fs-writeback.c 72.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11
/*
 * fs/fs-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains all the functions related to writing back and waiting
 * upon dirty inodes against superblocks, and writing back dirty
 * pages against inodes.  ie: data writeback.  Writeout of the
 * inode itself is not handled here.
 *
12
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
13 14 15 16 17
 *		Split out of fs/inode.c
 *		Additions for address_space-based writeback
 */

#include <linux/kernel.h>
18
#include <linux/export.h>
L
Linus Torvalds 已提交
19
#include <linux/spinlock.h>
20
#include <linux/slab.h>
L
Linus Torvalds 已提交
21 22 23
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
24
#include <linux/pagemap.h>
25
#include <linux/kthread.h>
L
Linus Torvalds 已提交
26 27 28
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
29
#include <linux/tracepoint.h>
30
#include <linux/device.h>
31
#include <linux/memcontrol.h>
32
#include "internal.h"
L
Linus Torvalds 已提交
33

34 35 36
/*
 * 4MB minimal write chunk size
 */
37
#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38

39 40 41
/*
 * Passed into wb_writeback(), essentially a subset of writeback_control
 */
42
struct wb_writeback_work {
43 44
	long nr_pages;
	struct super_block *sb;
45
	unsigned long *older_than_this;
46
	enum writeback_sync_modes sync_mode;
47
	unsigned int tagged_writepages:1;
48 49 50
	unsigned int for_kupdate:1;
	unsigned int range_cyclic:1;
	unsigned int for_background:1;
51
	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
52
	unsigned int auto_free:1;	/* free on completion */
53
	enum wb_reason reason;		/* why was writeback initiated? */
54

55
	struct list_head list;		/* pending work list */
56
	struct wb_completion *done;	/* set if the caller waits */
57 58
};

59 60 61 62 63 64 65 66 67 68 69 70
/*
 * If an inode is constantly having its pages dirtied, but then the
 * updates stop dirtytime_expire_interval seconds in the past, it's
 * possible for the worst case time between when an inode has its
 * timestamps updated and when they finally get written out to be two
 * dirtytime_expire_intervals.  We set the default to 12 hours (in
 * seconds), which means most of the time inodes will have their
 * timestamps written to disk after 12 hours, but in the worst case a
 * few inodes might not their timestamps updated for 24 hours.
 */
unsigned int dirtytime_expire_interval = 12 * 60 * 60;

N
Nick Piggin 已提交
71 72
static inline struct inode *wb_inode(struct list_head *head)
{
73
	return list_entry(head, struct inode, i_io_list);
N
Nick Piggin 已提交
74 75
}

76 77 78 79 80 81 82 83
/*
 * Include the creation of the trace points after defining the
 * wb_writeback_work structure and inline functions so that the definition
 * remains local to this file.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/writeback.h>

84 85
EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);

86 87 88 89 90 91
static bool wb_io_lists_populated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb)) {
		return false;
	} else {
		set_bit(WB_has_dirty_io, &wb->state);
92
		WARN_ON_ONCE(!wb->avg_write_bandwidth);
93 94
		atomic_long_add(wb->avg_write_bandwidth,
				&wb->bdi->tot_write_bandwidth);
95 96 97 98 99 100 101
		return true;
	}
}

static void wb_io_lists_depopulated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
102
	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
103
		clear_bit(WB_has_dirty_io, &wb->state);
104 105
		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
					&wb->bdi->tot_write_bandwidth) < 0);
106
	}
107 108 109
}

/**
110
 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
111 112
 * @inode: inode to be moved
 * @wb: target bdi_writeback
113
 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
114
 *
115
 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
116 117 118
 * Returns %true if @inode is the first occupant of the !dirty_time IO
 * lists; otherwise, %false.
 */
119
static bool inode_io_list_move_locked(struct inode *inode,
120 121 122 123 124
				      struct bdi_writeback *wb,
				      struct list_head *head)
{
	assert_spin_locked(&wb->list_lock);

125
	list_move(&inode->i_io_list, head);
126 127 128 129 130 131 132 133 134 135

	/* dirty_time doesn't count as dirty_io until expiration */
	if (head != &wb->b_dirty_time)
		return wb_io_lists_populated(wb);

	wb_io_lists_depopulated(wb);
	return false;
}

/**
136
 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
137 138 139 140 141 142
 * @inode: inode to be removed
 * @wb: bdi_writeback @inode is being removed from
 *
 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 * clear %WB_has_dirty_io if all are empty afterwards.
 */
143
static void inode_io_list_del_locked(struct inode *inode,
144 145 146 147
				     struct bdi_writeback *wb)
{
	assert_spin_locked(&wb->list_lock);

148
	list_del_init(&inode->i_io_list);
149 150 151
	wb_io_lists_depopulated(wb);
}

152
static void wb_wakeup(struct bdi_writeback *wb)
J
Jan Kara 已提交
153
{
154 155 156 157
	spin_lock_bh(&wb->work_lock);
	if (test_bit(WB_registered, &wb->state))
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	spin_unlock_bh(&wb->work_lock);
J
Jan Kara 已提交
158 159
}

160 161 162 163 164 165 166 167
static void finish_writeback_work(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
{
	struct wb_completion *done = work->done;

	if (work->auto_free)
		kfree(work);
	if (done && atomic_dec_and_test(&done->cnt))
168
		wake_up_all(done->waitq);
169 170
}

171 172
static void wb_queue_work(struct bdi_writeback *wb,
			  struct wb_writeback_work *work)
173
{
174
	trace_writeback_queue(wb, work);
175

176 177
	if (work->done)
		atomic_inc(&work->done->cnt);
178 179 180 181 182 183 184 185 186

	spin_lock_bh(&wb->work_lock);

	if (test_bit(WB_registered, &wb->state)) {
		list_add_tail(&work->list, &wb->work_list);
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	} else
		finish_writeback_work(wb, work);

187
	spin_unlock_bh(&wb->work_lock);
L
Linus Torvalds 已提交
188 189
}

190 191 192 193 194
/**
 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 * @done: target wb_completion
 *
 * Wait for one or more work items issued to @bdi with their ->done field
195 196 197
 * set to @done, which should have been initialized with
 * DEFINE_WB_COMPLETION().  This function returns after all such work items
 * are completed.  Work items which are waited upon aren't freed
198 199
 * automatically on completion.
 */
200
void wb_wait_for_completion(struct wb_completion *done)
201 202
{
	atomic_dec(&done->cnt);		/* put down the initial count */
203
	wait_event(*done->waitq, !atomic_read(&done->cnt));
204 205
}

206 207
#ifdef CONFIG_CGROUP_WRITEBACK

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
/*
 * Parameters for foreign inode detection, see wbc_detach_inode() to see
 * how they're used.
 *
 * These paramters are inherently heuristical as the detection target
 * itself is fuzzy.  All we want to do is detaching an inode from the
 * current owner if it's being written to by some other cgroups too much.
 *
 * The current cgroup writeback is built on the assumption that multiple
 * cgroups writing to the same inode concurrently is very rare and a mode
 * of operation which isn't well supported.  As such, the goal is not
 * taking too long when a different cgroup takes over an inode while
 * avoiding too aggressive flip-flops from occasional foreign writes.
 *
 * We record, very roughly, 2s worth of IO time history and if more than
 * half of that is foreign, trigger the switch.  The recording is quantized
 * to 16 slots.  To avoid tiny writes from swinging the decision too much,
 * writes smaller than 1/8 of avg size are ignored.
 */
227 228
#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
229
#define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
230 231 232 233 234 235 236 237 238
#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */

#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
					/* each slot's duration is 2s / 16 */
#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
					/* if foreign slots >= 8, switch */
#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
					/* one round can affect upto 5 slots */
239
#define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
240

241 242 243
static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
static struct workqueue_struct *isw_wq;

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
void __inode_attach_wb(struct inode *inode, struct page *page)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;

	if (inode_cgwb_enabled(inode)) {
		struct cgroup_subsys_state *memcg_css;

		if (page) {
			memcg_css = mem_cgroup_css_from_page(page);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
		} else {
			/* must pin memcg_css, see wb_get_create() */
			memcg_css = task_get_css(current, memory_cgrp_id);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
			css_put(memcg_css);
		}
	}

	if (!wb)
		wb = &bdi->wb;

	/*
	 * There may be multiple instances of this function racing to
	 * update the same inode.  Use cmpxchg() to tell the winner.
	 */
	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
		wb_put(wb);
}
273
EXPORT_SYMBOL_GPL(__inode_attach_wb);
274

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
/**
 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 * @inode: inode of interest with i_lock held
 *
 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 * held on entry and is released on return.  The returned wb is guaranteed
 * to stay @inode's associated wb until its list_lock is released.
 */
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	while (true) {
		struct bdi_writeback *wb = inode_to_wb(inode);

		/*
		 * inode_to_wb() association is protected by both
		 * @inode->i_lock and @wb->list_lock but list_lock nests
		 * outside i_lock.  Drop i_lock and verify that the
		 * association hasn't changed after acquiring list_lock.
		 */
		wb_get(wb);
		spin_unlock(&inode->i_lock);
		spin_lock(&wb->list_lock);

301
		/* i_wb may have changed inbetween, can't use inode_to_wb() */
302 303 304 305
		if (likely(wb == inode->i_wb)) {
			wb_put(wb);	/* @inode already has ref */
			return wb;
		}
306 307

		spin_unlock(&wb->list_lock);
308
		wb_put(wb);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
		cpu_relax();
		spin_lock(&inode->i_lock);
	}
}

/**
 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 * @inode: inode of interest
 *
 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 * on entry.
 */
static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	spin_lock(&inode->i_lock);
	return locked_inode_to_wb_and_lock_list(inode);
}

328 329 330 331 332 333 334 335
struct inode_switch_wbs_context {
	struct inode		*inode;
	struct bdi_writeback	*new_wb;

	struct rcu_head		rcu_head;
	struct work_struct	work;
};

336 337 338 339 340 341 342 343 344 345
static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
{
	down_write(&bdi->wb_switch_rwsem);
}

static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
{
	up_write(&bdi->wb_switch_rwsem);
}

346 347 348 349 350
static void inode_switch_wbs_work_fn(struct work_struct *work)
{
	struct inode_switch_wbs_context *isw =
		container_of(work, struct inode_switch_wbs_context, work);
	struct inode *inode = isw->inode;
351
	struct backing_dev_info *bdi = inode_to_bdi(inode);
352 353
	struct address_space *mapping = inode->i_mapping;
	struct bdi_writeback *old_wb = inode->i_wb;
354
	struct bdi_writeback *new_wb = isw->new_wb;
M
Matthew Wilcox 已提交
355 356
	XA_STATE(xas, &mapping->i_pages, 0);
	struct page *page;
357
	bool switched = false;
358

359 360 361 362 363 364
	/*
	 * If @inode switches cgwb membership while sync_inodes_sb() is
	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
	 */
	down_read(&bdi->wb_switch_rwsem);

365 366 367 368
	/*
	 * By the time control reaches here, RCU grace period has passed
	 * since I_WB_SWITCH assertion and all wb stat update transactions
	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
M
Matthew Wilcox 已提交
369
	 * synchronizing against the i_pages lock.
370
	 *
M
Matthew Wilcox 已提交
371
	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
372 373
	 * gives us exclusion against all wb related operations on @inode
	 * including IO list manipulations and stat updates.
374
	 */
375 376 377 378 379 380 381
	if (old_wb < new_wb) {
		spin_lock(&old_wb->list_lock);
		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
	} else {
		spin_lock(&new_wb->list_lock);
		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
	}
382
	spin_lock(&inode->i_lock);
M
Matthew Wilcox 已提交
383
	xa_lock_irq(&mapping->i_pages);
384 385 386

	/*
	 * Once I_FREEING is visible under i_lock, the eviction path owns
387
	 * the inode and we shouldn't modify ->i_io_list.
388 389 390 391 392 393 394
	 */
	if (unlikely(inode->i_state & I_FREEING))
		goto skip_switch;

	/*
	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
M
Matthew Wilcox 已提交
395
	 * pages actually under writeback.
396
	 */
M
Matthew Wilcox 已提交
397 398
	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
		if (PageDirty(page)) {
399 400
			dec_wb_stat(old_wb, WB_RECLAIMABLE);
			inc_wb_stat(new_wb, WB_RECLAIMABLE);
401 402 403
		}
	}

M
Matthew Wilcox 已提交
404 405 406 407 408
	xas_set(&xas, 0);
	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
		WARN_ON_ONCE(!PageWriteback(page));
		dec_wb_stat(old_wb, WB_WRITEBACK);
		inc_wb_stat(new_wb, WB_WRITEBACK);
409 410 411 412 413 414 415 416 417 418
	}

	wb_get(new_wb);

	/*
	 * Transfer to @new_wb's IO list if necessary.  The specific list
	 * @inode was on is ignored and the inode is put on ->b_dirty which
	 * is always correct including from ->b_dirty_time.  The transfer
	 * preserves @inode->dirtied_when ordering.
	 */
419
	if (!list_empty(&inode->i_io_list)) {
420 421
		struct inode *pos;

422
		inode_io_list_del_locked(inode, old_wb);
423
		inode->i_wb = new_wb;
424
		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
425 426 427
			if (time_after_eq(inode->dirtied_when,
					  pos->dirtied_when))
				break;
428
		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
429 430 431
	} else {
		inode->i_wb = new_wb;
	}
432

433
	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
434 435 436
	inode->i_wb_frn_winner = 0;
	inode->i_wb_frn_avg_time = 0;
	inode->i_wb_frn_history = 0;
437 438
	switched = true;
skip_switch:
439 440 441 442 443 444
	/*
	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
	 */
	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);

M
Matthew Wilcox 已提交
445
	xa_unlock_irq(&mapping->i_pages);
446
	spin_unlock(&inode->i_lock);
447 448
	spin_unlock(&new_wb->list_lock);
	spin_unlock(&old_wb->list_lock);
449

450 451
	up_read(&bdi->wb_switch_rwsem);

452 453 454 455
	if (switched) {
		wb_wakeup(new_wb);
		wb_put(old_wb);
	}
456
	wb_put(new_wb);
457 458

	iput(inode);
459
	kfree(isw);
460 461

	atomic_dec(&isw_nr_in_flight);
462 463 464 465 466 467 468 469 470
}

static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
{
	struct inode_switch_wbs_context *isw = container_of(rcu_head,
				struct inode_switch_wbs_context, rcu_head);

	/* needs to grab bh-unsafe locks, bounce to work item */
	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
471
	queue_work(isw_wq, &isw->work);
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
}

/**
 * inode_switch_wbs - change the wb association of an inode
 * @inode: target inode
 * @new_wb_id: ID of the new wb
 *
 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 * switching is performed asynchronously and may fail silently.
 */
static void inode_switch_wbs(struct inode *inode, int new_wb_id)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct cgroup_subsys_state *memcg_css;
	struct inode_switch_wbs_context *isw;

	/* noop if seems to be already in progress */
	if (inode->i_state & I_WB_SWITCH)
		return;

492 493
	/* avoid queueing a new switch if too many are already in flight */
	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
494 495
		return;

496 497
	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
	if (!isw)
498
		return;
499 500 501 502 503 504 505 506 507 508 509 510

	/* find and pin the new wb */
	rcu_read_lock();
	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
	if (memcg_css)
		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
	rcu_read_unlock();
	if (!isw->new_wb)
		goto out_free;

	/* while holding I_WB_SWITCH, no one else can update the association */
	spin_lock(&inode->i_lock);
511
	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
512 513 514 515 516
	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
	    inode_to_wb(inode) == isw->new_wb) {
		spin_unlock(&inode->i_lock);
		goto out_free;
	}
517
	inode->i_state |= I_WB_SWITCH;
518
	__iget(inode);
519 520 521 522 523 524
	spin_unlock(&inode->i_lock);

	isw->inode = inode;

	/*
	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
M
Matthew Wilcox 已提交
525 526
	 * the RCU protected stat update paths to grab the i_page
	 * lock so that stat transfer can synchronize against them.
527 528 529
	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
	 */
	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
530 531

	atomic_inc(&isw_nr_in_flight);
532
	return;
533 534 535 536 537 538 539

out_free:
	if (isw->new_wb)
		wb_put(isw->new_wb);
	kfree(isw);
}

540 541 542 543 544 545 546 547 548 549 550 551 552
/**
 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 * @wbc: writeback_control of interest
 * @inode: target inode
 *
 * @inode is locked and about to be written back under the control of @wbc.
 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 * writeback completion, wbc_detach_inode() should be called.  This is used
 * to track the cgroup writeback context.
 */
void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
				 struct inode *inode)
{
553 554 555 556 557
	if (!inode_cgwb_enabled(inode)) {
		spin_unlock(&inode->i_lock);
		return;
	}

558
	wbc->wb = inode_to_wb(inode);
559 560 561 562 563 564 565 566 567
	wbc->inode = inode;

	wbc->wb_id = wbc->wb->memcg_css->id;
	wbc->wb_lcand_id = inode->i_wb_frn_winner;
	wbc->wb_tcand_id = 0;
	wbc->wb_bytes = 0;
	wbc->wb_lcand_bytes = 0;
	wbc->wb_tcand_bytes = 0;

568 569
	wb_get(wbc->wb);
	spin_unlock(&inode->i_lock);
570 571 572 573 574 575 576

	/*
	 * A dying wb indicates that the memcg-blkcg mapping has changed
	 * and a new wb is already serving the memcg.  Switch immediately.
	 */
	if (unlikely(wb_dying(wbc->wb)))
		inode_switch_wbs(inode, wbc->wb_id);
577
}
578
EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
579 580

/**
581 582
 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 * @wbc: writeback_control of the just finished writeback
583 584 585
 *
 * To be called after a writeback attempt of an inode finishes and undoes
 * wbc_attach_and_unlock_inode().  Can be called under any context.
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
 *
 * As concurrent write sharing of an inode is expected to be very rare and
 * memcg only tracks page ownership on first-use basis severely confining
 * the usefulness of such sharing, cgroup writeback tracks ownership
 * per-inode.  While the support for concurrent write sharing of an inode
 * is deemed unnecessary, an inode being written to by different cgroups at
 * different points in time is a lot more common, and, more importantly,
 * charging only by first-use can too readily lead to grossly incorrect
 * behaviors (single foreign page can lead to gigabytes of writeback to be
 * incorrectly attributed).
 *
 * To resolve this issue, cgroup writeback detects the majority dirtier of
 * an inode and transfers the ownership to it.  To avoid unnnecessary
 * oscillation, the detection mechanism keeps track of history and gives
 * out the switch verdict only if the foreign usage pattern is stable over
 * a certain amount of time and/or writeback attempts.
 *
 * On each writeback attempt, @wbc tries to detect the majority writer
 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 * count from the majority voting, it also counts the bytes written for the
 * current wb and the last round's winner wb (max of last round's current
 * wb, the winner from two rounds ago, and the last round's majority
 * candidate).  Keeping track of the historical winner helps the algorithm
 * to semi-reliably detect the most active writer even when it's not the
 * absolute majority.
 *
 * Once the winner of the round is determined, whether the winner is
 * foreign or not and how much IO time the round consumed is recorded in
 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 * over a certain threshold, the switch verdict is given.
616 617 618
 */
void wbc_detach_inode(struct writeback_control *wbc)
{
619 620
	struct bdi_writeback *wb = wbc->wb;
	struct inode *inode = wbc->inode;
621 622
	unsigned long avg_time, max_bytes, max_time;
	u16 history;
623 624
	int max_id;

625 626 627 628 629 630
	if (!wb)
		return;

	history = inode->i_wb_frn_history;
	avg_time = inode->i_wb_frn_avg_time;

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
	/* pick the winner of this round */
	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_id;
		max_bytes = wbc->wb_bytes;
	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_lcand_id;
		max_bytes = wbc->wb_lcand_bytes;
	} else {
		max_id = wbc->wb_tcand_id;
		max_bytes = wbc->wb_tcand_bytes;
	}

	/*
	 * Calculate the amount of IO time the winner consumed and fold it
	 * into the running average kept per inode.  If the consumed IO
	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
	 * deciding whether to switch or not.  This is to prevent one-off
	 * small dirtiers from skewing the verdict.
	 */
	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
				wb->avg_write_bandwidth);
	if (avg_time)
		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
	else
		avg_time = max_time;	/* immediate catch up on first run */

	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
		int slots;

		/*
		 * The switch verdict is reached if foreign wb's consume
		 * more than a certain proportion of IO time in a
		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
		 * history mask where each bit represents one sixteenth of
		 * the period.  Determine the number of slots to shift into
		 * history from @max_time.
		 */
		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
		history <<= slots;
		if (wbc->wb_id != max_id)
			history |= (1U << slots) - 1;

		/*
		 * Switch if the current wb isn't the consistent winner.
		 * If there are multiple closely competing dirtiers, the
		 * inode may switch across them repeatedly over time, which
		 * is okay.  The main goal is avoiding keeping an inode on
		 * the wrong wb for an extended period of time.
		 */
683 684
		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
			inode_switch_wbs(inode, max_id);
685 686 687 688 689 690 691 692 693 694
	}

	/*
	 * Multiple instances of this function may race to update the
	 * following fields but we don't mind occassional inaccuracies.
	 */
	inode->i_wb_frn_winner = max_id;
	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
	inode->i_wb_frn_history = history;

695 696 697
	wb_put(wbc->wb);
	wbc->wb = NULL;
}
698
EXPORT_SYMBOL_GPL(wbc_detach_inode);
699

700
/**
701
 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
702 703 704 705 706 707 708 709
 * @wbc: writeback_control of the writeback in progress
 * @page: page being written out
 * @bytes: number of bytes being written out
 *
 * @bytes from @page are about to written out during the writeback
 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 * wbc_detach_inode().
 */
710 711
void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
			      size_t bytes)
712
{
713
	struct cgroup_subsys_state *css;
714 715 716 717 718 719 720 721
	int id;

	/*
	 * pageout() path doesn't attach @wbc to the inode being written
	 * out.  This is intentional as we don't want the function to block
	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
	 * regular writeback instead of writing things out itself.
	 */
722
	if (!wbc->wb || wbc->no_cgroup_owner)
723 724
		return;

725 726 727 728 729 730
	css = mem_cgroup_css_from_page(page);
	/* dead cgroups shouldn't contribute to inode ownership arbitration */
	if (!(css->flags & CSS_ONLINE))
		return;

	id = css->id;
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

	if (id == wbc->wb_id) {
		wbc->wb_bytes += bytes;
		return;
	}

	if (id == wbc->wb_lcand_id)
		wbc->wb_lcand_bytes += bytes;

	/* Boyer-Moore majority vote algorithm */
	if (!wbc->wb_tcand_bytes)
		wbc->wb_tcand_id = id;
	if (id == wbc->wb_tcand_id)
		wbc->wb_tcand_bytes += bytes;
	else
		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
}
748
EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
749

750 751
/**
 * inode_congested - test whether an inode is congested
752
 * @inode: inode to test for congestion (may be NULL)
753 754 755 756 757 758 759 760 761
 * @cong_bits: mask of WB_[a]sync_congested bits to test
 *
 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 * bits to test and the return value is the mask of set bits.
 *
 * If cgroup writeback is enabled for @inode, the congestion state is
 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 * associated with @inode is congested; otherwise, the root wb's congestion
 * state is used.
762 763 764
 *
 * @inode is allowed to be NULL as this function is often called on
 * mapping->host which is NULL for the swapper space.
765 766 767
 */
int inode_congested(struct inode *inode, int cong_bits)
{
768 769 770 771
	/*
	 * Once set, ->i_wb never becomes NULL while the inode is alive.
	 * Start transaction iff ->i_wb is visible.
	 */
772
	if (inode && inode_to_wb_is_valid(inode)) {
773
		struct bdi_writeback *wb;
G
Greg Thelen 已提交
774 775
		struct wb_lock_cookie lock_cookie = {};
		bool congested;
776

G
Greg Thelen 已提交
777
		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
778
		congested = wb_congested(wb, cong_bits);
G
Greg Thelen 已提交
779
		unlocked_inode_to_wb_end(inode, &lock_cookie);
780
		return congested;
781 782 783 784 785 786
	}

	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
}
EXPORT_SYMBOL_GPL(inode_congested);

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
/**
 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 * @wb: target bdi_writeback to split @nr_pages to
 * @nr_pages: number of pages to write for the whole bdi
 *
 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 * @wb->bdi.
 */
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);

	if (nr_pages == LONG_MAX)
		return LONG_MAX;

	/*
	 * This may be called on clean wb's and proportional distribution
	 * may not make sense, just use the original @nr_pages in those
	 * cases.  In general, we wanna err on the side of writing more.
	 */
	if (!tot_bw || this_bw >= tot_bw)
		return nr_pages;
	else
		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
}

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
/**
 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 * @bdi: target backing_dev_info
 * @base_work: wb_writeback_work to issue
 * @skip_if_busy: skip wb's which already have writeback in progress
 *
 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 * distributed to the busy wbs according to each wb's proportion in the
 * total active write bandwidth of @bdi.
 */
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
830
	struct bdi_writeback *last_wb = NULL;
831 832
	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
					      struct bdi_writeback, bdi_node);
833 834 835 836

	might_sleep();
restart:
	rcu_read_lock();
837
	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
838
		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
839 840 841 842
		struct wb_writeback_work fallback_work;
		struct wb_writeback_work *work;
		long nr_pages;

843 844 845 846 847
		if (last_wb) {
			wb_put(last_wb);
			last_wb = NULL;
		}

848 849 850 851 852 853
		/* SYNC_ALL writes out I_DIRTY_TIME too */
		if (!wb_has_dirty_io(wb) &&
		    (base_work->sync_mode == WB_SYNC_NONE ||
		     list_empty(&wb->b_dirty_time)))
			continue;
		if (skip_if_busy && writeback_in_progress(wb))
854 855
			continue;

856 857 858 859 860 861 862 863 864
		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);

		work = kmalloc(sizeof(*work), GFP_ATOMIC);
		if (work) {
			*work = *base_work;
			work->nr_pages = nr_pages;
			work->auto_free = 1;
			wb_queue_work(wb, work);
			continue;
865
		}
866 867 868 869 870 871 872 873 874 875

		/* alloc failed, execute synchronously using on-stack fallback */
		work = &fallback_work;
		*work = *base_work;
		work->nr_pages = nr_pages;
		work->auto_free = 0;
		work->done = &fallback_work_done;

		wb_queue_work(wb, work);

876 877 878 879 880 881 882 883
		/*
		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
		 * continuing iteration from @wb after dropping and
		 * regrabbing rcu read lock.
		 */
		wb_get(wb);
		last_wb = wb;

884
		rcu_read_unlock();
885
		wb_wait_for_completion(&fallback_work_done);
886
		goto restart;
887 888
	}
	rcu_read_unlock();
889 890 891

	if (last_wb)
		wb_put(last_wb);
892 893
}

894 895 896 897 898 899 900 901 902 903 904 905 906
/**
 * cgroup_writeback_umount - flush inode wb switches for umount
 *
 * This function is called when a super_block is about to be destroyed and
 * flushes in-flight inode wb switches.  An inode wb switch goes through
 * RCU and then workqueue, so the two need to be flushed in order to ensure
 * that all previously scheduled switches are finished.  As wb switches are
 * rare occurrences and synchronize_rcu() can take a while, perform
 * flushing iff wb switches are in flight.
 */
void cgroup_writeback_umount(void)
{
	if (atomic_read(&isw_nr_in_flight)) {
907 908 909 910 911
		/*
		 * Use rcu_barrier() to wait for all pending callbacks to
		 * ensure that all in-flight wb switches are in the workqueue.
		 */
		rcu_barrier();
912 913 914 915 916 917 918 919 920 921 922 923 924
		flush_workqueue(isw_wq);
	}
}

static int __init cgroup_writeback_init(void)
{
	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
	if (!isw_wq)
		return -ENOMEM;
	return 0;
}
fs_initcall(cgroup_writeback_init);

925 926
#else	/* CONFIG_CGROUP_WRITEBACK */

927 928 929
static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_unlock(&inode->i_lock);
	spin_lock(&wb->list_lock);
	return wb;
}

static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_lock(&wb->list_lock);
	return wb;
}

951 952 953 954 955
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	return nr_pages;
}

956 957 958 959 960 961
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	might_sleep();

962
	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
963 964 965 966 967
		base_work->auto_free = 0;
		wb_queue_work(&bdi->wb, base_work);
	}
}

968 969
#endif	/* CONFIG_CGROUP_WRITEBACK */

970 971 972 973 974 975 976 977 978 979 980 981
/*
 * Add in the number of potentially dirty inodes, because each inode
 * write can dirty pagecache in the underlying blockdev.
 */
static unsigned long get_nr_dirty_pages(void)
{
	return global_node_page_state(NR_FILE_DIRTY) +
		global_node_page_state(NR_UNSTABLE_NFS) +
		get_nr_dirty_inodes();
}

static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
982
{
983 984 985
	if (!wb_has_dirty_io(wb))
		return;

986 987 988 989 990 991
	/*
	 * All callers of this function want to start writeback of all
	 * dirty pages. Places like vmscan can call this at a very
	 * high frequency, causing pointless allocations of tons of
	 * work items and keeping the flusher threads busy retrieving
	 * that work. Ensure that we only allow one of them pending and
992
	 * inflight at the time.
993
	 */
994 995
	if (test_bit(WB_start_all, &wb->state) ||
	    test_and_set_bit(WB_start_all, &wb->state))
996 997
		return;

998 999
	wb->start_all_reason = reason;
	wb_wakeup(wb);
1000
}
1001

1002
/**
1003 1004
 * wb_start_background_writeback - start background writeback
 * @wb: bdi_writback to write from
1005 1006
 *
 * Description:
1007
 *   This makes sure WB_SYNC_NONE background writeback happens. When
1008
 *   this function returns, it is only guaranteed that for given wb
1009 1010
 *   some IO is happening if we are over background dirty threshold.
 *   Caller need not hold sb s_umount semaphore.
1011
 */
1012
void wb_start_background_writeback(struct bdi_writeback *wb)
1013
{
1014 1015 1016 1017
	/*
	 * We just wake up the flusher thread. It will perform background
	 * writeback as soon as there is no other work to do.
	 */
1018
	trace_writeback_wake_background(wb);
1019
	wb_wakeup(wb);
L
Linus Torvalds 已提交
1020 1021
}

1022 1023 1024
/*
 * Remove the inode from the writeback list it is on.
 */
1025
void inode_io_list_del(struct inode *inode)
1026
{
1027
	struct bdi_writeback *wb;
1028

1029
	wb = inode_to_wb_and_lock_list(inode);
1030
	inode_io_list_del_locked(inode, wb);
1031
	spin_unlock(&wb->list_lock);
1032 1033
}

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
/*
 * mark an inode as under writeback on the sb
 */
void sb_mark_inode_writeback(struct inode *inode)
{
	struct super_block *sb = inode->i_sb;
	unsigned long flags;

	if (list_empty(&inode->i_wb_list)) {
		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1044
		if (list_empty(&inode->i_wb_list)) {
1045
			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1046 1047
			trace_sb_mark_inode_writeback(inode);
		}
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
	}
}

/*
 * clear an inode as under writeback on the sb
 */
void sb_clear_inode_writeback(struct inode *inode)
{
	struct super_block *sb = inode->i_sb;
	unsigned long flags;

	if (!list_empty(&inode->i_wb_list)) {
		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1062 1063 1064 1065
		if (!list_empty(&inode->i_wb_list)) {
			list_del_init(&inode->i_wb_list);
			trace_sb_clear_inode_writeback(inode);
		}
1066 1067 1068 1069
		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
	}
}

1070 1071 1072 1073 1074
/*
 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 * furthest end of its superblock's dirty-inode list.
 *
 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1075
 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1076 1077 1078
 * the case then the inode must have been redirtied while it was being written
 * out and we don't reset its dirtied_when.
 */
1079
static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1080
{
1081
	if (!list_empty(&wb->b_dirty)) {
1082
		struct inode *tail;
1083

N
Nick Piggin 已提交
1084
		tail = wb_inode(wb->b_dirty.next);
1085
		if (time_before(inode->dirtied_when, tail->dirtied_when))
1086 1087
			inode->dirtied_when = jiffies;
	}
1088
	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1089 1090
}

1091
/*
1092
 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1093
 */
1094
static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1095
{
1096
	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1097 1098
}

J
Joern Engel 已提交
1099 1100
static void inode_sync_complete(struct inode *inode)
{
1101
	inode->i_state &= ~I_SYNC;
1102 1103
	/* If inode is clean an unused, put it into LRU now... */
	inode_add_lru(inode);
1104
	/* Waiters must see I_SYNC cleared before being woken up */
J
Joern Engel 已提交
1105 1106 1107 1108
	smp_mb();
	wake_up_bit(&inode->i_state, __I_SYNC);
}

1109 1110 1111 1112 1113 1114 1115 1116
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
{
	bool ret = time_after(inode->dirtied_when, t);
#ifndef CONFIG_64BIT
	/*
	 * For inodes being constantly redirtied, dirtied_when can get stuck.
	 * It _appears_ to be in the future, but is actually in distant past.
	 * This test is necessary to prevent such wrapped-around relative times
1117
	 * from permanently stopping the whole bdi writeback.
1118 1119 1120 1121 1122 1123
	 */
	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
#endif
	return ret;
}

1124 1125
#define EXPIRE_DIRTY_ATIME 0x0001

1126
/*
1127
 * Move expired (dirtied before work->older_than_this) dirty inodes from
J
Jan Kara 已提交
1128
 * @delaying_queue to @dispatch_queue.
1129
 */
1130
static int move_expired_inodes(struct list_head *delaying_queue,
1131
			       struct list_head *dispatch_queue,
1132
			       int flags,
1133
			       struct wb_writeback_work *work)
1134
{
1135 1136
	unsigned long *older_than_this = NULL;
	unsigned long expire_time;
1137 1138
	LIST_HEAD(tmp);
	struct list_head *pos, *node;
1139
	struct super_block *sb = NULL;
1140
	struct inode *inode;
1141
	int do_sb_sort = 0;
1142
	int moved = 0;
1143

1144 1145
	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
		older_than_this = work->older_than_this;
1146 1147
	else if (!work->for_sync) {
		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1148 1149
		older_than_this = &expire_time;
	}
1150
	while (!list_empty(delaying_queue)) {
N
Nick Piggin 已提交
1151
		inode = wb_inode(delaying_queue->prev);
1152 1153
		if (older_than_this &&
		    inode_dirtied_after(inode, *older_than_this))
1154
			break;
1155
		list_move(&inode->i_io_list, &tmp);
1156
		moved++;
1157 1158
		if (flags & EXPIRE_DIRTY_ATIME)
			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1159 1160
		if (sb_is_blkdev_sb(inode->i_sb))
			continue;
1161 1162 1163
		if (sb && sb != inode->i_sb)
			do_sb_sort = 1;
		sb = inode->i_sb;
1164 1165
	}

1166 1167 1168
	/* just one sb in list, splice to dispatch_queue and we're done */
	if (!do_sb_sort) {
		list_splice(&tmp, dispatch_queue);
1169
		goto out;
1170 1171
	}

1172 1173
	/* Move inodes from one superblock together */
	while (!list_empty(&tmp)) {
N
Nick Piggin 已提交
1174
		sb = wb_inode(tmp.prev)->i_sb;
1175
		list_for_each_prev_safe(pos, node, &tmp) {
N
Nick Piggin 已提交
1176
			inode = wb_inode(pos);
1177
			if (inode->i_sb == sb)
1178
				list_move(&inode->i_io_list, dispatch_queue);
1179
		}
1180
	}
1181 1182
out:
	return moved;
1183 1184 1185 1186
}

/*
 * Queue all expired dirty inodes for io, eldest first.
1187 1188 1189 1190 1191 1192 1193 1194
 * Before
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    gf         edc     BA
 * After
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    g          fBAedc
 *                                           |
 *                                           +--> dequeue for IO
1195
 */
1196
static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1197
{
1198
	int moved;
1199

1200
	assert_spin_locked(&wb->list_lock);
1201
	list_splice_init(&wb->b_more_io, &wb->b_io);
1202 1203 1204
	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
				     EXPIRE_DIRTY_ATIME, work);
1205 1206
	if (moved)
		wb_io_lists_populated(wb);
1207
	trace_writeback_queue_io(wb, work, moved);
1208 1209
}

1210
static int write_inode(struct inode *inode, struct writeback_control *wbc)
1211
{
T
Tejun Heo 已提交
1212 1213 1214 1215 1216 1217 1218 1219
	int ret;

	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
		trace_writeback_write_inode_start(inode, wbc);
		ret = inode->i_sb->s_op->write_inode(inode, wbc);
		trace_writeback_write_inode(inode, wbc);
		return ret;
	}
1220
	return 0;
1221 1222
}

L
Linus Torvalds 已提交
1223
/*
1224 1225
 * Wait for writeback on an inode to complete. Called with i_lock held.
 * Caller must make sure inode cannot go away when we drop i_lock.
1226
 */
1227 1228 1229
static void __inode_wait_for_writeback(struct inode *inode)
	__releases(inode->i_lock)
	__acquires(inode->i_lock)
1230 1231 1232 1233 1234
{
	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
	wait_queue_head_t *wqh;

	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1235 1236
	while (inode->i_state & I_SYNC) {
		spin_unlock(&inode->i_lock);
1237 1238
		__wait_on_bit(wqh, &wq, bit_wait,
			      TASK_UNINTERRUPTIBLE);
1239
		spin_lock(&inode->i_lock);
1240
	}
1241 1242
}

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
/*
 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 */
void inode_wait_for_writeback(struct inode *inode)
{
	spin_lock(&inode->i_lock);
	__inode_wait_for_writeback(inode);
	spin_unlock(&inode->i_lock);
}

/*
 * Sleep until I_SYNC is cleared. This function must be called with i_lock
 * held and drops it. It is aimed for callers not holding any inode reference
 * so once i_lock is dropped, inode can go away.
 */
static void inode_sleep_on_writeback(struct inode *inode)
	__releases(inode->i_lock)
{
	DEFINE_WAIT(wait);
	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
	int sleep;

	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
	sleep = inode->i_state & I_SYNC;
	spin_unlock(&inode->i_lock);
	if (sleep)
		schedule();
	finish_wait(wqh, &wait);
}

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
/*
 * Find proper writeback list for the inode depending on its current state and
 * possibly also change of its state while we were doing writeback.  Here we
 * handle things such as livelock prevention or fairness of writeback among
 * inodes. This function can be called only by flusher thread - noone else
 * processes all inodes in writeback lists and requeueing inodes behind flusher
 * thread's back can have unexpected consequences.
 */
static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
			  struct writeback_control *wbc)
{
	if (inode->i_state & I_FREEING)
		return;

	/*
	 * Sync livelock prevention. Each inode is tagged and synced in one
	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
	 * the dirty time to prevent enqueue and sync it again.
	 */
	if ((inode->i_state & I_DIRTY) &&
	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
		inode->dirtied_when = jiffies;

1296 1297 1298 1299 1300 1301 1302 1303 1304
	if (wbc->pages_skipped) {
		/*
		 * writeback is not making progress due to locked
		 * buffers. Skip this inode for now.
		 */
		redirty_tail(inode, wb);
		return;
	}

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
		/*
		 * We didn't write back all the pages.  nfs_writepages()
		 * sometimes bales out without doing anything.
		 */
		if (wbc->nr_to_write <= 0) {
			/* Slice used up. Queue for next turn. */
			requeue_io(inode, wb);
		} else {
			/*
			 * Writeback blocked by something other than
			 * congestion. Delay the inode for some time to
			 * avoid spinning on the CPU (100% iowait)
			 * retrying writeback of the dirty page/inode
			 * that cannot be performed immediately.
			 */
			redirty_tail(inode, wb);
		}
	} else if (inode->i_state & I_DIRTY) {
		/*
		 * Filesystems can dirty the inode during writeback operations,
		 * such as delayed allocation during submission or metadata
		 * updates after data IO completion.
		 */
		redirty_tail(inode, wb);
1330
	} else if (inode->i_state & I_DIRTY_TIME) {
1331
		inode->dirtied_when = jiffies;
1332
		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1333 1334
	} else {
		/* The inode is clean. Remove from writeback lists. */
1335
		inode_io_list_del_locked(inode, wb);
1336 1337 1338
	}
}

1339
/*
1340 1341 1342
 * Write out an inode and its dirty pages. Do not update the writeback list
 * linkage. That is left to the caller. The caller is also responsible for
 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
L
Linus Torvalds 已提交
1343 1344
 */
static int
1345
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
L
Linus Torvalds 已提交
1346 1347
{
	struct address_space *mapping = inode->i_mapping;
1348
	long nr_to_write = wbc->nr_to_write;
1349
	unsigned dirty;
L
Linus Torvalds 已提交
1350 1351
	int ret;

1352
	WARN_ON(!(inode->i_state & I_SYNC));
L
Linus Torvalds 已提交
1353

T
Tejun Heo 已提交
1354 1355
	trace_writeback_single_inode_start(inode, wbc, nr_to_write);

L
Linus Torvalds 已提交
1356 1357
	ret = do_writepages(mapping, wbc);

1358 1359 1360
	/*
	 * Make sure to wait on the data before writing out the metadata.
	 * This is important for filesystems that modify metadata on data
1361 1362 1363
	 * I/O completion. We don't do it for sync(2) writeback because it has a
	 * separate, external IO completion path and ->sync_fs for guaranteeing
	 * inode metadata is written back correctly.
1364
	 */
1365
	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1366
		int err = filemap_fdatawait(mapping);
L
Linus Torvalds 已提交
1367 1368 1369 1370
		if (ret == 0)
			ret = err;
	}

1371 1372 1373 1374 1375
	/*
	 * Some filesystems may redirty the inode during the writeback
	 * due to delalloc, clear dirty metadata flags right before
	 * write_inode()
	 */
1376
	spin_lock(&inode->i_lock);
1377

1378
	dirty = inode->i_state & I_DIRTY;
1379
	if (inode->i_state & I_DIRTY_TIME) {
1380
		if ((dirty & I_DIRTY_INODE) ||
1381
		    wbc->sync_mode == WB_SYNC_ALL ||
1382 1383 1384 1385 1386 1387 1388 1389 1390
		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
		    unlikely(time_after(jiffies,
					(inode->dirtied_time_when +
					 dirtytime_expire_interval * HZ)))) {
			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
			trace_writeback_lazytime(inode);
		}
	} else
		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1391
	inode->i_state &= ~dirty;
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

	/*
	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
	 * either they see the I_DIRTY bits cleared or we see the dirtied
	 * inode.
	 *
	 * I_DIRTY_PAGES is always cleared together above even if @mapping
	 * still has dirty pages.  The flag is reinstated after smp_mb() if
	 * necessary.  This guarantees that either __mark_inode_dirty()
	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
	 */
	smp_mb();

	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		inode->i_state |= I_DIRTY_PAGES;

1409
	spin_unlock(&inode->i_lock);
1410

1411 1412
	if (dirty & I_DIRTY_TIME)
		mark_inode_dirty_sync(inode);
1413
	/* Don't write the inode if only I_DIRTY_PAGES was set */
1414
	if (dirty & ~I_DIRTY_PAGES) {
1415
		int err = write_inode(inode, wbc);
L
Linus Torvalds 已提交
1416 1417 1418
		if (ret == 0)
			ret = err;
	}
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	trace_writeback_single_inode(inode, wbc, nr_to_write);
	return ret;
}

/*
 * Write out an inode's dirty pages. Either the caller has an active reference
 * on the inode or the inode has I_WILL_FREE set.
 *
 * This function is designed to be called for writing back one inode which
 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
 * and does more profound writeback list handling in writeback_sb_inodes().
 */
1431 1432
static int writeback_single_inode(struct inode *inode,
				  struct writeback_control *wbc)
1433
{
1434
	struct bdi_writeback *wb;
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	int ret = 0;

	spin_lock(&inode->i_lock);
	if (!atomic_read(&inode->i_count))
		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
	else
		WARN_ON(inode->i_state & I_WILL_FREE);

	if (inode->i_state & I_SYNC) {
		if (wbc->sync_mode != WB_SYNC_ALL)
			goto out;
		/*
1447 1448 1449
		 * It's a data-integrity sync. We must wait. Since callers hold
		 * inode reference or inode has I_WILL_FREE set, it cannot go
		 * away under us.
1450
		 */
1451
		__inode_wait_for_writeback(inode);
1452 1453 1454
	}
	WARN_ON(inode->i_state & I_SYNC);
	/*
J
Jan Kara 已提交
1455 1456 1457 1458 1459 1460
	 * Skip inode if it is clean and we have no outstanding writeback in
	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
	 * function since flusher thread may be doing for example sync in
	 * parallel and if we move the inode, it could get skipped. So here we
	 * make sure inode is on some writeback list and leave it there unless
	 * we have completely cleaned the inode.
1461
	 */
1462
	if (!(inode->i_state & I_DIRTY_ALL) &&
J
Jan Kara 已提交
1463 1464
	    (wbc->sync_mode != WB_SYNC_ALL ||
	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1465 1466
		goto out;
	inode->i_state |= I_SYNC;
1467
	wbc_attach_and_unlock_inode(wbc, inode);
1468

1469
	ret = __writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
1470

1471
	wbc_detach_inode(wbc);
1472 1473

	wb = inode_to_wb_and_lock_list(inode);
1474
	spin_lock(&inode->i_lock);
1475 1476 1477 1478
	/*
	 * If inode is clean, remove it from writeback lists. Otherwise don't
	 * touch it. See comment above for explanation.
	 */
1479
	if (!(inode->i_state & I_DIRTY_ALL))
1480
		inode_io_list_del_locked(inode, wb);
1481
	spin_unlock(&wb->list_lock);
J
Joern Engel 已提交
1482
	inode_sync_complete(inode);
1483 1484
out:
	spin_unlock(&inode->i_lock);
L
Linus Torvalds 已提交
1485 1486 1487
	return ret;
}

1488
static long writeback_chunk_size(struct bdi_writeback *wb,
1489
				 struct wb_writeback_work *work)
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
{
	long pages;

	/*
	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
	 * here avoids calling into writeback_inodes_wb() more than once.
	 *
	 * The intended call sequence for WB_SYNC_ALL writeback is:
	 *
	 *      wb_writeback()
	 *          writeback_sb_inodes()       <== called only once
	 *              write_cache_pages()     <== called once for each inode
	 *                   (quickly) tag currently dirty pages
	 *                   (maybe slowly) sync all tagged pages
	 */
	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
		pages = LONG_MAX;
1508
	else {
1509
		pages = min(wb->avg_write_bandwidth / 2,
1510
			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1511 1512 1513 1514
		pages = min(pages, work->nr_pages);
		pages = round_down(pages + MIN_WRITEBACK_PAGES,
				   MIN_WRITEBACK_PAGES);
	}
1515 1516 1517 1518

	return pages;
}

1519 1520
/*
 * Write a portion of b_io inodes which belong to @sb.
1521
 *
1522
 * Return the number of pages and/or inodes written.
1523 1524 1525 1526
 *
 * NOTE! This is called with wb->list_lock held, and will
 * unlock and relock that for each inode it ends up doing
 * IO for.
1527
 */
1528 1529 1530
static long writeback_sb_inodes(struct super_block *sb,
				struct bdi_writeback *wb,
				struct wb_writeback_work *work)
L
Linus Torvalds 已提交
1531
{
1532 1533 1534 1535 1536
	struct writeback_control wbc = {
		.sync_mode		= work->sync_mode,
		.tagged_writepages	= work->tagged_writepages,
		.for_kupdate		= work->for_kupdate,
		.for_background		= work->for_background,
1537
		.for_sync		= work->for_sync,
1538 1539 1540 1541 1542 1543 1544 1545
		.range_cyclic		= work->range_cyclic,
		.range_start		= 0,
		.range_end		= LLONG_MAX,
	};
	unsigned long start_time = jiffies;
	long write_chunk;
	long wrote = 0;  /* count both pages and inodes */

1546
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1547
		struct inode *inode = wb_inode(wb->b_io.prev);
1548
		struct bdi_writeback *tmp_wb;
1549 1550

		if (inode->i_sb != sb) {
1551
			if (work->sb) {
1552 1553 1554 1555 1556
				/*
				 * We only want to write back data for this
				 * superblock, move all inodes not belonging
				 * to it back onto the dirty list.
				 */
1557
				redirty_tail(inode, wb);
1558 1559 1560 1561 1562 1563 1564 1565
				continue;
			}

			/*
			 * The inode belongs to a different superblock.
			 * Bounce back to the caller to unpin this and
			 * pin the next superblock.
			 */
1566
			break;
1567 1568
		}

1569
		/*
W
Wanpeng Li 已提交
1570 1571
		 * Don't bother with new inodes or inodes being freed, first
		 * kind does not need periodic writeout yet, and for the latter
1572 1573
		 * kind writeout is handled by the freer.
		 */
1574
		spin_lock(&inode->i_lock);
1575
		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1576
			spin_unlock(&inode->i_lock);
1577
			redirty_tail(inode, wb);
1578 1579
			continue;
		}
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
			/*
			 * If this inode is locked for writeback and we are not
			 * doing writeback-for-data-integrity, move it to
			 * b_more_io so that writeback can proceed with the
			 * other inodes on s_io.
			 *
			 * We'll have another go at writing back this inode
			 * when we completed a full scan of b_io.
			 */
			spin_unlock(&inode->i_lock);
			requeue_io(inode, wb);
			trace_writeback_sb_inodes_requeue(inode);
			continue;
		}
1595 1596
		spin_unlock(&wb->list_lock);

1597 1598 1599 1600 1601
		/*
		 * We already requeued the inode if it had I_SYNC set and we
		 * are doing WB_SYNC_NONE writeback. So this catches only the
		 * WB_SYNC_ALL case.
		 */
1602 1603 1604 1605
		if (inode->i_state & I_SYNC) {
			/* Wait for I_SYNC. This function drops i_lock... */
			inode_sleep_on_writeback(inode);
			/* Inode may be gone, start again */
1606
			spin_lock(&wb->list_lock);
1607 1608
			continue;
		}
1609
		inode->i_state |= I_SYNC;
1610
		wbc_attach_and_unlock_inode(&wbc, inode);
1611

1612
		write_chunk = writeback_chunk_size(wb, work);
1613 1614
		wbc.nr_to_write = write_chunk;
		wbc.pages_skipped = 0;
1615

1616 1617 1618 1619
		/*
		 * We use I_SYNC to pin the inode in memory. While it is set
		 * evict_inode() will wait so the inode cannot be freed.
		 */
1620
		__writeback_single_inode(inode, &wbc);
1621

1622
		wbc_detach_inode(&wbc);
1623 1624
		work->nr_pages -= write_chunk - wbc.nr_to_write;
		wrote += write_chunk - wbc.nr_to_write;
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638

		if (need_resched()) {
			/*
			 * We're trying to balance between building up a nice
			 * long list of IOs to improve our merge rate, and
			 * getting those IOs out quickly for anyone throttling
			 * in balance_dirty_pages().  cond_resched() doesn't
			 * unplug, so get our IOs out the door before we
			 * give up the CPU.
			 */
			blk_flush_plug(current);
			cond_resched();
		}

1639 1640 1641 1642 1643
		/*
		 * Requeue @inode if still dirty.  Be careful as @inode may
		 * have been switched to another wb in the meantime.
		 */
		tmp_wb = inode_to_wb_and_lock_list(inode);
1644
		spin_lock(&inode->i_lock);
1645
		if (!(inode->i_state & I_DIRTY_ALL))
1646
			wrote++;
1647
		requeue_inode(inode, tmp_wb, &wbc);
1648
		inode_sync_complete(inode);
1649
		spin_unlock(&inode->i_lock);
1650

1651 1652 1653 1654 1655
		if (unlikely(tmp_wb != wb)) {
			spin_unlock(&tmp_wb->list_lock);
			spin_lock(&wb->list_lock);
		}

1656 1657 1658 1659 1660 1661 1662 1663 1664
		/*
		 * bail out to wb_writeback() often enough to check
		 * background threshold and other termination conditions.
		 */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
1665
		}
L
Linus Torvalds 已提交
1666
	}
1667
	return wrote;
1668 1669
}

1670 1671
static long __writeback_inodes_wb(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
1672
{
1673 1674
	unsigned long start_time = jiffies;
	long wrote = 0;
N
Nick Piggin 已提交
1675

1676
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1677
		struct inode *inode = wb_inode(wb->b_io.prev);
1678
		struct super_block *sb = inode->i_sb;
1679

1680
		if (!trylock_super(sb)) {
1681
			/*
1682
			 * trylock_super() may fail consistently due to
1683 1684 1685 1686
			 * s_umount being grabbed by someone else. Don't use
			 * requeue_io() to avoid busy retrying the inode/sb.
			 */
			redirty_tail(inode, wb);
1687
			continue;
1688
		}
1689
		wrote += writeback_sb_inodes(sb, wb, work);
1690
		up_read(&sb->s_umount);
1691

1692 1693 1694 1695 1696 1697 1698
		/* refer to the same tests at the end of writeback_sb_inodes */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
		}
1699
	}
1700
	/* Leave any unwritten inodes on b_io */
1701
	return wrote;
1702 1703
}

1704
static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1705
				enum wb_reason reason)
1706
{
1707 1708 1709 1710
	struct wb_writeback_work work = {
		.nr_pages	= nr_pages,
		.sync_mode	= WB_SYNC_NONE,
		.range_cyclic	= 1,
1711
		.reason		= reason,
1712
	};
1713
	struct blk_plug plug;
1714

1715
	blk_start_plug(&plug);
1716
	spin_lock(&wb->list_lock);
W
Wu Fengguang 已提交
1717
	if (list_empty(&wb->b_io))
1718
		queue_io(wb, &work);
1719
	__writeback_inodes_wb(wb, &work);
1720
	spin_unlock(&wb->list_lock);
1721
	blk_finish_plug(&plug);
1722

1723 1724
	return nr_pages - work.nr_pages;
}
1725 1726 1727

/*
 * Explicit flushing or periodic writeback of "old" data.
1728
 *
1729 1730 1731 1732
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 * dirtying-time in the inode's address_space.  So this periodic writeback code
 * just walks the superblock inode list, writing back any inodes which are
 * older than a specific point in time.
1733
 *
1734 1735 1736
 * Try to run once per dirty_writeback_interval.  But if a writeback event
 * takes longer than a dirty_writeback_interval interval, then leave a
 * one-second gap.
1737
 *
1738 1739
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 * all dirty pages if they are all attached to "old" mappings.
1740
 */
1741
static long wb_writeback(struct bdi_writeback *wb,
1742
			 struct wb_writeback_work *work)
1743
{
1744
	unsigned long wb_start = jiffies;
1745
	long nr_pages = work->nr_pages;
1746
	unsigned long oldest_jif;
J
Jan Kara 已提交
1747
	struct inode *inode;
1748
	long progress;
1749
	struct blk_plug plug;
1750

1751 1752
	oldest_jif = jiffies;
	work->older_than_this = &oldest_jif;
N
Nick Piggin 已提交
1753

1754
	blk_start_plug(&plug);
1755
	spin_lock(&wb->list_lock);
1756 1757
	for (;;) {
		/*
1758
		 * Stop writeback when nr_pages has been consumed
1759
		 */
1760
		if (work->nr_pages <= 0)
1761
			break;
1762

1763 1764 1765 1766 1767 1768 1769
		/*
		 * Background writeout and kupdate-style writeback may
		 * run forever. Stop them if there is other work to do
		 * so that e.g. sync can proceed. They'll be restarted
		 * after the other works are all done.
		 */
		if ((work->for_background || work->for_kupdate) &&
1770
		    !list_empty(&wb->work_list))
1771 1772
			break;

N
Nick Piggin 已提交
1773
		/*
1774 1775
		 * For background writeout, stop when we are below the
		 * background dirty threshold
N
Nick Piggin 已提交
1776
		 */
1777
		if (work->for_background && !wb_over_bg_thresh(wb))
1778
			break;
N
Nick Piggin 已提交
1779

1780 1781 1782 1783 1784 1785
		/*
		 * Kupdate and background works are special and we want to
		 * include all inodes that need writing. Livelock avoidance is
		 * handled by these works yielding to any other work so we are
		 * safe.
		 */
1786
		if (work->for_kupdate) {
1787
			oldest_jif = jiffies -
1788
				msecs_to_jiffies(dirty_expire_interval * 10);
1789
		} else if (work->for_background)
1790
			oldest_jif = jiffies;
1791

1792
		trace_writeback_start(wb, work);
1793
		if (list_empty(&wb->b_io))
1794
			queue_io(wb, work);
1795
		if (work->sb)
1796
			progress = writeback_sb_inodes(work->sb, wb, work);
1797
		else
1798
			progress = __writeback_inodes_wb(wb, work);
1799
		trace_writeback_written(wb, work);
1800

1801
		wb_update_bandwidth(wb, wb_start);
1802 1803

		/*
1804 1805 1806 1807 1808 1809
		 * Did we write something? Try for more
		 *
		 * Dirty inodes are moved to b_io for writeback in batches.
		 * The completion of the current batch does not necessarily
		 * mean the overall work is done. So we keep looping as long
		 * as made some progress on cleaning pages or inodes.
1810
		 */
1811
		if (progress)
1812 1813
			continue;
		/*
1814
		 * No more inodes for IO, bail
1815
		 */
1816
		if (list_empty(&wb->b_more_io))
1817
			break;
1818 1819 1820 1821 1822
		/*
		 * Nothing written. Wait for some inode to
		 * become available for writeback. Otherwise
		 * we'll just busyloop.
		 */
1823 1824 1825 1826 1827 1828 1829
		trace_writeback_wait(wb, work);
		inode = wb_inode(wb->b_more_io.prev);
		spin_lock(&inode->i_lock);
		spin_unlock(&wb->list_lock);
		/* This function drops i_lock... */
		inode_sleep_on_writeback(inode);
		spin_lock(&wb->list_lock);
1830
	}
1831
	spin_unlock(&wb->list_lock);
1832
	blk_finish_plug(&plug);
1833

1834
	return nr_pages - work->nr_pages;
1835 1836 1837
}

/*
1838
 * Return the next wb_writeback_work struct that hasn't been processed yet.
1839
 */
1840
static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1841
{
1842
	struct wb_writeback_work *work = NULL;
1843

1844 1845 1846
	spin_lock_bh(&wb->work_lock);
	if (!list_empty(&wb->work_list)) {
		work = list_entry(wb->work_list.next,
1847 1848
				  struct wb_writeback_work, list);
		list_del_init(&work->list);
1849
	}
1850
	spin_unlock_bh(&wb->work_lock);
1851
	return work;
1852 1853
}

1854 1855
static long wb_check_background_flush(struct bdi_writeback *wb)
{
1856
	if (wb_over_bg_thresh(wb)) {
1857 1858 1859 1860 1861 1862

		struct wb_writeback_work work = {
			.nr_pages	= LONG_MAX,
			.sync_mode	= WB_SYNC_NONE,
			.for_background	= 1,
			.range_cyclic	= 1,
1863
			.reason		= WB_REASON_BACKGROUND,
1864 1865 1866 1867 1868 1869 1870 1871
		};

		return wb_writeback(wb, &work);
	}

	return 0;
}

1872 1873 1874 1875 1876
static long wb_check_old_data_flush(struct bdi_writeback *wb)
{
	unsigned long expired;
	long nr_pages;

1877 1878 1879 1880 1881 1882
	/*
	 * When set to zero, disable periodic writeback
	 */
	if (!dirty_writeback_interval)
		return 0;

1883 1884 1885 1886 1887 1888
	expired = wb->last_old_flush +
			msecs_to_jiffies(dirty_writeback_interval * 10);
	if (time_before(jiffies, expired))
		return 0;

	wb->last_old_flush = jiffies;
1889
	nr_pages = get_nr_dirty_pages();
1890

1891
	if (nr_pages) {
1892
		struct wb_writeback_work work = {
1893 1894 1895 1896
			.nr_pages	= nr_pages,
			.sync_mode	= WB_SYNC_NONE,
			.for_kupdate	= 1,
			.range_cyclic	= 1,
1897
			.reason		= WB_REASON_PERIODIC,
1898 1899
		};

1900
		return wb_writeback(wb, &work);
1901
	}
1902 1903 1904 1905

	return 0;
}

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
static long wb_check_start_all(struct bdi_writeback *wb)
{
	long nr_pages;

	if (!test_bit(WB_start_all, &wb->state))
		return 0;

	nr_pages = get_nr_dirty_pages();
	if (nr_pages) {
		struct wb_writeback_work work = {
			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
			.sync_mode	= WB_SYNC_NONE,
			.range_cyclic	= 1,
			.reason		= wb->start_all_reason,
		};

		nr_pages = wb_writeback(wb, &work);
	}

	clear_bit(WB_start_all, &wb->state);
	return nr_pages;
}


1930 1931 1932
/*
 * Retrieve work items and do the writeback they describe
 */
1933
static long wb_do_writeback(struct bdi_writeback *wb)
1934
{
1935
	struct wb_writeback_work *work;
1936
	long wrote = 0;
1937

1938
	set_bit(WB_writeback_running, &wb->state);
1939
	while ((work = get_next_work_item(wb)) != NULL) {
1940
		trace_writeback_exec(wb, work);
1941
		wrote += wb_writeback(wb, work);
1942
		finish_writeback_work(wb, work);
1943 1944
	}

1945 1946 1947 1948 1949
	/*
	 * Check for a flush-everything request
	 */
	wrote += wb_check_start_all(wb);

1950 1951 1952 1953
	/*
	 * Check for periodic writeback, kupdated() style
	 */
	wrote += wb_check_old_data_flush(wb);
1954
	wrote += wb_check_background_flush(wb);
1955
	clear_bit(WB_writeback_running, &wb->state);
1956 1957 1958 1959 1960 1961

	return wrote;
}

/*
 * Handle writeback of dirty data for the device backed by this bdi. Also
1962
 * reschedules periodically and does kupdated style flushing.
1963
 */
1964
void wb_workfn(struct work_struct *work)
1965
{
1966 1967
	struct bdi_writeback *wb = container_of(to_delayed_work(work),
						struct bdi_writeback, dwork);
1968 1969
	long pages_written;

1970
	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
P
Peter Zijlstra 已提交
1971
	current->flags |= PF_SWAPWRITE;
1972

1973
	if (likely(!current_is_workqueue_rescuer() ||
1974
		   !test_bit(WB_registered, &wb->state))) {
1975
		/*
1976
		 * The normal path.  Keep writing back @wb until its
1977
		 * work_list is empty.  Note that this path is also taken
1978
		 * if @wb is shutting down even when we're running off the
1979
		 * rescuer as work_list needs to be drained.
1980
		 */
1981
		do {
1982
			pages_written = wb_do_writeback(wb);
1983
			trace_writeback_pages_written(pages_written);
1984
		} while (!list_empty(&wb->work_list));
1985 1986 1987 1988 1989 1990
	} else {
		/*
		 * bdi_wq can't get enough workers and we're running off
		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
		 * enough for efficient IO.
		 */
1991
		pages_written = writeback_inodes_wb(wb, 1024,
1992
						    WB_REASON_FORKER_THREAD);
1993
		trace_writeback_pages_written(pages_written);
1994 1995
	}

1996
	if (!list_empty(&wb->work_list))
J
Jan Kara 已提交
1997
		wb_wakeup(wb);
1998
	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1999
		wb_wakeup_delayed(wb);
2000

2001
	current->flags &= ~PF_SWAPWRITE;
2002 2003
}

2004 2005 2006 2007 2008
/*
 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
 * write back the whole world.
 */
static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2009
					 enum wb_reason reason)
2010 2011 2012 2013 2014 2015 2016
{
	struct bdi_writeback *wb;

	if (!bdi_has_dirty_io(bdi))
		return;

	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2017
		wb_start_writeback(wb, reason);
2018 2019 2020 2021 2022 2023
}

void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
				enum wb_reason reason)
{
	rcu_read_lock();
2024
	__wakeup_flusher_threads_bdi(bdi, reason);
2025 2026 2027
	rcu_read_unlock();
}

2028
/*
2029
 * Wakeup the flusher threads to start writeback of all currently dirty pages
2030
 */
2031
void wakeup_flusher_threads(enum wb_reason reason)
2032
{
2033
	struct backing_dev_info *bdi;
2034

2035 2036 2037 2038 2039 2040
	/*
	 * If we are expecting writeback progress we must submit plugged IO.
	 */
	if (blk_needs_flush_plug(current))
		blk_schedule_flush_plug(current);

2041
	rcu_read_lock();
2042
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2043
		__wakeup_flusher_threads_bdi(bdi, reason);
2044
	rcu_read_unlock();
L
Linus Torvalds 已提交
2045 2046
}

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
/*
 * Wake up bdi's periodically to make sure dirtytime inodes gets
 * written back periodically.  We deliberately do *not* check the
 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
 * kernel to be constantly waking up once there are any dirtytime
 * inodes on the system.  So instead we define a separate delayed work
 * function which gets called much more rarely.  (By default, only
 * once every 12 hours.)
 *
 * If there is any other write activity going on in the file system,
 * this function won't be necessary.  But if the only thing that has
 * happened on the file system is a dirtytime inode caused by an atime
 * update, we need this infrastructure below to make sure that inode
 * eventually gets pushed out to disk.
 */
static void wakeup_dirtytime_writeback(struct work_struct *w);
static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);

static void wakeup_dirtytime_writeback(struct work_struct *w)
{
	struct backing_dev_info *bdi;

	rcu_read_lock();
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2071 2072
		struct bdi_writeback *wb;

2073
		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2074 2075
			if (!list_empty(&wb->b_dirty_time))
				wb_wakeup(wb);
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
	}
	rcu_read_unlock();
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
}

static int __init start_dirtytime_writeback(void)
{
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
	return 0;
}
__initcall(start_dirtytime_writeback);

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
int dirtytime_interval_handler(struct ctl_table *table, int write,
			       void __user *buffer, size_t *lenp, loff_t *ppos)
{
	int ret;

	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		mod_delayed_work(system_wq, &dirtytime_work, 0);
	return ret;
}

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
static noinline void block_dump___mark_inode_dirty(struct inode *inode)
{
	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
		struct dentry *dentry;
		const char *name = "?";

		dentry = d_find_alias(inode);
		if (dentry) {
			spin_lock(&dentry->d_lock);
			name = (const char *) dentry->d_name.name;
		}
		printk(KERN_DEBUG
		       "%s(%d): dirtied inode %lu (%s) on %s\n",
		       current->comm, task_pid_nr(current), inode->i_ino,
		       name, inode->i_sb->s_id);
		if (dentry) {
			spin_unlock(&dentry->d_lock);
			dput(dentry);
		}
	}
}

/**
2122 2123 2124 2125 2126 2127 2128
 * __mark_inode_dirty -	internal function
 *
 * @inode: inode to mark
 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 *
 * Mark an inode as dirty. Callers should use mark_inode_dirty or
 * mark_inode_dirty_sync.
L
Linus Torvalds 已提交
2129
 *
2130 2131 2132 2133 2134 2135 2136 2137 2138
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but move it onto the
 * dirty list only if it is hashed or if it refers to a blockdev.
 * If it was not hashed, it will never be added to the dirty list
 * even if it is later hashed, as it will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_ you start marking
 * them dirty.
L
Linus Torvalds 已提交
2139
 *
2140 2141 2142 2143 2144 2145
 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
 * the kernel-internal blockdev inode represents the dirtying time of the
 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
 * page->mapping->host, so the page-dirtying time is recorded in the internal
 * blockdev inode.
L
Linus Torvalds 已提交
2146
 */
2147
void __mark_inode_dirty(struct inode *inode, int flags)
L
Linus Torvalds 已提交
2148
{
2149
	struct super_block *sb = inode->i_sb;
2150 2151 2152
	int dirtytime;

	trace_writeback_mark_inode_dirty(inode, flags);
L
Linus Torvalds 已提交
2153

2154 2155 2156 2157
	/*
	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
	 * dirty the inode itself
	 */
2158
	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
T
Tejun Heo 已提交
2159 2160
		trace_writeback_dirty_inode_start(inode, flags);

2161
		if (sb->s_op->dirty_inode)
2162
			sb->s_op->dirty_inode(inode, flags);
T
Tejun Heo 已提交
2163 2164

		trace_writeback_dirty_inode(inode, flags);
2165
	}
2166 2167 2168
	if (flags & I_DIRTY_INODE)
		flags &= ~I_DIRTY_TIME;
	dirtytime = flags & I_DIRTY_TIME;
2169 2170

	/*
2171 2172
	 * Paired with smp_mb() in __writeback_single_inode() for the
	 * following lockless i_state test.  See there for details.
2173 2174 2175
	 */
	smp_mb();

2176 2177
	if (((inode->i_state & flags) == flags) ||
	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2178 2179 2180 2181 2182
		return;

	if (unlikely(block_dump))
		block_dump___mark_inode_dirty(inode);

2183
	spin_lock(&inode->i_lock);
2184 2185
	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
		goto out_unlock_inode;
2186 2187 2188
	if ((inode->i_state & flags) != flags) {
		const int was_dirty = inode->i_state & I_DIRTY;

2189 2190
		inode_attach_wb(inode, NULL);

2191 2192
		if (flags & I_DIRTY_INODE)
			inode->i_state &= ~I_DIRTY_TIME;
2193 2194 2195 2196 2197 2198 2199 2200
		inode->i_state |= flags;

		/*
		 * If the inode is being synced, just update its dirty state.
		 * The unlocker will place the inode on the appropriate
		 * superblock list, based upon its state.
		 */
		if (inode->i_state & I_SYNC)
2201
			goto out_unlock_inode;
2202 2203 2204 2205 2206 2207

		/*
		 * Only add valid (hashed) inodes to the superblock's
		 * dirty list.  Add blockdev inodes as well.
		 */
		if (!S_ISBLK(inode->i_mode)) {
A
Al Viro 已提交
2208
			if (inode_unhashed(inode))
2209
				goto out_unlock_inode;
2210
		}
A
Al Viro 已提交
2211
		if (inode->i_state & I_FREEING)
2212
			goto out_unlock_inode;
2213 2214 2215 2216 2217 2218

		/*
		 * If the inode was already on b_dirty/b_io/b_more_io, don't
		 * reposition it (that would break b_dirty time-ordering).
		 */
		if (!was_dirty) {
2219
			struct bdi_writeback *wb;
2220
			struct list_head *dirty_list;
2221
			bool wakeup_bdi = false;
2222

2223
			wb = locked_inode_to_wb_and_lock_list(inode);
2224

2225 2226 2227
			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
			     !test_bit(WB_registered, &wb->state),
			     "bdi-%s not registered\n", wb->bdi->name);
2228 2229

			inode->dirtied_when = jiffies;
2230 2231
			if (dirtytime)
				inode->dirtied_time_when = jiffies;
2232

2233
			if (inode->i_state & I_DIRTY)
2234
				dirty_list = &wb->b_dirty;
2235
			else
2236
				dirty_list = &wb->b_dirty_time;
2237

2238
			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2239 2240
							       dirty_list);

2241
			spin_unlock(&wb->list_lock);
2242
			trace_writeback_dirty_inode_enqueue(inode);
2243

2244 2245 2246 2247 2248 2249
			/*
			 * If this is the first dirty inode for this bdi,
			 * we have to wake-up the corresponding bdi thread
			 * to make sure background write-back happens
			 * later.
			 */
2250 2251
			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
				wb_wakeup_delayed(wb);
2252
			return;
L
Linus Torvalds 已提交
2253 2254
		}
	}
2255 2256
out_unlock_inode:
	spin_unlock(&inode->i_lock);
2257 2258 2259
}
EXPORT_SYMBOL(__mark_inode_dirty);

2260 2261 2262 2263 2264 2265 2266 2267 2268
/*
 * The @s_sync_lock is used to serialise concurrent sync operations
 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
 * Concurrent callers will block on the s_sync_lock rather than doing contending
 * walks. The queueing maintains sync(2) required behaviour as all the IO that
 * has been issued up to the time this function is enter is guaranteed to be
 * completed by the time we have gained the lock and waited for all IO that is
 * in progress regardless of the order callers are granted the lock.
 */
2269
static void wait_sb_inodes(struct super_block *sb)
2270
{
2271
	LIST_HEAD(sync_list);
2272 2273 2274 2275 2276

	/*
	 * We need to be protected against the filesystem going from
	 * r/o to r/w or vice versa.
	 */
2277
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2278

2279
	mutex_lock(&sb->s_sync_lock);
2280 2281

	/*
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
	 * Splice the writeback list onto a temporary list to avoid waiting on
	 * inodes that have started writeback after this point.
	 *
	 * Use rcu_read_lock() to keep the inodes around until we have a
	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
	 * the local list because inodes can be dropped from either by writeback
	 * completion.
	 */
	rcu_read_lock();
	spin_lock_irq(&sb->s_inode_wblist_lock);
	list_splice_init(&sb->s_inodes_wb, &sync_list);

	/*
	 * Data integrity sync. Must wait for all pages under writeback, because
	 * there may have been pages dirtied before our sync call, but which had
	 * writeout started before we write it out.  In which case, the inode
	 * may not be on the dirty list, but we still have to wait for that
	 * writeout.
2300
	 */
2301 2302 2303
	while (!list_empty(&sync_list)) {
		struct inode *inode = list_first_entry(&sync_list, struct inode,
						       i_wb_list);
2304
		struct address_space *mapping = inode->i_mapping;
2305

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
		/*
		 * Move each inode back to the wb list before we drop the lock
		 * to preserve consistency between i_wb_list and the mapping
		 * writeback tag. Writeback completion is responsible to remove
		 * the inode from either list once the writeback tag is cleared.
		 */
		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);

		/*
		 * The mapping can appear untagged while still on-list since we
		 * do not have the mapping lock. Skip it here, wb completion
		 * will remove it.
		 */
		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
			continue;

		spin_unlock_irq(&sb->s_inode_wblist_lock);

2324
		spin_lock(&inode->i_lock);
2325
		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2326
			spin_unlock(&inode->i_lock);
2327 2328

			spin_lock_irq(&sb->s_inode_wblist_lock);
2329
			continue;
2330
		}
2331
		__iget(inode);
2332
		spin_unlock(&inode->i_lock);
2333
		rcu_read_unlock();
2334

2335 2336 2337 2338 2339 2340
		/*
		 * We keep the error status of individual mapping so that
		 * applications can catch the writeback error using fsync(2).
		 * See filemap_fdatawait_keep_errors() for details.
		 */
		filemap_fdatawait_keep_errors(mapping);
2341 2342 2343

		cond_resched();

2344 2345 2346 2347
		iput(inode);

		rcu_read_lock();
		spin_lock_irq(&sb->s_inode_wblist_lock);
2348
	}
2349 2350
	spin_unlock_irq(&sb->s_inode_wblist_lock);
	rcu_read_unlock();
2351
	mutex_unlock(&sb->s_sync_lock);
L
Linus Torvalds 已提交
2352 2353
}

2354 2355
static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				     enum wb_reason reason, bool skip_if_busy)
L
Linus Torvalds 已提交
2356
{
2357 2358
	struct backing_dev_info *bdi = sb->s_bdi;
	DEFINE_WB_COMPLETION(done, bdi);
2359
	struct wb_writeback_work work = {
2360 2361 2362 2363 2364
		.sb			= sb,
		.sync_mode		= WB_SYNC_NONE,
		.tagged_writepages	= 1,
		.done			= &done,
		.nr_pages		= nr,
2365
		.reason			= reason,
2366
	};
2367

2368
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2369
		return;
2370
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2371

2372
	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2373
	wb_wait_for_completion(&done);
2374
}
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391

/**
 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
 * @sb: the superblock
 * @nr: the number of pages to write
 * @reason: reason why some writeback work initiated
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
void writeback_inodes_sb_nr(struct super_block *sb,
			    unsigned long nr,
			    enum wb_reason reason)
{
	__writeback_inodes_sb_nr(sb, nr, reason, false);
}
2392 2393 2394 2395 2396
EXPORT_SYMBOL(writeback_inodes_sb_nr);

/**
 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
 * @sb: the superblock
2397
 * @reason: reason why some writeback work was initiated
2398 2399 2400 2401 2402
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
2403
void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2404
{
2405
	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2406
}
2407
EXPORT_SYMBOL(writeback_inodes_sb);
2408

2409
/**
2410
 * try_to_writeback_inodes_sb - try to start writeback if none underway
2411
 * @sb: the superblock
2412
 * @reason: reason why some writeback work was initiated
2413
 *
2414
 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2415
 */
2416
void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2417
{
2418
	if (!down_read_trylock(&sb->s_umount))
2419
		return;
2420

2421
	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2422
	up_read(&sb->s_umount);
2423
}
2424
EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2425

2426 2427
/**
 * sync_inodes_sb	-	sync sb inode pages
2428
 * @sb: the superblock
2429 2430
 *
 * This function writes and waits on any dirty inode belonging to this
2431
 * super_block.
2432
 */
2433
void sync_inodes_sb(struct super_block *sb)
2434
{
2435 2436
	struct backing_dev_info *bdi = sb->s_bdi;
	DEFINE_WB_COMPLETION(done, bdi);
2437
	struct wb_writeback_work work = {
2438 2439 2440 2441
		.sb		= sb,
		.sync_mode	= WB_SYNC_ALL,
		.nr_pages	= LONG_MAX,
		.range_cyclic	= 0,
2442
		.done		= &done,
2443
		.reason		= WB_REASON_SYNC,
2444
		.for_sync	= 1,
2445 2446
	};

2447 2448 2449 2450 2451 2452
	/*
	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
	 * bdi_has_dirty() need to be written out too.
	 */
	if (bdi == &noop_backing_dev_info)
2453
		return;
2454 2455
	WARN_ON(!rwsem_is_locked(&sb->s_umount));

2456 2457
	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
	bdi_down_write_wb_switch_rwsem(bdi);
2458
	bdi_split_work_to_wbs(bdi, &work, false);
2459
	wb_wait_for_completion(&done);
2460
	bdi_up_write_wb_switch_rwsem(bdi);
2461

2462
	wait_sb_inodes(sb);
L
Linus Torvalds 已提交
2463
}
2464
EXPORT_SYMBOL(sync_inodes_sb);
L
Linus Torvalds 已提交
2465 2466

/**
2467 2468 2469 2470 2471 2472
 * write_inode_now	-	write an inode to disk
 * @inode: inode to write to disk
 * @sync: whether the write should be synchronous or not
 *
 * This function commits an inode to disk immediately if it is dirty. This is
 * primarily needed by knfsd.
L
Linus Torvalds 已提交
2473
 *
2474
 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
L
Linus Torvalds 已提交
2475 2476 2477 2478 2479
 */
int write_inode_now(struct inode *inode, int sync)
{
	struct writeback_control wbc = {
		.nr_to_write = LONG_MAX,
2480
		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2481 2482
		.range_start = 0,
		.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
2483 2484 2485
	};

	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2486
		wbc.nr_to_write = 0;
L
Linus Torvalds 已提交
2487 2488

	might_sleep();
2489
	return writeback_single_inode(inode, &wbc);
L
Linus Torvalds 已提交
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
}
EXPORT_SYMBOL(write_inode_now);

/**
 * sync_inode - write an inode and its pages to disk.
 * @inode: the inode to sync
 * @wbc: controls the writeback mode
 *
 * sync_inode() will write an inode and its pages to disk.  It will also
 * correctly update the inode on its superblock's dirty inode lists and will
 * update inode->i_state.
 *
 * The caller must have a ref on the inode.
 */
int sync_inode(struct inode *inode, struct writeback_control *wbc)
{
2506
	return writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
2507 2508
}
EXPORT_SYMBOL(sync_inode);
C
Christoph Hellwig 已提交
2509 2510

/**
A
Andrew Morton 已提交
2511
 * sync_inode_metadata - write an inode to disk
C
Christoph Hellwig 已提交
2512 2513 2514
 * @inode: the inode to sync
 * @wait: wait for I/O to complete.
 *
A
Andrew Morton 已提交
2515
 * Write an inode to disk and adjust its dirty state after completion.
C
Christoph Hellwig 已提交
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
 *
 * Note: only writes the actual inode, no associated data or other metadata.
 */
int sync_inode_metadata(struct inode *inode, int wait)
{
	struct writeback_control wbc = {
		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
		.nr_to_write = 0, /* metadata-only */
	};

	return sync_inode(inode, &wbc);
}
EXPORT_SYMBOL(sync_inode_metadata);