core.c 85.0 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26 27
#include <linux/of.h>
#include <linux/regulator/of_regulator.h>
28 29 30
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
31
#include <linux/module.h>
32

33 34 35
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

36 37
#include "dummy.h"

M
Mark Brown 已提交
38 39
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 41 42 43 44 45 46 47 48
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

49 50 51
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
52
static bool has_full_constraints;
53
static bool board_wants_dummy_regulator;
54

55 56
static struct dentry *debugfs_root;

57
/*
58 59 60 61 62 63
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
64
	const char *dev_name;   /* The dev_name() for the consumer */
65
	const char *supply;
66
	struct regulator_dev *regulator;
67 68 69 70 71 72 73 74 75 76
};

/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
77
	unsigned int always_on:1;
78 79 80 81 82 83
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
84
	struct dentry *debugfs;
85 86 87
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
88
static int _regulator_disable(struct regulator_dev *rdev);
89 90 91 92 93
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);
94 95
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
96 97 98
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
99

100 101 102 103 104 105 106 107 108 109
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/* gets the regulator for a given consumer device */
static struct regulator *get_device_regulator(struct device *dev)
{
	struct regulator *regulator = NULL;
	struct regulator_dev *rdev;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
		list_for_each_entry(regulator, &rdev->consumer_list, list) {
			if (regulator->dev == dev) {
				mutex_unlock(&rdev->mutex);
				mutex_unlock(&regulator_list_mutex);
				return regulator;
			}
		}
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return NULL;
}

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
 * retruns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
152
		dev_dbg(dev, "Looking up %s property in node %s failed",
153 154 155 156 157 158
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

159 160 161 162 163 164 165 166 167 168 169
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

170 171 172 173 174 175 176
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
177
		rdev_err(rdev, "no constraints\n");
178 179 180
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
181
		rdev_err(rdev, "operation not allowed\n");
182 183 184 185 186 187 188 189
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

190 191
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
192
			 *min_uV, *max_uV);
193
		return -EINVAL;
194
	}
195 196 197 198

	return 0;
}

199 200 201 202 203 204 205 206 207
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
208 209 210 211 212 213 214
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

215 216 217 218 219 220 221 222 223 224 225 226
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

227 228 229 230 231 232 233
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
234
		rdev_err(rdev, "no constraints\n");
235 236 237
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
238
		rdev_err(rdev, "operation not allowed\n");
239 240 241 242 243 244 245 246
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

247 248
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
249
			 *min_uA, *max_uA);
250
		return -EINVAL;
251
	}
252 253 254 255 256

	return 0;
}

/* operating mode constraint check */
257
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
258
{
259
	switch (*mode) {
260 261 262 263 264 265
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
266
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
267 268 269
		return -EINVAL;
	}

270
	if (!rdev->constraints) {
271
		rdev_err(rdev, "no constraints\n");
272 273 274
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
275
		rdev_err(rdev, "operation not allowed\n");
276 277
		return -EPERM;
	}
278 279 280 281 282 283 284 285

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
286
	}
287 288

	return -EINVAL;
289 290 291 292 293 294
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
295
		rdev_err(rdev, "no constraints\n");
296 297 298
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
299
		rdev_err(rdev, "operation not allowed\n");
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
		return -EPERM;
	}
	return 0;
}

static ssize_t device_requested_uA_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator *regulator;

	regulator = get_device_regulator(dev);
	if (regulator == NULL)
		return 0;

	return sprintf(buf, "%d\n", regulator->uA_load);
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
320
	struct regulator_dev *rdev = dev_get_drvdata(dev);
321 322 323 324 325 326 327 328
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
329
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
330 331 332 333

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
334
	struct regulator_dev *rdev = dev_get_drvdata(dev);
335 336 337

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
338
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
339

340 341 342 343 344
static ssize_t regulator_name_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

345
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
346 347
}

D
David Brownell 已提交
348
static ssize_t regulator_print_opmode(char *buf, int mode)
349 350 351 352 353 354 355 356 357 358 359 360 361 362
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
363 364
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
365
{
366
	struct regulator_dev *rdev = dev_get_drvdata(dev);
367

D
David Brownell 已提交
368 369
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
370
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
371 372 373

static ssize_t regulator_print_state(char *buf, int state)
{
374 375 376 377 378 379 380 381
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
382 383 384 385
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
386 387 388 389 390
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
391

392
	return ret;
D
David Brownell 已提交
393
}
394
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
395

D
David Brownell 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

437 438 439
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
440
	struct regulator_dev *rdev = dev_get_drvdata(dev);
441 442 443 444 445 446

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
447
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
448 449 450 451

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
452
	struct regulator_dev *rdev = dev_get_drvdata(dev);
453 454 455 456 457 458

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
459
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
460 461 462 463

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
464
	struct regulator_dev *rdev = dev_get_drvdata(dev);
465 466 467 468 469 470

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
471
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
472 473 474 475

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
476
	struct regulator_dev *rdev = dev_get_drvdata(dev);
477 478 479 480 481 482

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
483
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
484 485 486 487

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
488
	struct regulator_dev *rdev = dev_get_drvdata(dev);
489 490 491 492 493
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
494
		uA += regulator->uA_load;
495 496 497
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
498
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
499 500 501 502

static ssize_t regulator_num_users_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
503
	struct regulator_dev *rdev = dev_get_drvdata(dev);
504 505 506 507 508 509
	return sprintf(buf, "%d\n", rdev->use_count);
}

static ssize_t regulator_type_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
510
	struct regulator_dev *rdev = dev_get_drvdata(dev);
511 512 513 514 515 516 517 518 519 520 521 522 523

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
524
	struct regulator_dev *rdev = dev_get_drvdata(dev);
525 526 527

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
528 529
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
530 531 532 533

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
534
	struct regulator_dev *rdev = dev_get_drvdata(dev);
535 536 537

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
538 539
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
540 541 542 543

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
544
	struct regulator_dev *rdev = dev_get_drvdata(dev);
545 546 547

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
548 549
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
550 551 552 553

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
554
	struct regulator_dev *rdev = dev_get_drvdata(dev);
555

D
David Brownell 已提交
556 557
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
558
}
559 560
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
561 562 563 564

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
565
	struct regulator_dev *rdev = dev_get_drvdata(dev);
566

D
David Brownell 已提交
567 568
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
569
}
570 571
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
572 573 574 575

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
576
	struct regulator_dev *rdev = dev_get_drvdata(dev);
577

D
David Brownell 已提交
578 579
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
580
}
581 582
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
583 584 585 586

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
587
	struct regulator_dev *rdev = dev_get_drvdata(dev);
588

D
David Brownell 已提交
589 590
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
591
}
592 593
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
594 595 596 597

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
598
	struct regulator_dev *rdev = dev_get_drvdata(dev);
599

D
David Brownell 已提交
600 601
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
602
}
603 604
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
605 606 607 608

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
609
	struct regulator_dev *rdev = dev_get_drvdata(dev);
610

D
David Brownell 已提交
611 612
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
613
}
614 615 616
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

617

618 619 620 621
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
622
static struct device_attribute regulator_dev_attrs[] = {
623
	__ATTR(name, 0444, regulator_name_show, NULL),
624 625 626 627 628 629 630
	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
	__ATTR(type, 0444, regulator_type_show, NULL),
	__ATTR_NULL,
};

static void regulator_dev_release(struct device *dev)
{
631
	struct regulator_dev *rdev = dev_get_drvdata(dev);
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_attrs = regulator_dev_attrs,
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
651 652 653
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
654
		return;
655 656

	/* get output voltage */
657
	output_uV = _regulator_get_voltage(rdev);
658 659 660 661
	if (output_uV <= 0)
		return;

	/* get input voltage */
662 663
	input_uV = 0;
	if (rdev->supply)
664
		input_uV = regulator_get_voltage(rdev->supply);
665
	if (input_uV <= 0)
666 667 668 669 670 671
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
672
		current_uA += sibling->uA_load;
673 674 675 676 677 678

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
679
	err = regulator_mode_constrain(rdev, &mode);
680 681 682 683 684 685 686 687
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
688 689

	/* If we have no suspend mode configration don't set anything;
690 691
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
692 693
	 */
	if (!rstate->enabled && !rstate->disabled) {
694 695
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
696
			rdev_warn(rdev, "No configuration\n");
697 698 699 700
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
701
		rdev_err(rdev, "invalid configuration\n");
702 703
		return -EINVAL;
	}
704

705
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
706
		ret = rdev->desc->ops->set_suspend_enable(rdev);
707
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
708
		ret = rdev->desc->ops->set_suspend_disable(rdev);
709 710 711
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

712
	if (ret < 0) {
713
		rdev_err(rdev, "failed to enabled/disable\n");
714 715 716 717 718 719
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
720
			rdev_err(rdev, "failed to set voltage\n");
721 722 723 724 725 726 727
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
728
			rdev_err(rdev, "failed to set mode\n");
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
759
	char buf[80] = "";
760 761
	int count = 0;
	int ret;
762

763
	if (constraints->min_uV && constraints->max_uV) {
764
		if (constraints->min_uV == constraints->max_uV)
765 766
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
767
		else
768 769 770 771 772 773 774 775 776 777 778 779
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

780 781 782 783
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

784
	if (constraints->min_uA && constraints->max_uA) {
785
		if (constraints->min_uA == constraints->max_uA)
786 787
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
788
		else
789 790 791 792 793 794 795 796 797
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
798
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
799
	}
800

801 802 803 804 805 806 807 808 809
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

M
Mark Brown 已提交
810
	rdev_info(rdev, "%s\n", buf);
811 812 813 814 815

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
816 817
}

818
static int machine_constraints_voltage(struct regulator_dev *rdev,
819
	struct regulation_constraints *constraints)
820
{
821
	struct regulator_ops *ops = rdev->desc->ops;
822 823 824 825
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
826 827 828 829 830 831 832 833 834
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
		ret = _regulator_do_set_voltage(rdev,
						rdev->constraints->min_uV,
						rdev->constraints->max_uV);
		if (ret < 0) {
			rdev_err(rdev, "failed to apply %duV constraint\n",
				 rdev->constraints->min_uV);
			return ret;
		}
835
	}
836

837 838 839 840 841 842 843 844 845 846 847
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

848 849
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
850
		if (count == 1 && !cmin) {
851
			cmin = 1;
852
			cmax = INT_MAX;
853 854
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
855 856
		}

857 858
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
859
			return 0;
860

861
		/* else require explicit machine-level constraints */
862
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
863
			rdev_err(rdev, "invalid voltage constraints\n");
864
			return -EINVAL;
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
884
			rdev_err(rdev, "unsupportable voltage constraints\n");
885
			return -EINVAL;
886 887 888 889
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
890 891
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
892 893 894
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
895 896
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
897 898 899 900
			constraints->max_uV = max_uV;
		}
	}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
916
	const struct regulation_constraints *constraints)
917 918 919 920
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

921 922 923 924 925 926
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
927 928
	if (!rdev->constraints)
		return -ENOMEM;
929

930
	ret = machine_constraints_voltage(rdev, rdev->constraints);
931 932 933
	if (ret != 0)
		goto out;

934
	/* do we need to setup our suspend state */
935
	if (rdev->constraints->initial_state) {
936
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
937
		if (ret < 0) {
938
			rdev_err(rdev, "failed to set suspend state\n");
939 940 941
			goto out;
		}
	}
942

943
	if (rdev->constraints->initial_mode) {
944
		if (!ops->set_mode) {
945
			rdev_err(rdev, "no set_mode operation\n");
946 947 948 949
			ret = -EINVAL;
			goto out;
		}

950
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
951
		if (ret < 0) {
952
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
953 954 955 956
			goto out;
		}
	}

957 958 959
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
960 961
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
962 963
		ret = ops->enable(rdev);
		if (ret < 0) {
964
			rdev_err(rdev, "failed to enable\n");
965 966 967 968
			goto out;
		}
	}

969
	print_constraints(rdev);
970
	return 0;
971
out:
972 973
	kfree(rdev->constraints);
	rdev->constraints = NULL;
974 975 976 977 978
	return ret;
}

/**
 * set_supply - set regulator supply regulator
979 980
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
981 982 983 984 985 986
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
987
		      struct regulator_dev *supply_rdev)
988 989 990
{
	int err;

991 992 993
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
994 995
	if (rdev->supply == NULL) {
		err = -ENOMEM;
996
		return err;
997
	}
998 999

	return 0;
1000 1001 1002
}

/**
1003
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1004
 * @rdev:         regulator source
1005
 * @consumer_dev_name: dev_name() string for device supply applies to
1006
 * @supply:       symbolic name for supply
1007 1008 1009 1010 1011 1012 1013
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1014 1015
				      const char *consumer_dev_name,
				      const char *supply)
1016 1017
{
	struct regulator_map *node;
1018
	int has_dev;
1019 1020 1021 1022

	if (supply == NULL)
		return -EINVAL;

1023 1024 1025 1026 1027
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1028
	list_for_each_entry(node, &regulator_map_list, list) {
1029 1030 1031 1032
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1033
			continue;
1034 1035
		}

1036 1037 1038
		if (strcmp(node->supply, supply) != 0)
			continue;

1039 1040 1041 1042 1043 1044
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1045 1046 1047
		return -EBUSY;
	}

1048
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1049 1050 1051 1052 1053 1054
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1055 1056 1057 1058 1059 1060
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1061 1062
	}

1063 1064 1065 1066
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1067 1068 1069 1070 1071 1072 1073
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1074
			kfree(node->dev_name);
1075 1076 1077 1078 1079
			kfree(node);
		}
	}
}

1080
#define REG_STR_SIZE	64
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
		/* create a 'requested_microamps_name' sysfs entry */
1100 1101 1102
		size = scnprintf(buf, REG_STR_SIZE,
				 "microamps_requested_%s-%s",
				 dev_name(dev), supply_name);
1103 1104 1105 1106
		if (size >= REG_STR_SIZE)
			goto overflow_err;

		regulator->dev = dev;
1107
		sysfs_attr_init(&regulator->dev_attr.attr);
1108 1109 1110 1111 1112 1113 1114 1115
		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
		if (regulator->dev_attr.attr.name == NULL)
			goto attr_name_err;

		regulator->dev_attr.attr.mode = 0444;
		regulator->dev_attr.show = device_requested_uA_show;
		err = device_create_file(dev, &regulator->dev_attr);
		if (err < 0) {
1116
			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
			goto attr_name_err;
		}

		/* also add a link to the device sysfs entry */
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			goto attr_err;

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1133 1134
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1135 1136
			goto link_name_err;
		}
1137 1138 1139 1140 1141 1142 1143 1144
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1145
	if (!regulator->debugfs) {
1146 1147 1148 1149 1150 1151 1152 1153
		rdev_warn(rdev, "Failed to create debugfs directory\n");
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1154
	}
1155

1156 1157 1158 1159 1160 1161 1162 1163 1164
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	mutex_unlock(&rdev->mutex);
	return regulator;
link_name_err:
	kfree(regulator->supply_name);
attr_err:
	device_remove_file(regulator->dev, &regulator->dev_attr);
attr_name_err:
	kfree(regulator->dev_attr.attr.name);
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1180 1181 1182 1183 1184 1185 1186
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
		return 0;
	return rdev->desc->ops->enable_time(rdev);
}

1187
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1188 1189
						  const char *supply,
						  int *ret)
1190 1191 1192
{
	struct regulator_dev *r;
	struct device_node *node;
1193 1194
	struct regulator_map *map;
	const char *devname = NULL;
1195 1196 1197 1198

	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1199
		if (node) {
1200 1201 1202 1203
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
1204 1205 1206 1207 1208 1209 1210 1211 1212
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1213 1214 1215
	}

	/* if not found, try doing it non-dt way */
1216 1217 1218
	if (dev)
		devname = dev_name(dev);

1219 1220 1221 1222
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, supply) == 0)
			return map->regulator;
	}


1234 1235 1236
	return NULL;
}

1237 1238 1239
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
					int exclusive)
1240 1241
{
	struct regulator_dev *rdev;
1242
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1243
	const char *devname = NULL;
1244
	int ret;
1245 1246

	if (id == NULL) {
1247
		pr_err("get() with no identifier\n");
1248 1249 1250
		return regulator;
	}

1251 1252 1253
	if (dev)
		devname = dev_name(dev);

1254 1255
	mutex_lock(&regulator_list_mutex);

1256
	rdev = regulator_dev_lookup(dev, id, &ret);
1257 1258 1259
	if (rdev)
		goto found;

1260 1261 1262 1263 1264
	if (board_wants_dummy_regulator) {
		rdev = dummy_regulator_rdev;
		goto found;
	}

1265 1266 1267 1268 1269 1270 1271 1272
#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
1273 1274
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1275 1276 1277 1278 1279
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1280 1281 1282 1283
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1294 1295 1296
	if (!try_module_get(rdev->owner))
		goto out;

1297 1298 1299 1300
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1301
		goto out;
1302 1303
	}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1315
out:
1316
	mutex_unlock(&regulator_list_mutex);
1317

1318 1319
	return regulator;
}
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
1338 1339
EXPORT_SYMBOL_GPL(regulator_get);

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
static void devm_regulator_release(struct device *dev, void *res)
{
	regulator_put(*(struct regulator **)res);
}

/**
 * devm_regulator_get - Resource managed regulator_get()
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Managed regulator_get(). Regulators returned from this function are
 * automatically regulator_put() on driver detach. See regulator_get() for more
 * information.
 */
struct regulator *devm_regulator_get(struct device *dev, const char *id)
{
	struct regulator **ptr, *regulator;

	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	regulator = regulator_get(dev, id);
	if (!IS_ERR(regulator)) {
		*ptr = regulator;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regulator;
}
EXPORT_SYMBOL_GPL(devm_regulator_get);

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	mutex_lock(&regulator_list_mutex);
	rdev = regulator->rdev;

1419 1420
	debugfs_remove_recursive(regulator->debugfs);

1421 1422 1423 1424 1425 1426
	/* remove any sysfs entries */
	if (regulator->dev) {
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
		device_remove_file(regulator->dev, &regulator->dev_attr);
		kfree(regulator->dev_attr.attr.name);
	}
1427
	kfree(regulator->supply_name);
1428 1429 1430
	list_del(&regulator->list);
	kfree(regulator);

1431 1432 1433
	rdev->open_count--;
	rdev->exclusive = 0;

1434 1435 1436 1437 1438
	module_put(rdev->owner);
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
static int devm_regulator_match(struct device *dev, void *res, void *data)
{
	struct regulator **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}
	return *r == data;
}

/**
 * devm_regulator_put - Resource managed regulator_put()
 * @regulator: regulator to free
 *
 * Deallocate a regulator allocated with devm_regulator_get(). Normally
 * this function will not need to be called and the resource management
 * code will ensure that the resource is freed.
 */
void devm_regulator_put(struct regulator *regulator)
{
	int rc;

	rc = devres_destroy(regulator->dev, devm_regulator_release,
			    devm_regulator_match, regulator);
	WARN_ON(rc);
}
EXPORT_SYMBOL_GPL(devm_regulator_put);

1467 1468 1469
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1470
	int ret, delay;
1471 1472

	/* check voltage and requested load before enabling */
1473 1474 1475
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1476

1477 1478 1479 1480 1481 1482 1483
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1484
			if (!rdev->desc->ops->enable)
1485
				return -EINVAL;
1486 1487

			/* Query before enabling in case configuration
L
Lucas De Marchi 已提交
1488
			 * dependent.  */
1489 1490 1491 1492
			ret = _regulator_get_enable_time(rdev);
			if (ret >= 0) {
				delay = ret;
			} else {
1493
				rdev_warn(rdev, "enable_time() failed: %d\n",
1494
					   ret);
1495
				delay = 0;
1496
			}
1497

1498 1499
			trace_regulator_enable(rdev_get_name(rdev));

1500 1501 1502 1503 1504 1505 1506
			/* Allow the regulator to ramp; it would be useful
			 * to extend this for bulk operations so that the
			 * regulators can ramp together.  */
			ret = rdev->desc->ops->enable(rdev);
			if (ret < 0)
				return ret;

1507 1508
			trace_regulator_enable_delay(rdev_get_name(rdev));

1509
			if (delay >= 1000) {
1510
				mdelay(delay / 1000);
1511 1512
				udelay(delay % 1000);
			} else if (delay) {
1513
				udelay(delay);
1514
			}
1515

1516 1517
			trace_regulator_enable_complete(rdev_get_name(rdev));

1518
		} else if (ret < 0) {
1519
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1520 1521
			return ret;
		}
1522
		/* Fallthrough on positive return values - already enabled */
1523 1524
	}

1525 1526 1527
	rdev->use_count++;

	return 0;
1528 1529 1530 1531 1532 1533
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1534 1535 1536 1537
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1538
 * NOTE: the output value can be set by other drivers, boot loader or may be
1539
 * hardwired in the regulator.
1540 1541 1542
 */
int regulator_enable(struct regulator *regulator)
{
1543 1544
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1545

1546 1547 1548
	if (regulator->always_on)
		return 0;

1549 1550 1551 1552 1553 1554
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1555
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1556
	ret = _regulator_enable(rdev);
1557
	mutex_unlock(&rdev->mutex);
1558

1559
	if (ret != 0 && rdev->supply)
1560 1561
		regulator_disable(rdev->supply);

1562 1563 1564 1565 1566
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

/* locks held by regulator_disable() */
1567
static int _regulator_disable(struct regulator_dev *rdev)
1568 1569 1570
{
	int ret = 0;

D
David Brownell 已提交
1571
	if (WARN(rdev->use_count <= 0,
1572
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1573 1574
		return -EIO;

1575
	/* are we the last user and permitted to disable ? */
1576 1577
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1578 1579

		/* we are last user */
1580 1581
		if (_regulator_can_change_status(rdev) &&
		    rdev->desc->ops->disable) {
1582 1583
			trace_regulator_disable(rdev_get_name(rdev));

1584 1585
			ret = rdev->desc->ops->disable(rdev);
			if (ret < 0) {
1586
				rdev_err(rdev, "failed to disable\n");
1587 1588
				return ret;
			}
1589

1590 1591
			trace_regulator_disable_complete(rdev_get_name(rdev));

1592 1593
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					     NULL);
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
1606

1607 1608 1609 1610 1611 1612 1613
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1614 1615 1616
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1617
 *
1618
 * NOTE: this will only disable the regulator output if no other consumer
1619 1620
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1621 1622 1623
 */
int regulator_disable(struct regulator *regulator)
{
1624 1625
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1626

1627 1628 1629
	if (regulator->always_on)
		return 0;

1630
	mutex_lock(&rdev->mutex);
1631
	ret = _regulator_disable(rdev);
1632
	mutex_unlock(&rdev->mutex);
1633

1634 1635
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
1636

1637 1638 1639 1640 1641
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1642
static int _regulator_force_disable(struct regulator_dev *rdev)
1643 1644 1645 1646 1647 1648 1649 1650
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1651
			rdev_err(rdev, "failed to force disable\n");
1652 1653 1654
			return ret;
		}
		/* notify other consumers that power has been forced off */
1655 1656
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	}

	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1673
	struct regulator_dev *rdev = regulator->rdev;
1674 1675
	int ret;

1676
	mutex_lock(&rdev->mutex);
1677
	regulator->uA_load = 0;
1678
	ret = _regulator_force_disable(regulator->rdev);
1679
	mutex_unlock(&rdev->mutex);
1680

1681 1682 1683
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
1684

1685 1686 1687 1688
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
1736
	int ret;
1737

1738 1739 1740
	if (regulator->always_on)
		return 0;

1741 1742 1743 1744
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

1745 1746 1747 1748 1749 1750
	ret = schedule_delayed_work(&rdev->disable_work,
				    msecs_to_jiffies(ms));
	if (ret < 0)
		return ret;
	else
		return 0;
1751 1752 1753
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

1754 1755
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1756
	/* If we don't know then assume that the regulator is always on */
1757
	if (!rdev->desc->ops->is_enabled)
1758
		return 1;
1759

1760
	return rdev->desc->ops->is_enabled(rdev);
1761 1762 1763 1764 1765 1766
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
1767 1768 1769 1770 1771 1772 1773
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
1774 1775 1776
 */
int regulator_is_enabled(struct regulator *regulator)
{
1777 1778
	int ret;

1779 1780 1781
	if (regulator->always_on)
		return 1;

1782 1783 1784 1785 1786
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
1787 1788 1789
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
1813
 * zero if this selector code can't be used on this system, or a
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
	int i, voltages, ret;

	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
1868
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1869

1870 1871 1872 1873
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
1874
	int delay = 0;
1875
	unsigned int selector;
1876 1877
	int old_selector = -1;
	int best_val = INT_MAX;
1878 1879 1880

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

1881 1882 1883
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
	if (rdev->desc->ops->set_voltage_time_sel &&
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

1895 1896 1897 1898 1899
	if (rdev->desc->ops->set_voltage) {
		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
						   &selector);

		if (rdev->desc->ops->list_voltage)
1900
			best_val = rdev->desc->ops->list_voltage(rdev,
1901 1902
								 selector);
		else
1903
			best_val = -1;
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	} else if (rdev->desc->ops->set_voltage_sel) {
		int i;

		selector = 0;

		/* Find the smallest voltage that falls within the specified
		 * range.
		 */
		for (i = 0; i < rdev->desc->n_voltages; i++) {
			ret = rdev->desc->ops->list_voltage(rdev, i);
			if (ret < 0)
				continue;

			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
				best_val = ret;
				selector = i;
			}
		}

1923
		if (best_val != INT_MAX)
1924
			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1925
		else
1926
			ret = -EINVAL;
1927 1928 1929 1930
	} else {
		ret = -EINVAL;
	}

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
	/* Call set_voltage_time_sel if successfully obtained old_selector */
	if (ret == 0 && old_selector >= 0 &&
	    rdev->desc->ops->set_voltage_time_sel) {

		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
		}
	}

1944 1945 1946 1947 1948 1949 1950 1951
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
	}

1952 1953 1954 1955
	if (ret == 0)
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
				     NULL);

1956
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
1957 1958 1959 1960

	return ret;
}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
1976
 * Regulator system constraints must be set for this regulator before
1977 1978 1979 1980 1981
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
1982
	int ret = 0;
1983 1984 1985

	mutex_lock(&rdev->mutex);

1986 1987 1988 1989 1990 1991 1992
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

1993
	/* sanity check */
1994 1995
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2006

2007 2008 2009 2010
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

2011
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2012

2013 2014 2015 2016 2017 2018
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2111 2112
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2113
	int sel, ret;
2114 2115 2116 2117 2118

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2119
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2120
	} else if (rdev->desc->ops->get_voltage) {
2121
		ret = rdev->desc->ops->get_voltage(rdev);
2122
	} else {
2123
		return -EINVAL;
2124
	}
2125

2126 2127
	if (ret < 0)
		return ret;
2128
	return ret - rdev->constraints->uV_offset;
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
 * @min_uA: Minimuum supported current in uA
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2244
	int regulator_curr_mode;
2245 2246 2247 2248 2249 2250 2251 2252 2253

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2254 2255 2256 2257 2258 2259 2260 2261 2262
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2263
	/* constraints check */
2264
	ret = regulator_mode_constrain(rdev, &mode);
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
	int ret, output_uV, input_uV, total_uA_load = 0;
	unsigned int mode;

	mutex_lock(&rdev->mutex);

2340 2341 2342 2343
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
2344 2345
	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
2346 2347
	if (ret < 0) {
		ret = 0;
2348
		goto out;
2349
	}
2350 2351 2352 2353

	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

2354 2355 2356 2357 2358 2359
	/*
	 * we can actually do this so any errors are indicators of
	 * potential real failure.
	 */
	ret = -EINVAL;

2360 2361 2362
	if (!rdev->desc->ops->set_mode)
		goto out;

2363
	/* get output voltage */
2364
	output_uV = _regulator_get_voltage(rdev);
2365
	if (output_uV <= 0) {
2366
		rdev_err(rdev, "invalid output voltage found\n");
2367 2368 2369 2370
		goto out;
	}

	/* get input voltage */
2371 2372
	input_uV = 0;
	if (rdev->supply)
2373
		input_uV = regulator_get_voltage(rdev->supply);
2374
	if (input_uV <= 0)
2375 2376
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
2377
		rdev_err(rdev, "invalid input voltage found\n");
2378 2379 2380 2381 2382
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
2383
		total_uA_load += consumer->uA_load;
2384 2385 2386 2387

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
2388
	ret = regulator_mode_constrain(rdev, &mode);
2389
	if (ret < 0) {
2390 2391
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
2392 2393 2394 2395
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
2396
	if (ret < 0) {
2397
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
2410
 * @nb: notifier block
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
2425
 * @nb: notifier block
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

2437 2438 2439
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	/* call rdev chain first */
	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2475 2476
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2477 2478 2479 2480 2481 2482 2483 2484
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
2485
	while (--i >= 0)
2486 2487 2488 2489 2490 2491
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
/**
 * devm_regulator_bulk_get - managed get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation with management, the regulators will
 * automatically be freed when the device is unbound.  If any of the
 * regulators cannot be acquired then any regulators that were
 * allocated will be freed before returning to the caller.
 */
int devm_regulator_bulk_get(struct device *dev, int num_consumers,
			    struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = devm_regulator_get(dev,
							   consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		devm_regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);

2538 2539 2540 2541 2542 2543 2544
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
2560
	LIST_HEAD(async_domain);
2561
	int i;
2562
	int ret = 0;
2563

2564 2565 2566 2567 2568 2569 2570
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
2571 2572 2573 2574

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
2575
	for (i = 0; i < num_consumers; i++) {
2576 2577
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
2578
			goto err;
2579
		}
2580 2581 2582 2583 2584
	}

	return 0;

err:
2585 2586 2587
	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
	while (--i >= 0)
		regulator_disable(consumers[i].consumer);
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
2601 2602
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
2603 2604 2605 2606 2607 2608
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
2609
	int ret, r;
2610

2611
	for (i = num_consumers - 1; i >= 0; --i) {
2612 2613 2614 2615 2616 2617 2618 2619
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2620
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2621 2622 2623 2624 2625 2626
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
2627 2628 2629 2630 2631

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
2692
 * @rdev: regulator source
2693
 * @event: notifier block
2694
 * @data: callback-specific data.
2695 2696 2697
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
2698
 * Note lock must be held by caller.
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
	case REGULATOR_STATUS_STANDBY:
		return REGULATOR_STATUS_STANDBY;
	default:
		return 0;
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
2744 2745
	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
	if (ops->is_enabled) {
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
2765 2766 2767 2768 2769
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
2786
	if (ops->set_voltage || ops->set_voltage_sel) {
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

2846 2847 2848
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2849
	if (!rdev->debugfs) {
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
}

2860 2861
/**
 * regulator_register - register regulator
2862 2863
 * @regulator_desc: regulator to register
 * @dev: struct device for the regulator
2864
 * @init_data: platform provided init data, passed through by driver
2865
 * @driver_data: private regulator data
2866 2867
 * @of_node: OpenFirmware node to parse for device tree bindings (may be
 *           NULL).
2868 2869 2870 2871 2872
 *
 * Called by regulator drivers to register a regulator.
 * Returns 0 on success.
 */
struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2873
	struct device *dev, const struct regulator_init_data *init_data,
2874
	void *driver_data, struct device_node *of_node)
2875
{
2876
	const struct regulation_constraints *constraints = NULL;
2877 2878
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
2879
	int ret, i;
2880
	const char *supply = NULL;
2881 2882 2883 2884 2885 2886 2887

	if (regulator_desc == NULL)
		return ERR_PTR(-EINVAL);

	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

2888 2889
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
2890 2891
		return ERR_PTR(-EINVAL);

2892 2893 2894
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
2895 2896
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
2897 2898 2899 2900 2901 2902

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
2903 2904 2905 2906
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
2907

2908 2909 2910 2911 2912 2913 2914
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
2915
	rdev->reg_data = driver_data;
2916 2917 2918 2919 2920
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2921
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2922

2923
	/* preform any regulator specific init */
2924
	if (init_data && init_data->regulator_init) {
2925
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
2926 2927
		if (ret < 0)
			goto clean;
2928 2929 2930
	}

	/* register with sysfs */
2931
	rdev->dev.class = &regulator_class;
2932
	rdev->dev.of_node = of_node;
2933
	rdev->dev.parent = dev;
2934 2935
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
2936
	ret = device_register(&rdev->dev);
2937 2938
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
2939
		goto clean;
2940
	}
2941 2942 2943

	dev_set_drvdata(&rdev->dev, rdev);

2944
	/* set regulator constraints */
2945 2946 2947 2948
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
2949 2950 2951
	if (ret < 0)
		goto scrub;

2952 2953 2954 2955 2956
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

2957
	if (init_data && init_data->supply_regulator)
2958 2959 2960 2961 2962
		supply = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		supply = regulator_desc->supply_name;

	if (supply) {
2963 2964
		struct regulator_dev *r;

2965
		r = regulator_dev_lookup(dev, supply, &ret);
2966

2967 2968
		if (!r) {
			dev_err(dev, "Failed to find supply %s\n", supply);
2969
			ret = -EPROBE_DEFER;
2970 2971 2972 2973 2974 2975
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
2976 2977 2978 2979 2980 2981 2982 2983

		/* Enable supply if rail is enabled */
		if (rdev->desc->ops->is_enabled &&
				rdev->desc->ops->is_enabled(rdev)) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0)
				goto scrub;
		}
2984 2985
	}

2986
	/* add consumers devices */
2987 2988 2989 2990
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
2991
				init_data->consumer_supplies[i].supply);
2992 2993 2994 2995 2996
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
2997
		}
2998
	}
2999 3000

	list_add(&rdev->list, &regulator_list);
3001 3002

	rdev_init_debugfs(rdev);
3003
out:
3004 3005
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
3006

3007 3008 3009
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3010
scrub:
3011
	kfree(rdev->constraints);
D
David Brownell 已提交
3012
	device_unregister(&rdev->dev);
3013 3014 3015 3016
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3017 3018 3019 3020
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3021 3022 3023 3024 3025
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3026
 * @rdev: regulator to unregister
3027 3028 3029 3030 3031 3032 3033 3034 3035
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

	mutex_lock(&regulator_list_mutex);
3036
	debugfs_remove_recursive(rdev->debugfs);
3037
	flush_work_sync(&rdev->disable_work.work);
3038
	WARN_ON(rdev->open_count);
3039
	unset_regulator_supplies(rdev);
3040 3041
	list_del(&rdev->list);
	if (rdev->supply)
3042
		regulator_put(rdev->supply);
3043
	kfree(rdev->constraints);
3044
	device_unregister(&rdev->dev);
3045 3046 3047 3048 3049
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3050
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3073
			rdev_err(rdev, "failed to prepare\n");
3074 3075 3076 3077 3078 3079 3080 3081 3082
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		struct regulator_ops *ops = rdev->desc->ops;

		mutex_lock(&rdev->mutex);
		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
				ops->enable) {
			error = ops->enable(rdev);
			if (error)
				ret = error;
		} else {
			if (!has_full_constraints)
				goto unlock;
			if (!ops->disable)
				goto unlock;
			if (ops->is_enabled && !ops->is_enabled(rdev))
				goto unlock;

			error = ops->disable(rdev);
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
/**
 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
 *
 * Calling this function will cause the regulator API to provide a
 * dummy regulator to consumers if no physical regulator is found,
 * allowing most consumers to proceed as though a regulator were
 * configured.  This allows systems such as those with software
 * controllable regulators for the CPU core only to be brought up more
 * readily.
 */
void regulator_use_dummy_regulator(void)
{
	board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);

3157 3158
/**
 * rdev_get_drvdata - get rdev regulator driver data
3159
 * @rdev: regulator
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3196
 * @rdev: regulator
3197 3198 3199 3200 3201 3202 3203
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
3246
#endif
3247 3248

static const struct file_operations supply_map_fops = {
3249
#ifdef CONFIG_DEBUG_FS
3250 3251 3252
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
3253
};
3254

3255 3256
static int __init regulator_init(void)
{
3257 3258 3259 3260
	int ret;

	ret = class_register(&regulator_class);

3261
	debugfs_root = debugfs_create_dir("regulator", NULL);
3262
	if (!debugfs_root)
3263
		pr_warn("regulator: Failed to create debugfs directory\n");
3264

3265 3266
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
3267

3268 3269 3270
	regulator_dummy_init();

	return ret;
3271 3272 3273 3274
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

3293
		if (!ops->disable || (c && c->always_on))
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
3313
			rdev_info(rdev, "disabling\n");
3314 3315
			ret = ops->disable(rdev);
			if (ret != 0) {
3316
				rdev_err(rdev, "couldn't disable: %d\n", ret);
3317 3318 3319 3320 3321 3322 3323
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
3324
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);