could not get clock: %d\n", ret);
			goto error_irq;
		}
		clk_prepare_enable(ssi_private->clk);

751 752 753 754
		/*
		 * We have burstsize be "fifo_depth - 2" to match the SSI
		 * watermark setting in fsl_ssi_startup().
		 */
755
		ssi_private->dma_params_tx.maxburst =
756
			ssi_private->fifo_depth - 2;
757
		ssi_private->dma_params_rx.maxburst =
758
			ssi_private->fifo_depth - 2;
759
		ssi_private->dma_params_tx.addr =
760
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
761
		ssi_private->dma_params_rx.addr =
762
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
763 764 765 766
		ssi_private->dma_params_tx.filter_data =
			&ssi_private->filter_data_tx;
		ssi_private->dma_params_rx.filter_data =
			&ssi_private->filter_data_rx;
767 768 769 770 771 772 773 774
		/*
		 * TODO: This is a temporary solution and should be changed
		 * to use generic DMA binding later when the helplers get in.
		 */
		ret = of_property_read_u32_array(pdev->dev.of_node,
					"fsl,ssi-dma-events", dma_events, 2);
		if (ret) {
			dev_err(&pdev->dev, "could not get dma events\n");
775
			goto error_clk;
776
		}
777 778 779 780

		shared = of_device_is_compatible(of_get_parent(np),
			    "fsl,spba-bus");

781
		imx_pcm_dma_params_init_data(&ssi_private->filter_data_tx,
782
			dma_events[0], shared);
783
		imx_pcm_dma_params_init_data(&ssi_private->filter_data_rx,
784
			dma_events[1], shared);
785 786
	}

787
	/* Initialize the the device_attribute structure */
788
	dev_attr = &ssi_private->dev_attr;
789
	sysfs_attr_init(&dev_attr->attr);
790
	dev_attr->attr.name = "statistics";
791 792 793
	dev_attr->attr.mode = S_IRUGO;
	dev_attr->show = fsl_sysfs_ssi_show;

794
	ret = device_create_file(&pdev->dev, dev_attr);
795
	if (ret) {
796
		dev_err(&pdev->dev, "could not create sysfs %s file\n",
797
			ssi_private->dev_attr.attr.name);
798
		goto error_irq;
799 800
	}

801
	/* Register with ASoC */
802
	dev_set_drvdata(&pdev->dev, ssi_private);
M
Mark Brown 已提交
803

804 805
	ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
					 &ssi_private->cpu_dai_drv, 1);
806
	if (ret) {
807
		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
808
		goto error_dev;
809 810
	}

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	if (ssi_private->ssi_on_imx) {
		ssi_private->imx_pcm_pdev =
			platform_device_register_simple("imx-pcm-audio",
							-1, NULL, 0);
		if (IS_ERR(ssi_private->imx_pcm_pdev)) {
			ret = PTR_ERR(ssi_private->imx_pcm_pdev);
			goto error_dev;
		}
	}

	/*
	 * If codec-handle property is missing from SSI node, we assume
	 * that the machine driver uses new binding which does not require
	 * SSI driver to trigger machine driver's probe.
	 */
	if (!of_get_property(np, "codec-handle", NULL)) {
		ssi_private->new_binding = true;
		goto done;
	}

831
	/* Trigger the machine driver's probe function.  The platform driver
832
	 * name of the machine driver is taken from /compatible property of the
833 834 835
	 * device tree.  We also pass the address of the CPU DAI driver
	 * structure.
	 */
836 837
	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
838 839 840 841 842 843 844
	p = strrchr(sprop, ',');
	if (p)
		sprop = p + 1;
	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
	make_lowercase(name);

	ssi_private->pdev =
845
		platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
846 847
	if (IS_ERR(ssi_private->pdev)) {
		ret = PTR_ERR(ssi_private->pdev);
848
		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
849
		goto error_dai;
M
Mark Brown 已提交
850
	}
851

852
done:
853
	return 0;
854

855
error_dai:
856 857
	if (ssi_private->ssi_on_imx)
		platform_device_unregister(ssi_private->imx_pcm_pdev);
858
	snd_soc_unregister_component(&pdev->dev);
859 860

error_dev:
861
	dev_set_drvdata(&pdev->dev, NULL);
862 863
	device_remove_file(&pdev->dev, dev_attr);

864 865 866 867 868 869
error_clk:
	if (ssi_private->ssi_on_imx) {
		clk_disable_unprepare(ssi_private->clk);
		clk_put(ssi_private->clk);
	}

870 871 872 873
error_irq:
	free_irq(ssi_private->irq, ssi_private);

error_irqmap:
874
	irq_dispose_mapping(ssi_private->irq);
875 876

error_iomap:
877
	iounmap(ssi_private->ssi);
878 879

error_kmalloc:
880 881 882
	kfree(ssi_private);

	return ret;
883 884
}

885
static int fsl_ssi_remove(struct platform_device *pdev)
886
{
887
	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
888

889 890
	if (!ssi_private->new_binding)
		platform_device_unregister(ssi_private->pdev);
891
	if (ssi_private->ssi_on_imx) {
892
		platform_device_unregister(ssi_private->imx_pcm_pdev);
893 894 895
		clk_disable_unprepare(ssi_private->clk);
		clk_put(ssi_private->clk);
	}
896
	snd_soc_unregister_component(&pdev->dev);
897
	device_remove_file(&pdev->dev, &ssi_private->dev_attr);
M
Mark Brown 已提交
898

899 900 901
	free_irq(ssi_private->irq, ssi_private);
	irq_dispose_mapping(ssi_private->irq);

902
	kfree(ssi_private);
903
	dev_set_drvdata(&pdev->dev, NULL);
904 905

	return 0;
906
}
907 908 909

static const struct of_device_id fsl_ssi_ids[] = {
	{ .compatible = "fsl,mpc8610-ssi", },
910
	{ .compatible = "fsl,imx21-ssi", },
911 912 913 914
	{}
};
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);

915
static struct platform_driver fsl_ssi_driver = {
916 917 918 919 920 921 922 923
	.driver = {
		.name = "fsl-ssi-dai",
		.owner = THIS_MODULE,
		.of_match_table = fsl_ssi_ids,
	},
	.probe = fsl_ssi_probe,
	.remove = fsl_ssi_remove,
};
924

925
module_platform_driver(fsl_ssi_driver);
926

927 928
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
929
MODULE_LICENSE("GPL v2");