m25p80.c 27.2 KB
Newer Older
1
/*
2
 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * Author: Mike Lavender, mike@steroidmicros.com
 *
 * Copyright (c) 2005, Intec Automation Inc.
 *
 * Some parts are based on lart.c by Abraham Van Der Merwe
 *
 * Cleaned up and generalized based on mtd_dataflash.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/init.h>
19 20
#include <linux/err.h>
#include <linux/errno.h>
21 22 23
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
D
David Brownell 已提交
24
#include <linux/mutex.h>
25
#include <linux/math64.h>
26
#include <linux/slab.h>
27
#include <linux/sched.h>
28
#include <linux/mod_devicetable.h>
D
David Brownell 已提交
29

30
#include <linux/mtd/cfi.h>
31 32
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
33
#include <linux/of_platform.h>
D
David Brownell 已提交
34

35 36 37 38
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>

/* Flash opcodes. */
39 40
#define	OPCODE_WREN		0x06	/* Write enable */
#define	OPCODE_RDSR		0x05	/* Read status register */
41
#define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
42
#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
43 44
#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
45
#define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
46
#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
47
#define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
48
#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
49 50
#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */

51 52 53 54 55
/* Used for SST flashes only. */
#define	OPCODE_BP		0x02	/* Byte program */
#define	OPCODE_WRDI		0x04	/* Write disable */
#define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */

56 57 58 59
/* Used for Macronix flashes only. */
#define	OPCODE_EN4B		0xb7	/* Enter 4-byte mode */
#define	OPCODE_EX4B		0xe9	/* Exit 4-byte mode */

60 61 62
/* Used for Spansion flashes only. */
#define	OPCODE_BRWR		0x17	/* Bank register write */

63 64 65
/* Status Register bits. */
#define	SR_WIP			1	/* Write in progress */
#define	SR_WEL			2	/* Write enable latch */
66
/* meaning of other SR_* bits may differ between vendors */
67 68 69 70 71 72
#define	SR_BP0			4	/* Block protect 0 */
#define	SR_BP1			8	/* Block protect 1 */
#define	SR_BP2			0x10	/* Block protect 2 */
#define	SR_SRWD			0x80	/* SR write protect */

/* Define max times to check status register before we give up. */
73
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
74
#define	MAX_CMD_SIZE		5
75

76 77 78 79 80 81 82
#ifdef CONFIG_M25PXX_USE_FAST_READ
#define OPCODE_READ 	OPCODE_FAST_READ
#define FAST_READ_DUMMY_BYTE 1
#else
#define OPCODE_READ 	OPCODE_NORM_READ
#define FAST_READ_DUMMY_BYTE 0
#endif
83

84 85
#define JEDEC_MFR(_jedec_id)	((_jedec_id) >> 16)

86 87 88 89
/****************************************************************************/

struct m25p {
	struct spi_device	*spi;
D
David Brownell 已提交
90
	struct mutex		lock;
91
	struct mtd_info		mtd;
92 93
	u16			page_size;
	u16			addr_width;
94
	u8			erase_opcode;
95
	u8			*command;
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
};

static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
	return container_of(mtd, struct m25p, mtd);
}

/****************************************************************************/

/*
 * Internal helper functions
 */

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct m25p *flash)
{
	ssize_t retval;
	u8 code = OPCODE_RDSR;
	u8 val;

	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

	if (retval < 0) {
		dev_err(&flash->spi->dev, "error %d reading SR\n",
				(int) retval);
		return retval;
	}

	return val;
}

131 132 133 134 135 136 137 138 139 140 141
/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static int write_sr(struct m25p *flash, u8 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val;

	return spi_write(flash->spi, flash->command, 2);
}
142 143 144 145 146 147 148 149 150

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct m25p *flash)
{
	u8	code = OPCODE_WREN;

151
	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
152 153
}

154 155 156 157 158 159 160 161 162
/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct m25p *flash)
{
	u8	code = OPCODE_WRDI;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
163

164 165 166
/*
 * Enable/disable 4-byte addressing mode.
 */
167
static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
168
{
169 170 171 172 173 174 175 176 177 178
	switch (JEDEC_MFR(jedec_id)) {
	case CFI_MFR_MACRONIX:
		flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
		return spi_write(flash->spi, flash->command, 1);
	default:
		/* Spansion style */
		flash->command[0] = OPCODE_BRWR;
		flash->command[1] = enable << 7;
		return spi_write(flash->spi, flash->command, 2);
	}
179 180
}

181 182 183 184 185 186
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct m25p *flash)
{
P
Peter Horton 已提交
187
	unsigned long deadline;
188 189
	int sr;

P
Peter Horton 已提交
190 191 192
	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

	do {
193 194 195 196 197
		if ((sr = read_sr(flash)) < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;

P
Peter Horton 已提交
198 199 200
		cond_resched();

	} while (!time_after_eq(jiffies, deadline));
201 202 203 204

	return 1;
}

C
Chen Gong 已提交
205 206 207 208 209
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
210
static int erase_chip(struct m25p *flash)
C
Chen Gong 已提交
211
{
212 213
	pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
			(long long)(flash->mtd.size >> 10));
C
Chen Gong 已提交
214 215 216 217 218 219 220 221 222

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
223
	flash->command[0] = OPCODE_CHIP_ERASE;
C
Chen Gong 已提交
224 225 226 227 228

	spi_write(flash->spi, flash->command, 1);

	return 0;
}
229

230 231 232 233 234 235
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
{
	/* opcode is in cmd[0] */
	cmd[1] = addr >> (flash->addr_width * 8 -  8);
	cmd[2] = addr >> (flash->addr_width * 8 - 16);
	cmd[3] = addr >> (flash->addr_width * 8 - 24);
236
	cmd[4] = addr >> (flash->addr_width * 8 - 32);
237 238 239 240 241 242 243
}

static int m25p_cmdsz(struct m25p *flash)
{
	return 1 + flash->addr_width;
}

244 245 246 247 248 249 250 251
/*
 * Erase one sector of flash memory at offset ``offset'' which is any
 * address within the sector which should be erased.
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_sector(struct m25p *flash, u32 offset)
{
252 253
	pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
			__func__, flash->mtd.erasesize / 1024, offset);
254 255 256 257 258 259 260 261 262

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
263
	flash->command[0] = flash->erase_opcode;
264
	m25p_addr2cmd(flash, offset, flash->command);
265

266
	spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

	return 0;
}

/****************************************************************************/

/*
 * MTD implementation
 */

/*
 * Erase an address range on the flash chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 addr,len;
285
	uint32_t rem;
286

287 288 289
	pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
			__func__, (long long)instr->addr,
			(long long)instr->len);
290

291 292
	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
293 294 295 296 297
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

D
David Brownell 已提交
298
	mutex_lock(&flash->lock);
299

300
	/* whole-chip erase? */
301 302 303 304 305 306
	if (len == flash->mtd.size) {
		if (erase_chip(flash)) {
			instr->state = MTD_ERASE_FAILED;
			mutex_unlock(&flash->lock);
			return -EIO;
		}
307 308 309 310 311 312 313

	/* REVISIT in some cases we could speed up erasing large regions
	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
C
Chen Gong 已提交
314 315 316 317 318 319 320 321 322 323
	} else {
		while (len) {
			if (erase_sector(flash, addr)) {
				instr->state = MTD_ERASE_FAILED;
				mutex_unlock(&flash->lock);
				return -EIO;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
324 325 326
		}
	}

D
David Brownell 已提交
327
	mutex_unlock(&flash->lock);
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

/*
 * Read an address range from the flash chip.  The address range
 * may be any size provided it is within the physical boundaries.
 */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;

346 347
	pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)from, len);
348 349 350 351 352

	/* sanity checks */
	if (!len)
		return 0;

353 354 355
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

356 357 358 359
	/* NOTE:
	 * OPCODE_FAST_READ (if available) is faster.
	 * Should add 1 byte DUMMY_BYTE.
	 */
360
	t[0].tx_buf = flash->command;
361
	t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE;
362 363 364 365 366 367 368
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = buf;
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

	/* Byte count starts at zero. */
D
Dan Carpenter 已提交
369
	*retlen = 0;
370

D
David Brownell 已提交
371
	mutex_lock(&flash->lock);
372 373 374 375

	/* Wait till previous write/erase is done. */
	if (wait_till_ready(flash)) {
		/* REVISIT status return?? */
D
David Brownell 已提交
376
		mutex_unlock(&flash->lock);
377 378 379
		return 1;
	}

380 381 382 383
	/* FIXME switch to OPCODE_FAST_READ.  It's required for higher
	 * clocks; and at this writing, every chip this driver handles
	 * supports that opcode.
	 */
384 385 386

	/* Set up the write data buffer. */
	flash->command[0] = OPCODE_READ;
387
	m25p_addr2cmd(flash, from, flash->command);
388 389 390

	spi_sync(flash->spi, &m);

391
	*retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE;
392

D
David Brownell 已提交
393
	mutex_unlock(&flash->lock);
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

	return 0;
}

/*
 * Write an address range to the flash chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 page_offset, page_size;
	struct spi_transfer t[2];
	struct spi_message m;

411 412
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
413

D
Dan Carpenter 已提交
414
	*retlen = 0;
415 416 417 418 419

	/* sanity checks */
	if (!len)
		return(0);

420 421 422 423
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
424
	t[0].len = m25p_cmdsz(flash);
425 426 427 428 429
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
430
	mutex_lock(&flash->lock);
431 432

	/* Wait until finished previous write command. */
C
Chen Gong 已提交
433 434
	if (wait_till_ready(flash)) {
		mutex_unlock(&flash->lock);
435
		return 1;
C
Chen Gong 已提交
436
	}
437 438 439 440 441

	write_enable(flash);

	/* Set up the opcode in the write buffer. */
	flash->command[0] = OPCODE_PP;
442
	m25p_addr2cmd(flash, to, flash->command);
443

444
	page_offset = to & (flash->page_size - 1);
445 446

	/* do all the bytes fit onto one page? */
447
	if (page_offset + len <= flash->page_size) {
448 449 450 451
		t[1].len = len;

		spi_sync(flash->spi, &m);

452
		*retlen = m.actual_length - m25p_cmdsz(flash);
453 454 455 456
	} else {
		u32 i;

		/* the size of data remaining on the first page */
457
		page_size = flash->page_size - page_offset;
458 459 460 461

		t[1].len = page_size;
		spi_sync(flash->spi, &m);

462
		*retlen = m.actual_length - m25p_cmdsz(flash);
463

464
		/* write everything in flash->page_size chunks */
465 466
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
467 468
			if (page_size > flash->page_size)
				page_size = flash->page_size;
469 470

			/* write the next page to flash */
471
			m25p_addr2cmd(flash, to + i, flash->command);
472 473 474 475 476 477 478 479 480 481

			t[1].tx_buf = buf + i;
			t[1].len = page_size;

			wait_till_ready(flash);

			write_enable(flash);

			spi_sync(flash->spi, &m);

D
Dan Carpenter 已提交
482
			*retlen += m.actual_length - m25p_cmdsz(flash);
D
David Brownell 已提交
483 484
		}
	}
485

D
David Brownell 已提交
486
	mutex_unlock(&flash->lock);
487 488 489 490

	return 0;
}

491 492 493 494 495 496 497 498 499
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
	size_t actual;
	int cmd_sz, ret;

500 501
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
502

D
Dan Carpenter 已提交
503
	*retlen = 0;
504 505 506 507 508 509 510 511 512

	/* sanity checks */
	if (!len)
		return 0;

	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
513
	t[0].len = m25p_cmdsz(flash);
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

	mutex_lock(&flash->lock);

	/* Wait until finished previous write command. */
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	write_enable(flash);

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
		flash->command[0] = OPCODE_BP;
532
		m25p_addr2cmd(flash, to, flash->command);
533 534 535 536 537 538 539

		/* write one byte. */
		t[1].len = 1;
		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
540
		*retlen += m.actual_length - m25p_cmdsz(flash);
541 542 543 544
	}
	to += actual;

	flash->command[0] = OPCODE_AAI_WP;
545
	m25p_addr2cmd(flash, to, flash->command);
546 547

	/* Write out most of the data here. */
548
	cmd_sz = m25p_cmdsz(flash);
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	for (; actual < len - 1; actual += 2) {
		t[0].len = cmd_sz;
		/* write two bytes. */
		t[1].len = 2;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - cmd_sz;
		cmd_sz = 1;
		to += 2;
	}
	write_disable(flash);
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(flash);
		flash->command[0] = OPCODE_BP;
572 573
		m25p_addr2cmd(flash, to, flash->command);
		t[0].len = m25p_cmdsz(flash);
574 575 576 577 578 579 580
		t[1].len = 1;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
581
		*retlen += m.actual_length - m25p_cmdsz(flash);
582 583 584 585 586 587 588
		write_disable(flash);
	}

time_out:
	mutex_unlock(&flash->lock);
	return ret;
}
589 590 591 592 593 594 595 596

/****************************************************************************/

/*
 * SPI device driver setup and teardown
 */

struct flash_info {
597 598 599 600 601
	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32		jedec_id;
602
	u16             ext_id;
603 604 605 606

	/* The size listed here is what works with OPCODE_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
607
	unsigned	sector_size;
608 609
	u16		n_sectors;

610 611 612
	u16		page_size;
	u16		addr_width;

613 614
	u16		flags;
#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
615
#define	M25P_NO_ERASE	0x02		/* No erase command needed */
616 617
};

618 619 620 621 622 623
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.jedec_id = (_jedec_id),				\
		.ext_id = (_ext_id),					\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
624
		.page_size = 256,					\
625 626
		.flags = (_flags),					\
	})
627

628 629 630 631 632 633 634 635
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
		.flags = M25P_NO_ERASE,					\
	})
636 637 638 639 640

/* NOTE: double check command sets and memory organization when you add
 * more flash chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
641
static const struct spi_device_id m25p_ids[] = {
642
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
643 644
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
645

646
	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
647
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
648
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
649

650 651 652
	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
653
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
654

655 656
	/* EON -- en25xxx */
	{ "en25f32", INFO(0x1c3116, 0, 64 * 1024,  64, SECT_4K) },
657
	{ "en25p32", INFO(0x1c2016, 0, 64 * 1024,  64, 0) },
658
	{ "en25q32b", INFO(0x1c3016, 0, 64 * 1024,  64, 0) },
659 660
	{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },

661 662 663 664 665
	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

666
	/* Macronix */
667
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
668
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
669
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
670 671 672 673
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
674
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
675
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
676

677 678 679
	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
680 681 682 683
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
684
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SECT_4K) },
685
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
686 687
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, 0) },
688 689
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
690 691 692 693
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
694 695
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
696 697

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
698 699 700 701 702 703 704 705
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K) },
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K) },
706 707

	/* ST Microelectronics -- newer production may have feature updates */
708 709 710 711 712 713 714 715 716 717
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

718 719 720 721 722 723 724 725 726 727
	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

728 729 730 731 732 733
	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
734

735 736 737 738
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
739

740
	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
741 742 743 744 745 746
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
747
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
748
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
749
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
750 751 752 753 754 755 756

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2) },
757
	{ },
758
};
759
MODULE_DEVICE_TABLE(spi, m25p_ids);
760

761
static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi)
762 763 764
{
	int			tmp;
	u8			code = OPCODE_RDID;
765
	u8			id[5];
766
	u32			jedec;
767
	u16                     ext_jedec;
768 769 770 771 772 773
	struct flash_info	*info;

	/* JEDEC also defines an optional "extended device information"
	 * string for after vendor-specific data, after the three bytes
	 * we use here.  Supporting some chips might require using it.
	 */
774
	tmp = spi_write_then_read(spi, &code, 1, id, 5);
775
	if (tmp < 0) {
776
		pr_debug("%s: error %d reading JEDEC ID\n",
777
				dev_name(&spi->dev), tmp);
778
		return ERR_PTR(tmp);
779 780 781 782 783 784 785
	}
	jedec = id[0];
	jedec = jedec << 8;
	jedec |= id[1];
	jedec = jedec << 8;
	jedec |= id[2];

786 787
	ext_jedec = id[3] << 8 | id[4];

788 789
	for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
		info = (void *)m25p_ids[tmp].driver_data;
790
		if (info->jedec_id == jedec) {
791
			if (info->ext_id != 0 && info->ext_id != ext_jedec)
792
				continue;
793
			return &m25p_ids[tmp];
794
		}
795
	}
796
	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
797
	return ERR_PTR(-ENODEV);
798 799 800
}


801 802 803 804 805 806 807
/*
 * board specific setup should have ensured the SPI clock used here
 * matches what the READ command supports, at least until this driver
 * understands FAST_READ (for clocks over 25 MHz).
 */
static int __devinit m25p_probe(struct spi_device *spi)
{
808
	const struct spi_device_id	*id = spi_get_device_id(spi);
809 810 811 812
	struct flash_platform_data	*data;
	struct m25p			*flash;
	struct flash_info		*info;
	unsigned			i;
813
	struct mtd_part_parser_data	ppdata;
814

815 816 817 818 819
#ifdef CONFIG_MTD_OF_PARTS
	if (!of_device_is_available(spi->dev.of_node))
		return -ENODEV;
#endif

820
	/* Platform data helps sort out which chip type we have, as
821 822 823
	 * well as how this board partitions it.  If we don't have
	 * a chip ID, try the JEDEC id commands; they'll work for most
	 * newer chips, even if we don't recognize the particular chip.
824 825
	 */
	data = spi->dev.platform_data;
826
	if (data && data->type) {
827
		const struct spi_device_id *plat_id;
828

829
		for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
830 831
			plat_id = &m25p_ids[i];
			if (strcmp(data->type, plat_id->name))
832 833
				continue;
			break;
834 835
		}

836
		if (i < ARRAY_SIZE(m25p_ids) - 1)
837 838 839
			id = plat_id;
		else
			dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
840
	}
841

842 843 844 845 846 847
	info = (void *)id->driver_data;

	if (info->jedec_id) {
		const struct spi_device_id *jid;

		jid = jedec_probe(spi);
848 849
		if (IS_ERR(jid)) {
			return PTR_ERR(jid);
850 851 852 853 854 855 856 857 858 859 860 861 862 863
		} else if (jid != id) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(&spi->dev, "found %s, expected %s\n",
				 jid->name, id->name);
			id = jid;
			info = (void *)jid->driver_data;
		}
	}
864

865
	flash = kzalloc(sizeof *flash, GFP_KERNEL);
866 867
	if (!flash)
		return -ENOMEM;
868
	flash->command = kmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE, GFP_KERNEL);
869 870 871 872
	if (!flash->command) {
		kfree(flash);
		return -ENOMEM;
	}
873 874

	flash->spi = spi;
D
David Brownell 已提交
875
	mutex_init(&flash->lock);
876 877
	dev_set_drvdata(&spi->dev, flash);

878
	/*
879
	 * Atmel, SST and Intel/Numonyx serial flash tend to power
880
	 * up with the software protection bits set
881 882
	 */

883 884 885
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
886 887 888 889
		write_enable(flash);
		write_sr(flash, 0);
	}

890
	if (data && data->name)
891 892
		flash->mtd.name = data->name;
	else
893
		flash->mtd.name = dev_name(&spi->dev);
894 895

	flash->mtd.type = MTD_NORFLASH;
896
	flash->mtd.writesize = 1;
897 898
	flash->mtd.flags = MTD_CAP_NORFLASH;
	flash->mtd.size = info->sector_size * info->n_sectors;
899 900
	flash->mtd._erase = m25p80_erase;
	flash->mtd._read = m25p80_read;
901 902

	/* sst flash chips use AAI word program */
903
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST)
904
		flash->mtd._write = sst_write;
905
	else
906
		flash->mtd._write = m25p80_write;
907

908 909 910 911 912 913 914 915 916
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		flash->erase_opcode = OPCODE_BE_4K;
		flash->mtd.erasesize = 4096;
	} else {
		flash->erase_opcode = OPCODE_SE;
		flash->mtd.erasesize = info->sector_size;
	}

917 918 919
	if (info->flags & M25P_NO_ERASE)
		flash->mtd.flags |= MTD_NO_ERASE;

920
	ppdata.of_node = spi->dev.of_node;
921
	flash->mtd.dev.parent = &spi->dev;
922
	flash->page_size = info->page_size;
B
Brian Norris 已提交
923
	flash->mtd.writebufsize = flash->page_size;
924 925 926 927 928 929 930

	if (info->addr_width)
		flash->addr_width = info->addr_width;
	else {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		if (flash->mtd.size > 0x1000000) {
			flash->addr_width = 4;
931
			set_4byte(flash, info->jedec_id, 1);
932 933 934
		} else
			flash->addr_width = 3;
	}
935

936
	dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
937
			(long long)flash->mtd.size >> 10);
938

939
	pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
940
			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
941
		flash->mtd.name,
942
		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
943 944 945 946 947
		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
		flash->mtd.numeraseregions);

	if (flash->mtd.numeraseregions)
		for (i = 0; i < flash->mtd.numeraseregions; i++)
948
			pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
949
				".erasesize = 0x%.8x (%uKiB), "
950
				".numblocks = %d }\n",
951
				i, (long long)flash->mtd.eraseregions[i].offset,
952 953 954 955 956 957 958 959
				flash->mtd.eraseregions[i].erasesize,
				flash->mtd.eraseregions[i].erasesize / 1024,
				flash->mtd.eraseregions[i].numblocks);


	/* partitions should match sector boundaries; and it may be good to
	 * use readonly partitions for writeprotected sectors (BP2..BP0).
	 */
960 961 962
	return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
			data ? data->parts : NULL,
			data ? data->nr_parts : 0);
963 964 965 966 967 968 969 970 971
}


static int __devexit m25p_remove(struct spi_device *spi)
{
	struct m25p	*flash = dev_get_drvdata(&spi->dev);
	int		status;

	/* Clean up MTD stuff. */
972
	status = mtd_device_unregister(&flash->mtd);
973 974
	if (status == 0) {
		kfree(flash->command);
975
		kfree(flash);
976
	}
977 978 979 980 981 982 983 984 985
	return 0;
}


static struct spi_driver m25p80_driver = {
	.driver = {
		.name	= "m25p80",
		.owner	= THIS_MODULE,
	},
986
	.id_table	= m25p_ids,
987 988
	.probe	= m25p_probe,
	.remove	= __devexit_p(m25p_remove),
989 990 991 992 993

	/* REVISIT: many of these chips have deep power-down modes, which
	 * should clearly be entered on suspend() to minimize power use.
	 * And also when they're otherwise idle...
	 */
994 995
};

996
module_spi_driver(m25p80_driver);
997 998 999 1000

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");