khugepaged.c 58.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/mm.h>
#include <linux/sched.h>
6
#include <linux/sched/mm.h>
7
#include <linux/sched/coredump.h>
8 9 10 11 12 13 14 15 16 17 18 19
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/mm_inline.h>
#include <linux/kthread.h>
#include <linux/khugepaged.h>
#include <linux/freezer.h>
#include <linux/mman.h>
#include <linux/hashtable.h>
#include <linux/userfaultfd_k.h>
#include <linux/page_idle.h>
#include <linux/swapops.h>
20
#include <linux/shmem_fs.h>
21 22 23 24 25 26 27 28 29 30

#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

enum scan_result {
	SCAN_FAIL,
	SCAN_SUCCEED,
	SCAN_PMD_NULL,
	SCAN_EXCEED_NONE_PTE,
31 32
	SCAN_EXCEED_SWAP_PTE,
	SCAN_EXCEED_SHARED_PTE,
33
	SCAN_PTE_NON_PRESENT,
34
	SCAN_PTE_UFFD_WP,
35
	SCAN_PAGE_RO,
36
	SCAN_LACK_REFERENCED_PAGE,
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
	SCAN_PAGE_NULL,
	SCAN_SCAN_ABORT,
	SCAN_PAGE_COUNT,
	SCAN_PAGE_LRU,
	SCAN_PAGE_LOCK,
	SCAN_PAGE_ANON,
	SCAN_PAGE_COMPOUND,
	SCAN_ANY_PROCESS,
	SCAN_VMA_NULL,
	SCAN_VMA_CHECK,
	SCAN_ADDRESS_RANGE,
	SCAN_SWAP_CACHE_PAGE,
	SCAN_DEL_PAGE_LRU,
	SCAN_ALLOC_HUGE_PAGE_FAIL,
	SCAN_CGROUP_CHARGE_FAIL,
52
	SCAN_TRUNCATED,
53
	SCAN_PAGE_HAS_PRIVATE,
54 55 56 57 58
};

#define CREATE_TRACE_POINTS
#include <trace/events/huge_memory.h>

59 60 61
static struct task_struct *khugepaged_thread __read_mostly;
static DEFINE_MUTEX(khugepaged_mutex);

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/* default scan 8*512 pte (or vmas) every 30 second */
static unsigned int khugepaged_pages_to_scan __read_mostly;
static unsigned int khugepaged_pages_collapsed;
static unsigned int khugepaged_full_scans;
static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
/* during fragmentation poll the hugepage allocator once every minute */
static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
static unsigned long khugepaged_sleep_expire;
static DEFINE_SPINLOCK(khugepaged_mm_lock);
static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
/*
 * default collapse hugepages if there is at least one pte mapped like
 * it would have happened if the vma was large enough during page
 * fault.
 */
static unsigned int khugepaged_max_ptes_none __read_mostly;
static unsigned int khugepaged_max_ptes_swap __read_mostly;
79
static unsigned int khugepaged_max_ptes_shared __read_mostly;
80 81 82 83 84 85

#define MM_SLOTS_HASH_BITS 10
static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);

static struct kmem_cache *mm_slot_cache __read_mostly;

86 87
#define MAX_PTE_MAPPED_THP 8

88 89 90 91 92 93 94 95 96 97
/**
 * struct mm_slot - hash lookup from mm to mm_slot
 * @hash: hash collision list
 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
 * @mm: the mm that this information is valid for
 */
struct mm_slot {
	struct hlist_node hash;
	struct list_head mm_node;
	struct mm_struct *mm;
98 99 100 101

	/* pte-mapped THP in this mm */
	int nr_pte_mapped_thp;
	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
};

/**
 * struct khugepaged_scan - cursor for scanning
 * @mm_head: the head of the mm list to scan
 * @mm_slot: the current mm_slot we are scanning
 * @address: the next address inside that to be scanned
 *
 * There is only the one khugepaged_scan instance of this cursor structure.
 */
struct khugepaged_scan {
	struct list_head mm_head;
	struct mm_slot *mm_slot;
	unsigned long address;
};

static struct khugepaged_scan khugepaged_scan = {
	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
};

122
#ifdef CONFIG_SYSFS
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
					 struct kobj_attribute *attr,
					 char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
}

static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
					  struct kobj_attribute *attr,
					  const char *buf, size_t count)
{
	unsigned long msecs;
	int err;

	err = kstrtoul(buf, 10, &msecs);
	if (err || msecs > UINT_MAX)
		return -EINVAL;

	khugepaged_scan_sleep_millisecs = msecs;
	khugepaged_sleep_expire = 0;
	wake_up_interruptible(&khugepaged_wait);

	return count;
}
static struct kobj_attribute scan_sleep_millisecs_attr =
	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
	       scan_sleep_millisecs_store);

static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
					  struct kobj_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
}

static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
					   struct kobj_attribute *attr,
					   const char *buf, size_t count)
{
	unsigned long msecs;
	int err;

	err = kstrtoul(buf, 10, &msecs);
	if (err || msecs > UINT_MAX)
		return -EINVAL;

	khugepaged_alloc_sleep_millisecs = msecs;
	khugepaged_sleep_expire = 0;
	wake_up_interruptible(&khugepaged_wait);

	return count;
}
static struct kobj_attribute alloc_sleep_millisecs_attr =
	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
	       alloc_sleep_millisecs_store);

static ssize_t pages_to_scan_show(struct kobject *kobj,
				  struct kobj_attribute *attr,
				  char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
}
static ssize_t pages_to_scan_store(struct kobject *kobj,
				   struct kobj_attribute *attr,
				   const char *buf, size_t count)
{
	int err;
	unsigned long pages;

	err = kstrtoul(buf, 10, &pages);
	if (err || !pages || pages > UINT_MAX)
		return -EINVAL;

	khugepaged_pages_to_scan = pages;

	return count;
}
static struct kobj_attribute pages_to_scan_attr =
	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
	       pages_to_scan_store);

static ssize_t pages_collapsed_show(struct kobject *kobj,
				    struct kobj_attribute *attr,
				    char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
}
static struct kobj_attribute pages_collapsed_attr =
	__ATTR_RO(pages_collapsed);

static ssize_t full_scans_show(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_full_scans);
}
static struct kobj_attribute full_scans_attr =
	__ATTR_RO(full_scans);

static ssize_t khugepaged_defrag_show(struct kobject *kobj,
				      struct kobj_attribute *attr, char *buf)
{
	return single_hugepage_flag_show(kobj, attr, buf,
				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
}
static ssize_t khugepaged_defrag_store(struct kobject *kobj,
				       struct kobj_attribute *attr,
				       const char *buf, size_t count)
{
	return single_hugepage_flag_store(kobj, attr, buf, count,
				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
}
static struct kobj_attribute khugepaged_defrag_attr =
	__ATTR(defrag, 0644, khugepaged_defrag_show,
	       khugepaged_defrag_store);

/*
 * max_ptes_none controls if khugepaged should collapse hugepages over
 * any unmapped ptes in turn potentially increasing the memory
 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 * reduce the available free memory in the system as it
 * runs. Increasing max_ptes_none will instead potentially reduce the
 * free memory in the system during the khugepaged scan.
 */
static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
					     struct kobj_attribute *attr,
					     char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
}
static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
					      struct kobj_attribute *attr,
					      const char *buf, size_t count)
{
	int err;
	unsigned long max_ptes_none;

	err = kstrtoul(buf, 10, &max_ptes_none);
	if (err || max_ptes_none > HPAGE_PMD_NR-1)
		return -EINVAL;

	khugepaged_max_ptes_none = max_ptes_none;

	return count;
}
static struct kobj_attribute khugepaged_max_ptes_none_attr =
	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
	       khugepaged_max_ptes_none_store);

static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
					     struct kobj_attribute *attr,
					     char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
}

static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
					      struct kobj_attribute *attr,
					      const char *buf, size_t count)
{
	int err;
	unsigned long max_ptes_swap;

	err  = kstrtoul(buf, 10, &max_ptes_swap);
	if (err || max_ptes_swap > HPAGE_PMD_NR-1)
		return -EINVAL;

	khugepaged_max_ptes_swap = max_ptes_swap;

	return count;
}

static struct kobj_attribute khugepaged_max_ptes_swap_attr =
	__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
	       khugepaged_max_ptes_swap_store);

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
					     struct kobj_attribute *attr,
					     char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_max_ptes_shared);
}

static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
					      struct kobj_attribute *attr,
					      const char *buf, size_t count)
{
	int err;
	unsigned long max_ptes_shared;

	err  = kstrtoul(buf, 10, &max_ptes_shared);
	if (err || max_ptes_shared > HPAGE_PMD_NR-1)
		return -EINVAL;

	khugepaged_max_ptes_shared = max_ptes_shared;

	return count;
}

static struct kobj_attribute khugepaged_max_ptes_shared_attr =
	__ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
	       khugepaged_max_ptes_shared_store);

326 327 328
static struct attribute *khugepaged_attr[] = {
	&khugepaged_defrag_attr.attr,
	&khugepaged_max_ptes_none_attr.attr,
329 330
	&khugepaged_max_ptes_swap_attr.attr,
	&khugepaged_max_ptes_shared_attr.attr,
331 332 333 334 335 336 337 338 339 340 341 342
	&pages_to_scan_attr.attr,
	&pages_collapsed_attr.attr,
	&full_scans_attr.attr,
	&scan_sleep_millisecs_attr.attr,
	&alloc_sleep_millisecs_attr.attr,
	NULL,
};

struct attribute_group khugepaged_attr_group = {
	.attrs = khugepaged_attr,
	.name = "khugepaged",
};
343
#endif /* CONFIG_SYSFS */
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

int hugepage_madvise(struct vm_area_struct *vma,
		     unsigned long *vm_flags, int advice)
{
	switch (advice) {
	case MADV_HUGEPAGE:
#ifdef CONFIG_S390
		/*
		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
		 * can't handle this properly after s390_enable_sie, so we simply
		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
		 */
		if (mm_has_pgste(vma->vm_mm))
			return 0;
#endif
		*vm_flags &= ~VM_NOHUGEPAGE;
		*vm_flags |= VM_HUGEPAGE;
		/*
		 * If the vma become good for khugepaged to scan,
		 * register it here without waiting a page fault that
		 * may not happen any time soon.
		 */
		if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
				khugepaged_enter_vma_merge(vma, *vm_flags))
			return -ENOMEM;
		break;
	case MADV_NOHUGEPAGE:
		*vm_flags &= ~VM_HUGEPAGE;
		*vm_flags |= VM_NOHUGEPAGE;
		/*
		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
		 * this vma even if we leave the mm registered in khugepaged if
		 * it got registered before VM_NOHUGEPAGE was set.
		 */
		break;
	}

	return 0;
}

int __init khugepaged_init(void)
{
	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
					  sizeof(struct mm_slot),
					  __alignof__(struct mm_slot), 0, NULL);
	if (!mm_slot_cache)
		return -ENOMEM;

	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
395
	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

	return 0;
}

void __init khugepaged_destroy(void)
{
	kmem_cache_destroy(mm_slot_cache);
}

static inline struct mm_slot *alloc_mm_slot(void)
{
	if (!mm_slot_cache)	/* initialization failed */
		return NULL;
	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
}

static inline void free_mm_slot(struct mm_slot *mm_slot)
{
	kmem_cache_free(mm_slot_cache, mm_slot);
}

static struct mm_slot *get_mm_slot(struct mm_struct *mm)
{
	struct mm_slot *mm_slot;

	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
		if (mm == mm_slot->mm)
			return mm_slot;

	return NULL;
}

static void insert_to_mm_slots_hash(struct mm_struct *mm,
				    struct mm_slot *mm_slot)
{
	mm_slot->mm = mm;
	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
}

static inline int khugepaged_test_exit(struct mm_struct *mm)
{
437
	return atomic_read(&mm->mm_users) == 0 || !mmget_still_valid(mm);
438 439
}

440 441
static bool hugepage_vma_check(struct vm_area_struct *vma,
			       unsigned long vm_flags)
442
{
443 444
	if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
	    (vm_flags & VM_NOHUGEPAGE) ||
445 446
	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
		return false;
447 448 449 450 451

	if (shmem_file(vma->vm_file) ||
	    (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
	     vma->vm_file &&
	     (vm_flags & VM_DENYWRITE))) {
452 453 454 455 456
		return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
				HPAGE_PMD_NR);
	}
	if (!vma->anon_vma || vma->vm_ops)
		return false;
457
	if (vma_is_temporary_stack(vma))
458
		return false;
459
	return !(vm_flags & VM_NO_KHUGEPAGED);
460 461
}

462 463 464 465 466 467 468 469 470 471
int __khugepaged_enter(struct mm_struct *mm)
{
	struct mm_slot *mm_slot;
	int wakeup;

	mm_slot = alloc_mm_slot();
	if (!mm_slot)
		return -ENOMEM;

	/* __khugepaged_exit() must not run from under us */
472
	VM_BUG_ON_MM(atomic_read(&mm->mm_users) == 0, mm);
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
		free_mm_slot(mm_slot);
		return 0;
	}

	spin_lock(&khugepaged_mm_lock);
	insert_to_mm_slots_hash(mm, mm_slot);
	/*
	 * Insert just behind the scanning cursor, to let the area settle
	 * down a little.
	 */
	wakeup = list_empty(&khugepaged_scan.mm_head);
	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
	spin_unlock(&khugepaged_mm_lock);

V
Vegard Nossum 已提交
488
	mmgrab(mm);
489 490 491 492 493 494 495 496 497 498
	if (wakeup)
		wake_up_interruptible(&khugepaged_wait);

	return 0;
}

int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
			       unsigned long vm_flags)
{
	unsigned long hstart, hend;
499 500

	/*
501 502 503
	 * khugepaged only supports read-only files for non-shmem files.
	 * khugepaged does not yet work on special mappings. And
	 * file-private shmem THP is not supported.
504
	 */
505
	if (!hugepage_vma_check(vma, vm_flags))
506
		return 0;
507

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
	hend = vma->vm_end & HPAGE_PMD_MASK;
	if (hstart < hend)
		return khugepaged_enter(vma, vm_flags);
	return 0;
}

void __khugepaged_exit(struct mm_struct *mm)
{
	struct mm_slot *mm_slot;
	int free = 0;

	spin_lock(&khugepaged_mm_lock);
	mm_slot = get_mm_slot(mm);
	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
		hash_del(&mm_slot->hash);
		list_del(&mm_slot->mm_node);
		free = 1;
	}
	spin_unlock(&khugepaged_mm_lock);

	if (free) {
		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
		free_mm_slot(mm_slot);
		mmdrop(mm);
	} else if (mm_slot) {
		/*
		 * This is required to serialize against
		 * khugepaged_test_exit() (which is guaranteed to run
		 * under mmap sem read mode). Stop here (after we
		 * return all pagetables will be destroyed) until
		 * khugepaged has finished working on the pagetables
540
		 * under the mmap_lock.
541
		 */
542 543
		mmap_write_lock(mm);
		mmap_write_unlock(mm);
544 545 546 547 548
	}
}

static void release_pte_page(struct page *page)
{
549 550 551
	mod_node_page_state(page_pgdat(page),
			NR_ISOLATED_ANON + page_is_file_lru(page),
			-compound_nr(page));
552 553 554 555
	unlock_page(page);
	putback_lru_page(page);
}

556 557
static void release_pte_pages(pte_t *pte, pte_t *_pte,
		struct list_head *compound_pagelist)
558
{
559 560
	struct page *page, *tmp;

561 562
	while (--_pte >= pte) {
		pte_t pteval = *_pte;
563 564 565 566 567 568 569 570 571 572

		page = pte_page(pteval);
		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
				!PageCompound(page))
			release_pte_page(page);
	}

	list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
		list_del(&page->lru);
		release_pte_page(page);
573 574 575
	}
}

576 577 578 579 580 581 582 583 584 585 586
static bool is_refcount_suitable(struct page *page)
{
	int expected_refcount;

	expected_refcount = total_mapcount(page);
	if (PageSwapCache(page))
		expected_refcount += compound_nr(page);

	return page_count(page) == expected_refcount;
}

587 588
static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
					unsigned long address,
589 590
					pte_t *pte,
					struct list_head *compound_pagelist)
591 592 593
{
	struct page *page = NULL;
	pte_t *_pte;
594
	int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
595
	bool writable = false;
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619

	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
	     _pte++, address += PAGE_SIZE) {
		pte_t pteval = *_pte;
		if (pte_none(pteval) || (pte_present(pteval) &&
				is_zero_pfn(pte_pfn(pteval)))) {
			if (!userfaultfd_armed(vma) &&
			    ++none_or_zero <= khugepaged_max_ptes_none) {
				continue;
			} else {
				result = SCAN_EXCEED_NONE_PTE;
				goto out;
			}
		}
		if (!pte_present(pteval)) {
			result = SCAN_PTE_NON_PRESENT;
			goto out;
		}
		page = vm_normal_page(vma, address, pteval);
		if (unlikely(!page)) {
			result = SCAN_PAGE_NULL;
			goto out;
		}

620 621
		VM_BUG_ON_PAGE(!PageAnon(page), page);

622 623 624 625 626 627
		if (page_mapcount(page) > 1 &&
				++shared > khugepaged_max_ptes_shared) {
			result = SCAN_EXCEED_SHARED_PTE;
			goto out;
		}

628
		if (PageCompound(page)) {
629 630
			struct page *p;
			page = compound_head(page);
631

632 633 634 635 636 637 638 639 640
			/*
			 * Check if we have dealt with the compound page
			 * already
			 */
			list_for_each_entry(p, compound_pagelist, lru) {
				if (page == p)
					goto next;
			}
		}
641 642 643 644 645 646 647 648 649 650 651 652 653

		/*
		 * We can do it before isolate_lru_page because the
		 * page can't be freed from under us. NOTE: PG_lock
		 * is needed to serialize against split_huge_page
		 * when invoked from the VM.
		 */
		if (!trylock_page(page)) {
			result = SCAN_PAGE_LOCK;
			goto out;
		}

		/*
654 655 656 657 658 659 660 661 662
		 * Check if the page has any GUP (or other external) pins.
		 *
		 * The page table that maps the page has been already unlinked
		 * from the page table tree and this process cannot get
		 * an additinal pin on the page.
		 *
		 * New pins can come later if the page is shared across fork,
		 * but not from this process. The other process cannot write to
		 * the page, only trigger CoW.
663
		 */
664
		if (!is_refcount_suitable(page)) {
665 666 667 668
			unlock_page(page);
			result = SCAN_PAGE_COUNT;
			goto out;
		}
669 670
		if (!pte_write(pteval) && PageSwapCache(page) &&
				!reuse_swap_page(page, NULL)) {
671
			/*
672 673
			 * Page is in the swap cache and cannot be re-used.
			 * It cannot be collapsed into a THP.
674
			 */
675 676 677
			unlock_page(page);
			result = SCAN_SWAP_CACHE_PAGE;
			goto out;
678 679 680 681 682 683 684 685 686 687 688
		}

		/*
		 * Isolate the page to avoid collapsing an hugepage
		 * currently in use by the VM.
		 */
		if (isolate_lru_page(page)) {
			unlock_page(page);
			result = SCAN_DEL_PAGE_LRU;
			goto out;
		}
689 690 691
		mod_node_page_state(page_pgdat(page),
				NR_ISOLATED_ANON + page_is_file_lru(page),
				compound_nr(page));
692 693 694
		VM_BUG_ON_PAGE(!PageLocked(page), page);
		VM_BUG_ON_PAGE(PageLRU(page), page);

695 696 697
		if (PageCompound(page))
			list_add_tail(&page->lru, compound_pagelist);
next:
698
		/* There should be enough young pte to collapse the page */
699 700 701
		if (pte_young(pteval) ||
		    page_is_young(page) || PageReferenced(page) ||
		    mmu_notifier_test_young(vma->vm_mm, address))
702
			referenced++;
703 704 705

		if (pte_write(pteval))
			writable = true;
706 707 708 709 710 711 712 713 714 715 716 717 718
	}
	if (likely(writable)) {
		if (likely(referenced)) {
			result = SCAN_SUCCEED;
			trace_mm_collapse_huge_page_isolate(page, none_or_zero,
							    referenced, writable, result);
			return 1;
		}
	} else {
		result = SCAN_PAGE_RO;
	}

out:
719
	release_pte_pages(pte, _pte, compound_pagelist);
720 721 722 723 724 725 726 727
	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
					    referenced, writable, result);
	return 0;
}

static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
				      struct vm_area_struct *vma,
				      unsigned long address,
728 729
				      spinlock_t *ptl,
				      struct list_head *compound_pagelist)
730
{
731
	struct page *src_page, *tmp;
732
	pte_t *_pte;
733 734
	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
				_pte++, page++, address += PAGE_SIZE) {
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
		pte_t pteval = *_pte;

		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
			clear_user_highpage(page, address);
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
			if (is_zero_pfn(pte_pfn(pteval))) {
				/*
				 * ptl mostly unnecessary.
				 */
				spin_lock(ptl);
				/*
				 * paravirt calls inside pte_clear here are
				 * superfluous.
				 */
				pte_clear(vma->vm_mm, address, _pte);
				spin_unlock(ptl);
			}
		} else {
			src_page = pte_page(pteval);
			copy_user_highpage(page, src_page, address, vma);
755 756
			if (!PageCompound(src_page))
				release_pte_page(src_page);
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
			/*
			 * ptl mostly unnecessary, but preempt has to
			 * be disabled to update the per-cpu stats
			 * inside page_remove_rmap().
			 */
			spin_lock(ptl);
			/*
			 * paravirt calls inside pte_clear here are
			 * superfluous.
			 */
			pte_clear(vma->vm_mm, address, _pte);
			page_remove_rmap(src_page, false);
			spin_unlock(ptl);
			free_page_and_swap_cache(src_page);
		}
	}
773 774 775 776 777

	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
		list_del(&src_page->lru);
		release_pte_page(src_page);
	}
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
}

static void khugepaged_alloc_sleep(void)
{
	DEFINE_WAIT(wait);

	add_wait_queue(&khugepaged_wait, &wait);
	freezable_schedule_timeout_interruptible(
		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
	remove_wait_queue(&khugepaged_wait, &wait);
}

static int khugepaged_node_load[MAX_NUMNODES];

static bool khugepaged_scan_abort(int nid)
{
	int i;

	/*
797
	 * If node_reclaim_mode is disabled, then no extra effort is made to
798 799
	 * allocate memory locally.
	 */
800
	if (!node_reclaim_mode)
801 802 803 804 805 806 807 808 809
		return false;

	/* If there is a count for this node already, it must be acceptable */
	if (khugepaged_node_load[nid])
		return false;

	for (i = 0; i < MAX_NUMNODES; i++) {
		if (!khugepaged_node_load[i])
			continue;
810
		if (node_distance(nid, i) > node_reclaim_distance)
811 812 813 814 815 816 817 818
			return true;
	}
	return false;
}

/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
{
819
	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
}

#ifdef CONFIG_NUMA
static int khugepaged_find_target_node(void)
{
	static int last_khugepaged_target_node = NUMA_NO_NODE;
	int nid, target_node = 0, max_value = 0;

	/* find first node with max normal pages hit */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		if (khugepaged_node_load[nid] > max_value) {
			max_value = khugepaged_node_load[nid];
			target_node = nid;
		}

	/* do some balance if several nodes have the same hit record */
	if (target_node <= last_khugepaged_target_node)
		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
				nid++)
			if (max_value == khugepaged_node_load[nid]) {
				target_node = nid;
				break;
			}

	last_khugepaged_target_node = target_node;
	return target_node;
}

static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
{
	if (IS_ERR(*hpage)) {
		if (!*wait)
			return false;

		*wait = false;
		*hpage = NULL;
		khugepaged_alloc_sleep();
	} else if (*hpage) {
		put_page(*hpage);
		*hpage = NULL;
	}

	return true;
}

static struct page *
866
khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
{
	VM_BUG_ON_PAGE(*hpage, *hpage);

	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
	if (unlikely(!*hpage)) {
		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
		*hpage = ERR_PTR(-ENOMEM);
		return NULL;
	}

	prep_transhuge_page(*hpage);
	count_vm_event(THP_COLLAPSE_ALLOC);
	return *hpage;
}
#else
static int khugepaged_find_target_node(void)
{
	return 0;
}

static inline struct page *alloc_khugepaged_hugepage(void)
{
	struct page *page;

	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
			   HPAGE_PMD_ORDER);
	if (page)
		prep_transhuge_page(page);
	return page;
}

static struct page *khugepaged_alloc_hugepage(bool *wait)
{
	struct page *hpage;

	do {
		hpage = alloc_khugepaged_hugepage();
		if (!hpage) {
			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
			if (!*wait)
				return NULL;

			*wait = false;
			khugepaged_alloc_sleep();
		} else
			count_vm_event(THP_COLLAPSE_ALLOC);
	} while (unlikely(!hpage) && likely(khugepaged_enabled()));

	return hpage;
}

static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
{
920 921 922 923 924 925 926 927 928 929 930 931
	/*
	 * If the hpage allocated earlier was briefly exposed in page cache
	 * before collapse_file() failed, it is possible that racing lookups
	 * have not yet completed, and would then be unpleasantly surprised by
	 * finding the hpage reused for the same mapping at a different offset.
	 * Just release the previous allocation if there is any danger of that.
	 */
	if (*hpage && page_count(*hpage) > 1) {
		put_page(*hpage);
		*hpage = NULL;
	}

932 933 934 935 936 937 938 939 940 941
	if (!*hpage)
		*hpage = khugepaged_alloc_hugepage(wait);

	if (unlikely(!*hpage))
		return false;

	return true;
}

static struct page *
942
khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
943 944 945 946 947 948 949 950
{
	VM_BUG_ON(!*hpage);

	return  *hpage;
}
#endif

/*
951 952
 * If mmap_lock temporarily dropped, revalidate vma
 * before taking mmap_lock.
953 954 955 956
 * Return 0 if succeeds, otherwise return none-zero
 * value (scan code).
 */

957 958
static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
		struct vm_area_struct **vmap)
959 960 961 962 963 964 965
{
	struct vm_area_struct *vma;
	unsigned long hstart, hend;

	if (unlikely(khugepaged_test_exit(mm)))
		return SCAN_ANY_PROCESS;

966
	*vmap = vma = find_vma(mm, address);
967 968 969 970 971 972 973
	if (!vma)
		return SCAN_VMA_NULL;

	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
	hend = vma->vm_end & HPAGE_PMD_MASK;
	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
		return SCAN_ADDRESS_RANGE;
974
	if (!hugepage_vma_check(vma, vma->vm_flags))
975
		return SCAN_VMA_CHECK;
976 977 978
	/* Anon VMA expected */
	if (!vma->anon_vma || vma->vm_ops)
		return SCAN_VMA_CHECK;
979 980 981 982 983 984 985 986
	return 0;
}

/*
 * Bring missing pages in from swap, to complete THP collapse.
 * Only done if khugepaged_scan_pmd believes it is worthwhile.
 *
 * Called and returns without pte mapped or spinlocks held,
987
 * but with mmap_lock held to protect against vma changes.
988 989 990 991
 */

static bool __collapse_huge_page_swapin(struct mm_struct *mm,
					struct vm_area_struct *vma,
992 993
					unsigned long address, pmd_t *pmd,
					int referenced)
994
{
995 996
	int swapped_in = 0;
	vm_fault_t ret = 0;
J
Jan Kara 已提交
997
	struct vm_fault vmf = {
998 999 1000 1001
		.vma = vma,
		.address = address,
		.flags = FAULT_FLAG_ALLOW_RETRY,
		.pmd = pmd,
1002
		.pgoff = linear_page_index(vma, address),
1003 1004
	};

J
Jan Kara 已提交
1005 1006 1007
	vmf.pte = pte_offset_map(pmd, address);
	for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
			vmf.pte++, vmf.address += PAGE_SIZE) {
J
Jan Kara 已提交
1008 1009
		vmf.orig_pte = *vmf.pte;
		if (!is_swap_pte(vmf.orig_pte))
1010 1011
			continue;
		swapped_in++;
J
Jan Kara 已提交
1012
		ret = do_swap_page(&vmf);
1013

1014
		/* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1015
		if (ret & VM_FAULT_RETRY) {
1016
			mmap_read_lock(mm);
J
Jan Kara 已提交
1017
			if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
1018
				/* vma is no longer available, don't continue to swapin */
1019
				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1020
				return false;
1021
			}
1022
			/* check if the pmd is still valid */
1023 1024
			if (mm_find_pmd(mm, address) != pmd) {
				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1025
				return false;
1026
			}
1027 1028
		}
		if (ret & VM_FAULT_ERROR) {
1029
			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1030 1031 1032
			return false;
		}
		/* pte is unmapped now, we need to map it */
J
Jan Kara 已提交
1033
		vmf.pte = pte_offset_map(pmd, vmf.address);
1034
	}
J
Jan Kara 已提交
1035 1036
	vmf.pte--;
	pte_unmap(vmf.pte);
1037 1038 1039 1040 1041

	/* Drain LRU add pagevec to remove extra pin on the swapped in pages */
	if (swapped_in)
		lru_add_drain();

1042
	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1043 1044 1045 1046 1047 1048
	return true;
}

static void collapse_huge_page(struct mm_struct *mm,
				   unsigned long address,
				   struct page **hpage,
1049
				   int node, int referenced, int unmapped)
1050
{
1051
	LIST_HEAD(compound_pagelist);
1052 1053 1054 1055 1056 1057
	pmd_t *pmd, _pmd;
	pte_t *pte;
	pgtable_t pgtable;
	struct page *new_page;
	spinlock_t *pmd_ptl, *pte_ptl;
	int isolated = 0, result = 0;
1058
	struct vm_area_struct *vma;
1059
	struct mmu_notifier_range range;
1060 1061 1062 1063 1064
	gfp_t gfp;

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	/* Only allocate from the target node */
M
Michal Hocko 已提交
1065
	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1066

1067
	/*
1068
	 * Before allocating the hugepage, release the mmap_lock read lock.
1069
	 * The allocation can take potentially a long time if it involves
1070
	 * sync compaction, and we do not need to hold the mmap_lock during
1071 1072
	 * that. We will recheck the vma after taking it again in write mode.
	 */
1073
	mmap_read_unlock(mm);
1074
	new_page = khugepaged_alloc_page(hpage, gfp, node);
1075 1076 1077 1078 1079
	if (!new_page) {
		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
		goto out_nolock;
	}

1080
	if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1081 1082 1083
		result = SCAN_CGROUP_CHARGE_FAIL;
		goto out_nolock;
	}
1084
	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1085

1086
	mmap_read_lock(mm);
1087
	result = hugepage_vma_revalidate(mm, address, &vma);
1088
	if (result) {
1089
		mmap_read_unlock(mm);
1090 1091 1092 1093 1094 1095
		goto out_nolock;
	}

	pmd = mm_find_pmd(mm, address);
	if (!pmd) {
		result = SCAN_PMD_NULL;
1096
		mmap_read_unlock(mm);
1097 1098 1099 1100
		goto out_nolock;
	}

	/*
1101 1102
	 * __collapse_huge_page_swapin always returns with mmap_lock locked.
	 * If it fails, we release mmap_lock and jump out_nolock.
1103 1104
	 * Continuing to collapse causes inconsistency.
	 */
1105 1106
	if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
						     pmd, referenced)) {
1107
		mmap_read_unlock(mm);
1108 1109 1110
		goto out_nolock;
	}

1111
	mmap_read_unlock(mm);
1112 1113 1114 1115 1116
	/*
	 * Prevent all access to pagetables with the exception of
	 * gup_fast later handled by the ptep_clear_flush and the VM
	 * handled by the anon_vma lock + PG_lock.
	 */
1117
	mmap_write_lock(mm);
1118
	result = hugepage_vma_revalidate(mm, address, &vma);
1119 1120 1121 1122 1123 1124 1125 1126
	if (result)
		goto out;
	/* check if the pmd is still valid */
	if (mm_find_pmd(mm, address) != pmd)
		goto out;

	anon_vma_lock_write(vma->anon_vma);

1127
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1128
				address, address + HPAGE_PMD_SIZE);
1129
	mmu_notifier_invalidate_range_start(&range);
1130 1131 1132 1133

	pte = pte_offset_map(pmd, address);
	pte_ptl = pte_lockptr(mm, pmd);

1134 1135 1136 1137 1138 1139 1140 1141 1142
	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
	/*
	 * After this gup_fast can't run anymore. This also removes
	 * any huge TLB entry from the CPU so we won't allow
	 * huge and small TLB entries for the same virtual address
	 * to avoid the risk of CPU bugs in that area.
	 */
	_pmd = pmdp_collapse_flush(vma, address, pmd);
	spin_unlock(pmd_ptl);
1143
	mmu_notifier_invalidate_range_end(&range);
1144 1145

	spin_lock(pte_ptl);
1146 1147
	isolated = __collapse_huge_page_isolate(vma, address, pte,
			&compound_pagelist);
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	spin_unlock(pte_ptl);

	if (unlikely(!isolated)) {
		pte_unmap(pte);
		spin_lock(pmd_ptl);
		BUG_ON(!pmd_none(*pmd));
		/*
		 * We can only use set_pmd_at when establishing
		 * hugepmds and never for establishing regular pmds that
		 * points to regular pagetables. Use pmd_populate for that
		 */
		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
		spin_unlock(pmd_ptl);
		anon_vma_unlock_write(vma->anon_vma);
		result = SCAN_FAIL;
		goto out;
	}

	/*
	 * All pages are isolated and locked so anon_vma rmap
	 * can't run anymore.
	 */
	anon_vma_unlock_write(vma->anon_vma);

1172 1173
	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
			&compound_pagelist);
1174 1175 1176 1177 1178
	pte_unmap(pte);
	__SetPageUptodate(new_page);
	pgtable = pmd_pgtable(_pmd);

	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1179
	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

	/*
	 * spin_lock() below is not the equivalent of smp_wmb(), so
	 * this is needed to avoid the copy_huge_page writes to become
	 * visible after the set_pmd_at() write.
	 */
	smp_wmb();

	spin_lock(pmd_ptl);
	BUG_ON(!pmd_none(*pmd));
1190
	page_add_new_anon_rmap(new_page, vma, address, true);
1191
	lru_cache_add_inactive_or_unevictable(new_page, vma);
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	pgtable_trans_huge_deposit(mm, pmd, pgtable);
	set_pmd_at(mm, address, pmd, _pmd);
	update_mmu_cache_pmd(vma, address, pmd);
	spin_unlock(pmd_ptl);

	*hpage = NULL;

	khugepaged_pages_collapsed++;
	result = SCAN_SUCCEED;
out_up_write:
1202
	mmap_write_unlock(mm);
1203
out_nolock:
1204 1205
	if (!IS_ERR_OR_NULL(*hpage))
		mem_cgroup_uncharge(*hpage);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	trace_mm_collapse_huge_page(mm, isolated, result);
	return;
out:
	goto out_up_write;
}

static int khugepaged_scan_pmd(struct mm_struct *mm,
			       struct vm_area_struct *vma,
			       unsigned long address,
			       struct page **hpage)
{
	pmd_t *pmd;
	pte_t *pte, *_pte;
1219 1220
	int ret = 0, result = 0, referenced = 0;
	int none_or_zero = 0, shared = 0;
1221 1222 1223 1224
	struct page *page = NULL;
	unsigned long _address;
	spinlock_t *ptl;
	int node = NUMA_NO_NODE, unmapped = 0;
1225
	bool writable = false;
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	pmd = mm_find_pmd(mm, address);
	if (!pmd) {
		result = SCAN_PMD_NULL;
		goto out;
	}

	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
	     _pte++, _address += PAGE_SIZE) {
		pte_t pteval = *_pte;
		if (is_swap_pte(pteval)) {
			if (++unmapped <= khugepaged_max_ptes_swap) {
1242 1243 1244 1245 1246 1247 1248 1249 1250
				/*
				 * Always be strict with uffd-wp
				 * enabled swap entries.  Please see
				 * comment below for pte_uffd_wp().
				 */
				if (pte_swp_uffd_wp(pteval)) {
					result = SCAN_PTE_UFFD_WP;
					goto out_unmap;
				}
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
				continue;
			} else {
				result = SCAN_EXCEED_SWAP_PTE;
				goto out_unmap;
			}
		}
		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
			if (!userfaultfd_armed(vma) &&
			    ++none_or_zero <= khugepaged_max_ptes_none) {
				continue;
			} else {
				result = SCAN_EXCEED_NONE_PTE;
				goto out_unmap;
			}
		}
		if (!pte_present(pteval)) {
			result = SCAN_PTE_NON_PRESENT;
			goto out_unmap;
		}
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
		if (pte_uffd_wp(pteval)) {
			/*
			 * Don't collapse the page if any of the small
			 * PTEs are armed with uffd write protection.
			 * Here we can also mark the new huge pmd as
			 * write protected if any of the small ones is
			 * marked but that could bring uknown
			 * userfault messages that falls outside of
			 * the registered range.  So, just be simple.
			 */
			result = SCAN_PTE_UFFD_WP;
			goto out_unmap;
		}
1283 1284 1285 1286 1287 1288 1289 1290 1291
		if (pte_write(pteval))
			writable = true;

		page = vm_normal_page(vma, _address, pteval);
		if (unlikely(!page)) {
			result = SCAN_PAGE_NULL;
			goto out_unmap;
		}

1292 1293 1294 1295 1296 1297
		if (page_mapcount(page) > 1 &&
				++shared > khugepaged_max_ptes_shared) {
			result = SCAN_EXCEED_SHARED_PTE;
			goto out_unmap;
		}

1298
		page = compound_head(page);
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

		/*
		 * Record which node the original page is from and save this
		 * information to khugepaged_node_load[].
		 * Khupaged will allocate hugepage from the node has the max
		 * hit record.
		 */
		node = page_to_nid(page);
		if (khugepaged_scan_abort(node)) {
			result = SCAN_SCAN_ABORT;
			goto out_unmap;
		}
		khugepaged_node_load[node]++;
		if (!PageLRU(page)) {
			result = SCAN_PAGE_LRU;
			goto out_unmap;
		}
		if (PageLocked(page)) {
			result = SCAN_PAGE_LOCK;
			goto out_unmap;
		}
		if (!PageAnon(page)) {
			result = SCAN_PAGE_ANON;
			goto out_unmap;
		}

		/*
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		 * Check if the page has any GUP (or other external) pins.
		 *
		 * Here the check is racy it may see totmal_mapcount > refcount
		 * in some cases.
		 * For example, one process with one forked child process.
		 * The parent has the PMD split due to MADV_DONTNEED, then
		 * the child is trying unmap the whole PMD, but khugepaged
		 * may be scanning the parent between the child has
		 * PageDoubleMap flag cleared and dec the mapcount.  So
		 * khugepaged may see total_mapcount > refcount.
		 *
		 * But such case is ephemeral we could always retry collapse
		 * later.  However it may report false positive if the page
		 * has excessive GUP pins (i.e. 512).  Anyway the same check
		 * will be done again later the risk seems low.
1341
		 */
1342
		if (!is_refcount_suitable(page)) {
1343 1344 1345 1346 1347 1348
			result = SCAN_PAGE_COUNT;
			goto out_unmap;
		}
		if (pte_young(pteval) ||
		    page_is_young(page) || PageReferenced(page) ||
		    mmu_notifier_test_young(vma->vm_mm, address))
1349
			referenced++;
1350
	}
1351
	if (!writable) {
1352
		result = SCAN_PAGE_RO;
1353 1354 1355 1356 1357
	} else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
		result = SCAN_LACK_REFERENCED_PAGE;
	} else {
		result = SCAN_SUCCEED;
		ret = 1;
1358 1359 1360 1361 1362
	}
out_unmap:
	pte_unmap_unlock(pte, ptl);
	if (ret) {
		node = khugepaged_find_target_node();
1363
		/* collapse_huge_page will return with the mmap_lock released */
1364 1365
		collapse_huge_page(mm, address, hpage, node,
				referenced, unmapped);
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	}
out:
	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
				     none_or_zero, result, unmapped);
	return ret;
}

static void collect_mm_slot(struct mm_slot *mm_slot)
{
	struct mm_struct *mm = mm_slot->mm;

1377
	lockdep_assert_held(&khugepaged_mm_lock);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395

	if (khugepaged_test_exit(mm)) {
		/* free mm_slot */
		hash_del(&mm_slot->hash);
		list_del(&mm_slot->mm_node);

		/*
		 * Not strictly needed because the mm exited already.
		 *
		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
		 */

		/* khugepaged_mm_lock actually not necessary for the below */
		free_mm_slot(mm_slot);
		mmdrop(mm);
	}
}

1396
#ifdef CONFIG_SHMEM
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
/*
 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
 * khugepaged should try to collapse the page table.
 */
static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
					 unsigned long addr)
{
	struct mm_slot *mm_slot;

	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);

	spin_lock(&khugepaged_mm_lock);
	mm_slot = get_mm_slot(mm);
	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
	spin_unlock(&khugepaged_mm_lock);
	return 0;
}

/**
 * Try to collapse a pte-mapped THP for mm at address haddr.
 *
 * This function checks whether all the PTEs in the PMD are pointing to the
 * right THP. If so, retract the page table so the THP can refault in with
 * as pmd-mapped.
 */
void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
{
	unsigned long haddr = addr & HPAGE_PMD_MASK;
	struct vm_area_struct *vma = find_vma(mm, haddr);
1427
	struct page *hpage;
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	pte_t *start_pte, *pte;
	pmd_t *pmd, _pmd;
	spinlock_t *ptl;
	int count = 0;
	int i;

	if (!vma || !vma->vm_file ||
	    vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE)
		return;

	/*
	 * This vm_flags may not have VM_HUGEPAGE if the page was not
	 * collapsed by this mm. But we can still collapse if the page is
	 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
	 * will not fail the vma for missing VM_HUGEPAGE
	 */
	if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
		return;

1447 1448 1449 1450 1451 1452 1453 1454
	hpage = find_lock_page(vma->vm_file->f_mapping,
			       linear_page_index(vma, haddr));
	if (!hpage)
		return;

	if (!PageHead(hpage))
		goto drop_hpage;

1455 1456
	pmd = mm_find_pmd(mm, haddr);
	if (!pmd)
1457
		goto drop_hpage;
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476

	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);

	/* step 1: check all mapped PTEs are to the right huge page */
	for (i = 0, addr = haddr, pte = start_pte;
	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
		struct page *page;

		/* empty pte, skip */
		if (pte_none(*pte))
			continue;

		/* page swapped out, abort */
		if (!pte_present(*pte))
			goto abort;

		page = vm_normal_page(vma, addr, *pte);

		/*
1477 1478
		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
		 * page table, but the new page will not be a subpage of hpage.
1479
		 */
1480
		if (hpage + i != page)
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
			goto abort;
		count++;
	}

	/* step 2: adjust rmap */
	for (i = 0, addr = haddr, pte = start_pte;
	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
		struct page *page;

		if (pte_none(*pte))
			continue;
		page = vm_normal_page(vma, addr, *pte);
		page_remove_rmap(page, false);
	}

	pte_unmap_unlock(start_pte, ptl);

	/* step 3: set proper refcount and mm_counters. */
1499
	if (count) {
1500 1501 1502 1503 1504 1505
		page_ref_sub(hpage, count);
		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
	}

	/* step 4: collapse pmd */
	ptl = pmd_lock(vma->vm_mm, pmd);
1506
	_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1507 1508 1509
	spin_unlock(ptl);
	mm_dec_nr_ptes(mm);
	pte_free(mm, pmd_pgtable(_pmd));
1510 1511 1512 1513

drop_hpage:
	unlock_page(hpage);
	put_page(hpage);
1514 1515 1516 1517
	return;

abort:
	pte_unmap_unlock(start_pte, ptl);
1518
	goto drop_hpage;
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
}

static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
{
	struct mm_struct *mm = mm_slot->mm;
	int i;

	if (likely(mm_slot->nr_pte_mapped_thp == 0))
		return 0;

1529
	if (!mmap_write_trylock(mm))
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
		return -EBUSY;

	if (unlikely(khugepaged_test_exit(mm)))
		goto out;

	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);

out:
	mm_slot->nr_pte_mapped_thp = 0;
1540
	mmap_write_unlock(mm);
1541 1542 1543
	return 0;
}

1544 1545 1546
static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
{
	struct vm_area_struct *vma;
1547
	struct mm_struct *mm;
1548 1549 1550 1551 1552
	unsigned long addr;
	pmd_t *pmd, _pmd;

	i_mmap_lock_write(mapping);
	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1553 1554 1555
		/*
		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
		 * got written to. These VMAs are likely not worth investing
1556
		 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1557 1558 1559
		 * later.
		 *
		 * Not that vma->anon_vma check is racy: it can be set up after
1560
		 * the check but before we took mmap_lock by the fault path.
1561 1562 1563 1564 1565 1566 1567 1568
		 * But page lock would prevent establishing any new ptes of the
		 * page, so we are safe.
		 *
		 * An alternative would be drop the check, but check that page
		 * table is clear before calling pmdp_collapse_flush() under
		 * ptl. It has higher chance to recover THP for the VMA, but
		 * has higher cost too.
		 */
1569 1570 1571 1572 1573 1574 1575
		if (vma->anon_vma)
			continue;
		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
		if (addr & ~HPAGE_PMD_MASK)
			continue;
		if (vma->vm_end < addr + HPAGE_PMD_SIZE)
			continue;
1576 1577
		mm = vma->vm_mm;
		pmd = mm_find_pmd(mm, addr);
1578 1579 1580
		if (!pmd)
			continue;
		/*
1581
		 * We need exclusive mmap_lock to retract page table.
1582 1583
		 *
		 * We use trylock due to lock inversion: we need to acquire
1584
		 * mmap_lock while holding page lock. Fault path does it in
1585
		 * reverse order. Trylock is a way to avoid deadlock.
1586
		 */
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
		if (mmap_write_trylock(mm)) {
			if (!khugepaged_test_exit(mm)) {
				spinlock_t *ptl = pmd_lock(mm, pmd);
				/* assume page table is clear */
				_pmd = pmdp_collapse_flush(vma, addr, pmd);
				spin_unlock(ptl);
				mm_dec_nr_ptes(mm);
				pte_free(mm, pmd_pgtable(_pmd));
			}
			mmap_write_unlock(mm);
1597 1598
		} else {
			/* Try again later */
1599
			khugepaged_add_pte_mapped_thp(mm, addr);
1600 1601 1602 1603 1604 1605
		}
	}
	i_mmap_unlock_write(mapping);
}

/**
1606
 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1607 1608
 *
 * Basic scheme is simple, details are more complex:
1609
 *  - allocate and lock a new huge page;
1610
 *  - scan page cache replacing old pages with the new one
1611
 *    + swap/gup in pages if necessary;
1612
 *    + fill in gaps;
1613 1614
 *    + keep old pages around in case rollback is required;
 *  - if replacing succeeds:
1615 1616
 *    + copy data over;
 *    + free old pages;
1617
 *    + unlock huge page;
1618 1619
 *  - if replacing failed;
 *    + put all pages back and unfreeze them;
1620
 *    + restore gaps in the page cache;
1621
 *    + unlock and free huge page;
1622
 */
1623 1624
static void collapse_file(struct mm_struct *mm,
		struct file *file, pgoff_t start,
1625 1626
		struct page **hpage, int node)
{
1627
	struct address_space *mapping = file->f_mapping;
1628
	gfp_t gfp;
1629
	struct page *new_page;
1630 1631
	pgoff_t index, end = start + HPAGE_PMD_NR;
	LIST_HEAD(pagelist);
1632
	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1633
	int nr_none = 0, result = SCAN_SUCCEED;
1634
	bool is_shmem = shmem_file(file);
1635

1636
	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1637 1638 1639
	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));

	/* Only allocate from the target node */
M
Michal Hocko 已提交
1640
	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1641 1642 1643 1644 1645 1646 1647

	new_page = khugepaged_alloc_page(hpage, gfp, node);
	if (!new_page) {
		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
		goto out;
	}

1648
	if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1649 1650 1651
		result = SCAN_CGROUP_CHARGE_FAIL;
		goto out;
	}
1652
	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1653

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	/* This will be less messy when we use multi-index entries */
	do {
		xas_lock_irq(&xas);
		xas_create_range(&xas);
		if (!xas_error(&xas))
			break;
		xas_unlock_irq(&xas);
		if (!xas_nomem(&xas, GFP_KERNEL)) {
			result = SCAN_FAIL;
			goto out;
		}
	} while (1);

1667
	__SetPageLocked(new_page);
1668 1669
	if (is_shmem)
		__SetPageSwapBacked(new_page);
1670 1671 1672 1673
	new_page->index = start;
	new_page->mapping = mapping;

	/*
1674 1675 1676
	 * At this point the new_page is locked and not up-to-date.
	 * It's safe to insert it into the page cache, because nobody would
	 * be able to map it or use it in another way until we unlock it.
1677 1678
	 */

1679 1680 1681 1682 1683
	xas_set(&xas, start);
	for (index = start; index < end; index++) {
		struct page *page = xas_next(&xas);

		VM_BUG_ON(index != xas.xa_index);
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
		if (is_shmem) {
			if (!page) {
				/*
				 * Stop if extent has been truncated or
				 * hole-punched, and is now completely
				 * empty.
				 */
				if (index == start) {
					if (!xas_next_entry(&xas, end - 1)) {
						result = SCAN_TRUNCATED;
						goto xa_locked;
					}
					xas_set(&xas, index);
				}
				if (!shmem_charge(mapping->host, 1)) {
					result = SCAN_FAIL;
1700
					goto xa_locked;
1701
				}
1702 1703 1704
				xas_store(&xas, new_page);
				nr_none++;
				continue;
1705
			}
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

			if (xa_is_value(page) || !PageUptodate(page)) {
				xas_unlock_irq(&xas);
				/* swap in or instantiate fallocated page */
				if (shmem_getpage(mapping->host, index, &page,
						  SGP_NOHUGE)) {
					result = SCAN_FAIL;
					goto xa_unlocked;
				}
			} else if (trylock_page(page)) {
				get_page(page);
				xas_unlock_irq(&xas);
			} else {
				result = SCAN_PAGE_LOCK;
1720
				goto xa_locked;
1721
			}
1722 1723 1724 1725 1726
		} else {	/* !is_shmem */
			if (!page || xa_is_value(page)) {
				xas_unlock_irq(&xas);
				page_cache_sync_readahead(mapping, &file->f_ra,
							  file, index,
1727
							  end - index);
1728 1729 1730 1731 1732 1733 1734
				/* drain pagevecs to help isolate_lru_page() */
				lru_add_drain();
				page = find_lock_page(mapping, index);
				if (unlikely(page == NULL)) {
					result = SCAN_FAIL;
					goto xa_unlocked;
				}
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
			} else if (PageDirty(page)) {
				/*
				 * khugepaged only works on read-only fd,
				 * so this page is dirty because it hasn't
				 * been flushed since first write. There
				 * won't be new dirty pages.
				 *
				 * Trigger async flush here and hope the
				 * writeback is done when khugepaged
				 * revisits this page.
				 *
				 * This is a one-off situation. We are not
				 * forcing writeback in loop.
				 */
				xas_unlock_irq(&xas);
				filemap_flush(mapping);
				result = SCAN_FAIL;
				goto xa_unlocked;
1753 1754 1755 1756 1757 1758
			} else if (trylock_page(page)) {
				get_page(page);
				xas_unlock_irq(&xas);
			} else {
				result = SCAN_PAGE_LOCK;
				goto xa_locked;
1759 1760 1761 1762
			}
		}

		/*
M
Matthew Wilcox 已提交
1763
		 * The page must be locked, so we can drop the i_pages lock
1764 1765 1766
		 * without racing with truncate.
		 */
		VM_BUG_ON_PAGE(!PageLocked(page), page);
1767 1768 1769 1770 1771 1772

		/* make sure the page is up to date */
		if (unlikely(!PageUptodate(page))) {
			result = SCAN_FAIL;
			goto out_unlock;
		}
1773 1774 1775 1776 1777 1778 1779 1780 1781

		/*
		 * If file was truncated then extended, or hole-punched, before
		 * we locked the first page, then a THP might be there already.
		 */
		if (PageTransCompound(page)) {
			result = SCAN_PAGE_COMPOUND;
			goto out_unlock;
		}
1782 1783 1784 1785 1786 1787

		if (page_mapping(page) != mapping) {
			result = SCAN_TRUNCATED;
			goto out_unlock;
		}

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
		if (!is_shmem && PageDirty(page)) {
			/*
			 * khugepaged only works on read-only fd, so this
			 * page is dirty because it hasn't been flushed
			 * since first write.
			 */
			result = SCAN_FAIL;
			goto out_unlock;
		}

1798 1799
		if (isolate_lru_page(page)) {
			result = SCAN_DEL_PAGE_LRU;
1800
			goto out_unlock;
1801 1802
		}

1803 1804 1805
		if (page_has_private(page) &&
		    !try_to_release_page(page, GFP_KERNEL)) {
			result = SCAN_PAGE_HAS_PRIVATE;
1806
			putback_lru_page(page);
1807 1808 1809
			goto out_unlock;
		}

1810
		if (page_mapped(page))
M
Matthew Wilcox 已提交
1811
			unmap_mapping_pages(mapping, index, 1, false);
1812

1813 1814
		xas_lock_irq(&xas);
		xas_set(&xas, index);
1815

1816
		VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1817 1818 1819 1820 1821
		VM_BUG_ON_PAGE(page_mapped(page), page);

		/*
		 * The page is expected to have page_count() == 3:
		 *  - we hold a pin on it;
1822
		 *  - one reference from page cache;
1823 1824 1825 1826
		 *  - one from isolate_lru_page;
		 */
		if (!page_ref_freeze(page, 3)) {
			result = SCAN_PAGE_COUNT;
1827 1828 1829
			xas_unlock_irq(&xas);
			putback_lru_page(page);
			goto out_unlock;
1830 1831 1832 1833 1834 1835 1836 1837 1838
		}

		/*
		 * Add the page to the list to be able to undo the collapse if
		 * something go wrong.
		 */
		list_add_tail(&page->lru, &pagelist);

		/* Finally, replace with the new page. */
1839
		xas_store(&xas, new_page);
1840 1841 1842 1843
		continue;
out_unlock:
		unlock_page(page);
		put_page(page);
1844
		goto xa_unlocked;
1845 1846
	}

1847 1848
	if (is_shmem)
		__inc_node_page_state(new_page, NR_SHMEM_THPS);
1849
	else {
1850
		__inc_node_page_state(new_page, NR_FILE_THPS);
1851 1852
		filemap_nr_thps_inc(mapping);
	}
1853

1854
	if (nr_none) {
1855
		__mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1856
		if (is_shmem)
1857
			__mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1858 1859 1860 1861
	}

xa_locked:
	xas_unlock_irq(&xas);
1862
xa_unlocked:
1863

1864
	if (result == SCAN_SUCCEED) {
1865
		struct page *page, *tmp;
1866 1867

		/*
1868 1869
		 * Replacing old pages with new one has succeeded, now we
		 * need to copy the content and free the old pages.
1870
		 */
1871
		index = start;
1872
		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1873 1874 1875 1876
			while (index < page->index) {
				clear_highpage(new_page + (index % HPAGE_PMD_NR));
				index++;
			}
1877 1878 1879 1880
			copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
					page);
			list_del(&page->lru);
			page->mapping = NULL;
1881
			page_ref_unfreeze(page, 1);
1882 1883
			ClearPageActive(page);
			ClearPageUnevictable(page);
1884
			unlock_page(page);
1885
			put_page(page);
1886 1887 1888 1889 1890
			index++;
		}
		while (index < end) {
			clear_highpage(new_page + (index % HPAGE_PMD_NR));
			index++;
1891 1892 1893
		}

		SetPageUptodate(new_page);
1894
		page_ref_add(new_page, HPAGE_PMD_NR - 1);
1895
		if (is_shmem)
1896
			set_page_dirty(new_page);
1897
		lru_cache_add(new_page);
1898

1899 1900 1901 1902
		/*
		 * Remove pte page tables, so we can re-fault the page as huge.
		 */
		retract_page_tables(mapping, start);
1903
		*hpage = NULL;
1904 1905

		khugepaged_pages_collapsed++;
1906
	} else {
1907
		struct page *page;
1908

1909 1910
		/* Something went wrong: roll back page cache changes */
		xas_lock_irq(&xas);
1911
		mapping->nrpages -= nr_none;
1912 1913 1914

		if (is_shmem)
			shmem_uncharge(mapping->host, nr_none);
1915

1916 1917
		xas_set(&xas, start);
		xas_for_each(&xas, page, end - 1) {
1918 1919
			page = list_first_entry_or_null(&pagelist,
					struct page, lru);
1920
			if (!page || xas.xa_index < page->index) {
1921 1922 1923
				if (!nr_none)
					break;
				nr_none--;
1924
				/* Put holes back where they were */
1925
				xas_store(&xas, NULL);
1926 1927 1928
				continue;
			}

1929
			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1930 1931 1932 1933

			/* Unfreeze the page. */
			list_del(&page->lru);
			page_ref_unfreeze(page, 2);
1934 1935 1936
			xas_store(&xas, page);
			xas_pause(&xas);
			xas_unlock_irq(&xas);
1937
			unlock_page(page);
1938
			putback_lru_page(page);
1939
			xas_lock_irq(&xas);
1940 1941
		}
		VM_BUG_ON(nr_none);
1942
		xas_unlock_irq(&xas);
1943 1944 1945

		new_page->mapping = NULL;
	}
1946 1947

	unlock_page(new_page);
1948 1949
out:
	VM_BUG_ON(!list_empty(&pagelist));
1950 1951
	if (!IS_ERR_OR_NULL(*hpage))
		mem_cgroup_uncharge(*hpage);
1952 1953 1954
	/* TODO: tracepoints */
}

1955 1956
static void khugepaged_scan_file(struct mm_struct *mm,
		struct file *file, pgoff_t start, struct page **hpage)
1957 1958
{
	struct page *page = NULL;
1959
	struct address_space *mapping = file->f_mapping;
1960
	XA_STATE(xas, &mapping->i_pages, start);
1961 1962 1963 1964 1965 1966 1967 1968
	int present, swap;
	int node = NUMA_NO_NODE;
	int result = SCAN_SUCCEED;

	present = 0;
	swap = 0;
	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
	rcu_read_lock();
1969 1970
	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
		if (xas_retry(&xas, page))
1971 1972
			continue;

1973
		if (xa_is_value(page)) {
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
			if (++swap > khugepaged_max_ptes_swap) {
				result = SCAN_EXCEED_SWAP_PTE;
				break;
			}
			continue;
		}

		if (PageTransCompound(page)) {
			result = SCAN_PAGE_COMPOUND;
			break;
		}

		node = page_to_nid(page);
		if (khugepaged_scan_abort(node)) {
			result = SCAN_SCAN_ABORT;
			break;
		}
		khugepaged_node_load[node]++;

		if (!PageLRU(page)) {
			result = SCAN_PAGE_LRU;
			break;
		}

1998 1999
		if (page_count(page) !=
		    1 + page_mapcount(page) + page_has_private(page)) {
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
			result = SCAN_PAGE_COUNT;
			break;
		}

		/*
		 * We probably should check if the page is referenced here, but
		 * nobody would transfer pte_young() to PageReferenced() for us.
		 * And rmap walk here is just too costly...
		 */

		present++;

		if (need_resched()) {
2013
			xas_pause(&xas);
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
			cond_resched_rcu();
		}
	}
	rcu_read_unlock();

	if (result == SCAN_SUCCEED) {
		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
			result = SCAN_EXCEED_NONE_PTE;
		} else {
			node = khugepaged_find_target_node();
2024
			collapse_file(mm, file, start, hpage, node);
2025 2026 2027 2028 2029 2030
		}
	}

	/* TODO: tracepoints */
}
#else
2031 2032
static void khugepaged_scan_file(struct mm_struct *mm,
		struct file *file, pgoff_t start, struct page **hpage)
2033 2034 2035
{
	BUILD_BUG();
}
2036 2037 2038 2039 2040

static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
{
	return 0;
}
2041 2042
#endif

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
					    struct page **hpage)
	__releases(&khugepaged_mm_lock)
	__acquires(&khugepaged_mm_lock)
{
	struct mm_slot *mm_slot;
	struct mm_struct *mm;
	struct vm_area_struct *vma;
	int progress = 0;

	VM_BUG_ON(!pages);
2054
	lockdep_assert_held(&khugepaged_mm_lock);
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064

	if (khugepaged_scan.mm_slot)
		mm_slot = khugepaged_scan.mm_slot;
	else {
		mm_slot = list_entry(khugepaged_scan.mm_head.next,
				     struct mm_slot, mm_node);
		khugepaged_scan.address = 0;
		khugepaged_scan.mm_slot = mm_slot;
	}
	spin_unlock(&khugepaged_mm_lock);
2065
	khugepaged_collapse_pte_mapped_thps(mm_slot);
2066 2067

	mm = mm_slot->mm;
2068 2069 2070 2071 2072
	/*
	 * Don't wait for semaphore (to avoid long wait times).  Just move to
	 * the next mm on the list.
	 */
	vma = NULL;
2073
	if (unlikely(!mmap_read_trylock(mm)))
2074
		goto breakouterloop_mmap_lock;
2075
	if (likely(!khugepaged_test_exit(mm)))
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
		vma = find_vma(mm, khugepaged_scan.address);

	progress++;
	for (; vma; vma = vma->vm_next) {
		unsigned long hstart, hend;

		cond_resched();
		if (unlikely(khugepaged_test_exit(mm))) {
			progress++;
			break;
		}
2087
		if (!hugepage_vma_check(vma, vma->vm_flags)) {
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
skip:
			progress++;
			continue;
		}
		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
		hend = vma->vm_end & HPAGE_PMD_MASK;
		if (hstart >= hend)
			goto skip;
		if (khugepaged_scan.address > hend)
			goto skip;
		if (khugepaged_scan.address < hstart)
			khugepaged_scan.address = hstart;
		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2101 2102
		if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
			goto skip;
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

		while (khugepaged_scan.address < hend) {
			int ret;
			cond_resched();
			if (unlikely(khugepaged_test_exit(mm)))
				goto breakouterloop;

			VM_BUG_ON(khugepaged_scan.address < hstart ||
				  khugepaged_scan.address + HPAGE_PMD_SIZE >
				  hend);
2113
			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2114
				struct file *file = get_file(vma->vm_file);
2115 2116
				pgoff_t pgoff = linear_page_index(vma,
						khugepaged_scan.address);
2117

2118
				mmap_read_unlock(mm);
2119
				ret = 1;
2120
				khugepaged_scan_file(mm, file, pgoff, hpage);
2121 2122 2123 2124 2125 2126
				fput(file);
			} else {
				ret = khugepaged_scan_pmd(mm, vma,
						khugepaged_scan.address,
						hpage);
			}
2127 2128 2129 2130
			/* move to next address */
			khugepaged_scan.address += HPAGE_PMD_SIZE;
			progress += HPAGE_PMD_NR;
			if (ret)
2131 2132
				/* we released mmap_lock so break loop */
				goto breakouterloop_mmap_lock;
2133 2134 2135 2136 2137
			if (progress >= pages)
				goto breakouterloop;
		}
	}
breakouterloop:
2138
	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2139
breakouterloop_mmap_lock:
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189

	spin_lock(&khugepaged_mm_lock);
	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
	/*
	 * Release the current mm_slot if this mm is about to die, or
	 * if we scanned all vmas of this mm.
	 */
	if (khugepaged_test_exit(mm) || !vma) {
		/*
		 * Make sure that if mm_users is reaching zero while
		 * khugepaged runs here, khugepaged_exit will find
		 * mm_slot not pointing to the exiting mm.
		 */
		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
			khugepaged_scan.mm_slot = list_entry(
				mm_slot->mm_node.next,
				struct mm_slot, mm_node);
			khugepaged_scan.address = 0;
		} else {
			khugepaged_scan.mm_slot = NULL;
			khugepaged_full_scans++;
		}

		collect_mm_slot(mm_slot);
	}

	return progress;
}

static int khugepaged_has_work(void)
{
	return !list_empty(&khugepaged_scan.mm_head) &&
		khugepaged_enabled();
}

static int khugepaged_wait_event(void)
{
	return !list_empty(&khugepaged_scan.mm_head) ||
		kthread_should_stop();
}

static void khugepaged_do_scan(void)
{
	struct page *hpage = NULL;
	unsigned int progress = 0, pass_through_head = 0;
	unsigned int pages = khugepaged_pages_to_scan;
	bool wait = true;

	barrier(); /* write khugepaged_pages_to_scan to local stack */

2190 2191
	lru_add_drain_all();

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
	while (progress < pages) {
		if (!khugepaged_prealloc_page(&hpage, &wait))
			break;

		cond_resched();

		if (unlikely(kthread_should_stop() || try_to_freeze()))
			break;

		spin_lock(&khugepaged_mm_lock);
		if (!khugepaged_scan.mm_slot)
			pass_through_head++;
		if (khugepaged_has_work() &&
		    pass_through_head < 2)
			progress += khugepaged_scan_mm_slot(pages - progress,
							    &hpage);
		else
			progress = pages;
		spin_unlock(&khugepaged_mm_lock);
	}

	if (!IS_ERR_OR_NULL(hpage))
		put_page(hpage);
}

static bool khugepaged_should_wakeup(void)
{
	return kthread_should_stop() ||
	       time_after_eq(jiffies, khugepaged_sleep_expire);
}

static void khugepaged_wait_work(void)
{
	if (khugepaged_has_work()) {
		const unsigned long scan_sleep_jiffies =
			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);

		if (!scan_sleep_jiffies)
			return;

		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
		wait_event_freezable_timeout(khugepaged_wait,
					     khugepaged_should_wakeup(),
					     scan_sleep_jiffies);
		return;
	}

	if (khugepaged_enabled())
		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
}

static int khugepaged(void *none)
{
	struct mm_slot *mm_slot;

	set_freezable();
	set_user_nice(current, MAX_NICE);

	while (!kthread_should_stop()) {
		khugepaged_do_scan();
		khugepaged_wait_work();
	}

	spin_lock(&khugepaged_mm_lock);
	mm_slot = khugepaged_scan.mm_slot;
	khugepaged_scan.mm_slot = NULL;
	if (mm_slot)
		collect_mm_slot(mm_slot);
	spin_unlock(&khugepaged_mm_lock);
	return 0;
}

static void set_recommended_min_free_kbytes(void)
{
	struct zone *zone;
	int nr_zones = 0;
	unsigned long recommended_min;

2270 2271 2272 2273 2274 2275 2276 2277
	for_each_populated_zone(zone) {
		/*
		 * We don't need to worry about fragmentation of
		 * ZONE_MOVABLE since it only has movable pages.
		 */
		if (zone_idx(zone) > gfp_zone(GFP_USER))
			continue;

2278
		nr_zones++;
2279
	}
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335

	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
	recommended_min = pageblock_nr_pages * nr_zones * 2;

	/*
	 * Make sure that on average at least two pageblocks are almost free
	 * of another type, one for a migratetype to fall back to and a
	 * second to avoid subsequent fallbacks of other types There are 3
	 * MIGRATE_TYPES we care about.
	 */
	recommended_min += pageblock_nr_pages * nr_zones *
			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;

	/* don't ever allow to reserve more than 5% of the lowmem */
	recommended_min = min(recommended_min,
			      (unsigned long) nr_free_buffer_pages() / 20);
	recommended_min <<= (PAGE_SHIFT-10);

	if (recommended_min > min_free_kbytes) {
		if (user_min_free_kbytes >= 0)
			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
				min_free_kbytes, recommended_min);

		min_free_kbytes = recommended_min;
	}
	setup_per_zone_wmarks();
}

int start_stop_khugepaged(void)
{
	int err = 0;

	mutex_lock(&khugepaged_mutex);
	if (khugepaged_enabled()) {
		if (!khugepaged_thread)
			khugepaged_thread = kthread_run(khugepaged, NULL,
							"khugepaged");
		if (IS_ERR(khugepaged_thread)) {
			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
			err = PTR_ERR(khugepaged_thread);
			khugepaged_thread = NULL;
			goto fail;
		}

		if (!list_empty(&khugepaged_scan.mm_head))
			wake_up_interruptible(&khugepaged_wait);

		set_recommended_min_free_kbytes();
	} else if (khugepaged_thread) {
		kthread_stop(khugepaged_thread);
		khugepaged_thread = NULL;
	}
fail:
	mutex_unlock(&khugepaged_mutex);
	return err;
}
2336 2337 2338 2339 2340 2341 2342 2343

void khugepaged_min_free_kbytes_update(void)
{
	mutex_lock(&khugepaged_mutex);
	if (khugepaged_enabled() && khugepaged_thread)
		set_recommended_min_free_kbytes();
	mutex_unlock(&khugepaged_mutex);
}