khugepaged.c 57.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/mm.h>
#include <linux/sched.h>
6
#include <linux/sched/mm.h>
7
#include <linux/sched/coredump.h>
8 9 10 11 12 13 14 15 16 17 18 19
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/mm_inline.h>
#include <linux/kthread.h>
#include <linux/khugepaged.h>
#include <linux/freezer.h>
#include <linux/mman.h>
#include <linux/hashtable.h>
#include <linux/userfaultfd_k.h>
#include <linux/page_idle.h>
#include <linux/swapops.h>
20
#include <linux/shmem_fs.h>
21 22 23 24 25 26 27 28 29 30

#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

enum scan_result {
	SCAN_FAIL,
	SCAN_SUCCEED,
	SCAN_PMD_NULL,
	SCAN_EXCEED_NONE_PTE,
31 32
	SCAN_EXCEED_SWAP_PTE,
	SCAN_EXCEED_SHARED_PTE,
33
	SCAN_PTE_NON_PRESENT,
34
	SCAN_PTE_UFFD_WP,
35
	SCAN_PAGE_RO,
36
	SCAN_LACK_REFERENCED_PAGE,
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
	SCAN_PAGE_NULL,
	SCAN_SCAN_ABORT,
	SCAN_PAGE_COUNT,
	SCAN_PAGE_LRU,
	SCAN_PAGE_LOCK,
	SCAN_PAGE_ANON,
	SCAN_PAGE_COMPOUND,
	SCAN_ANY_PROCESS,
	SCAN_VMA_NULL,
	SCAN_VMA_CHECK,
	SCAN_ADDRESS_RANGE,
	SCAN_SWAP_CACHE_PAGE,
	SCAN_DEL_PAGE_LRU,
	SCAN_ALLOC_HUGE_PAGE_FAIL,
	SCAN_CGROUP_CHARGE_FAIL,
52
	SCAN_TRUNCATED,
53
	SCAN_PAGE_HAS_PRIVATE,
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
};

#define CREATE_TRACE_POINTS
#include <trace/events/huge_memory.h>

/* default scan 8*512 pte (or vmas) every 30 second */
static unsigned int khugepaged_pages_to_scan __read_mostly;
static unsigned int khugepaged_pages_collapsed;
static unsigned int khugepaged_full_scans;
static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
/* during fragmentation poll the hugepage allocator once every minute */
static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
static unsigned long khugepaged_sleep_expire;
static DEFINE_SPINLOCK(khugepaged_mm_lock);
static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
/*
 * default collapse hugepages if there is at least one pte mapped like
 * it would have happened if the vma was large enough during page
 * fault.
 */
static unsigned int khugepaged_max_ptes_none __read_mostly;
static unsigned int khugepaged_max_ptes_swap __read_mostly;
76
static unsigned int khugepaged_max_ptes_shared __read_mostly;
77 78 79 80 81 82

#define MM_SLOTS_HASH_BITS 10
static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);

static struct kmem_cache *mm_slot_cache __read_mostly;

83 84
#define MAX_PTE_MAPPED_THP 8

85 86 87 88 89 90 91 92 93 94
/**
 * struct mm_slot - hash lookup from mm to mm_slot
 * @hash: hash collision list
 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
 * @mm: the mm that this information is valid for
 */
struct mm_slot {
	struct hlist_node hash;
	struct list_head mm_node;
	struct mm_struct *mm;
95 96 97 98

	/* pte-mapped THP in this mm */
	int nr_pte_mapped_thp;
	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
};

/**
 * struct khugepaged_scan - cursor for scanning
 * @mm_head: the head of the mm list to scan
 * @mm_slot: the current mm_slot we are scanning
 * @address: the next address inside that to be scanned
 *
 * There is only the one khugepaged_scan instance of this cursor structure.
 */
struct khugepaged_scan {
	struct list_head mm_head;
	struct mm_slot *mm_slot;
	unsigned long address;
};

static struct khugepaged_scan khugepaged_scan = {
	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
};

119
#ifdef CONFIG_SYSFS
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
					 struct kobj_attribute *attr,
					 char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
}

static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
					  struct kobj_attribute *attr,
					  const char *buf, size_t count)
{
	unsigned long msecs;
	int err;

	err = kstrtoul(buf, 10, &msecs);
	if (err || msecs > UINT_MAX)
		return -EINVAL;

	khugepaged_scan_sleep_millisecs = msecs;
	khugepaged_sleep_expire = 0;
	wake_up_interruptible(&khugepaged_wait);

	return count;
}
static struct kobj_attribute scan_sleep_millisecs_attr =
	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
	       scan_sleep_millisecs_store);

static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
					  struct kobj_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
}

static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
					   struct kobj_attribute *attr,
					   const char *buf, size_t count)
{
	unsigned long msecs;
	int err;

	err = kstrtoul(buf, 10, &msecs);
	if (err || msecs > UINT_MAX)
		return -EINVAL;

	khugepaged_alloc_sleep_millisecs = msecs;
	khugepaged_sleep_expire = 0;
	wake_up_interruptible(&khugepaged_wait);

	return count;
}
static struct kobj_attribute alloc_sleep_millisecs_attr =
	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
	       alloc_sleep_millisecs_store);

static ssize_t pages_to_scan_show(struct kobject *kobj,
				  struct kobj_attribute *attr,
				  char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
}
static ssize_t pages_to_scan_store(struct kobject *kobj,
				   struct kobj_attribute *attr,
				   const char *buf, size_t count)
{
	int err;
	unsigned long pages;

	err = kstrtoul(buf, 10, &pages);
	if (err || !pages || pages > UINT_MAX)
		return -EINVAL;

	khugepaged_pages_to_scan = pages;

	return count;
}
static struct kobj_attribute pages_to_scan_attr =
	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
	       pages_to_scan_store);

static ssize_t pages_collapsed_show(struct kobject *kobj,
				    struct kobj_attribute *attr,
				    char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
}
static struct kobj_attribute pages_collapsed_attr =
	__ATTR_RO(pages_collapsed);

static ssize_t full_scans_show(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_full_scans);
}
static struct kobj_attribute full_scans_attr =
	__ATTR_RO(full_scans);

static ssize_t khugepaged_defrag_show(struct kobject *kobj,
				      struct kobj_attribute *attr, char *buf)
{
	return single_hugepage_flag_show(kobj, attr, buf,
				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
}
static ssize_t khugepaged_defrag_store(struct kobject *kobj,
				       struct kobj_attribute *attr,
				       const char *buf, size_t count)
{
	return single_hugepage_flag_store(kobj, attr, buf, count,
				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
}
static struct kobj_attribute khugepaged_defrag_attr =
	__ATTR(defrag, 0644, khugepaged_defrag_show,
	       khugepaged_defrag_store);

/*
 * max_ptes_none controls if khugepaged should collapse hugepages over
 * any unmapped ptes in turn potentially increasing the memory
 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 * reduce the available free memory in the system as it
 * runs. Increasing max_ptes_none will instead potentially reduce the
 * free memory in the system during the khugepaged scan.
 */
static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
					     struct kobj_attribute *attr,
					     char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
}
static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
					      struct kobj_attribute *attr,
					      const char *buf, size_t count)
{
	int err;
	unsigned long max_ptes_none;

	err = kstrtoul(buf, 10, &max_ptes_none);
	if (err || max_ptes_none > HPAGE_PMD_NR-1)
		return -EINVAL;

	khugepaged_max_ptes_none = max_ptes_none;

	return count;
}
static struct kobj_attribute khugepaged_max_ptes_none_attr =
	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
	       khugepaged_max_ptes_none_store);

static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
					     struct kobj_attribute *attr,
					     char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
}

static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
					      struct kobj_attribute *attr,
					      const char *buf, size_t count)
{
	int err;
	unsigned long max_ptes_swap;

	err  = kstrtoul(buf, 10, &max_ptes_swap);
	if (err || max_ptes_swap > HPAGE_PMD_NR-1)
		return -EINVAL;

	khugepaged_max_ptes_swap = max_ptes_swap;

	return count;
}

static struct kobj_attribute khugepaged_max_ptes_swap_attr =
	__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
	       khugepaged_max_ptes_swap_store);

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
					     struct kobj_attribute *attr,
					     char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_max_ptes_shared);
}

static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
					      struct kobj_attribute *attr,
					      const char *buf, size_t count)
{
	int err;
	unsigned long max_ptes_shared;

	err  = kstrtoul(buf, 10, &max_ptes_shared);
	if (err || max_ptes_shared > HPAGE_PMD_NR-1)
		return -EINVAL;

	khugepaged_max_ptes_shared = max_ptes_shared;

	return count;
}

static struct kobj_attribute khugepaged_max_ptes_shared_attr =
	__ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
	       khugepaged_max_ptes_shared_store);

323 324 325
static struct attribute *khugepaged_attr[] = {
	&khugepaged_defrag_attr.attr,
	&khugepaged_max_ptes_none_attr.attr,
326 327
	&khugepaged_max_ptes_swap_attr.attr,
	&khugepaged_max_ptes_shared_attr.attr,
328 329 330 331 332 333 334 335 336 337 338 339
	&pages_to_scan_attr.attr,
	&pages_collapsed_attr.attr,
	&full_scans_attr.attr,
	&scan_sleep_millisecs_attr.attr,
	&alloc_sleep_millisecs_attr.attr,
	NULL,
};

struct attribute_group khugepaged_attr_group = {
	.attrs = khugepaged_attr,
	.name = "khugepaged",
};
340
#endif /* CONFIG_SYSFS */
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

int hugepage_madvise(struct vm_area_struct *vma,
		     unsigned long *vm_flags, int advice)
{
	switch (advice) {
	case MADV_HUGEPAGE:
#ifdef CONFIG_S390
		/*
		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
		 * can't handle this properly after s390_enable_sie, so we simply
		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
		 */
		if (mm_has_pgste(vma->vm_mm))
			return 0;
#endif
		*vm_flags &= ~VM_NOHUGEPAGE;
		*vm_flags |= VM_HUGEPAGE;
		/*
		 * If the vma become good for khugepaged to scan,
		 * register it here without waiting a page fault that
		 * may not happen any time soon.
		 */
		if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
				khugepaged_enter_vma_merge(vma, *vm_flags))
			return -ENOMEM;
		break;
	case MADV_NOHUGEPAGE:
		*vm_flags &= ~VM_HUGEPAGE;
		*vm_flags |= VM_NOHUGEPAGE;
		/*
		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
		 * this vma even if we leave the mm registered in khugepaged if
		 * it got registered before VM_NOHUGEPAGE was set.
		 */
		break;
	}

	return 0;
}

int __init khugepaged_init(void)
{
	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
					  sizeof(struct mm_slot),
					  __alignof__(struct mm_slot), 0, NULL);
	if (!mm_slot_cache)
		return -ENOMEM;

	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
392
	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433

	return 0;
}

void __init khugepaged_destroy(void)
{
	kmem_cache_destroy(mm_slot_cache);
}

static inline struct mm_slot *alloc_mm_slot(void)
{
	if (!mm_slot_cache)	/* initialization failed */
		return NULL;
	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
}

static inline void free_mm_slot(struct mm_slot *mm_slot)
{
	kmem_cache_free(mm_slot_cache, mm_slot);
}

static struct mm_slot *get_mm_slot(struct mm_struct *mm)
{
	struct mm_slot *mm_slot;

	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
		if (mm == mm_slot->mm)
			return mm_slot;

	return NULL;
}

static void insert_to_mm_slots_hash(struct mm_struct *mm,
				    struct mm_slot *mm_slot)
{
	mm_slot->mm = mm;
	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
}

static inline int khugepaged_test_exit(struct mm_struct *mm)
{
434
	return atomic_read(&mm->mm_users) == 0 || !mmget_still_valid(mm);
435 436
}

437 438
static bool hugepage_vma_check(struct vm_area_struct *vma,
			       unsigned long vm_flags)
439
{
440 441
	if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
	    (vm_flags & VM_NOHUGEPAGE) ||
442 443
	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
		return false;
444 445 446 447 448

	if (shmem_file(vma->vm_file) ||
	    (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
	     vma->vm_file &&
	     (vm_flags & VM_DENYWRITE))) {
449 450 451 452 453
		return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
				HPAGE_PMD_NR);
	}
	if (!vma->anon_vma || vma->vm_ops)
		return false;
454
	if (vma_is_temporary_stack(vma))
455
		return false;
456
	return !(vm_flags & VM_NO_KHUGEPAGED);
457 458
}

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
int __khugepaged_enter(struct mm_struct *mm)
{
	struct mm_slot *mm_slot;
	int wakeup;

	mm_slot = alloc_mm_slot();
	if (!mm_slot)
		return -ENOMEM;

	/* __khugepaged_exit() must not run from under us */
	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
		free_mm_slot(mm_slot);
		return 0;
	}

	spin_lock(&khugepaged_mm_lock);
	insert_to_mm_slots_hash(mm, mm_slot);
	/*
	 * Insert just behind the scanning cursor, to let the area settle
	 * down a little.
	 */
	wakeup = list_empty(&khugepaged_scan.mm_head);
	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
	spin_unlock(&khugepaged_mm_lock);

V
Vegard Nossum 已提交
485
	mmgrab(mm);
486 487 488 489 490 491 492 493 494 495
	if (wakeup)
		wake_up_interruptible(&khugepaged_wait);

	return 0;
}

int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
			       unsigned long vm_flags)
{
	unsigned long hstart, hend;
496 497

	/*
498 499 500
	 * khugepaged only supports read-only files for non-shmem files.
	 * khugepaged does not yet work on special mappings. And
	 * file-private shmem THP is not supported.
501
	 */
502
	if (!hugepage_vma_check(vma, vm_flags))
503
		return 0;
504

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
	hend = vma->vm_end & HPAGE_PMD_MASK;
	if (hstart < hend)
		return khugepaged_enter(vma, vm_flags);
	return 0;
}

void __khugepaged_exit(struct mm_struct *mm)
{
	struct mm_slot *mm_slot;
	int free = 0;

	spin_lock(&khugepaged_mm_lock);
	mm_slot = get_mm_slot(mm);
	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
		hash_del(&mm_slot->hash);
		list_del(&mm_slot->mm_node);
		free = 1;
	}
	spin_unlock(&khugepaged_mm_lock);

	if (free) {
		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
		free_mm_slot(mm_slot);
		mmdrop(mm);
	} else if (mm_slot) {
		/*
		 * This is required to serialize against
		 * khugepaged_test_exit() (which is guaranteed to run
		 * under mmap sem read mode). Stop here (after we
		 * return all pagetables will be destroyed) until
		 * khugepaged has finished working on the pagetables
537
		 * under the mmap_lock.
538
		 */
539 540
		mmap_write_lock(mm);
		mmap_write_unlock(mm);
541 542 543 544 545
	}
}

static void release_pte_page(struct page *page)
{
546 547 548
	mod_node_page_state(page_pgdat(page),
			NR_ISOLATED_ANON + page_is_file_lru(page),
			-compound_nr(page));
549 550 551 552
	unlock_page(page);
	putback_lru_page(page);
}

553 554
static void release_pte_pages(pte_t *pte, pte_t *_pte,
		struct list_head *compound_pagelist)
555
{
556 557
	struct page *page, *tmp;

558 559
	while (--_pte >= pte) {
		pte_t pteval = *_pte;
560 561 562 563 564 565 566 567 568 569

		page = pte_page(pteval);
		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
				!PageCompound(page))
			release_pte_page(page);
	}

	list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
		list_del(&page->lru);
		release_pte_page(page);
570 571 572
	}
}

573 574 575 576 577 578 579 580 581 582 583
static bool is_refcount_suitable(struct page *page)
{
	int expected_refcount;

	expected_refcount = total_mapcount(page);
	if (PageSwapCache(page))
		expected_refcount += compound_nr(page);

	return page_count(page) == expected_refcount;
}

584 585
static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
					unsigned long address,
586 587
					pte_t *pte,
					struct list_head *compound_pagelist)
588 589 590
{
	struct page *page = NULL;
	pte_t *_pte;
591
	int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
592
	bool writable = false;
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616

	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
	     _pte++, address += PAGE_SIZE) {
		pte_t pteval = *_pte;
		if (pte_none(pteval) || (pte_present(pteval) &&
				is_zero_pfn(pte_pfn(pteval)))) {
			if (!userfaultfd_armed(vma) &&
			    ++none_or_zero <= khugepaged_max_ptes_none) {
				continue;
			} else {
				result = SCAN_EXCEED_NONE_PTE;
				goto out;
			}
		}
		if (!pte_present(pteval)) {
			result = SCAN_PTE_NON_PRESENT;
			goto out;
		}
		page = vm_normal_page(vma, address, pteval);
		if (unlikely(!page)) {
			result = SCAN_PAGE_NULL;
			goto out;
		}

617 618
		VM_BUG_ON_PAGE(!PageAnon(page), page);

619 620 621 622 623 624
		if (page_mapcount(page) > 1 &&
				++shared > khugepaged_max_ptes_shared) {
			result = SCAN_EXCEED_SHARED_PTE;
			goto out;
		}

625
		if (PageCompound(page)) {
626 627
			struct page *p;
			page = compound_head(page);
628

629 630 631 632 633 634 635 636 637
			/*
			 * Check if we have dealt with the compound page
			 * already
			 */
			list_for_each_entry(p, compound_pagelist, lru) {
				if (page == p)
					goto next;
			}
		}
638 639 640 641 642 643 644 645 646 647 648 649 650

		/*
		 * We can do it before isolate_lru_page because the
		 * page can't be freed from under us. NOTE: PG_lock
		 * is needed to serialize against split_huge_page
		 * when invoked from the VM.
		 */
		if (!trylock_page(page)) {
			result = SCAN_PAGE_LOCK;
			goto out;
		}

		/*
651 652 653 654 655 656 657 658 659
		 * Check if the page has any GUP (or other external) pins.
		 *
		 * The page table that maps the page has been already unlinked
		 * from the page table tree and this process cannot get
		 * an additinal pin on the page.
		 *
		 * New pins can come later if the page is shared across fork,
		 * but not from this process. The other process cannot write to
		 * the page, only trigger CoW.
660
		 */
661
		if (!is_refcount_suitable(page)) {
662 663 664 665
			unlock_page(page);
			result = SCAN_PAGE_COUNT;
			goto out;
		}
666 667
		if (!pte_write(pteval) && PageSwapCache(page) &&
				!reuse_swap_page(page, NULL)) {
668
			/*
669 670
			 * Page is in the swap cache and cannot be re-used.
			 * It cannot be collapsed into a THP.
671
			 */
672 673 674
			unlock_page(page);
			result = SCAN_SWAP_CACHE_PAGE;
			goto out;
675 676 677 678 679 680 681 682 683 684 685
		}

		/*
		 * Isolate the page to avoid collapsing an hugepage
		 * currently in use by the VM.
		 */
		if (isolate_lru_page(page)) {
			unlock_page(page);
			result = SCAN_DEL_PAGE_LRU;
			goto out;
		}
686 687 688
		mod_node_page_state(page_pgdat(page),
				NR_ISOLATED_ANON + page_is_file_lru(page),
				compound_nr(page));
689 690 691
		VM_BUG_ON_PAGE(!PageLocked(page), page);
		VM_BUG_ON_PAGE(PageLRU(page), page);

692 693 694
		if (PageCompound(page))
			list_add_tail(&page->lru, compound_pagelist);
next:
695
		/* There should be enough young pte to collapse the page */
696 697 698
		if (pte_young(pteval) ||
		    page_is_young(page) || PageReferenced(page) ||
		    mmu_notifier_test_young(vma->vm_mm, address))
699
			referenced++;
700 701 702

		if (pte_write(pteval))
			writable = true;
703 704 705 706 707 708 709 710 711 712 713 714 715
	}
	if (likely(writable)) {
		if (likely(referenced)) {
			result = SCAN_SUCCEED;
			trace_mm_collapse_huge_page_isolate(page, none_or_zero,
							    referenced, writable, result);
			return 1;
		}
	} else {
		result = SCAN_PAGE_RO;
	}

out:
716
	release_pte_pages(pte, _pte, compound_pagelist);
717 718 719 720 721 722 723 724
	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
					    referenced, writable, result);
	return 0;
}

static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
				      struct vm_area_struct *vma,
				      unsigned long address,
725 726
				      spinlock_t *ptl,
				      struct list_head *compound_pagelist)
727
{
728
	struct page *src_page, *tmp;
729
	pte_t *_pte;
730 731
	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
				_pte++, page++, address += PAGE_SIZE) {
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
		pte_t pteval = *_pte;

		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
			clear_user_highpage(page, address);
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
			if (is_zero_pfn(pte_pfn(pteval))) {
				/*
				 * ptl mostly unnecessary.
				 */
				spin_lock(ptl);
				/*
				 * paravirt calls inside pte_clear here are
				 * superfluous.
				 */
				pte_clear(vma->vm_mm, address, _pte);
				spin_unlock(ptl);
			}
		} else {
			src_page = pte_page(pteval);
			copy_user_highpage(page, src_page, address, vma);
752 753
			if (!PageCompound(src_page))
				release_pte_page(src_page);
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
			/*
			 * ptl mostly unnecessary, but preempt has to
			 * be disabled to update the per-cpu stats
			 * inside page_remove_rmap().
			 */
			spin_lock(ptl);
			/*
			 * paravirt calls inside pte_clear here are
			 * superfluous.
			 */
			pte_clear(vma->vm_mm, address, _pte);
			page_remove_rmap(src_page, false);
			spin_unlock(ptl);
			free_page_and_swap_cache(src_page);
		}
	}
770 771 772 773 774

	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
		list_del(&src_page->lru);
		release_pte_page(src_page);
	}
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
}

static void khugepaged_alloc_sleep(void)
{
	DEFINE_WAIT(wait);

	add_wait_queue(&khugepaged_wait, &wait);
	freezable_schedule_timeout_interruptible(
		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
	remove_wait_queue(&khugepaged_wait, &wait);
}

static int khugepaged_node_load[MAX_NUMNODES];

static bool khugepaged_scan_abort(int nid)
{
	int i;

	/*
794
	 * If node_reclaim_mode is disabled, then no extra effort is made to
795 796
	 * allocate memory locally.
	 */
797
	if (!node_reclaim_mode)
798 799 800 801 802 803 804 805 806
		return false;

	/* If there is a count for this node already, it must be acceptable */
	if (khugepaged_node_load[nid])
		return false;

	for (i = 0; i < MAX_NUMNODES; i++) {
		if (!khugepaged_node_load[i])
			continue;
807
		if (node_distance(nid, i) > node_reclaim_distance)
808 809 810 811 812 813 814 815
			return true;
	}
	return false;
}

/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
{
816
	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
}

#ifdef CONFIG_NUMA
static int khugepaged_find_target_node(void)
{
	static int last_khugepaged_target_node = NUMA_NO_NODE;
	int nid, target_node = 0, max_value = 0;

	/* find first node with max normal pages hit */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		if (khugepaged_node_load[nid] > max_value) {
			max_value = khugepaged_node_load[nid];
			target_node = nid;
		}

	/* do some balance if several nodes have the same hit record */
	if (target_node <= last_khugepaged_target_node)
		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
				nid++)
			if (max_value == khugepaged_node_load[nid]) {
				target_node = nid;
				break;
			}

	last_khugepaged_target_node = target_node;
	return target_node;
}

static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
{
	if (IS_ERR(*hpage)) {
		if (!*wait)
			return false;

		*wait = false;
		*hpage = NULL;
		khugepaged_alloc_sleep();
	} else if (*hpage) {
		put_page(*hpage);
		*hpage = NULL;
	}

	return true;
}

static struct page *
863
khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
{
	VM_BUG_ON_PAGE(*hpage, *hpage);

	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
	if (unlikely(!*hpage)) {
		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
		*hpage = ERR_PTR(-ENOMEM);
		return NULL;
	}

	prep_transhuge_page(*hpage);
	count_vm_event(THP_COLLAPSE_ALLOC);
	return *hpage;
}
#else
static int khugepaged_find_target_node(void)
{
	return 0;
}

static inline struct page *alloc_khugepaged_hugepage(void)
{
	struct page *page;

	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
			   HPAGE_PMD_ORDER);
	if (page)
		prep_transhuge_page(page);
	return page;
}

static struct page *khugepaged_alloc_hugepage(bool *wait)
{
	struct page *hpage;

	do {
		hpage = alloc_khugepaged_hugepage();
		if (!hpage) {
			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
			if (!*wait)
				return NULL;

			*wait = false;
			khugepaged_alloc_sleep();
		} else
			count_vm_event(THP_COLLAPSE_ALLOC);
	} while (unlikely(!hpage) && likely(khugepaged_enabled()));

	return hpage;
}

static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
{
	if (!*hpage)
		*hpage = khugepaged_alloc_hugepage(wait);

	if (unlikely(!*hpage))
		return false;

	return true;
}

static struct page *
927
khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
928 929 930 931 932 933 934 935
{
	VM_BUG_ON(!*hpage);

	return  *hpage;
}
#endif

/*
936 937
 * If mmap_lock temporarily dropped, revalidate vma
 * before taking mmap_lock.
938 939 940 941
 * Return 0 if succeeds, otherwise return none-zero
 * value (scan code).
 */

942 943
static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
		struct vm_area_struct **vmap)
944 945 946 947 948 949 950
{
	struct vm_area_struct *vma;
	unsigned long hstart, hend;

	if (unlikely(khugepaged_test_exit(mm)))
		return SCAN_ANY_PROCESS;

951
	*vmap = vma = find_vma(mm, address);
952 953 954 955 956 957 958
	if (!vma)
		return SCAN_VMA_NULL;

	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
	hend = vma->vm_end & HPAGE_PMD_MASK;
	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
		return SCAN_ADDRESS_RANGE;
959
	if (!hugepage_vma_check(vma, vma->vm_flags))
960
		return SCAN_VMA_CHECK;
961 962 963
	/* Anon VMA expected */
	if (!vma->anon_vma || vma->vm_ops)
		return SCAN_VMA_CHECK;
964 965 966 967 968 969 970 971
	return 0;
}

/*
 * Bring missing pages in from swap, to complete THP collapse.
 * Only done if khugepaged_scan_pmd believes it is worthwhile.
 *
 * Called and returns without pte mapped or spinlocks held,
972
 * but with mmap_lock held to protect against vma changes.
973 974 975 976
 */

static bool __collapse_huge_page_swapin(struct mm_struct *mm,
					struct vm_area_struct *vma,
977 978
					unsigned long address, pmd_t *pmd,
					int referenced)
979
{
980 981
	int swapped_in = 0;
	vm_fault_t ret = 0;
J
Jan Kara 已提交
982
	struct vm_fault vmf = {
983 984 985 986
		.vma = vma,
		.address = address,
		.flags = FAULT_FLAG_ALLOW_RETRY,
		.pmd = pmd,
987
		.pgoff = linear_page_index(vma, address),
988 989
	};

J
Jan Kara 已提交
990 991 992
	vmf.pte = pte_offset_map(pmd, address);
	for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
			vmf.pte++, vmf.address += PAGE_SIZE) {
J
Jan Kara 已提交
993 994
		vmf.orig_pte = *vmf.pte;
		if (!is_swap_pte(vmf.orig_pte))
995 996
			continue;
		swapped_in++;
J
Jan Kara 已提交
997
		ret = do_swap_page(&vmf);
998

999
		/* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1000
		if (ret & VM_FAULT_RETRY) {
1001
			mmap_read_lock(mm);
J
Jan Kara 已提交
1002
			if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
1003
				/* vma is no longer available, don't continue to swapin */
1004
				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1005
				return false;
1006
			}
1007
			/* check if the pmd is still valid */
1008 1009
			if (mm_find_pmd(mm, address) != pmd) {
				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1010
				return false;
1011
			}
1012 1013
		}
		if (ret & VM_FAULT_ERROR) {
1014
			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1015 1016 1017
			return false;
		}
		/* pte is unmapped now, we need to map it */
J
Jan Kara 已提交
1018
		vmf.pte = pte_offset_map(pmd, vmf.address);
1019
	}
J
Jan Kara 已提交
1020 1021
	vmf.pte--;
	pte_unmap(vmf.pte);
1022 1023 1024 1025 1026

	/* Drain LRU add pagevec to remove extra pin on the swapped in pages */
	if (swapped_in)
		lru_add_drain();

1027
	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1028 1029 1030 1031 1032 1033
	return true;
}

static void collapse_huge_page(struct mm_struct *mm,
				   unsigned long address,
				   struct page **hpage,
1034
				   int node, int referenced, int unmapped)
1035
{
1036
	LIST_HEAD(compound_pagelist);
1037 1038 1039 1040 1041 1042
	pmd_t *pmd, _pmd;
	pte_t *pte;
	pgtable_t pgtable;
	struct page *new_page;
	spinlock_t *pmd_ptl, *pte_ptl;
	int isolated = 0, result = 0;
1043
	struct vm_area_struct *vma;
1044
	struct mmu_notifier_range range;
1045 1046 1047 1048 1049
	gfp_t gfp;

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	/* Only allocate from the target node */
M
Michal Hocko 已提交
1050
	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1051

1052
	/*
1053
	 * Before allocating the hugepage, release the mmap_lock read lock.
1054
	 * The allocation can take potentially a long time if it involves
1055
	 * sync compaction, and we do not need to hold the mmap_lock during
1056 1057
	 * that. We will recheck the vma after taking it again in write mode.
	 */
1058
	mmap_read_unlock(mm);
1059
	new_page = khugepaged_alloc_page(hpage, gfp, node);
1060 1061 1062 1063 1064
	if (!new_page) {
		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
		goto out_nolock;
	}

1065
	if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1066 1067 1068
		result = SCAN_CGROUP_CHARGE_FAIL;
		goto out_nolock;
	}
1069
	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1070

1071
	mmap_read_lock(mm);
1072
	result = hugepage_vma_revalidate(mm, address, &vma);
1073
	if (result) {
1074
		mmap_read_unlock(mm);
1075 1076 1077 1078 1079 1080
		goto out_nolock;
	}

	pmd = mm_find_pmd(mm, address);
	if (!pmd) {
		result = SCAN_PMD_NULL;
1081
		mmap_read_unlock(mm);
1082 1083 1084 1085
		goto out_nolock;
	}

	/*
1086 1087
	 * __collapse_huge_page_swapin always returns with mmap_lock locked.
	 * If it fails, we release mmap_lock and jump out_nolock.
1088 1089
	 * Continuing to collapse causes inconsistency.
	 */
1090 1091
	if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
						     pmd, referenced)) {
1092
		mmap_read_unlock(mm);
1093 1094 1095
		goto out_nolock;
	}

1096
	mmap_read_unlock(mm);
1097 1098 1099 1100 1101
	/*
	 * Prevent all access to pagetables with the exception of
	 * gup_fast later handled by the ptep_clear_flush and the VM
	 * handled by the anon_vma lock + PG_lock.
	 */
1102
	mmap_write_lock(mm);
1103
	result = hugepage_vma_revalidate(mm, address, &vma);
1104 1105 1106 1107 1108 1109 1110 1111
	if (result)
		goto out;
	/* check if the pmd is still valid */
	if (mm_find_pmd(mm, address) != pmd)
		goto out;

	anon_vma_lock_write(vma->anon_vma);

1112
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1113
				address, address + HPAGE_PMD_SIZE);
1114
	mmu_notifier_invalidate_range_start(&range);
1115 1116 1117 1118

	pte = pte_offset_map(pmd, address);
	pte_ptl = pte_lockptr(mm, pmd);

1119 1120 1121 1122 1123 1124 1125 1126 1127
	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
	/*
	 * After this gup_fast can't run anymore. This also removes
	 * any huge TLB entry from the CPU so we won't allow
	 * huge and small TLB entries for the same virtual address
	 * to avoid the risk of CPU bugs in that area.
	 */
	_pmd = pmdp_collapse_flush(vma, address, pmd);
	spin_unlock(pmd_ptl);
1128
	mmu_notifier_invalidate_range_end(&range);
1129 1130

	spin_lock(pte_ptl);
1131 1132
	isolated = __collapse_huge_page_isolate(vma, address, pte,
			&compound_pagelist);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	spin_unlock(pte_ptl);

	if (unlikely(!isolated)) {
		pte_unmap(pte);
		spin_lock(pmd_ptl);
		BUG_ON(!pmd_none(*pmd));
		/*
		 * We can only use set_pmd_at when establishing
		 * hugepmds and never for establishing regular pmds that
		 * points to regular pagetables. Use pmd_populate for that
		 */
		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
		spin_unlock(pmd_ptl);
		anon_vma_unlock_write(vma->anon_vma);
		result = SCAN_FAIL;
		goto out;
	}

	/*
	 * All pages are isolated and locked so anon_vma rmap
	 * can't run anymore.
	 */
	anon_vma_unlock_write(vma->anon_vma);

1157 1158
	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
			&compound_pagelist);
1159 1160 1161 1162 1163
	pte_unmap(pte);
	__SetPageUptodate(new_page);
	pgtable = pmd_pgtable(_pmd);

	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1164
	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

	/*
	 * spin_lock() below is not the equivalent of smp_wmb(), so
	 * this is needed to avoid the copy_huge_page writes to become
	 * visible after the set_pmd_at() write.
	 */
	smp_wmb();

	spin_lock(pmd_ptl);
	BUG_ON(!pmd_none(*pmd));
1175
	page_add_new_anon_rmap(new_page, vma, address, true);
1176
	lru_cache_add_inactive_or_unevictable(new_page, vma);
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	pgtable_trans_huge_deposit(mm, pmd, pgtable);
	set_pmd_at(mm, address, pmd, _pmd);
	update_mmu_cache_pmd(vma, address, pmd);
	spin_unlock(pmd_ptl);

	*hpage = NULL;

	khugepaged_pages_collapsed++;
	result = SCAN_SUCCEED;
out_up_write:
1187
	mmap_write_unlock(mm);
1188
out_nolock:
1189 1190
	if (!IS_ERR_OR_NULL(*hpage))
		mem_cgroup_uncharge(*hpage);
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	trace_mm_collapse_huge_page(mm, isolated, result);
	return;
out:
	goto out_up_write;
}

static int khugepaged_scan_pmd(struct mm_struct *mm,
			       struct vm_area_struct *vma,
			       unsigned long address,
			       struct page **hpage)
{
	pmd_t *pmd;
	pte_t *pte, *_pte;
1204 1205
	int ret = 0, result = 0, referenced = 0;
	int none_or_zero = 0, shared = 0;
1206 1207 1208 1209
	struct page *page = NULL;
	unsigned long _address;
	spinlock_t *ptl;
	int node = NUMA_NO_NODE, unmapped = 0;
1210
	bool writable = false;
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	pmd = mm_find_pmd(mm, address);
	if (!pmd) {
		result = SCAN_PMD_NULL;
		goto out;
	}

	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
	     _pte++, _address += PAGE_SIZE) {
		pte_t pteval = *_pte;
		if (is_swap_pte(pteval)) {
			if (++unmapped <= khugepaged_max_ptes_swap) {
1227 1228 1229 1230 1231 1232 1233 1234 1235
				/*
				 * Always be strict with uffd-wp
				 * enabled swap entries.  Please see
				 * comment below for pte_uffd_wp().
				 */
				if (pte_swp_uffd_wp(pteval)) {
					result = SCAN_PTE_UFFD_WP;
					goto out_unmap;
				}
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
				continue;
			} else {
				result = SCAN_EXCEED_SWAP_PTE;
				goto out_unmap;
			}
		}
		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
			if (!userfaultfd_armed(vma) &&
			    ++none_or_zero <= khugepaged_max_ptes_none) {
				continue;
			} else {
				result = SCAN_EXCEED_NONE_PTE;
				goto out_unmap;
			}
		}
		if (!pte_present(pteval)) {
			result = SCAN_PTE_NON_PRESENT;
			goto out_unmap;
		}
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
		if (pte_uffd_wp(pteval)) {
			/*
			 * Don't collapse the page if any of the small
			 * PTEs are armed with uffd write protection.
			 * Here we can also mark the new huge pmd as
			 * write protected if any of the small ones is
			 * marked but that could bring uknown
			 * userfault messages that falls outside of
			 * the registered range.  So, just be simple.
			 */
			result = SCAN_PTE_UFFD_WP;
			goto out_unmap;
		}
1268 1269 1270 1271 1272 1273 1274 1275 1276
		if (pte_write(pteval))
			writable = true;

		page = vm_normal_page(vma, _address, pteval);
		if (unlikely(!page)) {
			result = SCAN_PAGE_NULL;
			goto out_unmap;
		}

1277 1278 1279 1280 1281 1282
		if (page_mapcount(page) > 1 &&
				++shared > khugepaged_max_ptes_shared) {
			result = SCAN_EXCEED_SHARED_PTE;
			goto out_unmap;
		}

1283
		page = compound_head(page);
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

		/*
		 * Record which node the original page is from and save this
		 * information to khugepaged_node_load[].
		 * Khupaged will allocate hugepage from the node has the max
		 * hit record.
		 */
		node = page_to_nid(page);
		if (khugepaged_scan_abort(node)) {
			result = SCAN_SCAN_ABORT;
			goto out_unmap;
		}
		khugepaged_node_load[node]++;
		if (!PageLRU(page)) {
			result = SCAN_PAGE_LRU;
			goto out_unmap;
		}
		if (PageLocked(page)) {
			result = SCAN_PAGE_LOCK;
			goto out_unmap;
		}
		if (!PageAnon(page)) {
			result = SCAN_PAGE_ANON;
			goto out_unmap;
		}

		/*
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
		 * Check if the page has any GUP (or other external) pins.
		 *
		 * Here the check is racy it may see totmal_mapcount > refcount
		 * in some cases.
		 * For example, one process with one forked child process.
		 * The parent has the PMD split due to MADV_DONTNEED, then
		 * the child is trying unmap the whole PMD, but khugepaged
		 * may be scanning the parent between the child has
		 * PageDoubleMap flag cleared and dec the mapcount.  So
		 * khugepaged may see total_mapcount > refcount.
		 *
		 * But such case is ephemeral we could always retry collapse
		 * later.  However it may report false positive if the page
		 * has excessive GUP pins (i.e. 512).  Anyway the same check
		 * will be done again later the risk seems low.
1326
		 */
1327
		if (!is_refcount_suitable(page)) {
1328 1329 1330 1331 1332 1333
			result = SCAN_PAGE_COUNT;
			goto out_unmap;
		}
		if (pte_young(pteval) ||
		    page_is_young(page) || PageReferenced(page) ||
		    mmu_notifier_test_young(vma->vm_mm, address))
1334
			referenced++;
1335
	}
1336
	if (!writable) {
1337
		result = SCAN_PAGE_RO;
1338 1339 1340 1341 1342
	} else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
		result = SCAN_LACK_REFERENCED_PAGE;
	} else {
		result = SCAN_SUCCEED;
		ret = 1;
1343 1344 1345 1346 1347
	}
out_unmap:
	pte_unmap_unlock(pte, ptl);
	if (ret) {
		node = khugepaged_find_target_node();
1348
		/* collapse_huge_page will return with the mmap_lock released */
1349 1350
		collapse_huge_page(mm, address, hpage, node,
				referenced, unmapped);
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	}
out:
	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
				     none_or_zero, result, unmapped);
	return ret;
}

static void collect_mm_slot(struct mm_slot *mm_slot)
{
	struct mm_struct *mm = mm_slot->mm;

1362
	lockdep_assert_held(&khugepaged_mm_lock);
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

	if (khugepaged_test_exit(mm)) {
		/* free mm_slot */
		hash_del(&mm_slot->hash);
		list_del(&mm_slot->mm_node);

		/*
		 * Not strictly needed because the mm exited already.
		 *
		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
		 */

		/* khugepaged_mm_lock actually not necessary for the below */
		free_mm_slot(mm_slot);
		mmdrop(mm);
	}
}

1381
#ifdef CONFIG_SHMEM
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
/*
 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
 * khugepaged should try to collapse the page table.
 */
static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
					 unsigned long addr)
{
	struct mm_slot *mm_slot;

	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);

	spin_lock(&khugepaged_mm_lock);
	mm_slot = get_mm_slot(mm);
	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
	spin_unlock(&khugepaged_mm_lock);
	return 0;
}

/**
 * Try to collapse a pte-mapped THP for mm at address haddr.
 *
 * This function checks whether all the PTEs in the PMD are pointing to the
 * right THP. If so, retract the page table so the THP can refault in with
 * as pmd-mapped.
 */
void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
{
	unsigned long haddr = addr & HPAGE_PMD_MASK;
	struct vm_area_struct *vma = find_vma(mm, haddr);
1412
	struct page *hpage;
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	pte_t *start_pte, *pte;
	pmd_t *pmd, _pmd;
	spinlock_t *ptl;
	int count = 0;
	int i;

	if (!vma || !vma->vm_file ||
	    vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE)
		return;

	/*
	 * This vm_flags may not have VM_HUGEPAGE if the page was not
	 * collapsed by this mm. But we can still collapse if the page is
	 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
	 * will not fail the vma for missing VM_HUGEPAGE
	 */
	if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
		return;

1432 1433 1434 1435 1436 1437 1438 1439
	hpage = find_lock_page(vma->vm_file->f_mapping,
			       linear_page_index(vma, haddr));
	if (!hpage)
		return;

	if (!PageHead(hpage))
		goto drop_hpage;

1440 1441
	pmd = mm_find_pmd(mm, haddr);
	if (!pmd)
1442
		goto drop_hpage;
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461

	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);

	/* step 1: check all mapped PTEs are to the right huge page */
	for (i = 0, addr = haddr, pte = start_pte;
	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
		struct page *page;

		/* empty pte, skip */
		if (pte_none(*pte))
			continue;

		/* page swapped out, abort */
		if (!pte_present(*pte))
			goto abort;

		page = vm_normal_page(vma, addr, *pte);

		/*
1462 1463
		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
		 * page table, but the new page will not be a subpage of hpage.
1464
		 */
1465
		if (hpage + i != page)
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
			goto abort;
		count++;
	}

	/* step 2: adjust rmap */
	for (i = 0, addr = haddr, pte = start_pte;
	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
		struct page *page;

		if (pte_none(*pte))
			continue;
		page = vm_normal_page(vma, addr, *pte);
		page_remove_rmap(page, false);
	}

	pte_unmap_unlock(start_pte, ptl);

	/* step 3: set proper refcount and mm_counters. */
1484
	if (count) {
1485 1486 1487 1488 1489 1490
		page_ref_sub(hpage, count);
		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
	}

	/* step 4: collapse pmd */
	ptl = pmd_lock(vma->vm_mm, pmd);
1491
	_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1492 1493 1494
	spin_unlock(ptl);
	mm_dec_nr_ptes(mm);
	pte_free(mm, pmd_pgtable(_pmd));
1495 1496 1497 1498

drop_hpage:
	unlock_page(hpage);
	put_page(hpage);
1499 1500 1501 1502
	return;

abort:
	pte_unmap_unlock(start_pte, ptl);
1503
	goto drop_hpage;
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
}

static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
{
	struct mm_struct *mm = mm_slot->mm;
	int i;

	if (likely(mm_slot->nr_pte_mapped_thp == 0))
		return 0;

1514
	if (!mmap_write_trylock(mm))
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
		return -EBUSY;

	if (unlikely(khugepaged_test_exit(mm)))
		goto out;

	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);

out:
	mm_slot->nr_pte_mapped_thp = 0;
1525
	mmap_write_unlock(mm);
1526 1527 1528
	return 0;
}

1529 1530 1531
static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
{
	struct vm_area_struct *vma;
1532
	struct mm_struct *mm;
1533 1534 1535 1536 1537
	unsigned long addr;
	pmd_t *pmd, _pmd;

	i_mmap_lock_write(mapping);
	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1538 1539 1540
		/*
		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
		 * got written to. These VMAs are likely not worth investing
1541
		 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1542 1543 1544
		 * later.
		 *
		 * Not that vma->anon_vma check is racy: it can be set up after
1545
		 * the check but before we took mmap_lock by the fault path.
1546 1547 1548 1549 1550 1551 1552 1553
		 * But page lock would prevent establishing any new ptes of the
		 * page, so we are safe.
		 *
		 * An alternative would be drop the check, but check that page
		 * table is clear before calling pmdp_collapse_flush() under
		 * ptl. It has higher chance to recover THP for the VMA, but
		 * has higher cost too.
		 */
1554 1555 1556 1557 1558 1559 1560
		if (vma->anon_vma)
			continue;
		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
		if (addr & ~HPAGE_PMD_MASK)
			continue;
		if (vma->vm_end < addr + HPAGE_PMD_SIZE)
			continue;
1561 1562
		mm = vma->vm_mm;
		pmd = mm_find_pmd(mm, addr);
1563 1564 1565
		if (!pmd)
			continue;
		/*
1566
		 * We need exclusive mmap_lock to retract page table.
1567 1568
		 *
		 * We use trylock due to lock inversion: we need to acquire
1569
		 * mmap_lock while holding page lock. Fault path does it in
1570
		 * reverse order. Trylock is a way to avoid deadlock.
1571
		 */
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
		if (mmap_write_trylock(mm)) {
			if (!khugepaged_test_exit(mm)) {
				spinlock_t *ptl = pmd_lock(mm, pmd);
				/* assume page table is clear */
				_pmd = pmdp_collapse_flush(vma, addr, pmd);
				spin_unlock(ptl);
				mm_dec_nr_ptes(mm);
				pte_free(mm, pmd_pgtable(_pmd));
			}
			mmap_write_unlock(mm);
1582 1583
		} else {
			/* Try again later */
1584
			khugepaged_add_pte_mapped_thp(mm, addr);
1585 1586 1587 1588 1589 1590
		}
	}
	i_mmap_unlock_write(mapping);
}

/**
1591
 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1592 1593
 *
 * Basic scheme is simple, details are more complex:
1594
 *  - allocate and lock a new huge page;
1595
 *  - scan page cache replacing old pages with the new one
1596
 *    + swap/gup in pages if necessary;
1597
 *    + fill in gaps;
1598 1599
 *    + keep old pages around in case rollback is required;
 *  - if replacing succeeds:
1600 1601
 *    + copy data over;
 *    + free old pages;
1602
 *    + unlock huge page;
1603 1604
 *  - if replacing failed;
 *    + put all pages back and unfreeze them;
1605
 *    + restore gaps in the page cache;
1606
 *    + unlock and free huge page;
1607
 */
1608 1609
static void collapse_file(struct mm_struct *mm,
		struct file *file, pgoff_t start,
1610 1611
		struct page **hpage, int node)
{
1612
	struct address_space *mapping = file->f_mapping;
1613
	gfp_t gfp;
1614
	struct page *new_page;
1615 1616
	pgoff_t index, end = start + HPAGE_PMD_NR;
	LIST_HEAD(pagelist);
1617
	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1618
	int nr_none = 0, result = SCAN_SUCCEED;
1619
	bool is_shmem = shmem_file(file);
1620

1621
	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1622 1623 1624
	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));

	/* Only allocate from the target node */
M
Michal Hocko 已提交
1625
	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1626 1627 1628 1629 1630 1631 1632

	new_page = khugepaged_alloc_page(hpage, gfp, node);
	if (!new_page) {
		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
		goto out;
	}

1633
	if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1634 1635 1636
		result = SCAN_CGROUP_CHARGE_FAIL;
		goto out;
	}
1637
	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1638

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	/* This will be less messy when we use multi-index entries */
	do {
		xas_lock_irq(&xas);
		xas_create_range(&xas);
		if (!xas_error(&xas))
			break;
		xas_unlock_irq(&xas);
		if (!xas_nomem(&xas, GFP_KERNEL)) {
			result = SCAN_FAIL;
			goto out;
		}
	} while (1);

1652
	__SetPageLocked(new_page);
1653 1654
	if (is_shmem)
		__SetPageSwapBacked(new_page);
1655 1656 1657 1658
	new_page->index = start;
	new_page->mapping = mapping;

	/*
1659 1660 1661
	 * At this point the new_page is locked and not up-to-date.
	 * It's safe to insert it into the page cache, because nobody would
	 * be able to map it or use it in another way until we unlock it.
1662 1663
	 */

1664 1665 1666 1667 1668
	xas_set(&xas, start);
	for (index = start; index < end; index++) {
		struct page *page = xas_next(&xas);

		VM_BUG_ON(index != xas.xa_index);
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
		if (is_shmem) {
			if (!page) {
				/*
				 * Stop if extent has been truncated or
				 * hole-punched, and is now completely
				 * empty.
				 */
				if (index == start) {
					if (!xas_next_entry(&xas, end - 1)) {
						result = SCAN_TRUNCATED;
						goto xa_locked;
					}
					xas_set(&xas, index);
				}
				if (!shmem_charge(mapping->host, 1)) {
					result = SCAN_FAIL;
1685
					goto xa_locked;
1686
				}
1687 1688 1689
				xas_store(&xas, new_page);
				nr_none++;
				continue;
1690
			}
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

			if (xa_is_value(page) || !PageUptodate(page)) {
				xas_unlock_irq(&xas);
				/* swap in or instantiate fallocated page */
				if (shmem_getpage(mapping->host, index, &page,
						  SGP_NOHUGE)) {
					result = SCAN_FAIL;
					goto xa_unlocked;
				}
			} else if (trylock_page(page)) {
				get_page(page);
				xas_unlock_irq(&xas);
			} else {
				result = SCAN_PAGE_LOCK;
1705
				goto xa_locked;
1706
			}
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
		} else {	/* !is_shmem */
			if (!page || xa_is_value(page)) {
				xas_unlock_irq(&xas);
				page_cache_sync_readahead(mapping, &file->f_ra,
							  file, index,
							  PAGE_SIZE);
				/* drain pagevecs to help isolate_lru_page() */
				lru_add_drain();
				page = find_lock_page(mapping, index);
				if (unlikely(page == NULL)) {
					result = SCAN_FAIL;
					goto xa_unlocked;
				}
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
			} else if (PageDirty(page)) {
				/*
				 * khugepaged only works on read-only fd,
				 * so this page is dirty because it hasn't
				 * been flushed since first write. There
				 * won't be new dirty pages.
				 *
				 * Trigger async flush here and hope the
				 * writeback is done when khugepaged
				 * revisits this page.
				 *
				 * This is a one-off situation. We are not
				 * forcing writeback in loop.
				 */
				xas_unlock_irq(&xas);
				filemap_flush(mapping);
				result = SCAN_FAIL;
				goto xa_unlocked;
1738 1739 1740 1741 1742 1743
			} else if (trylock_page(page)) {
				get_page(page);
				xas_unlock_irq(&xas);
			} else {
				result = SCAN_PAGE_LOCK;
				goto xa_locked;
1744 1745 1746 1747
			}
		}

		/*
M
Matthew Wilcox 已提交
1748
		 * The page must be locked, so we can drop the i_pages lock
1749 1750 1751
		 * without racing with truncate.
		 */
		VM_BUG_ON_PAGE(!PageLocked(page), page);
1752 1753 1754 1755 1756 1757

		/* make sure the page is up to date */
		if (unlikely(!PageUptodate(page))) {
			result = SCAN_FAIL;
			goto out_unlock;
		}
1758 1759 1760 1761 1762 1763 1764 1765 1766

		/*
		 * If file was truncated then extended, or hole-punched, before
		 * we locked the first page, then a THP might be there already.
		 */
		if (PageTransCompound(page)) {
			result = SCAN_PAGE_COMPOUND;
			goto out_unlock;
		}
1767 1768 1769 1770 1771 1772

		if (page_mapping(page) != mapping) {
			result = SCAN_TRUNCATED;
			goto out_unlock;
		}

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
		if (!is_shmem && PageDirty(page)) {
			/*
			 * khugepaged only works on read-only fd, so this
			 * page is dirty because it hasn't been flushed
			 * since first write.
			 */
			result = SCAN_FAIL;
			goto out_unlock;
		}

1783 1784
		if (isolate_lru_page(page)) {
			result = SCAN_DEL_PAGE_LRU;
1785
			goto out_unlock;
1786 1787
		}

1788 1789 1790
		if (page_has_private(page) &&
		    !try_to_release_page(page, GFP_KERNEL)) {
			result = SCAN_PAGE_HAS_PRIVATE;
1791
			putback_lru_page(page);
1792 1793 1794
			goto out_unlock;
		}

1795
		if (page_mapped(page))
M
Matthew Wilcox 已提交
1796
			unmap_mapping_pages(mapping, index, 1, false);
1797

1798 1799
		xas_lock_irq(&xas);
		xas_set(&xas, index);
1800

1801
		VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1802 1803 1804 1805 1806
		VM_BUG_ON_PAGE(page_mapped(page), page);

		/*
		 * The page is expected to have page_count() == 3:
		 *  - we hold a pin on it;
1807
		 *  - one reference from page cache;
1808 1809 1810 1811
		 *  - one from isolate_lru_page;
		 */
		if (!page_ref_freeze(page, 3)) {
			result = SCAN_PAGE_COUNT;
1812 1813 1814
			xas_unlock_irq(&xas);
			putback_lru_page(page);
			goto out_unlock;
1815 1816 1817 1818 1819 1820 1821 1822 1823
		}

		/*
		 * Add the page to the list to be able to undo the collapse if
		 * something go wrong.
		 */
		list_add_tail(&page->lru, &pagelist);

		/* Finally, replace with the new page. */
1824
		xas_store(&xas, new_page);
1825 1826 1827 1828
		continue;
out_unlock:
		unlock_page(page);
		put_page(page);
1829
		goto xa_unlocked;
1830 1831
	}

1832 1833
	if (is_shmem)
		__inc_node_page_state(new_page, NR_SHMEM_THPS);
1834
	else {
1835
		__inc_node_page_state(new_page, NR_FILE_THPS);
1836 1837
		filemap_nr_thps_inc(mapping);
	}
1838

1839
	if (nr_none) {
1840
		__mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1841
		if (is_shmem)
1842
			__mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1843 1844 1845 1846
	}

xa_locked:
	xas_unlock_irq(&xas);
1847
xa_unlocked:
1848

1849
	if (result == SCAN_SUCCEED) {
1850
		struct page *page, *tmp;
1851 1852

		/*
1853 1854
		 * Replacing old pages with new one has succeeded, now we
		 * need to copy the content and free the old pages.
1855
		 */
1856
		index = start;
1857
		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1858 1859 1860 1861
			while (index < page->index) {
				clear_highpage(new_page + (index % HPAGE_PMD_NR));
				index++;
			}
1862 1863 1864 1865
			copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
					page);
			list_del(&page->lru);
			page->mapping = NULL;
1866
			page_ref_unfreeze(page, 1);
1867 1868
			ClearPageActive(page);
			ClearPageUnevictable(page);
1869
			unlock_page(page);
1870
			put_page(page);
1871 1872 1873 1874 1875
			index++;
		}
		while (index < end) {
			clear_highpage(new_page + (index % HPAGE_PMD_NR));
			index++;
1876 1877 1878
		}

		SetPageUptodate(new_page);
1879
		page_ref_add(new_page, HPAGE_PMD_NR - 1);
1880
		if (is_shmem)
1881
			set_page_dirty(new_page);
1882
		lru_cache_add(new_page);
1883

1884 1885 1886 1887
		/*
		 * Remove pte page tables, so we can re-fault the page as huge.
		 */
		retract_page_tables(mapping, start);
1888
		*hpage = NULL;
1889 1890

		khugepaged_pages_collapsed++;
1891
	} else {
1892
		struct page *page;
1893

1894 1895
		/* Something went wrong: roll back page cache changes */
		xas_lock_irq(&xas);
1896
		mapping->nrpages -= nr_none;
1897 1898 1899

		if (is_shmem)
			shmem_uncharge(mapping->host, nr_none);
1900

1901 1902
		xas_set(&xas, start);
		xas_for_each(&xas, page, end - 1) {
1903 1904
			page = list_first_entry_or_null(&pagelist,
					struct page, lru);
1905
			if (!page || xas.xa_index < page->index) {
1906 1907 1908
				if (!nr_none)
					break;
				nr_none--;
1909
				/* Put holes back where they were */
1910
				xas_store(&xas, NULL);
1911 1912 1913
				continue;
			}

1914
			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1915 1916 1917 1918

			/* Unfreeze the page. */
			list_del(&page->lru);
			page_ref_unfreeze(page, 2);
1919 1920 1921
			xas_store(&xas, page);
			xas_pause(&xas);
			xas_unlock_irq(&xas);
1922
			unlock_page(page);
1923
			putback_lru_page(page);
1924
			xas_lock_irq(&xas);
1925 1926
		}
		VM_BUG_ON(nr_none);
1927
		xas_unlock_irq(&xas);
1928 1929 1930

		new_page->mapping = NULL;
	}
1931 1932

	unlock_page(new_page);
1933 1934
out:
	VM_BUG_ON(!list_empty(&pagelist));
1935 1936
	if (!IS_ERR_OR_NULL(*hpage))
		mem_cgroup_uncharge(*hpage);
1937 1938 1939
	/* TODO: tracepoints */
}

1940 1941
static void khugepaged_scan_file(struct mm_struct *mm,
		struct file *file, pgoff_t start, struct page **hpage)
1942 1943
{
	struct page *page = NULL;
1944
	struct address_space *mapping = file->f_mapping;
1945
	XA_STATE(xas, &mapping->i_pages, start);
1946 1947 1948 1949 1950 1951 1952 1953
	int present, swap;
	int node = NUMA_NO_NODE;
	int result = SCAN_SUCCEED;

	present = 0;
	swap = 0;
	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
	rcu_read_lock();
1954 1955
	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
		if (xas_retry(&xas, page))
1956 1957
			continue;

1958
		if (xa_is_value(page)) {
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
			if (++swap > khugepaged_max_ptes_swap) {
				result = SCAN_EXCEED_SWAP_PTE;
				break;
			}
			continue;
		}

		if (PageTransCompound(page)) {
			result = SCAN_PAGE_COMPOUND;
			break;
		}

		node = page_to_nid(page);
		if (khugepaged_scan_abort(node)) {
			result = SCAN_SCAN_ABORT;
			break;
		}
		khugepaged_node_load[node]++;

		if (!PageLRU(page)) {
			result = SCAN_PAGE_LRU;
			break;
		}

1983 1984
		if (page_count(page) !=
		    1 + page_mapcount(page) + page_has_private(page)) {
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
			result = SCAN_PAGE_COUNT;
			break;
		}

		/*
		 * We probably should check if the page is referenced here, but
		 * nobody would transfer pte_young() to PageReferenced() for us.
		 * And rmap walk here is just too costly...
		 */

		present++;

		if (need_resched()) {
1998
			xas_pause(&xas);
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
			cond_resched_rcu();
		}
	}
	rcu_read_unlock();

	if (result == SCAN_SUCCEED) {
		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
			result = SCAN_EXCEED_NONE_PTE;
		} else {
			node = khugepaged_find_target_node();
2009
			collapse_file(mm, file, start, hpage, node);
2010 2011 2012 2013 2014 2015
		}
	}

	/* TODO: tracepoints */
}
#else
2016 2017
static void khugepaged_scan_file(struct mm_struct *mm,
		struct file *file, pgoff_t start, struct page **hpage)
2018 2019 2020
{
	BUILD_BUG();
}
2021 2022 2023 2024 2025

static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
{
	return 0;
}
2026 2027
#endif

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
					    struct page **hpage)
	__releases(&khugepaged_mm_lock)
	__acquires(&khugepaged_mm_lock)
{
	struct mm_slot *mm_slot;
	struct mm_struct *mm;
	struct vm_area_struct *vma;
	int progress = 0;

	VM_BUG_ON(!pages);
2039
	lockdep_assert_held(&khugepaged_mm_lock);
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049

	if (khugepaged_scan.mm_slot)
		mm_slot = khugepaged_scan.mm_slot;
	else {
		mm_slot = list_entry(khugepaged_scan.mm_head.next,
				     struct mm_slot, mm_node);
		khugepaged_scan.address = 0;
		khugepaged_scan.mm_slot = mm_slot;
	}
	spin_unlock(&khugepaged_mm_lock);
2050
	khugepaged_collapse_pte_mapped_thps(mm_slot);
2051 2052

	mm = mm_slot->mm;
2053 2054 2055 2056 2057
	/*
	 * Don't wait for semaphore (to avoid long wait times).  Just move to
	 * the next mm on the list.
	 */
	vma = NULL;
2058
	if (unlikely(!mmap_read_trylock(mm)))
2059
		goto breakouterloop_mmap_lock;
2060
	if (likely(!khugepaged_test_exit(mm)))
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
		vma = find_vma(mm, khugepaged_scan.address);

	progress++;
	for (; vma; vma = vma->vm_next) {
		unsigned long hstart, hend;

		cond_resched();
		if (unlikely(khugepaged_test_exit(mm))) {
			progress++;
			break;
		}
2072
		if (!hugepage_vma_check(vma, vma->vm_flags)) {
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
skip:
			progress++;
			continue;
		}
		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
		hend = vma->vm_end & HPAGE_PMD_MASK;
		if (hstart >= hend)
			goto skip;
		if (khugepaged_scan.address > hend)
			goto skip;
		if (khugepaged_scan.address < hstart)
			khugepaged_scan.address = hstart;
		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2086 2087
		if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
			goto skip;
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097

		while (khugepaged_scan.address < hend) {
			int ret;
			cond_resched();
			if (unlikely(khugepaged_test_exit(mm)))
				goto breakouterloop;

			VM_BUG_ON(khugepaged_scan.address < hstart ||
				  khugepaged_scan.address + HPAGE_PMD_SIZE >
				  hend);
2098
			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2099
				struct file *file = get_file(vma->vm_file);
2100 2101
				pgoff_t pgoff = linear_page_index(vma,
						khugepaged_scan.address);
2102

2103
				mmap_read_unlock(mm);
2104
				ret = 1;
2105
				khugepaged_scan_file(mm, file, pgoff, hpage);
2106 2107 2108 2109 2110 2111
				fput(file);
			} else {
				ret = khugepaged_scan_pmd(mm, vma,
						khugepaged_scan.address,
						hpage);
			}
2112 2113 2114 2115
			/* move to next address */
			khugepaged_scan.address += HPAGE_PMD_SIZE;
			progress += HPAGE_PMD_NR;
			if (ret)
2116 2117
				/* we released mmap_lock so break loop */
				goto breakouterloop_mmap_lock;
2118 2119 2120 2121 2122
			if (progress >= pages)
				goto breakouterloop;
		}
	}
breakouterloop:
2123
	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2124
breakouterloop_mmap_lock:
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174

	spin_lock(&khugepaged_mm_lock);
	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
	/*
	 * Release the current mm_slot if this mm is about to die, or
	 * if we scanned all vmas of this mm.
	 */
	if (khugepaged_test_exit(mm) || !vma) {
		/*
		 * Make sure that if mm_users is reaching zero while
		 * khugepaged runs here, khugepaged_exit will find
		 * mm_slot not pointing to the exiting mm.
		 */
		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
			khugepaged_scan.mm_slot = list_entry(
				mm_slot->mm_node.next,
				struct mm_slot, mm_node);
			khugepaged_scan.address = 0;
		} else {
			khugepaged_scan.mm_slot = NULL;
			khugepaged_full_scans++;
		}

		collect_mm_slot(mm_slot);
	}

	return progress;
}

static int khugepaged_has_work(void)
{
	return !list_empty(&khugepaged_scan.mm_head) &&
		khugepaged_enabled();
}

static int khugepaged_wait_event(void)
{
	return !list_empty(&khugepaged_scan.mm_head) ||
		kthread_should_stop();
}

static void khugepaged_do_scan(void)
{
	struct page *hpage = NULL;
	unsigned int progress = 0, pass_through_head = 0;
	unsigned int pages = khugepaged_pages_to_scan;
	bool wait = true;

	barrier(); /* write khugepaged_pages_to_scan to local stack */

2175 2176
	lru_add_drain_all();

2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	while (progress < pages) {
		if (!khugepaged_prealloc_page(&hpage, &wait))
			break;

		cond_resched();

		if (unlikely(kthread_should_stop() || try_to_freeze()))
			break;

		spin_lock(&khugepaged_mm_lock);
		if (!khugepaged_scan.mm_slot)
			pass_through_head++;
		if (khugepaged_has_work() &&
		    pass_through_head < 2)
			progress += khugepaged_scan_mm_slot(pages - progress,
							    &hpage);
		else
			progress = pages;
		spin_unlock(&khugepaged_mm_lock);
	}

	if (!IS_ERR_OR_NULL(hpage))
		put_page(hpage);
}

static bool khugepaged_should_wakeup(void)
{
	return kthread_should_stop() ||
	       time_after_eq(jiffies, khugepaged_sleep_expire);
}

static void khugepaged_wait_work(void)
{
	if (khugepaged_has_work()) {
		const unsigned long scan_sleep_jiffies =
			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);

		if (!scan_sleep_jiffies)
			return;

		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
		wait_event_freezable_timeout(khugepaged_wait,
					     khugepaged_should_wakeup(),
					     scan_sleep_jiffies);
		return;
	}

	if (khugepaged_enabled())
		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
}

static int khugepaged(void *none)
{
	struct mm_slot *mm_slot;

	set_freezable();
	set_user_nice(current, MAX_NICE);

	while (!kthread_should_stop()) {
		khugepaged_do_scan();
		khugepaged_wait_work();
	}

	spin_lock(&khugepaged_mm_lock);
	mm_slot = khugepaged_scan.mm_slot;
	khugepaged_scan.mm_slot = NULL;
	if (mm_slot)
		collect_mm_slot(mm_slot);
	spin_unlock(&khugepaged_mm_lock);
	return 0;
}

static void set_recommended_min_free_kbytes(void)
{
	struct zone *zone;
	int nr_zones = 0;
	unsigned long recommended_min;

2255 2256 2257 2258 2259 2260 2261 2262
	for_each_populated_zone(zone) {
		/*
		 * We don't need to worry about fragmentation of
		 * ZONE_MOVABLE since it only has movable pages.
		 */
		if (zone_idx(zone) > gfp_zone(GFP_USER))
			continue;

2263
		nr_zones++;
2264
	}
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322

	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
	recommended_min = pageblock_nr_pages * nr_zones * 2;

	/*
	 * Make sure that on average at least two pageblocks are almost free
	 * of another type, one for a migratetype to fall back to and a
	 * second to avoid subsequent fallbacks of other types There are 3
	 * MIGRATE_TYPES we care about.
	 */
	recommended_min += pageblock_nr_pages * nr_zones *
			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;

	/* don't ever allow to reserve more than 5% of the lowmem */
	recommended_min = min(recommended_min,
			      (unsigned long) nr_free_buffer_pages() / 20);
	recommended_min <<= (PAGE_SHIFT-10);

	if (recommended_min > min_free_kbytes) {
		if (user_min_free_kbytes >= 0)
			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
				min_free_kbytes, recommended_min);

		min_free_kbytes = recommended_min;
	}
	setup_per_zone_wmarks();
}

int start_stop_khugepaged(void)
{
	static struct task_struct *khugepaged_thread __read_mostly;
	static DEFINE_MUTEX(khugepaged_mutex);
	int err = 0;

	mutex_lock(&khugepaged_mutex);
	if (khugepaged_enabled()) {
		if (!khugepaged_thread)
			khugepaged_thread = kthread_run(khugepaged, NULL,
							"khugepaged");
		if (IS_ERR(khugepaged_thread)) {
			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
			err = PTR_ERR(khugepaged_thread);
			khugepaged_thread = NULL;
			goto fail;
		}

		if (!list_empty(&khugepaged_scan.mm_head))
			wake_up_interruptible(&khugepaged_wait);

		set_recommended_min_free_kbytes();
	} else if (khugepaged_thread) {
		kthread_stop(khugepaged_thread);
		khugepaged_thread = NULL;
	}
fail:
	mutex_unlock(&khugepaged_mutex);
	return err;
}