khugepaged.c 59.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/mm.h>
#include <linux/sched.h>
6
#include <linux/sched/mm.h>
7
#include <linux/sched/coredump.h>
8 9 10 11 12 13 14 15 16 17 18 19
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/mm_inline.h>
#include <linux/kthread.h>
#include <linux/khugepaged.h>
#include <linux/freezer.h>
#include <linux/mman.h>
#include <linux/hashtable.h>
#include <linux/userfaultfd_k.h>
#include <linux/page_idle.h>
#include <linux/swapops.h>
20
#include <linux/shmem_fs.h>
21 22 23 24 25 26 27 28 29 30

#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

enum scan_result {
	SCAN_FAIL,
	SCAN_SUCCEED,
	SCAN_PMD_NULL,
	SCAN_EXCEED_NONE_PTE,
31 32
	SCAN_EXCEED_SWAP_PTE,
	SCAN_EXCEED_SHARED_PTE,
33
	SCAN_PTE_NON_PRESENT,
34
	SCAN_PTE_UFFD_WP,
35
	SCAN_PAGE_RO,
36
	SCAN_LACK_REFERENCED_PAGE,
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
	SCAN_PAGE_NULL,
	SCAN_SCAN_ABORT,
	SCAN_PAGE_COUNT,
	SCAN_PAGE_LRU,
	SCAN_PAGE_LOCK,
	SCAN_PAGE_ANON,
	SCAN_PAGE_COMPOUND,
	SCAN_ANY_PROCESS,
	SCAN_VMA_NULL,
	SCAN_VMA_CHECK,
	SCAN_ADDRESS_RANGE,
	SCAN_SWAP_CACHE_PAGE,
	SCAN_DEL_PAGE_LRU,
	SCAN_ALLOC_HUGE_PAGE_FAIL,
	SCAN_CGROUP_CHARGE_FAIL,
52
	SCAN_TRUNCATED,
53
	SCAN_PAGE_HAS_PRIVATE,
54 55 56 57 58
};

#define CREATE_TRACE_POINTS
#include <trace/events/huge_memory.h>

59 60 61
static struct task_struct *khugepaged_thread __read_mostly;
static DEFINE_MUTEX(khugepaged_mutex);

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/* default scan 8*512 pte (or vmas) every 30 second */
static unsigned int khugepaged_pages_to_scan __read_mostly;
static unsigned int khugepaged_pages_collapsed;
static unsigned int khugepaged_full_scans;
static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
/* during fragmentation poll the hugepage allocator once every minute */
static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
static unsigned long khugepaged_sleep_expire;
static DEFINE_SPINLOCK(khugepaged_mm_lock);
static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
/*
 * default collapse hugepages if there is at least one pte mapped like
 * it would have happened if the vma was large enough during page
 * fault.
 */
static unsigned int khugepaged_max_ptes_none __read_mostly;
static unsigned int khugepaged_max_ptes_swap __read_mostly;
79
static unsigned int khugepaged_max_ptes_shared __read_mostly;
80 81 82 83 84 85

#define MM_SLOTS_HASH_BITS 10
static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);

static struct kmem_cache *mm_slot_cache __read_mostly;

86 87
#define MAX_PTE_MAPPED_THP 8

88 89 90 91 92 93 94 95 96 97
/**
 * struct mm_slot - hash lookup from mm to mm_slot
 * @hash: hash collision list
 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
 * @mm: the mm that this information is valid for
 */
struct mm_slot {
	struct hlist_node hash;
	struct list_head mm_node;
	struct mm_struct *mm;
98 99 100 101

	/* pte-mapped THP in this mm */
	int nr_pte_mapped_thp;
	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
};

/**
 * struct khugepaged_scan - cursor for scanning
 * @mm_head: the head of the mm list to scan
 * @mm_slot: the current mm_slot we are scanning
 * @address: the next address inside that to be scanned
 *
 * There is only the one khugepaged_scan instance of this cursor structure.
 */
struct khugepaged_scan {
	struct list_head mm_head;
	struct mm_slot *mm_slot;
	unsigned long address;
};

static struct khugepaged_scan khugepaged_scan = {
	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
};

122
#ifdef CONFIG_SYSFS
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
					 struct kobj_attribute *attr,
					 char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
}

static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
					  struct kobj_attribute *attr,
					  const char *buf, size_t count)
{
	unsigned long msecs;
	int err;

	err = kstrtoul(buf, 10, &msecs);
	if (err || msecs > UINT_MAX)
		return -EINVAL;

	khugepaged_scan_sleep_millisecs = msecs;
	khugepaged_sleep_expire = 0;
	wake_up_interruptible(&khugepaged_wait);

	return count;
}
static struct kobj_attribute scan_sleep_millisecs_attr =
	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
	       scan_sleep_millisecs_store);

static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
					  struct kobj_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
}

static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
					   struct kobj_attribute *attr,
					   const char *buf, size_t count)
{
	unsigned long msecs;
	int err;

	err = kstrtoul(buf, 10, &msecs);
	if (err || msecs > UINT_MAX)
		return -EINVAL;

	khugepaged_alloc_sleep_millisecs = msecs;
	khugepaged_sleep_expire = 0;
	wake_up_interruptible(&khugepaged_wait);

	return count;
}
static struct kobj_attribute alloc_sleep_millisecs_attr =
	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
	       alloc_sleep_millisecs_store);

static ssize_t pages_to_scan_show(struct kobject *kobj,
				  struct kobj_attribute *attr,
				  char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
}
static ssize_t pages_to_scan_store(struct kobject *kobj,
				   struct kobj_attribute *attr,
				   const char *buf, size_t count)
{
	int err;
	unsigned long pages;

	err = kstrtoul(buf, 10, &pages);
	if (err || !pages || pages > UINT_MAX)
		return -EINVAL;

	khugepaged_pages_to_scan = pages;

	return count;
}
static struct kobj_attribute pages_to_scan_attr =
	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
	       pages_to_scan_store);

static ssize_t pages_collapsed_show(struct kobject *kobj,
				    struct kobj_attribute *attr,
				    char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
}
static struct kobj_attribute pages_collapsed_attr =
	__ATTR_RO(pages_collapsed);

static ssize_t full_scans_show(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_full_scans);
}
static struct kobj_attribute full_scans_attr =
	__ATTR_RO(full_scans);

static ssize_t khugepaged_defrag_show(struct kobject *kobj,
				      struct kobj_attribute *attr, char *buf)
{
	return single_hugepage_flag_show(kobj, attr, buf,
				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
}
static ssize_t khugepaged_defrag_store(struct kobject *kobj,
				       struct kobj_attribute *attr,
				       const char *buf, size_t count)
{
	return single_hugepage_flag_store(kobj, attr, buf, count,
				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
}
static struct kobj_attribute khugepaged_defrag_attr =
	__ATTR(defrag, 0644, khugepaged_defrag_show,
	       khugepaged_defrag_store);

/*
 * max_ptes_none controls if khugepaged should collapse hugepages over
 * any unmapped ptes in turn potentially increasing the memory
 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 * reduce the available free memory in the system as it
 * runs. Increasing max_ptes_none will instead potentially reduce the
 * free memory in the system during the khugepaged scan.
 */
static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
					     struct kobj_attribute *attr,
					     char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
}
static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
					      struct kobj_attribute *attr,
					      const char *buf, size_t count)
{
	int err;
	unsigned long max_ptes_none;

	err = kstrtoul(buf, 10, &max_ptes_none);
	if (err || max_ptes_none > HPAGE_PMD_NR-1)
		return -EINVAL;

	khugepaged_max_ptes_none = max_ptes_none;

	return count;
}
static struct kobj_attribute khugepaged_max_ptes_none_attr =
	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
	       khugepaged_max_ptes_none_store);

static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
					     struct kobj_attribute *attr,
					     char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
}

static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
					      struct kobj_attribute *attr,
					      const char *buf, size_t count)
{
	int err;
	unsigned long max_ptes_swap;

	err  = kstrtoul(buf, 10, &max_ptes_swap);
	if (err || max_ptes_swap > HPAGE_PMD_NR-1)
		return -EINVAL;

	khugepaged_max_ptes_swap = max_ptes_swap;

	return count;
}

static struct kobj_attribute khugepaged_max_ptes_swap_attr =
	__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
	       khugepaged_max_ptes_swap_store);

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
					     struct kobj_attribute *attr,
					     char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_max_ptes_shared);
}

static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
					      struct kobj_attribute *attr,
					      const char *buf, size_t count)
{
	int err;
	unsigned long max_ptes_shared;

	err  = kstrtoul(buf, 10, &max_ptes_shared);
	if (err || max_ptes_shared > HPAGE_PMD_NR-1)
		return -EINVAL;

	khugepaged_max_ptes_shared = max_ptes_shared;

	return count;
}

static struct kobj_attribute khugepaged_max_ptes_shared_attr =
	__ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
	       khugepaged_max_ptes_shared_store);

326 327 328
static struct attribute *khugepaged_attr[] = {
	&khugepaged_defrag_attr.attr,
	&khugepaged_max_ptes_none_attr.attr,
329 330
	&khugepaged_max_ptes_swap_attr.attr,
	&khugepaged_max_ptes_shared_attr.attr,
331 332 333 334 335 336 337 338 339 340 341 342
	&pages_to_scan_attr.attr,
	&pages_collapsed_attr.attr,
	&full_scans_attr.attr,
	&scan_sleep_millisecs_attr.attr,
	&alloc_sleep_millisecs_attr.attr,
	NULL,
};

struct attribute_group khugepaged_attr_group = {
	.attrs = khugepaged_attr,
	.name = "khugepaged",
};
343
#endif /* CONFIG_SYSFS */
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

int hugepage_madvise(struct vm_area_struct *vma,
		     unsigned long *vm_flags, int advice)
{
	switch (advice) {
	case MADV_HUGEPAGE:
#ifdef CONFIG_S390
		/*
		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
		 * can't handle this properly after s390_enable_sie, so we simply
		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
		 */
		if (mm_has_pgste(vma->vm_mm))
			return 0;
#endif
		*vm_flags &= ~VM_NOHUGEPAGE;
		*vm_flags |= VM_HUGEPAGE;
		/*
		 * If the vma become good for khugepaged to scan,
		 * register it here without waiting a page fault that
		 * may not happen any time soon.
		 */
		if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
				khugepaged_enter_vma_merge(vma, *vm_flags))
			return -ENOMEM;
		break;
	case MADV_NOHUGEPAGE:
		*vm_flags &= ~VM_HUGEPAGE;
		*vm_flags |= VM_NOHUGEPAGE;
		/*
		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
		 * this vma even if we leave the mm registered in khugepaged if
		 * it got registered before VM_NOHUGEPAGE was set.
		 */
		break;
	}

	return 0;
}

int __init khugepaged_init(void)
{
	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
					  sizeof(struct mm_slot),
					  __alignof__(struct mm_slot), 0, NULL);
	if (!mm_slot_cache)
		return -ENOMEM;

	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
395
	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

	return 0;
}

void __init khugepaged_destroy(void)
{
	kmem_cache_destroy(mm_slot_cache);
}

static inline struct mm_slot *alloc_mm_slot(void)
{
	if (!mm_slot_cache)	/* initialization failed */
		return NULL;
	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
}

static inline void free_mm_slot(struct mm_slot *mm_slot)
{
	kmem_cache_free(mm_slot_cache, mm_slot);
}

static struct mm_slot *get_mm_slot(struct mm_struct *mm)
{
	struct mm_slot *mm_slot;

	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
		if (mm == mm_slot->mm)
			return mm_slot;

	return NULL;
}

static void insert_to_mm_slots_hash(struct mm_struct *mm,
				    struct mm_slot *mm_slot)
{
	mm_slot->mm = mm;
	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
}

static inline int khugepaged_test_exit(struct mm_struct *mm)
{
437
	return atomic_read(&mm->mm_users) == 0;
438 439
}

440 441
static bool hugepage_vma_check(struct vm_area_struct *vma,
			       unsigned long vm_flags)
442
{
443
	if (!transhuge_vma_enabled(vma, vm_flags))
444
		return false;
445

446 447 448 449
	if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) -
				vma->vm_pgoff, HPAGE_PMD_NR))
		return false;

450
	/* Enabled via shmem mount options or sysfs settings. */
451 452
	if (shmem_file(vma->vm_file))
		return shmem_huge_enabled(vma);
453 454 455 456 457

	/* THP settings require madvise. */
	if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always())
		return false;

458
	/* Only regular file is valid */
459 460
	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && vma->vm_file &&
	    (vm_flags & VM_DENYWRITE)) {
461 462 463
		struct inode *inode = vma->vm_file->f_inode;

		return S_ISREG(inode->i_mode);
464 465
	}

466 467
	if (!vma->anon_vma || vma->vm_ops)
		return false;
468
	if (vma_is_temporary_stack(vma))
469
		return false;
470
	return !(vm_flags & VM_NO_KHUGEPAGED);
471 472
}

473 474 475 476 477 478 479 480 481 482
int __khugepaged_enter(struct mm_struct *mm)
{
	struct mm_slot *mm_slot;
	int wakeup;

	mm_slot = alloc_mm_slot();
	if (!mm_slot)
		return -ENOMEM;

	/* __khugepaged_exit() must not run from under us */
483
	VM_BUG_ON_MM(atomic_read(&mm->mm_users) == 0, mm);
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
		free_mm_slot(mm_slot);
		return 0;
	}

	spin_lock(&khugepaged_mm_lock);
	insert_to_mm_slots_hash(mm, mm_slot);
	/*
	 * Insert just behind the scanning cursor, to let the area settle
	 * down a little.
	 */
	wakeup = list_empty(&khugepaged_scan.mm_head);
	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
	spin_unlock(&khugepaged_mm_lock);

V
Vegard Nossum 已提交
499
	mmgrab(mm);
500 501 502 503 504 505 506 507 508 509
	if (wakeup)
		wake_up_interruptible(&khugepaged_wait);

	return 0;
}

int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
			       unsigned long vm_flags)
{
	unsigned long hstart, hend;
510 511

	/*
512 513 514
	 * khugepaged only supports read-only files for non-shmem files.
	 * khugepaged does not yet work on special mappings. And
	 * file-private shmem THP is not supported.
515
	 */
516
	if (!hugepage_vma_check(vma, vm_flags))
517
		return 0;
518

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
	hend = vma->vm_end & HPAGE_PMD_MASK;
	if (hstart < hend)
		return khugepaged_enter(vma, vm_flags);
	return 0;
}

void __khugepaged_exit(struct mm_struct *mm)
{
	struct mm_slot *mm_slot;
	int free = 0;

	spin_lock(&khugepaged_mm_lock);
	mm_slot = get_mm_slot(mm);
	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
		hash_del(&mm_slot->hash);
		list_del(&mm_slot->mm_node);
		free = 1;
	}
	spin_unlock(&khugepaged_mm_lock);

	if (free) {
		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
		free_mm_slot(mm_slot);
		mmdrop(mm);
	} else if (mm_slot) {
		/*
		 * This is required to serialize against
		 * khugepaged_test_exit() (which is guaranteed to run
		 * under mmap sem read mode). Stop here (after we
		 * return all pagetables will be destroyed) until
		 * khugepaged has finished working on the pagetables
551
		 * under the mmap_lock.
552
		 */
553 554
		mmap_write_lock(mm);
		mmap_write_unlock(mm);
555 556 557 558 559
	}
}

static void release_pte_page(struct page *page)
{
560 561 562
	mod_node_page_state(page_pgdat(page),
			NR_ISOLATED_ANON + page_is_file_lru(page),
			-compound_nr(page));
563 564 565 566
	unlock_page(page);
	putback_lru_page(page);
}

567 568
static void release_pte_pages(pte_t *pte, pte_t *_pte,
		struct list_head *compound_pagelist)
569
{
570 571
	struct page *page, *tmp;

572 573
	while (--_pte >= pte) {
		pte_t pteval = *_pte;
574 575 576 577 578 579 580 581 582 583

		page = pte_page(pteval);
		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
				!PageCompound(page))
			release_pte_page(page);
	}

	list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
		list_del(&page->lru);
		release_pte_page(page);
584 585 586
	}
}

587 588 589 590 591 592 593 594 595 596 597
static bool is_refcount_suitable(struct page *page)
{
	int expected_refcount;

	expected_refcount = total_mapcount(page);
	if (PageSwapCache(page))
		expected_refcount += compound_nr(page);

	return page_count(page) == expected_refcount;
}

598 599
static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
					unsigned long address,
600 601
					pte_t *pte,
					struct list_head *compound_pagelist)
602 603 604
{
	struct page *page = NULL;
	pte_t *_pte;
605
	int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
606
	bool writable = false;
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630

	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
	     _pte++, address += PAGE_SIZE) {
		pte_t pteval = *_pte;
		if (pte_none(pteval) || (pte_present(pteval) &&
				is_zero_pfn(pte_pfn(pteval)))) {
			if (!userfaultfd_armed(vma) &&
			    ++none_or_zero <= khugepaged_max_ptes_none) {
				continue;
			} else {
				result = SCAN_EXCEED_NONE_PTE;
				goto out;
			}
		}
		if (!pte_present(pteval)) {
			result = SCAN_PTE_NON_PRESENT;
			goto out;
		}
		page = vm_normal_page(vma, address, pteval);
		if (unlikely(!page)) {
			result = SCAN_PAGE_NULL;
			goto out;
		}

631 632
		VM_BUG_ON_PAGE(!PageAnon(page), page);

633 634 635 636 637 638
		if (page_mapcount(page) > 1 &&
				++shared > khugepaged_max_ptes_shared) {
			result = SCAN_EXCEED_SHARED_PTE;
			goto out;
		}

639
		if (PageCompound(page)) {
640 641
			struct page *p;
			page = compound_head(page);
642

643 644 645 646 647 648 649 650 651
			/*
			 * Check if we have dealt with the compound page
			 * already
			 */
			list_for_each_entry(p, compound_pagelist, lru) {
				if (page == p)
					goto next;
			}
		}
652 653 654 655 656 657 658 659 660 661 662 663 664

		/*
		 * We can do it before isolate_lru_page because the
		 * page can't be freed from under us. NOTE: PG_lock
		 * is needed to serialize against split_huge_page
		 * when invoked from the VM.
		 */
		if (!trylock_page(page)) {
			result = SCAN_PAGE_LOCK;
			goto out;
		}

		/*
665 666 667 668 669 670 671 672 673
		 * Check if the page has any GUP (or other external) pins.
		 *
		 * The page table that maps the page has been already unlinked
		 * from the page table tree and this process cannot get
		 * an additinal pin on the page.
		 *
		 * New pins can come later if the page is shared across fork,
		 * but not from this process. The other process cannot write to
		 * the page, only trigger CoW.
674
		 */
675
		if (!is_refcount_suitable(page)) {
676 677 678 679
			unlock_page(page);
			result = SCAN_PAGE_COUNT;
			goto out;
		}
680 681
		if (!pte_write(pteval) && PageSwapCache(page) &&
				!reuse_swap_page(page, NULL)) {
682
			/*
683 684
			 * Page is in the swap cache and cannot be re-used.
			 * It cannot be collapsed into a THP.
685
			 */
686 687 688
			unlock_page(page);
			result = SCAN_SWAP_CACHE_PAGE;
			goto out;
689 690 691 692 693 694 695 696 697 698 699
		}

		/*
		 * Isolate the page to avoid collapsing an hugepage
		 * currently in use by the VM.
		 */
		if (isolate_lru_page(page)) {
			unlock_page(page);
			result = SCAN_DEL_PAGE_LRU;
			goto out;
		}
700 701 702
		mod_node_page_state(page_pgdat(page),
				NR_ISOLATED_ANON + page_is_file_lru(page),
				compound_nr(page));
703 704 705
		VM_BUG_ON_PAGE(!PageLocked(page), page);
		VM_BUG_ON_PAGE(PageLRU(page), page);

706 707 708
		if (PageCompound(page))
			list_add_tail(&page->lru, compound_pagelist);
next:
709
		/* There should be enough young pte to collapse the page */
710 711 712
		if (pte_young(pteval) ||
		    page_is_young(page) || PageReferenced(page) ||
		    mmu_notifier_test_young(vma->vm_mm, address))
713
			referenced++;
714 715 716

		if (pte_write(pteval))
			writable = true;
717
	}
718 719

	if (unlikely(!writable)) {
720
		result = SCAN_PAGE_RO;
721 722 723 724 725 726 727
	} else if (unlikely(!referenced)) {
		result = SCAN_LACK_REFERENCED_PAGE;
	} else {
		result = SCAN_SUCCEED;
		trace_mm_collapse_huge_page_isolate(page, none_or_zero,
						    referenced, writable, result);
		return 1;
728 729
	}
out:
730
	release_pte_pages(pte, _pte, compound_pagelist);
731 732 733 734 735 736 737 738
	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
					    referenced, writable, result);
	return 0;
}

static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
				      struct vm_area_struct *vma,
				      unsigned long address,
739 740
				      spinlock_t *ptl,
				      struct list_head *compound_pagelist)
741
{
742
	struct page *src_page, *tmp;
743
	pte_t *_pte;
744 745
	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
				_pte++, page++, address += PAGE_SIZE) {
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
		pte_t pteval = *_pte;

		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
			clear_user_highpage(page, address);
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
			if (is_zero_pfn(pte_pfn(pteval))) {
				/*
				 * ptl mostly unnecessary.
				 */
				spin_lock(ptl);
				/*
				 * paravirt calls inside pte_clear here are
				 * superfluous.
				 */
				pte_clear(vma->vm_mm, address, _pte);
				spin_unlock(ptl);
			}
		} else {
			src_page = pte_page(pteval);
			copy_user_highpage(page, src_page, address, vma);
766 767
			if (!PageCompound(src_page))
				release_pte_page(src_page);
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
			/*
			 * ptl mostly unnecessary, but preempt has to
			 * be disabled to update the per-cpu stats
			 * inside page_remove_rmap().
			 */
			spin_lock(ptl);
			/*
			 * paravirt calls inside pte_clear here are
			 * superfluous.
			 */
			pte_clear(vma->vm_mm, address, _pte);
			page_remove_rmap(src_page, false);
			spin_unlock(ptl);
			free_page_and_swap_cache(src_page);
		}
	}
784 785 786 787 788

	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
		list_del(&src_page->lru);
		release_pte_page(src_page);
	}
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
}

static void khugepaged_alloc_sleep(void)
{
	DEFINE_WAIT(wait);

	add_wait_queue(&khugepaged_wait, &wait);
	freezable_schedule_timeout_interruptible(
		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
	remove_wait_queue(&khugepaged_wait, &wait);
}

static int khugepaged_node_load[MAX_NUMNODES];

static bool khugepaged_scan_abort(int nid)
{
	int i;

	/*
808
	 * If node_reclaim_mode is disabled, then no extra effort is made to
809 810
	 * allocate memory locally.
	 */
811
	if (!node_reclaim_mode)
812 813 814 815 816 817 818 819 820
		return false;

	/* If there is a count for this node already, it must be acceptable */
	if (khugepaged_node_load[nid])
		return false;

	for (i = 0; i < MAX_NUMNODES; i++) {
		if (!khugepaged_node_load[i])
			continue;
821
		if (node_distance(nid, i) > node_reclaim_distance)
822 823 824 825 826 827 828 829
			return true;
	}
	return false;
}

/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
{
830
	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
}

#ifdef CONFIG_NUMA
static int khugepaged_find_target_node(void)
{
	static int last_khugepaged_target_node = NUMA_NO_NODE;
	int nid, target_node = 0, max_value = 0;

	/* find first node with max normal pages hit */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		if (khugepaged_node_load[nid] > max_value) {
			max_value = khugepaged_node_load[nid];
			target_node = nid;
		}

	/* do some balance if several nodes have the same hit record */
	if (target_node <= last_khugepaged_target_node)
		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
				nid++)
			if (max_value == khugepaged_node_load[nid]) {
				target_node = nid;
				break;
			}

	last_khugepaged_target_node = target_node;
	return target_node;
}

static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
{
	if (IS_ERR(*hpage)) {
		if (!*wait)
			return false;

		*wait = false;
		*hpage = NULL;
		khugepaged_alloc_sleep();
	} else if (*hpage) {
		put_page(*hpage);
		*hpage = NULL;
	}

	return true;
}

static struct page *
877
khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
{
	VM_BUG_ON_PAGE(*hpage, *hpage);

	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
	if (unlikely(!*hpage)) {
		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
		*hpage = ERR_PTR(-ENOMEM);
		return NULL;
	}

	prep_transhuge_page(*hpage);
	count_vm_event(THP_COLLAPSE_ALLOC);
	return *hpage;
}
#else
static int khugepaged_find_target_node(void)
{
	return 0;
}

static inline struct page *alloc_khugepaged_hugepage(void)
{
	struct page *page;

	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
			   HPAGE_PMD_ORDER);
	if (page)
		prep_transhuge_page(page);
	return page;
}

static struct page *khugepaged_alloc_hugepage(bool *wait)
{
	struct page *hpage;

	do {
		hpage = alloc_khugepaged_hugepage();
		if (!hpage) {
			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
			if (!*wait)
				return NULL;

			*wait = false;
			khugepaged_alloc_sleep();
		} else
			count_vm_event(THP_COLLAPSE_ALLOC);
	} while (unlikely(!hpage) && likely(khugepaged_enabled()));

	return hpage;
}

static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
{
931 932 933 934 935 936 937 938 939 940 941 942
	/*
	 * If the hpage allocated earlier was briefly exposed in page cache
	 * before collapse_file() failed, it is possible that racing lookups
	 * have not yet completed, and would then be unpleasantly surprised by
	 * finding the hpage reused for the same mapping at a different offset.
	 * Just release the previous allocation if there is any danger of that.
	 */
	if (*hpage && page_count(*hpage) > 1) {
		put_page(*hpage);
		*hpage = NULL;
	}

943 944 945 946 947 948 949 950 951 952
	if (!*hpage)
		*hpage = khugepaged_alloc_hugepage(wait);

	if (unlikely(!*hpage))
		return false;

	return true;
}

static struct page *
953
khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
954 955 956 957 958 959 960 961
{
	VM_BUG_ON(!*hpage);

	return  *hpage;
}
#endif

/*
962 963
 * If mmap_lock temporarily dropped, revalidate vma
 * before taking mmap_lock.
964 965 966 967
 * Return 0 if succeeds, otherwise return none-zero
 * value (scan code).
 */

968 969
static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
		struct vm_area_struct **vmap)
970 971 972 973 974 975 976
{
	struct vm_area_struct *vma;
	unsigned long hstart, hend;

	if (unlikely(khugepaged_test_exit(mm)))
		return SCAN_ANY_PROCESS;

977
	*vmap = vma = find_vma(mm, address);
978 979 980 981 982 983 984
	if (!vma)
		return SCAN_VMA_NULL;

	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
	hend = vma->vm_end & HPAGE_PMD_MASK;
	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
		return SCAN_ADDRESS_RANGE;
985
	if (!hugepage_vma_check(vma, vma->vm_flags))
986
		return SCAN_VMA_CHECK;
987 988 989
	/* Anon VMA expected */
	if (!vma->anon_vma || vma->vm_ops)
		return SCAN_VMA_CHECK;
990 991 992 993 994 995 996 997
	return 0;
}

/*
 * Bring missing pages in from swap, to complete THP collapse.
 * Only done if khugepaged_scan_pmd believes it is worthwhile.
 *
 * Called and returns without pte mapped or spinlocks held,
998
 * but with mmap_lock held to protect against vma changes.
999 1000 1001 1002
 */

static bool __collapse_huge_page_swapin(struct mm_struct *mm,
					struct vm_area_struct *vma,
1003 1004
					unsigned long address, pmd_t *pmd,
					int referenced)
1005
{
1006 1007
	int swapped_in = 0;
	vm_fault_t ret = 0;
J
Jan Kara 已提交
1008
	struct vm_fault vmf = {
1009 1010 1011 1012
		.vma = vma,
		.address = address,
		.flags = FAULT_FLAG_ALLOW_RETRY,
		.pmd = pmd,
1013
		.pgoff = linear_page_index(vma, address),
1014 1015
	};

J
Jan Kara 已提交
1016 1017 1018
	vmf.pte = pte_offset_map(pmd, address);
	for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
			vmf.pte++, vmf.address += PAGE_SIZE) {
J
Jan Kara 已提交
1019 1020
		vmf.orig_pte = *vmf.pte;
		if (!is_swap_pte(vmf.orig_pte))
1021 1022
			continue;
		swapped_in++;
J
Jan Kara 已提交
1023
		ret = do_swap_page(&vmf);
1024

1025
		/* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1026
		if (ret & VM_FAULT_RETRY) {
1027
			mmap_read_lock(mm);
J
Jan Kara 已提交
1028
			if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
1029
				/* vma is no longer available, don't continue to swapin */
1030
				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1031
				return false;
1032
			}
1033
			/* check if the pmd is still valid */
1034 1035
			if (mm_find_pmd(mm, address) != pmd) {
				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1036
				return false;
1037
			}
1038 1039
		}
		if (ret & VM_FAULT_ERROR) {
1040
			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1041 1042 1043
			return false;
		}
		/* pte is unmapped now, we need to map it */
J
Jan Kara 已提交
1044
		vmf.pte = pte_offset_map(pmd, vmf.address);
1045
	}
J
Jan Kara 已提交
1046 1047
	vmf.pte--;
	pte_unmap(vmf.pte);
1048 1049 1050 1051 1052

	/* Drain LRU add pagevec to remove extra pin on the swapped in pages */
	if (swapped_in)
		lru_add_drain();

1053
	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1054 1055 1056 1057 1058 1059
	return true;
}

static void collapse_huge_page(struct mm_struct *mm,
				   unsigned long address,
				   struct page **hpage,
1060 1061
				   int node, int referenced, int unmapped,
				   bool reliable)
1062
{
1063
	LIST_HEAD(compound_pagelist);
1064 1065 1066 1067 1068 1069
	pmd_t *pmd, _pmd;
	pte_t *pte;
	pgtable_t pgtable;
	struct page *new_page;
	spinlock_t *pmd_ptl, *pte_ptl;
	int isolated = 0, result = 0;
1070
	struct vm_area_struct *vma;
1071
	struct mmu_notifier_range range;
1072 1073 1074 1075 1076
	gfp_t gfp;

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	/* Only allocate from the target node */
M
Michal Hocko 已提交
1077
	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1078

1079 1080 1081
	if (reliable)
		gfp |= GFP_RELIABLE;

1082
	/*
1083
	 * Before allocating the hugepage, release the mmap_lock read lock.
1084
	 * The allocation can take potentially a long time if it involves
1085
	 * sync compaction, and we do not need to hold the mmap_lock during
1086 1087
	 * that. We will recheck the vma after taking it again in write mode.
	 */
1088
	mmap_read_unlock(mm);
1089
	new_page = khugepaged_alloc_page(hpage, gfp, node);
1090 1091 1092 1093 1094
	if (!new_page) {
		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
		goto out_nolock;
	}

1095
	if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1096 1097 1098
		result = SCAN_CGROUP_CHARGE_FAIL;
		goto out_nolock;
	}
1099
	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1100

1101
	mmap_read_lock(mm);
1102
	result = hugepage_vma_revalidate(mm, address, &vma);
1103
	if (result) {
1104
		mmap_read_unlock(mm);
1105 1106 1107 1108 1109 1110
		goto out_nolock;
	}

	pmd = mm_find_pmd(mm, address);
	if (!pmd) {
		result = SCAN_PMD_NULL;
1111
		mmap_read_unlock(mm);
1112 1113 1114 1115
		goto out_nolock;
	}

	/*
1116 1117
	 * __collapse_huge_page_swapin always returns with mmap_lock locked.
	 * If it fails, we release mmap_lock and jump out_nolock.
1118 1119
	 * Continuing to collapse causes inconsistency.
	 */
1120 1121
	if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
						     pmd, referenced)) {
1122
		mmap_read_unlock(mm);
1123 1124 1125
		goto out_nolock;
	}

1126
	mmap_read_unlock(mm);
1127 1128 1129 1130 1131
	/*
	 * Prevent all access to pagetables with the exception of
	 * gup_fast later handled by the ptep_clear_flush and the VM
	 * handled by the anon_vma lock + PG_lock.
	 */
1132
	mmap_write_lock(mm);
1133
	result = hugepage_vma_revalidate(mm, address, &vma);
1134 1135 1136 1137 1138 1139 1140 1141
	if (result)
		goto out;
	/* check if the pmd is still valid */
	if (mm_find_pmd(mm, address) != pmd)
		goto out;

	anon_vma_lock_write(vma->anon_vma);

1142
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1143
				address, address + HPAGE_PMD_SIZE);
1144
	mmu_notifier_invalidate_range_start(&range);
1145 1146 1147 1148

	pte = pte_offset_map(pmd, address);
	pte_ptl = pte_lockptr(mm, pmd);

1149 1150 1151 1152 1153 1154 1155 1156 1157
	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
	/*
	 * After this gup_fast can't run anymore. This also removes
	 * any huge TLB entry from the CPU so we won't allow
	 * huge and small TLB entries for the same virtual address
	 * to avoid the risk of CPU bugs in that area.
	 */
	_pmd = pmdp_collapse_flush(vma, address, pmd);
	spin_unlock(pmd_ptl);
1158
	mmu_notifier_invalidate_range_end(&range);
1159 1160

	spin_lock(pte_ptl);
1161 1162
	isolated = __collapse_huge_page_isolate(vma, address, pte,
			&compound_pagelist);
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	spin_unlock(pte_ptl);

	if (unlikely(!isolated)) {
		pte_unmap(pte);
		spin_lock(pmd_ptl);
		BUG_ON(!pmd_none(*pmd));
		/*
		 * We can only use set_pmd_at when establishing
		 * hugepmds and never for establishing regular pmds that
		 * points to regular pagetables. Use pmd_populate for that
		 */
		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
		spin_unlock(pmd_ptl);
		anon_vma_unlock_write(vma->anon_vma);
		result = SCAN_FAIL;
		goto out;
	}

	/*
	 * All pages are isolated and locked so anon_vma rmap
	 * can't run anymore.
	 */
	anon_vma_unlock_write(vma->anon_vma);

1187 1188
	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
			&compound_pagelist);
1189 1190 1191 1192 1193
	pte_unmap(pte);
	__SetPageUptodate(new_page);
	pgtable = pmd_pgtable(_pmd);

	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1194
	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

	/*
	 * spin_lock() below is not the equivalent of smp_wmb(), so
	 * this is needed to avoid the copy_huge_page writes to become
	 * visible after the set_pmd_at() write.
	 */
	smp_wmb();

	spin_lock(pmd_ptl);
	BUG_ON(!pmd_none(*pmd));
1205
	page_add_new_anon_rmap(new_page, vma, address, true);
1206
	lru_cache_add_inactive_or_unevictable(new_page, vma);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	pgtable_trans_huge_deposit(mm, pmd, pgtable);
	set_pmd_at(mm, address, pmd, _pmd);
	update_mmu_cache_pmd(vma, address, pmd);
	spin_unlock(pmd_ptl);

	*hpage = NULL;

	khugepaged_pages_collapsed++;
	result = SCAN_SUCCEED;
out_up_write:
1217
	mmap_write_unlock(mm);
1218
out_nolock:
1219 1220
	if (!IS_ERR_OR_NULL(*hpage))
		mem_cgroup_uncharge(*hpage);
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	trace_mm_collapse_huge_page(mm, isolated, result);
	return;
out:
	goto out_up_write;
}

static int khugepaged_scan_pmd(struct mm_struct *mm,
			       struct vm_area_struct *vma,
			       unsigned long address,
			       struct page **hpage)
{
	pmd_t *pmd;
	pte_t *pte, *_pte;
1234 1235
	int ret = 0, result = 0, referenced = 0;
	int none_or_zero = 0, shared = 0;
1236 1237 1238 1239
	struct page *page = NULL;
	unsigned long _address;
	spinlock_t *ptl;
	int node = NUMA_NO_NODE, unmapped = 0;
1240
	bool writable = false;
1241
	bool reliable = false;
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	pmd = mm_find_pmd(mm, address);
	if (!pmd) {
		result = SCAN_PMD_NULL;
		goto out;
	}

	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
	     _pte++, _address += PAGE_SIZE) {
		pte_t pteval = *_pte;
		if (is_swap_pte(pteval)) {
			if (++unmapped <= khugepaged_max_ptes_swap) {
1258 1259 1260 1261 1262 1263 1264 1265 1266
				/*
				 * Always be strict with uffd-wp
				 * enabled swap entries.  Please see
				 * comment below for pte_uffd_wp().
				 */
				if (pte_swp_uffd_wp(pteval)) {
					result = SCAN_PTE_UFFD_WP;
					goto out_unmap;
				}
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
				continue;
			} else {
				result = SCAN_EXCEED_SWAP_PTE;
				goto out_unmap;
			}
		}
		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
			if (!userfaultfd_armed(vma) &&
			    ++none_or_zero <= khugepaged_max_ptes_none) {
				continue;
			} else {
				result = SCAN_EXCEED_NONE_PTE;
				goto out_unmap;
			}
		}
		if (!pte_present(pteval)) {
			result = SCAN_PTE_NON_PRESENT;
			goto out_unmap;
		}
1286 1287 1288 1289 1290 1291
		if (pte_uffd_wp(pteval)) {
			/*
			 * Don't collapse the page if any of the small
			 * PTEs are armed with uffd write protection.
			 * Here we can also mark the new huge pmd as
			 * write protected if any of the small ones is
1292
			 * marked but that could bring unknown
1293 1294 1295 1296 1297 1298
			 * userfault messages that falls outside of
			 * the registered range.  So, just be simple.
			 */
			result = SCAN_PTE_UFFD_WP;
			goto out_unmap;
		}
1299 1300 1301 1302 1303 1304 1305 1306 1307
		if (pte_write(pteval))
			writable = true;

		page = vm_normal_page(vma, _address, pteval);
		if (unlikely(!page)) {
			result = SCAN_PAGE_NULL;
			goto out_unmap;
		}

1308 1309 1310 1311 1312 1313
		if (page_mapcount(page) > 1 &&
				++shared > khugepaged_max_ptes_shared) {
			result = SCAN_EXCEED_SHARED_PTE;
			goto out_unmap;
		}

1314
		page = compound_head(page);
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341

		/*
		 * Record which node the original page is from and save this
		 * information to khugepaged_node_load[].
		 * Khupaged will allocate hugepage from the node has the max
		 * hit record.
		 */
		node = page_to_nid(page);
		if (khugepaged_scan_abort(node)) {
			result = SCAN_SCAN_ABORT;
			goto out_unmap;
		}
		khugepaged_node_load[node]++;
		if (!PageLRU(page)) {
			result = SCAN_PAGE_LRU;
			goto out_unmap;
		}
		if (PageLocked(page)) {
			result = SCAN_PAGE_LOCK;
			goto out_unmap;
		}
		if (!PageAnon(page)) {
			result = SCAN_PAGE_ANON;
			goto out_unmap;
		}

		/*
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
		 * Check if the page has any GUP (or other external) pins.
		 *
		 * Here the check is racy it may see totmal_mapcount > refcount
		 * in some cases.
		 * For example, one process with one forked child process.
		 * The parent has the PMD split due to MADV_DONTNEED, then
		 * the child is trying unmap the whole PMD, but khugepaged
		 * may be scanning the parent between the child has
		 * PageDoubleMap flag cleared and dec the mapcount.  So
		 * khugepaged may see total_mapcount > refcount.
		 *
		 * But such case is ephemeral we could always retry collapse
		 * later.  However it may report false positive if the page
		 * has excessive GUP pins (i.e. 512).  Anyway the same check
		 * will be done again later the risk seems low.
1357
		 */
1358
		if (!is_refcount_suitable(page)) {
1359 1360 1361 1362 1363 1364
			result = SCAN_PAGE_COUNT;
			goto out_unmap;
		}
		if (pte_young(pteval) ||
		    page_is_young(page) || PageReferenced(page) ||
		    mmu_notifier_test_young(vma->vm_mm, address))
1365
			referenced++;
1366 1367 1368

		if (page_reliable(page))
			reliable = true;
1369
	}
1370
	if (!writable) {
1371
		result = SCAN_PAGE_RO;
1372 1373 1374 1375 1376
	} else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
		result = SCAN_LACK_REFERENCED_PAGE;
	} else {
		result = SCAN_SUCCEED;
		ret = 1;
1377 1378 1379 1380 1381
	}
out_unmap:
	pte_unmap_unlock(pte, ptl);
	if (ret) {
		node = khugepaged_find_target_node();
1382
		/* collapse_huge_page will return with the mmap_lock released */
1383
		collapse_huge_page(mm, address, hpage, node,
1384
				referenced, unmapped, reliable);
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	}
out:
	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
				     none_or_zero, result, unmapped);
	return ret;
}

static void collect_mm_slot(struct mm_slot *mm_slot)
{
	struct mm_struct *mm = mm_slot->mm;

1396
	lockdep_assert_held(&khugepaged_mm_lock);
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

	if (khugepaged_test_exit(mm)) {
		/* free mm_slot */
		hash_del(&mm_slot->hash);
		list_del(&mm_slot->mm_node);

		/*
		 * Not strictly needed because the mm exited already.
		 *
		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
		 */

		/* khugepaged_mm_lock actually not necessary for the below */
		free_mm_slot(mm_slot);
		mmdrop(mm);
	}
}

1415
#ifdef CONFIG_SHMEM
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
/*
 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
 * khugepaged should try to collapse the page table.
 */
static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
					 unsigned long addr)
{
	struct mm_slot *mm_slot;

	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);

	spin_lock(&khugepaged_mm_lock);
	mm_slot = get_mm_slot(mm);
	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
	spin_unlock(&khugepaged_mm_lock);
	return 0;
}

/**
 * Try to collapse a pte-mapped THP for mm at address haddr.
 *
 * This function checks whether all the PTEs in the PMD are pointing to the
 * right THP. If so, retract the page table so the THP can refault in with
 * as pmd-mapped.
 */
void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
{
	unsigned long haddr = addr & HPAGE_PMD_MASK;
	struct vm_area_struct *vma = find_vma(mm, haddr);
1446
	struct page *hpage;
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	pte_t *start_pte, *pte;
	pmd_t *pmd, _pmd;
	spinlock_t *ptl;
	int count = 0;
	int i;

	if (!vma || !vma->vm_file ||
	    vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE)
		return;

	/*
	 * This vm_flags may not have VM_HUGEPAGE if the page was not
	 * collapsed by this mm. But we can still collapse if the page is
	 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
	 * will not fail the vma for missing VM_HUGEPAGE
	 */
	if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
		return;

1466 1467 1468 1469 1470 1471 1472 1473
	hpage = find_lock_page(vma->vm_file->f_mapping,
			       linear_page_index(vma, haddr));
	if (!hpage)
		return;

	if (!PageHead(hpage))
		goto drop_hpage;

1474 1475
	pmd = mm_find_pmd(mm, haddr);
	if (!pmd)
1476
		goto drop_hpage;
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);

	/* step 1: check all mapped PTEs are to the right huge page */
	for (i = 0, addr = haddr, pte = start_pte;
	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
		struct page *page;

		/* empty pte, skip */
		if (pte_none(*pte))
			continue;

		/* page swapped out, abort */
		if (!pte_present(*pte))
			goto abort;

		page = vm_normal_page(vma, addr, *pte);

		/*
1496 1497
		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
		 * page table, but the new page will not be a subpage of hpage.
1498
		 */
1499
		if (hpage + i != page)
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
			goto abort;
		count++;
	}

	/* step 2: adjust rmap */
	for (i = 0, addr = haddr, pte = start_pte;
	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
		struct page *page;

		if (pte_none(*pte))
			continue;
		page = vm_normal_page(vma, addr, *pte);
		page_remove_rmap(page, false);
	}

	pte_unmap_unlock(start_pte, ptl);

	/* step 3: set proper refcount and mm_counters. */
1518
	if (count) {
1519 1520 1521 1522 1523 1524
		page_ref_sub(hpage, count);
		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
	}

	/* step 4: collapse pmd */
	ptl = pmd_lock(vma->vm_mm, pmd);
1525
	_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1526 1527 1528
	spin_unlock(ptl);
	mm_dec_nr_ptes(mm);
	pte_free(mm, pmd_pgtable(_pmd));
1529 1530 1531 1532

drop_hpage:
	unlock_page(hpage);
	put_page(hpage);
1533 1534 1535 1536
	return;

abort:
	pte_unmap_unlock(start_pte, ptl);
1537
	goto drop_hpage;
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
}

static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
{
	struct mm_struct *mm = mm_slot->mm;
	int i;

	if (likely(mm_slot->nr_pte_mapped_thp == 0))
		return 0;

1548
	if (!mmap_write_trylock(mm))
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
		return -EBUSY;

	if (unlikely(khugepaged_test_exit(mm)))
		goto out;

	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);

out:
	mm_slot->nr_pte_mapped_thp = 0;
1559
	mmap_write_unlock(mm);
1560 1561 1562
	return 0;
}

1563 1564 1565
static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
{
	struct vm_area_struct *vma;
1566
	struct mm_struct *mm;
1567 1568 1569 1570 1571
	unsigned long addr;
	pmd_t *pmd, _pmd;

	i_mmap_lock_write(mapping);
	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1572 1573 1574
		/*
		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
		 * got written to. These VMAs are likely not worth investing
1575
		 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1576 1577 1578
		 * later.
		 *
		 * Not that vma->anon_vma check is racy: it can be set up after
1579
		 * the check but before we took mmap_lock by the fault path.
1580 1581 1582 1583 1584 1585 1586 1587
		 * But page lock would prevent establishing any new ptes of the
		 * page, so we are safe.
		 *
		 * An alternative would be drop the check, but check that page
		 * table is clear before calling pmdp_collapse_flush() under
		 * ptl. It has higher chance to recover THP for the VMA, but
		 * has higher cost too.
		 */
1588 1589 1590 1591 1592 1593 1594
		if (vma->anon_vma)
			continue;
		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
		if (addr & ~HPAGE_PMD_MASK)
			continue;
		if (vma->vm_end < addr + HPAGE_PMD_SIZE)
			continue;
1595 1596
		mm = vma->vm_mm;
		pmd = mm_find_pmd(mm, addr);
1597 1598 1599
		if (!pmd)
			continue;
		/*
1600
		 * We need exclusive mmap_lock to retract page table.
1601 1602
		 *
		 * We use trylock due to lock inversion: we need to acquire
1603
		 * mmap_lock while holding page lock. Fault path does it in
1604
		 * reverse order. Trylock is a way to avoid deadlock.
1605
		 */
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
		if (mmap_write_trylock(mm)) {
			if (!khugepaged_test_exit(mm)) {
				spinlock_t *ptl = pmd_lock(mm, pmd);
				/* assume page table is clear */
				_pmd = pmdp_collapse_flush(vma, addr, pmd);
				spin_unlock(ptl);
				mm_dec_nr_ptes(mm);
				pte_free(mm, pmd_pgtable(_pmd));
			}
			mmap_write_unlock(mm);
1616 1617
		} else {
			/* Try again later */
1618
			khugepaged_add_pte_mapped_thp(mm, addr);
1619 1620 1621 1622 1623 1624
		}
	}
	i_mmap_unlock_write(mapping);
}

/**
1625
 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1626 1627
 *
 * Basic scheme is simple, details are more complex:
1628
 *  - allocate and lock a new huge page;
1629
 *  - scan page cache replacing old pages with the new one
1630
 *    + swap/gup in pages if necessary;
1631
 *    + fill in gaps;
1632 1633
 *    + keep old pages around in case rollback is required;
 *  - if replacing succeeds:
1634 1635
 *    + copy data over;
 *    + free old pages;
1636
 *    + unlock huge page;
1637 1638
 *  - if replacing failed;
 *    + put all pages back and unfreeze them;
1639
 *    + restore gaps in the page cache;
1640
 *    + unlock and free huge page;
1641
 */
1642 1643
static void collapse_file(struct mm_struct *mm,
		struct file *file, pgoff_t start,
1644 1645
		struct page **hpage, int node,
		bool reliable)
1646
{
1647
	struct address_space *mapping = file->f_mapping;
1648
	gfp_t gfp;
1649
	struct page *new_page;
1650 1651
	pgoff_t index, end = start + HPAGE_PMD_NR;
	LIST_HEAD(pagelist);
1652
	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1653
	int nr_none = 0, result = SCAN_SUCCEED;
1654
	bool is_shmem = shmem_file(file);
1655

1656
	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1657 1658 1659
	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));

	/* Only allocate from the target node */
M
Michal Hocko 已提交
1660
	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1661

1662 1663 1664
	if (reliable)
		gfp |= GFP_RELIABLE;

1665 1666 1667 1668 1669 1670
	new_page = khugepaged_alloc_page(hpage, gfp, node);
	if (!new_page) {
		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
		goto out;
	}

1671
	if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1672 1673 1674
		result = SCAN_CGROUP_CHARGE_FAIL;
		goto out;
	}
1675
	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1676

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	/* This will be less messy when we use multi-index entries */
	do {
		xas_lock_irq(&xas);
		xas_create_range(&xas);
		if (!xas_error(&xas))
			break;
		xas_unlock_irq(&xas);
		if (!xas_nomem(&xas, GFP_KERNEL)) {
			result = SCAN_FAIL;
			goto out;
		}
	} while (1);

1690
	__SetPageLocked(new_page);
1691 1692
	if (is_shmem)
		__SetPageSwapBacked(new_page);
1693 1694 1695 1696
	new_page->index = start;
	new_page->mapping = mapping;

	/*
1697 1698 1699
	 * At this point the new_page is locked and not up-to-date.
	 * It's safe to insert it into the page cache, because nobody would
	 * be able to map it or use it in another way until we unlock it.
1700 1701
	 */

1702 1703 1704 1705 1706
	xas_set(&xas, start);
	for (index = start; index < end; index++) {
		struct page *page = xas_next(&xas);

		VM_BUG_ON(index != xas.xa_index);
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
		if (is_shmem) {
			if (!page) {
				/*
				 * Stop if extent has been truncated or
				 * hole-punched, and is now completely
				 * empty.
				 */
				if (index == start) {
					if (!xas_next_entry(&xas, end - 1)) {
						result = SCAN_TRUNCATED;
						goto xa_locked;
					}
					xas_set(&xas, index);
				}
				if (!shmem_charge(mapping->host, 1)) {
					result = SCAN_FAIL;
1723
					goto xa_locked;
1724
				}
1725 1726 1727
				xas_store(&xas, new_page);
				nr_none++;
				continue;
1728
			}
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

			if (xa_is_value(page) || !PageUptodate(page)) {
				xas_unlock_irq(&xas);
				/* swap in or instantiate fallocated page */
				if (shmem_getpage(mapping->host, index, &page,
						  SGP_NOHUGE)) {
					result = SCAN_FAIL;
					goto xa_unlocked;
				}
			} else if (trylock_page(page)) {
				get_page(page);
				xas_unlock_irq(&xas);
			} else {
				result = SCAN_PAGE_LOCK;
1743
				goto xa_locked;
1744
			}
1745 1746 1747 1748 1749
		} else {	/* !is_shmem */
			if (!page || xa_is_value(page)) {
				xas_unlock_irq(&xas);
				page_cache_sync_readahead(mapping, &file->f_ra,
							  file, index,
1750
							  end - index);
1751 1752 1753 1754 1755 1756 1757
				/* drain pagevecs to help isolate_lru_page() */
				lru_add_drain();
				page = find_lock_page(mapping, index);
				if (unlikely(page == NULL)) {
					result = SCAN_FAIL;
					goto xa_unlocked;
				}
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
			} else if (PageDirty(page)) {
				/*
				 * khugepaged only works on read-only fd,
				 * so this page is dirty because it hasn't
				 * been flushed since first write. There
				 * won't be new dirty pages.
				 *
				 * Trigger async flush here and hope the
				 * writeback is done when khugepaged
				 * revisits this page.
				 *
				 * This is a one-off situation. We are not
				 * forcing writeback in loop.
				 */
				xas_unlock_irq(&xas);
				filemap_flush(mapping);
				result = SCAN_FAIL;
				goto xa_unlocked;
1776 1777 1778 1779
			} else if (PageWriteback(page)) {
				xas_unlock_irq(&xas);
				result = SCAN_FAIL;
				goto xa_unlocked;
1780 1781 1782 1783 1784 1785
			} else if (trylock_page(page)) {
				get_page(page);
				xas_unlock_irq(&xas);
			} else {
				result = SCAN_PAGE_LOCK;
				goto xa_locked;
1786 1787 1788 1789
			}
		}

		/*
M
Matthew Wilcox 已提交
1790
		 * The page must be locked, so we can drop the i_pages lock
1791 1792 1793
		 * without racing with truncate.
		 */
		VM_BUG_ON_PAGE(!PageLocked(page), page);
1794 1795 1796 1797 1798 1799

		/* make sure the page is up to date */
		if (unlikely(!PageUptodate(page))) {
			result = SCAN_FAIL;
			goto out_unlock;
		}
1800 1801 1802 1803 1804 1805 1806 1807 1808

		/*
		 * If file was truncated then extended, or hole-punched, before
		 * we locked the first page, then a THP might be there already.
		 */
		if (PageTransCompound(page)) {
			result = SCAN_PAGE_COMPOUND;
			goto out_unlock;
		}
1809 1810 1811 1812 1813 1814

		if (page_mapping(page) != mapping) {
			result = SCAN_TRUNCATED;
			goto out_unlock;
		}

1815 1816
		if (!is_shmem && (PageDirty(page) ||
				  PageWriteback(page))) {
1817 1818 1819 1820 1821 1822 1823 1824 1825
			/*
			 * khugepaged only works on read-only fd, so this
			 * page is dirty because it hasn't been flushed
			 * since first write.
			 */
			result = SCAN_FAIL;
			goto out_unlock;
		}

1826 1827
		if (isolate_lru_page(page)) {
			result = SCAN_DEL_PAGE_LRU;
1828
			goto out_unlock;
1829 1830
		}

1831 1832 1833
		if (page_has_private(page) &&
		    !try_to_release_page(page, GFP_KERNEL)) {
			result = SCAN_PAGE_HAS_PRIVATE;
1834
			putback_lru_page(page);
1835 1836 1837
			goto out_unlock;
		}

1838
		if (page_mapped(page))
M
Matthew Wilcox 已提交
1839
			unmap_mapping_pages(mapping, index, 1, false);
1840

1841 1842
		xas_lock_irq(&xas);
		xas_set(&xas, index);
1843

1844
		VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1845 1846 1847 1848 1849
		VM_BUG_ON_PAGE(page_mapped(page), page);

		/*
		 * The page is expected to have page_count() == 3:
		 *  - we hold a pin on it;
1850
		 *  - one reference from page cache;
1851 1852 1853 1854
		 *  - one from isolate_lru_page;
		 */
		if (!page_ref_freeze(page, 3)) {
			result = SCAN_PAGE_COUNT;
1855 1856 1857
			xas_unlock_irq(&xas);
			putback_lru_page(page);
			goto out_unlock;
1858 1859 1860 1861 1862 1863 1864 1865 1866
		}

		/*
		 * Add the page to the list to be able to undo the collapse if
		 * something go wrong.
		 */
		list_add_tail(&page->lru, &pagelist);

		/* Finally, replace with the new page. */
1867
		xas_store(&xas, new_page);
1868 1869 1870 1871
		continue;
out_unlock:
		unlock_page(page);
		put_page(page);
1872
		goto xa_unlocked;
1873 1874
	}

1875 1876
	if (is_shmem)
		__inc_node_page_state(new_page, NR_SHMEM_THPS);
1877
	else {
1878
		__inc_node_page_state(new_page, NR_FILE_THPS);
1879 1880
		filemap_nr_thps_inc(mapping);
	}
1881

1882
	if (nr_none) {
1883
		__mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1884
		if (is_shmem)
1885
			__mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1886 1887 1888 1889
	}

xa_locked:
	xas_unlock_irq(&xas);
1890
xa_unlocked:
1891

1892
	if (result == SCAN_SUCCEED) {
1893
		struct page *page, *tmp;
1894 1895

		/*
1896 1897
		 * Replacing old pages with new one has succeeded, now we
		 * need to copy the content and free the old pages.
1898
		 */
1899
		index = start;
1900
		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1901 1902 1903 1904
			while (index < page->index) {
				clear_highpage(new_page + (index % HPAGE_PMD_NR));
				index++;
			}
1905 1906 1907 1908
			copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
					page);
			list_del(&page->lru);
			page->mapping = NULL;
1909
			page_ref_unfreeze(page, 1);
1910 1911
			ClearPageActive(page);
			ClearPageUnevictable(page);
1912
			unlock_page(page);
1913
			put_page(page);
1914 1915 1916 1917 1918
			index++;
		}
		while (index < end) {
			clear_highpage(new_page + (index % HPAGE_PMD_NR));
			index++;
1919 1920 1921
		}

		SetPageUptodate(new_page);
1922
		page_ref_add(new_page, HPAGE_PMD_NR - 1);
1923
		if (is_shmem)
1924
			set_page_dirty(new_page);
1925
		lru_cache_add(new_page);
1926

1927 1928 1929 1930
		/*
		 * Remove pte page tables, so we can re-fault the page as huge.
		 */
		retract_page_tables(mapping, start);
1931
		*hpage = NULL;
1932 1933

		khugepaged_pages_collapsed++;
1934
	} else {
1935
		struct page *page;
1936

1937 1938
		/* Something went wrong: roll back page cache changes */
		xas_lock_irq(&xas);
1939
		mapping->nrpages -= nr_none;
1940 1941 1942

		if (is_shmem)
			shmem_uncharge(mapping->host, nr_none);
1943

1944 1945
		xas_set(&xas, start);
		xas_for_each(&xas, page, end - 1) {
1946 1947
			page = list_first_entry_or_null(&pagelist,
					struct page, lru);
1948
			if (!page || xas.xa_index < page->index) {
1949 1950 1951
				if (!nr_none)
					break;
				nr_none--;
1952
				/* Put holes back where they were */
1953
				xas_store(&xas, NULL);
1954 1955 1956
				continue;
			}

1957
			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1958 1959 1960 1961

			/* Unfreeze the page. */
			list_del(&page->lru);
			page_ref_unfreeze(page, 2);
1962 1963 1964
			xas_store(&xas, page);
			xas_pause(&xas);
			xas_unlock_irq(&xas);
1965
			unlock_page(page);
1966
			putback_lru_page(page);
1967
			xas_lock_irq(&xas);
1968 1969
		}
		VM_BUG_ON(nr_none);
1970
		xas_unlock_irq(&xas);
1971 1972 1973

		new_page->mapping = NULL;
	}
1974 1975

	unlock_page(new_page);
1976 1977
out:
	VM_BUG_ON(!list_empty(&pagelist));
1978 1979
	if (!IS_ERR_OR_NULL(*hpage))
		mem_cgroup_uncharge(*hpage);
1980 1981 1982
	/* TODO: tracepoints */
}

1983 1984
static void khugepaged_scan_file(struct mm_struct *mm,
		struct file *file, pgoff_t start, struct page **hpage)
1985 1986
{
	struct page *page = NULL;
1987
	struct address_space *mapping = file->f_mapping;
1988
	XA_STATE(xas, &mapping->i_pages, start);
1989 1990 1991
	int present, swap;
	int node = NUMA_NO_NODE;
	int result = SCAN_SUCCEED;
1992
	bool reliable = false;
1993 1994 1995 1996 1997

	present = 0;
	swap = 0;
	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
	rcu_read_lock();
1998 1999
	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
		if (xas_retry(&xas, page))
2000 2001
			continue;

2002
		if (xa_is_value(page)) {
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
			if (++swap > khugepaged_max_ptes_swap) {
				result = SCAN_EXCEED_SWAP_PTE;
				break;
			}
			continue;
		}

		if (PageTransCompound(page)) {
			result = SCAN_PAGE_COMPOUND;
			break;
		}

		node = page_to_nid(page);
		if (khugepaged_scan_abort(node)) {
			result = SCAN_SCAN_ABORT;
			break;
		}
		khugepaged_node_load[node]++;

		if (!PageLRU(page)) {
			result = SCAN_PAGE_LRU;
			break;
		}

2027 2028
		if (page_count(page) !=
		    1 + page_mapcount(page) + page_has_private(page)) {
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
			result = SCAN_PAGE_COUNT;
			break;
		}

		/*
		 * We probably should check if the page is referenced here, but
		 * nobody would transfer pte_young() to PageReferenced() for us.
		 * And rmap walk here is just too costly...
		 */

		present++;

		if (need_resched()) {
2042
			xas_pause(&xas);
2043 2044
			cond_resched_rcu();
		}
2045 2046 2047

		if (page_reliable(page))
			reliable = true;
2048 2049 2050 2051 2052 2053 2054 2055
	}
	rcu_read_unlock();

	if (result == SCAN_SUCCEED) {
		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
			result = SCAN_EXCEED_NONE_PTE;
		} else {
			node = khugepaged_find_target_node();
2056
			collapse_file(mm, file, start, hpage, node, reliable);
2057 2058 2059 2060 2061 2062
		}
	}

	/* TODO: tracepoints */
}
#else
2063 2064
static void khugepaged_scan_file(struct mm_struct *mm,
		struct file *file, pgoff_t start, struct page **hpage)
2065 2066 2067
{
	BUILD_BUG();
}
2068 2069 2070 2071 2072

static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
{
	return 0;
}
2073 2074
#endif

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
					    struct page **hpage)
	__releases(&khugepaged_mm_lock)
	__acquires(&khugepaged_mm_lock)
{
	struct mm_slot *mm_slot;
	struct mm_struct *mm;
	struct vm_area_struct *vma;
	int progress = 0;

	VM_BUG_ON(!pages);
2086
	lockdep_assert_held(&khugepaged_mm_lock);
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096

	if (khugepaged_scan.mm_slot)
		mm_slot = khugepaged_scan.mm_slot;
	else {
		mm_slot = list_entry(khugepaged_scan.mm_head.next,
				     struct mm_slot, mm_node);
		khugepaged_scan.address = 0;
		khugepaged_scan.mm_slot = mm_slot;
	}
	spin_unlock(&khugepaged_mm_lock);
2097
	khugepaged_collapse_pte_mapped_thps(mm_slot);
2098 2099

	mm = mm_slot->mm;
2100 2101 2102 2103 2104
	/*
	 * Don't wait for semaphore (to avoid long wait times).  Just move to
	 * the next mm on the list.
	 */
	vma = NULL;
2105
	if (unlikely(!mmap_read_trylock(mm)))
2106
		goto breakouterloop_mmap_lock;
2107
	if (likely(!khugepaged_test_exit(mm)))
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
		vma = find_vma(mm, khugepaged_scan.address);

	progress++;
	for (; vma; vma = vma->vm_next) {
		unsigned long hstart, hend;

		cond_resched();
		if (unlikely(khugepaged_test_exit(mm))) {
			progress++;
			break;
		}
2119
		if (!hugepage_vma_check(vma, vma->vm_flags)) {
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
skip:
			progress++;
			continue;
		}
		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
		hend = vma->vm_end & HPAGE_PMD_MASK;
		if (hstart >= hend)
			goto skip;
		if (khugepaged_scan.address > hend)
			goto skip;
		if (khugepaged_scan.address < hstart)
			khugepaged_scan.address = hstart;
		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2133 2134
		if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
			goto skip;
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144

		while (khugepaged_scan.address < hend) {
			int ret;
			cond_resched();
			if (unlikely(khugepaged_test_exit(mm)))
				goto breakouterloop;

			VM_BUG_ON(khugepaged_scan.address < hstart ||
				  khugepaged_scan.address + HPAGE_PMD_SIZE >
				  hend);
2145
			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2146
				struct file *file = get_file(vma->vm_file);
2147 2148
				pgoff_t pgoff = linear_page_index(vma,
						khugepaged_scan.address);
2149

2150
				mmap_read_unlock(mm);
2151
				ret = 1;
2152
				khugepaged_scan_file(mm, file, pgoff, hpage);
2153 2154 2155 2156 2157 2158
				fput(file);
			} else {
				ret = khugepaged_scan_pmd(mm, vma,
						khugepaged_scan.address,
						hpage);
			}
2159 2160 2161 2162
			/* move to next address */
			khugepaged_scan.address += HPAGE_PMD_SIZE;
			progress += HPAGE_PMD_NR;
			if (ret)
2163 2164
				/* we released mmap_lock so break loop */
				goto breakouterloop_mmap_lock;
2165 2166 2167 2168 2169
			if (progress >= pages)
				goto breakouterloop;
		}
	}
breakouterloop:
2170
	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2171
breakouterloop_mmap_lock:
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221

	spin_lock(&khugepaged_mm_lock);
	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
	/*
	 * Release the current mm_slot if this mm is about to die, or
	 * if we scanned all vmas of this mm.
	 */
	if (khugepaged_test_exit(mm) || !vma) {
		/*
		 * Make sure that if mm_users is reaching zero while
		 * khugepaged runs here, khugepaged_exit will find
		 * mm_slot not pointing to the exiting mm.
		 */
		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
			khugepaged_scan.mm_slot = list_entry(
				mm_slot->mm_node.next,
				struct mm_slot, mm_node);
			khugepaged_scan.address = 0;
		} else {
			khugepaged_scan.mm_slot = NULL;
			khugepaged_full_scans++;
		}

		collect_mm_slot(mm_slot);
	}

	return progress;
}

static int khugepaged_has_work(void)
{
	return !list_empty(&khugepaged_scan.mm_head) &&
		khugepaged_enabled();
}

static int khugepaged_wait_event(void)
{
	return !list_empty(&khugepaged_scan.mm_head) ||
		kthread_should_stop();
}

static void khugepaged_do_scan(void)
{
	struct page *hpage = NULL;
	unsigned int progress = 0, pass_through_head = 0;
	unsigned int pages = khugepaged_pages_to_scan;
	bool wait = true;

	barrier(); /* write khugepaged_pages_to_scan to local stack */

2222 2223
	lru_add_drain_all();

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
	while (progress < pages) {
		if (!khugepaged_prealloc_page(&hpage, &wait))
			break;

		cond_resched();

		if (unlikely(kthread_should_stop() || try_to_freeze()))
			break;

		spin_lock(&khugepaged_mm_lock);
		if (!khugepaged_scan.mm_slot)
			pass_through_head++;
		if (khugepaged_has_work() &&
		    pass_through_head < 2)
			progress += khugepaged_scan_mm_slot(pages - progress,
							    &hpage);
		else
			progress = pages;
		spin_unlock(&khugepaged_mm_lock);
	}

	if (!IS_ERR_OR_NULL(hpage))
		put_page(hpage);
}

static bool khugepaged_should_wakeup(void)
{
	return kthread_should_stop() ||
	       time_after_eq(jiffies, khugepaged_sleep_expire);
}

static void khugepaged_wait_work(void)
{
	if (khugepaged_has_work()) {
		const unsigned long scan_sleep_jiffies =
			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);

		if (!scan_sleep_jiffies)
			return;

		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
		wait_event_freezable_timeout(khugepaged_wait,
					     khugepaged_should_wakeup(),
					     scan_sleep_jiffies);
		return;
	}

	if (khugepaged_enabled())
		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
}

static int khugepaged(void *none)
{
	struct mm_slot *mm_slot;

	set_freezable();
	set_user_nice(current, MAX_NICE);

	while (!kthread_should_stop()) {
		khugepaged_do_scan();
		khugepaged_wait_work();
	}

	spin_lock(&khugepaged_mm_lock);
	mm_slot = khugepaged_scan.mm_slot;
	khugepaged_scan.mm_slot = NULL;
	if (mm_slot)
		collect_mm_slot(mm_slot);
	spin_unlock(&khugepaged_mm_lock);
	return 0;
}

static void set_recommended_min_free_kbytes(void)
{
	struct zone *zone;
	int nr_zones = 0;
	unsigned long recommended_min;

2302 2303 2304 2305 2306 2307 2308 2309
	for_each_populated_zone(zone) {
		/*
		 * We don't need to worry about fragmentation of
		 * ZONE_MOVABLE since it only has movable pages.
		 */
		if (zone_idx(zone) > gfp_zone(GFP_USER))
			continue;

2310
		nr_zones++;
2311
	}
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
	recommended_min = pageblock_nr_pages * nr_zones * 2;

	/*
	 * Make sure that on average at least two pageblocks are almost free
	 * of another type, one for a migratetype to fall back to and a
	 * second to avoid subsequent fallbacks of other types There are 3
	 * MIGRATE_TYPES we care about.
	 */
	recommended_min += pageblock_nr_pages * nr_zones *
			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;

	/* don't ever allow to reserve more than 5% of the lowmem */
	recommended_min = min(recommended_min,
			      (unsigned long) nr_free_buffer_pages() / 20);
	recommended_min <<= (PAGE_SHIFT-10);

	if (recommended_min > min_free_kbytes) {
		if (user_min_free_kbytes >= 0)
			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
				min_free_kbytes, recommended_min);

		min_free_kbytes = recommended_min;
	}
	setup_per_zone_wmarks();
}

int start_stop_khugepaged(void)
{
	int err = 0;

	mutex_lock(&khugepaged_mutex);
	if (khugepaged_enabled()) {
		if (!khugepaged_thread)
			khugepaged_thread = kthread_run(khugepaged, NULL,
							"khugepaged");
		if (IS_ERR(khugepaged_thread)) {
			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
			err = PTR_ERR(khugepaged_thread);
			khugepaged_thread = NULL;
			goto fail;
		}

		if (!list_empty(&khugepaged_scan.mm_head))
			wake_up_interruptible(&khugepaged_wait);

		set_recommended_min_free_kbytes();
	} else if (khugepaged_thread) {
		kthread_stop(khugepaged_thread);
		khugepaged_thread = NULL;
	}
fail:
	mutex_unlock(&khugepaged_mutex);
	return err;
}
2368 2369 2370 2371 2372 2373 2374 2375

void khugepaged_min_free_kbytes_update(void)
{
	mutex_lock(&khugepaged_mutex);
	if (khugepaged_enabled() && khugepaged_thread)
		set_recommended_min_free_kbytes();
	mutex_unlock(&khugepaged_mutex);
}