fs-writeback.c 72.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11
/*
 * fs/fs-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains all the functions related to writing back and waiting
 * upon dirty inodes against superblocks, and writing back dirty
 * pages against inodes.  ie: data writeback.  Writeout of the
 * inode itself is not handled here.
 *
12
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
13 14 15 16 17
 *		Split out of fs/inode.c
 *		Additions for address_space-based writeback
 */

#include <linux/kernel.h>
18
#include <linux/export.h>
L
Linus Torvalds 已提交
19
#include <linux/spinlock.h>
20
#include <linux/slab.h>
L
Linus Torvalds 已提交
21 22 23
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
24
#include <linux/pagemap.h>
25
#include <linux/kthread.h>
L
Linus Torvalds 已提交
26 27 28
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
29
#include <linux/tracepoint.h>
30
#include <linux/device.h>
31
#include <linux/memcontrol.h>
32
#include "internal.h"
L
Linus Torvalds 已提交
33

34 35 36
/*
 * 4MB minimal write chunk size
 */
37
#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38

39 40 41 42
struct wb_completion {
	atomic_t		cnt;
};

43 44 45
/*
 * Passed into wb_writeback(), essentially a subset of writeback_control
 */
46
struct wb_writeback_work {
47 48
	long nr_pages;
	struct super_block *sb;
49
	unsigned long *older_than_this;
50
	enum writeback_sync_modes sync_mode;
51
	unsigned int tagged_writepages:1;
52 53 54
	unsigned int for_kupdate:1;
	unsigned int range_cyclic:1;
	unsigned int for_background:1;
55
	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
56
	unsigned int auto_free:1;	/* free on completion */
57
	enum wb_reason reason;		/* why was writeback initiated? */
58

59
	struct list_head list;		/* pending work list */
60
	struct wb_completion *done;	/* set if the caller waits */
61 62
};

63 64 65 66 67 68 69 70 71 72 73 74 75
/*
 * If one wants to wait for one or more wb_writeback_works, each work's
 * ->done should be set to a wb_completion defined using the following
 * macro.  Once all work items are issued with wb_queue_work(), the caller
 * can wait for the completion of all using wb_wait_for_completion().  Work
 * items which are waited upon aren't freed automatically on completion.
 */
#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
	struct wb_completion cmpl = {					\
		.cnt		= ATOMIC_INIT(1),			\
	}


76 77 78 79 80 81 82 83 84 85 86 87
/*
 * If an inode is constantly having its pages dirtied, but then the
 * updates stop dirtytime_expire_interval seconds in the past, it's
 * possible for the worst case time between when an inode has its
 * timestamps updated and when they finally get written out to be two
 * dirtytime_expire_intervals.  We set the default to 12 hours (in
 * seconds), which means most of the time inodes will have their
 * timestamps written to disk after 12 hours, but in the worst case a
 * few inodes might not their timestamps updated for 24 hours.
 */
unsigned int dirtytime_expire_interval = 12 * 60 * 60;

N
Nick Piggin 已提交
88 89
static inline struct inode *wb_inode(struct list_head *head)
{
90
	return list_entry(head, struct inode, i_io_list);
N
Nick Piggin 已提交
91 92
}

93 94 95 96 97 98 99 100
/*
 * Include the creation of the trace points after defining the
 * wb_writeback_work structure and inline functions so that the definition
 * remains local to this file.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/writeback.h>

101 102
EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);

103 104 105 106 107 108
static bool wb_io_lists_populated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb)) {
		return false;
	} else {
		set_bit(WB_has_dirty_io, &wb->state);
109
		WARN_ON_ONCE(!wb->avg_write_bandwidth);
110 111
		atomic_long_add(wb->avg_write_bandwidth,
				&wb->bdi->tot_write_bandwidth);
112 113 114 115 116 117 118
		return true;
	}
}

static void wb_io_lists_depopulated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
119
	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
120
		clear_bit(WB_has_dirty_io, &wb->state);
121 122
		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
					&wb->bdi->tot_write_bandwidth) < 0);
123
	}
124 125 126
}

/**
127
 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
128 129
 * @inode: inode to be moved
 * @wb: target bdi_writeback
130
 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
131
 *
132
 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
133 134 135
 * Returns %true if @inode is the first occupant of the !dirty_time IO
 * lists; otherwise, %false.
 */
136
static bool inode_io_list_move_locked(struct inode *inode,
137 138 139 140 141
				      struct bdi_writeback *wb,
				      struct list_head *head)
{
	assert_spin_locked(&wb->list_lock);

142
	list_move(&inode->i_io_list, head);
143 144 145 146 147 148 149 150 151 152

	/* dirty_time doesn't count as dirty_io until expiration */
	if (head != &wb->b_dirty_time)
		return wb_io_lists_populated(wb);

	wb_io_lists_depopulated(wb);
	return false;
}

/**
153
 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
154 155 156 157 158 159
 * @inode: inode to be removed
 * @wb: bdi_writeback @inode is being removed from
 *
 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 * clear %WB_has_dirty_io if all are empty afterwards.
 */
160
static void inode_io_list_del_locked(struct inode *inode,
161 162 163 164
				     struct bdi_writeback *wb)
{
	assert_spin_locked(&wb->list_lock);

165
	list_del_init(&inode->i_io_list);
166 167 168
	wb_io_lists_depopulated(wb);
}

169
static void wb_wakeup(struct bdi_writeback *wb)
J
Jan Kara 已提交
170
{
171 172 173 174
	spin_lock_bh(&wb->work_lock);
	if (test_bit(WB_registered, &wb->state))
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	spin_unlock_bh(&wb->work_lock);
J
Jan Kara 已提交
175 176
}

177 178 179 180 181 182 183 184 185 186 187
static void finish_writeback_work(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
{
	struct wb_completion *done = work->done;

	if (work->auto_free)
		kfree(work);
	if (done && atomic_dec_and_test(&done->cnt))
		wake_up_all(&wb->bdi->wb_waitq);
}

188 189
static void wb_queue_work(struct bdi_writeback *wb,
			  struct wb_writeback_work *work)
190
{
191
	trace_writeback_queue(wb, work);
192

193 194
	if (work->done)
		atomic_inc(&work->done->cnt);
195 196 197 198 199 200 201 202 203

	spin_lock_bh(&wb->work_lock);

	if (test_bit(WB_registered, &wb->state)) {
		list_add_tail(&work->list, &wb->work_list);
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	} else
		finish_writeback_work(wb, work);

204
	spin_unlock_bh(&wb->work_lock);
L
Linus Torvalds 已提交
205 206
}

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
/**
 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 * @bdi: bdi work items were issued to
 * @done: target wb_completion
 *
 * Wait for one or more work items issued to @bdi with their ->done field
 * set to @done, which should have been defined with
 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 * work items are completed.  Work items which are waited upon aren't freed
 * automatically on completion.
 */
static void wb_wait_for_completion(struct backing_dev_info *bdi,
				   struct wb_completion *done)
{
	atomic_dec(&done->cnt);		/* put down the initial count */
	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
}

225 226
#ifdef CONFIG_CGROUP_WRITEBACK

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
/*
 * Parameters for foreign inode detection, see wbc_detach_inode() to see
 * how they're used.
 *
 * These paramters are inherently heuristical as the detection target
 * itself is fuzzy.  All we want to do is detaching an inode from the
 * current owner if it's being written to by some other cgroups too much.
 *
 * The current cgroup writeback is built on the assumption that multiple
 * cgroups writing to the same inode concurrently is very rare and a mode
 * of operation which isn't well supported.  As such, the goal is not
 * taking too long when a different cgroup takes over an inode while
 * avoiding too aggressive flip-flops from occasional foreign writes.
 *
 * We record, very roughly, 2s worth of IO time history and if more than
 * half of that is foreign, trigger the switch.  The recording is quantized
 * to 16 slots.  To avoid tiny writes from swinging the decision too much,
 * writes smaller than 1/8 of avg size are ignored.
 */
246 247
#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
248
#define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
249 250 251 252 253 254 255 256 257 258
#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */

#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
					/* each slot's duration is 2s / 16 */
#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
					/* if foreign slots >= 8, switch */
#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
					/* one round can affect upto 5 slots */

259 260 261
static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
static struct workqueue_struct *isw_wq;

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
void __inode_attach_wb(struct inode *inode, struct page *page)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;

	if (inode_cgwb_enabled(inode)) {
		struct cgroup_subsys_state *memcg_css;

		if (page) {
			memcg_css = mem_cgroup_css_from_page(page);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
		} else {
			/* must pin memcg_css, see wb_get_create() */
			memcg_css = task_get_css(current, memory_cgrp_id);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
			css_put(memcg_css);
		}
	}

	if (!wb)
		wb = &bdi->wb;

	/*
	 * There may be multiple instances of this function racing to
	 * update the same inode.  Use cmpxchg() to tell the winner.
	 */
	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
		wb_put(wb);
}
291
EXPORT_SYMBOL_GPL(__inode_attach_wb);
292

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
/**
 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 * @inode: inode of interest with i_lock held
 *
 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 * held on entry and is released on return.  The returned wb is guaranteed
 * to stay @inode's associated wb until its list_lock is released.
 */
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	while (true) {
		struct bdi_writeback *wb = inode_to_wb(inode);

		/*
		 * inode_to_wb() association is protected by both
		 * @inode->i_lock and @wb->list_lock but list_lock nests
		 * outside i_lock.  Drop i_lock and verify that the
		 * association hasn't changed after acquiring list_lock.
		 */
		wb_get(wb);
		spin_unlock(&inode->i_lock);
		spin_lock(&wb->list_lock);

319
		/* i_wb may have changed inbetween, can't use inode_to_wb() */
320 321 322 323
		if (likely(wb == inode->i_wb)) {
			wb_put(wb);	/* @inode already has ref */
			return wb;
		}
324 325

		spin_unlock(&wb->list_lock);
326
		wb_put(wb);
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
		cpu_relax();
		spin_lock(&inode->i_lock);
	}
}

/**
 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 * @inode: inode of interest
 *
 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 * on entry.
 */
static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	spin_lock(&inode->i_lock);
	return locked_inode_to_wb_and_lock_list(inode);
}

346 347 348 349 350 351 352 353
struct inode_switch_wbs_context {
	struct inode		*inode;
	struct bdi_writeback	*new_wb;

	struct rcu_head		rcu_head;
	struct work_struct	work;
};

354 355 356 357 358 359 360 361 362 363
static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
{
	down_write(&bdi->wb_switch_rwsem);
}

static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
{
	up_write(&bdi->wb_switch_rwsem);
}

364 365 366 367 368
static void inode_switch_wbs_work_fn(struct work_struct *work)
{
	struct inode_switch_wbs_context *isw =
		container_of(work, struct inode_switch_wbs_context, work);
	struct inode *inode = isw->inode;
369
	struct backing_dev_info *bdi = inode_to_bdi(inode);
370 371
	struct address_space *mapping = inode->i_mapping;
	struct bdi_writeback *old_wb = inode->i_wb;
372
	struct bdi_writeback *new_wb = isw->new_wb;
M
Matthew Wilcox 已提交
373 374
	XA_STATE(xas, &mapping->i_pages, 0);
	struct page *page;
375
	bool switched = false;
376

377 378 379 380 381 382
	/*
	 * If @inode switches cgwb membership while sync_inodes_sb() is
	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
	 */
	down_read(&bdi->wb_switch_rwsem);

383 384 385 386
	/*
	 * By the time control reaches here, RCU grace period has passed
	 * since I_WB_SWITCH assertion and all wb stat update transactions
	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
M
Matthew Wilcox 已提交
387
	 * synchronizing against the i_pages lock.
388
	 *
M
Matthew Wilcox 已提交
389
	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
390 391
	 * gives us exclusion against all wb related operations on @inode
	 * including IO list manipulations and stat updates.
392
	 */
393 394 395 396 397 398 399
	if (old_wb < new_wb) {
		spin_lock(&old_wb->list_lock);
		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
	} else {
		spin_lock(&new_wb->list_lock);
		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
	}
400
	spin_lock(&inode->i_lock);
M
Matthew Wilcox 已提交
401
	xa_lock_irq(&mapping->i_pages);
402 403 404

	/*
	 * Once I_FREEING is visible under i_lock, the eviction path owns
405
	 * the inode and we shouldn't modify ->i_io_list.
406 407 408 409 410 411 412
	 */
	if (unlikely(inode->i_state & I_FREEING))
		goto skip_switch;

	/*
	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
M
Matthew Wilcox 已提交
413
	 * pages actually under writeback.
414
	 */
M
Matthew Wilcox 已提交
415 416
	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
		if (PageDirty(page)) {
417 418
			dec_wb_stat(old_wb, WB_RECLAIMABLE);
			inc_wb_stat(new_wb, WB_RECLAIMABLE);
419 420 421
		}
	}

M
Matthew Wilcox 已提交
422 423 424 425 426
	xas_set(&xas, 0);
	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
		WARN_ON_ONCE(!PageWriteback(page));
		dec_wb_stat(old_wb, WB_WRITEBACK);
		inc_wb_stat(new_wb, WB_WRITEBACK);
427 428 429 430 431 432 433 434 435 436
	}

	wb_get(new_wb);

	/*
	 * Transfer to @new_wb's IO list if necessary.  The specific list
	 * @inode was on is ignored and the inode is put on ->b_dirty which
	 * is always correct including from ->b_dirty_time.  The transfer
	 * preserves @inode->dirtied_when ordering.
	 */
437
	if (!list_empty(&inode->i_io_list)) {
438 439
		struct inode *pos;

440
		inode_io_list_del_locked(inode, old_wb);
441
		inode->i_wb = new_wb;
442
		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
443 444 445
			if (time_after_eq(inode->dirtied_when,
					  pos->dirtied_when))
				break;
446
		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
447 448 449
	} else {
		inode->i_wb = new_wb;
	}
450

451
	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
452 453 454
	inode->i_wb_frn_winner = 0;
	inode->i_wb_frn_avg_time = 0;
	inode->i_wb_frn_history = 0;
455 456
	switched = true;
skip_switch:
457 458 459 460 461 462
	/*
	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
	 */
	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);

M
Matthew Wilcox 已提交
463
	xa_unlock_irq(&mapping->i_pages);
464
	spin_unlock(&inode->i_lock);
465 466
	spin_unlock(&new_wb->list_lock);
	spin_unlock(&old_wb->list_lock);
467

468 469
	up_read(&bdi->wb_switch_rwsem);

470 471 472 473
	if (switched) {
		wb_wakeup(new_wb);
		wb_put(old_wb);
	}
474
	wb_put(new_wb);
475 476

	iput(inode);
477
	kfree(isw);
478 479

	atomic_dec(&isw_nr_in_flight);
480 481 482 483 484 485 486 487 488
}

static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
{
	struct inode_switch_wbs_context *isw = container_of(rcu_head,
				struct inode_switch_wbs_context, rcu_head);

	/* needs to grab bh-unsafe locks, bounce to work item */
	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
489
	queue_work(isw_wq, &isw->work);
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
}

/**
 * inode_switch_wbs - change the wb association of an inode
 * @inode: target inode
 * @new_wb_id: ID of the new wb
 *
 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 * switching is performed asynchronously and may fail silently.
 */
static void inode_switch_wbs(struct inode *inode, int new_wb_id)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct cgroup_subsys_state *memcg_css;
	struct inode_switch_wbs_context *isw;

	/* noop if seems to be already in progress */
	if (inode->i_state & I_WB_SWITCH)
		return;

510 511 512 513 514 515 516 517 518
	/*
	 * Avoid starting new switches while sync_inodes_sb() is in
	 * progress.  Otherwise, if the down_write protected issue path
	 * blocks heavily, we might end up starting a large number of
	 * switches which will block on the rwsem.
	 */
	if (!down_read_trylock(&bdi->wb_switch_rwsem))
		return;

519 520
	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
	if (!isw)
521
		goto out_unlock;
522 523 524 525 526 527 528 529 530 531 532 533

	/* find and pin the new wb */
	rcu_read_lock();
	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
	if (memcg_css)
		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
	rcu_read_unlock();
	if (!isw->new_wb)
		goto out_free;

	/* while holding I_WB_SWITCH, no one else can update the association */
	spin_lock(&inode->i_lock);
534
	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
535 536 537 538 539
	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
	    inode_to_wb(inode) == isw->new_wb) {
		spin_unlock(&inode->i_lock);
		goto out_free;
	}
540
	inode->i_state |= I_WB_SWITCH;
541
	__iget(inode);
542 543 544 545 546 547
	spin_unlock(&inode->i_lock);

	isw->inode = inode;

	/*
	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
M
Matthew Wilcox 已提交
548 549
	 * the RCU protected stat update paths to grab the i_page
	 * lock so that stat transfer can synchronize against them.
550 551 552
	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
	 */
	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
553 554 555

	atomic_inc(&isw_nr_in_flight);

556
	goto out_unlock;
557 558 559 560 561

out_free:
	if (isw->new_wb)
		wb_put(isw->new_wb);
	kfree(isw);
562 563
out_unlock:
	up_read(&bdi->wb_switch_rwsem);
564 565
}

566 567 568 569 570 571 572 573 574 575 576 577 578
/**
 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 * @wbc: writeback_control of interest
 * @inode: target inode
 *
 * @inode is locked and about to be written back under the control of @wbc.
 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 * writeback completion, wbc_detach_inode() should be called.  This is used
 * to track the cgroup writeback context.
 */
void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
				 struct inode *inode)
{
579 580 581 582 583
	if (!inode_cgwb_enabled(inode)) {
		spin_unlock(&inode->i_lock);
		return;
	}

584
	wbc->wb = inode_to_wb(inode);
585 586 587 588 589 590 591 592 593
	wbc->inode = inode;

	wbc->wb_id = wbc->wb->memcg_css->id;
	wbc->wb_lcand_id = inode->i_wb_frn_winner;
	wbc->wb_tcand_id = 0;
	wbc->wb_bytes = 0;
	wbc->wb_lcand_bytes = 0;
	wbc->wb_tcand_bytes = 0;

594 595
	wb_get(wbc->wb);
	spin_unlock(&inode->i_lock);
596 597 598 599 600 601 602

	/*
	 * A dying wb indicates that the memcg-blkcg mapping has changed
	 * and a new wb is already serving the memcg.  Switch immediately.
	 */
	if (unlikely(wb_dying(wbc->wb)))
		inode_switch_wbs(inode, wbc->wb_id);
603
}
604
EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
605 606

/**
607 608
 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 * @wbc: writeback_control of the just finished writeback
609 610 611
 *
 * To be called after a writeback attempt of an inode finishes and undoes
 * wbc_attach_and_unlock_inode().  Can be called under any context.
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
 *
 * As concurrent write sharing of an inode is expected to be very rare and
 * memcg only tracks page ownership on first-use basis severely confining
 * the usefulness of such sharing, cgroup writeback tracks ownership
 * per-inode.  While the support for concurrent write sharing of an inode
 * is deemed unnecessary, an inode being written to by different cgroups at
 * different points in time is a lot more common, and, more importantly,
 * charging only by first-use can too readily lead to grossly incorrect
 * behaviors (single foreign page can lead to gigabytes of writeback to be
 * incorrectly attributed).
 *
 * To resolve this issue, cgroup writeback detects the majority dirtier of
 * an inode and transfers the ownership to it.  To avoid unnnecessary
 * oscillation, the detection mechanism keeps track of history and gives
 * out the switch verdict only if the foreign usage pattern is stable over
 * a certain amount of time and/or writeback attempts.
 *
 * On each writeback attempt, @wbc tries to detect the majority writer
 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 * count from the majority voting, it also counts the bytes written for the
 * current wb and the last round's winner wb (max of last round's current
 * wb, the winner from two rounds ago, and the last round's majority
 * candidate).  Keeping track of the historical winner helps the algorithm
 * to semi-reliably detect the most active writer even when it's not the
 * absolute majority.
 *
 * Once the winner of the round is determined, whether the winner is
 * foreign or not and how much IO time the round consumed is recorded in
 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 * over a certain threshold, the switch verdict is given.
642 643 644
 */
void wbc_detach_inode(struct writeback_control *wbc)
{
645 646
	struct bdi_writeback *wb = wbc->wb;
	struct inode *inode = wbc->inode;
647 648
	unsigned long avg_time, max_bytes, max_time;
	u16 history;
649 650
	int max_id;

651 652 653 654 655 656
	if (!wb)
		return;

	history = inode->i_wb_frn_history;
	avg_time = inode->i_wb_frn_avg_time;

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
	/* pick the winner of this round */
	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_id;
		max_bytes = wbc->wb_bytes;
	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_lcand_id;
		max_bytes = wbc->wb_lcand_bytes;
	} else {
		max_id = wbc->wb_tcand_id;
		max_bytes = wbc->wb_tcand_bytes;
	}

	/*
	 * Calculate the amount of IO time the winner consumed and fold it
	 * into the running average kept per inode.  If the consumed IO
	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
	 * deciding whether to switch or not.  This is to prevent one-off
	 * small dirtiers from skewing the verdict.
	 */
	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
				wb->avg_write_bandwidth);
	if (avg_time)
		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
	else
		avg_time = max_time;	/* immediate catch up on first run */

	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
		int slots;

		/*
		 * The switch verdict is reached if foreign wb's consume
		 * more than a certain proportion of IO time in a
		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
		 * history mask where each bit represents one sixteenth of
		 * the period.  Determine the number of slots to shift into
		 * history from @max_time.
		 */
		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
		history <<= slots;
		if (wbc->wb_id != max_id)
			history |= (1U << slots) - 1;

		/*
		 * Switch if the current wb isn't the consistent winner.
		 * If there are multiple closely competing dirtiers, the
		 * inode may switch across them repeatedly over time, which
		 * is okay.  The main goal is avoiding keeping an inode on
		 * the wrong wb for an extended period of time.
		 */
709 710
		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
			inode_switch_wbs(inode, max_id);
711 712 713 714 715 716 717 718 719 720
	}

	/*
	 * Multiple instances of this function may race to update the
	 * following fields but we don't mind occassional inaccuracies.
	 */
	inode->i_wb_frn_winner = max_id;
	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
	inode->i_wb_frn_history = history;

721 722 723
	wb_put(wbc->wb);
	wbc->wb = NULL;
}
724
EXPORT_SYMBOL_GPL(wbc_detach_inode);
725

726
/**
727
 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
728 729 730 731 732 733 734 735
 * @wbc: writeback_control of the writeback in progress
 * @page: page being written out
 * @bytes: number of bytes being written out
 *
 * @bytes from @page are about to written out during the writeback
 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 * wbc_detach_inode().
 */
736 737
void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
			      size_t bytes)
738
{
739
	struct cgroup_subsys_state *css;
740 741 742 743 744 745 746 747
	int id;

	/*
	 * pageout() path doesn't attach @wbc to the inode being written
	 * out.  This is intentional as we don't want the function to block
	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
	 * regular writeback instead of writing things out itself.
	 */
748
	if (!wbc->wb || wbc->no_cgroup_owner)
749 750
		return;

751 752 753 754 755 756
	css = mem_cgroup_css_from_page(page);
	/* dead cgroups shouldn't contribute to inode ownership arbitration */
	if (!(css->flags & CSS_ONLINE))
		return;

	id = css->id;
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773

	if (id == wbc->wb_id) {
		wbc->wb_bytes += bytes;
		return;
	}

	if (id == wbc->wb_lcand_id)
		wbc->wb_lcand_bytes += bytes;

	/* Boyer-Moore majority vote algorithm */
	if (!wbc->wb_tcand_bytes)
		wbc->wb_tcand_id = id;
	if (id == wbc->wb_tcand_id)
		wbc->wb_tcand_bytes += bytes;
	else
		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
}
774
EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
775

776 777
/**
 * inode_congested - test whether an inode is congested
778
 * @inode: inode to test for congestion (may be NULL)
779 780 781 782 783 784 785 786 787
 * @cong_bits: mask of WB_[a]sync_congested bits to test
 *
 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 * bits to test and the return value is the mask of set bits.
 *
 * If cgroup writeback is enabled for @inode, the congestion state is
 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 * associated with @inode is congested; otherwise, the root wb's congestion
 * state is used.
788 789 790
 *
 * @inode is allowed to be NULL as this function is often called on
 * mapping->host which is NULL for the swapper space.
791 792 793
 */
int inode_congested(struct inode *inode, int cong_bits)
{
794 795 796 797
	/*
	 * Once set, ->i_wb never becomes NULL while the inode is alive.
	 * Start transaction iff ->i_wb is visible.
	 */
798
	if (inode && inode_to_wb_is_valid(inode)) {
799
		struct bdi_writeback *wb;
G
Greg Thelen 已提交
800 801
		struct wb_lock_cookie lock_cookie = {};
		bool congested;
802

G
Greg Thelen 已提交
803
		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
804
		congested = wb_congested(wb, cong_bits);
G
Greg Thelen 已提交
805
		unlocked_inode_to_wb_end(inode, &lock_cookie);
806
		return congested;
807 808 809 810 811 812
	}

	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
}
EXPORT_SYMBOL_GPL(inode_congested);

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
/**
 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 * @wb: target bdi_writeback to split @nr_pages to
 * @nr_pages: number of pages to write for the whole bdi
 *
 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 * @wb->bdi.
 */
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);

	if (nr_pages == LONG_MAX)
		return LONG_MAX;

	/*
	 * This may be called on clean wb's and proportional distribution
	 * may not make sense, just use the original @nr_pages in those
	 * cases.  In general, we wanna err on the side of writing more.
	 */
	if (!tot_bw || this_bw >= tot_bw)
		return nr_pages;
	else
		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
}

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
/**
 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 * @bdi: target backing_dev_info
 * @base_work: wb_writeback_work to issue
 * @skip_if_busy: skip wb's which already have writeback in progress
 *
 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 * distributed to the busy wbs according to each wb's proportion in the
 * total active write bandwidth of @bdi.
 */
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
856
	struct bdi_writeback *last_wb = NULL;
857 858
	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
					      struct bdi_writeback, bdi_node);
859 860 861 862

	might_sleep();
restart:
	rcu_read_lock();
863
	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
864 865 866 867 868
		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
		struct wb_writeback_work fallback_work;
		struct wb_writeback_work *work;
		long nr_pages;

869 870 871 872 873
		if (last_wb) {
			wb_put(last_wb);
			last_wb = NULL;
		}

874 875 876 877 878 879
		/* SYNC_ALL writes out I_DIRTY_TIME too */
		if (!wb_has_dirty_io(wb) &&
		    (base_work->sync_mode == WB_SYNC_NONE ||
		     list_empty(&wb->b_dirty_time)))
			continue;
		if (skip_if_busy && writeback_in_progress(wb))
880 881
			continue;

882 883 884 885 886 887 888 889 890
		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);

		work = kmalloc(sizeof(*work), GFP_ATOMIC);
		if (work) {
			*work = *base_work;
			work->nr_pages = nr_pages;
			work->auto_free = 1;
			wb_queue_work(wb, work);
			continue;
891
		}
892 893 894 895 896 897 898 899 900 901

		/* alloc failed, execute synchronously using on-stack fallback */
		work = &fallback_work;
		*work = *base_work;
		work->nr_pages = nr_pages;
		work->auto_free = 0;
		work->done = &fallback_work_done;

		wb_queue_work(wb, work);

902 903 904 905 906 907 908 909
		/*
		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
		 * continuing iteration from @wb after dropping and
		 * regrabbing rcu read lock.
		 */
		wb_get(wb);
		last_wb = wb;

910 911 912
		rcu_read_unlock();
		wb_wait_for_completion(bdi, &fallback_work_done);
		goto restart;
913 914
	}
	rcu_read_unlock();
915 916 917

	if (last_wb)
		wb_put(last_wb);
918 919
}

920 921 922 923 924 925 926 927 928 929 930 931 932
/**
 * cgroup_writeback_umount - flush inode wb switches for umount
 *
 * This function is called when a super_block is about to be destroyed and
 * flushes in-flight inode wb switches.  An inode wb switch goes through
 * RCU and then workqueue, so the two need to be flushed in order to ensure
 * that all previously scheduled switches are finished.  As wb switches are
 * rare occurrences and synchronize_rcu() can take a while, perform
 * flushing iff wb switches are in flight.
 */
void cgroup_writeback_umount(void)
{
	if (atomic_read(&isw_nr_in_flight)) {
933 934 935 936 937
		/*
		 * Use rcu_barrier() to wait for all pending callbacks to
		 * ensure that all in-flight wb switches are in the workqueue.
		 */
		rcu_barrier();
938 939 940 941 942 943 944 945 946 947 948 949 950
		flush_workqueue(isw_wq);
	}
}

static int __init cgroup_writeback_init(void)
{
	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
	if (!isw_wq)
		return -ENOMEM;
	return 0;
}
fs_initcall(cgroup_writeback_init);

951 952
#else	/* CONFIG_CGROUP_WRITEBACK */

953 954 955
static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_unlock(&inode->i_lock);
	spin_lock(&wb->list_lock);
	return wb;
}

static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_lock(&wb->list_lock);
	return wb;
}

977 978 979 980 981
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	return nr_pages;
}

982 983 984 985 986 987
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	might_sleep();

988
	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
989 990 991 992 993
		base_work->auto_free = 0;
		wb_queue_work(&bdi->wb, base_work);
	}
}

994 995
#endif	/* CONFIG_CGROUP_WRITEBACK */

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
/*
 * Add in the number of potentially dirty inodes, because each inode
 * write can dirty pagecache in the underlying blockdev.
 */
static unsigned long get_nr_dirty_pages(void)
{
	return global_node_page_state(NR_FILE_DIRTY) +
		global_node_page_state(NR_UNSTABLE_NFS) +
		get_nr_dirty_inodes();
}

static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1008
{
1009 1010 1011
	if (!wb_has_dirty_io(wb))
		return;

1012 1013 1014 1015 1016 1017
	/*
	 * All callers of this function want to start writeback of all
	 * dirty pages. Places like vmscan can call this at a very
	 * high frequency, causing pointless allocations of tons of
	 * work items and keeping the flusher threads busy retrieving
	 * that work. Ensure that we only allow one of them pending and
1018
	 * inflight at the time.
1019
	 */
1020 1021
	if (test_bit(WB_start_all, &wb->state) ||
	    test_and_set_bit(WB_start_all, &wb->state))
1022 1023
		return;

1024 1025
	wb->start_all_reason = reason;
	wb_wakeup(wb);
1026
}
1027

1028
/**
1029 1030
 * wb_start_background_writeback - start background writeback
 * @wb: bdi_writback to write from
1031 1032
 *
 * Description:
1033
 *   This makes sure WB_SYNC_NONE background writeback happens. When
1034
 *   this function returns, it is only guaranteed that for given wb
1035 1036
 *   some IO is happening if we are over background dirty threshold.
 *   Caller need not hold sb s_umount semaphore.
1037
 */
1038
void wb_start_background_writeback(struct bdi_writeback *wb)
1039
{
1040 1041 1042 1043
	/*
	 * We just wake up the flusher thread. It will perform background
	 * writeback as soon as there is no other work to do.
	 */
1044
	trace_writeback_wake_background(wb);
1045
	wb_wakeup(wb);
L
Linus Torvalds 已提交
1046 1047
}

1048 1049 1050
/*
 * Remove the inode from the writeback list it is on.
 */
1051
void inode_io_list_del(struct inode *inode)
1052
{
1053
	struct bdi_writeback *wb;
1054

1055
	wb = inode_to_wb_and_lock_list(inode);
1056
	inode_io_list_del_locked(inode, wb);
1057
	spin_unlock(&wb->list_lock);
1058 1059
}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
/*
 * mark an inode as under writeback on the sb
 */
void sb_mark_inode_writeback(struct inode *inode)
{
	struct super_block *sb = inode->i_sb;
	unsigned long flags;

	if (list_empty(&inode->i_wb_list)) {
		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1070
		if (list_empty(&inode->i_wb_list)) {
1071
			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1072 1073
			trace_sb_mark_inode_writeback(inode);
		}
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
	}
}

/*
 * clear an inode as under writeback on the sb
 */
void sb_clear_inode_writeback(struct inode *inode)
{
	struct super_block *sb = inode->i_sb;
	unsigned long flags;

	if (!list_empty(&inode->i_wb_list)) {
		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1088 1089 1090 1091
		if (!list_empty(&inode->i_wb_list)) {
			list_del_init(&inode->i_wb_list);
			trace_sb_clear_inode_writeback(inode);
		}
1092 1093 1094 1095
		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
	}
}

1096 1097 1098 1099 1100
/*
 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 * furthest end of its superblock's dirty-inode list.
 *
 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1101
 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1102 1103 1104
 * the case then the inode must have been redirtied while it was being written
 * out and we don't reset its dirtied_when.
 */
1105
static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1106
{
1107
	if (!list_empty(&wb->b_dirty)) {
1108
		struct inode *tail;
1109

N
Nick Piggin 已提交
1110
		tail = wb_inode(wb->b_dirty.next);
1111
		if (time_before(inode->dirtied_when, tail->dirtied_when))
1112 1113
			inode->dirtied_when = jiffies;
	}
1114
	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1115 1116
}

1117
/*
1118
 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1119
 */
1120
static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1121
{
1122
	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1123 1124
}

J
Joern Engel 已提交
1125 1126
static void inode_sync_complete(struct inode *inode)
{
1127
	inode->i_state &= ~I_SYNC;
1128 1129
	/* If inode is clean an unused, put it into LRU now... */
	inode_add_lru(inode);
1130
	/* Waiters must see I_SYNC cleared before being woken up */
J
Joern Engel 已提交
1131 1132 1133 1134
	smp_mb();
	wake_up_bit(&inode->i_state, __I_SYNC);
}

1135 1136 1137 1138 1139 1140 1141 1142
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
{
	bool ret = time_after(inode->dirtied_when, t);
#ifndef CONFIG_64BIT
	/*
	 * For inodes being constantly redirtied, dirtied_when can get stuck.
	 * It _appears_ to be in the future, but is actually in distant past.
	 * This test is necessary to prevent such wrapped-around relative times
1143
	 * from permanently stopping the whole bdi writeback.
1144 1145 1146 1147 1148 1149
	 */
	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
#endif
	return ret;
}

1150 1151
#define EXPIRE_DIRTY_ATIME 0x0001

1152
/*
1153
 * Move expired (dirtied before work->older_than_this) dirty inodes from
J
Jan Kara 已提交
1154
 * @delaying_queue to @dispatch_queue.
1155
 */
1156
static int move_expired_inodes(struct list_head *delaying_queue,
1157
			       struct list_head *dispatch_queue,
1158
			       int flags,
1159
			       struct wb_writeback_work *work)
1160
{
1161 1162
	unsigned long *older_than_this = NULL;
	unsigned long expire_time;
1163 1164
	LIST_HEAD(tmp);
	struct list_head *pos, *node;
1165
	struct super_block *sb = NULL;
1166
	struct inode *inode;
1167
	int do_sb_sort = 0;
1168
	int moved = 0;
1169

1170 1171
	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
		older_than_this = work->older_than_this;
1172 1173
	else if (!work->for_sync) {
		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1174 1175
		older_than_this = &expire_time;
	}
1176
	while (!list_empty(delaying_queue)) {
N
Nick Piggin 已提交
1177
		inode = wb_inode(delaying_queue->prev);
1178 1179
		if (older_than_this &&
		    inode_dirtied_after(inode, *older_than_this))
1180
			break;
1181
		list_move(&inode->i_io_list, &tmp);
1182
		moved++;
1183 1184
		if (flags & EXPIRE_DIRTY_ATIME)
			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1185 1186
		if (sb_is_blkdev_sb(inode->i_sb))
			continue;
1187 1188 1189
		if (sb && sb != inode->i_sb)
			do_sb_sort = 1;
		sb = inode->i_sb;
1190 1191
	}

1192 1193 1194
	/* just one sb in list, splice to dispatch_queue and we're done */
	if (!do_sb_sort) {
		list_splice(&tmp, dispatch_queue);
1195
		goto out;
1196 1197
	}

1198 1199
	/* Move inodes from one superblock together */
	while (!list_empty(&tmp)) {
N
Nick Piggin 已提交
1200
		sb = wb_inode(tmp.prev)->i_sb;
1201
		list_for_each_prev_safe(pos, node, &tmp) {
N
Nick Piggin 已提交
1202
			inode = wb_inode(pos);
1203
			if (inode->i_sb == sb)
1204
				list_move(&inode->i_io_list, dispatch_queue);
1205
		}
1206
	}
1207 1208
out:
	return moved;
1209 1210 1211 1212
}

/*
 * Queue all expired dirty inodes for io, eldest first.
1213 1214 1215 1216 1217 1218 1219 1220
 * Before
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    gf         edc     BA
 * After
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    g          fBAedc
 *                                           |
 *                                           +--> dequeue for IO
1221
 */
1222
static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1223
{
1224
	int moved;
1225

1226
	assert_spin_locked(&wb->list_lock);
1227
	list_splice_init(&wb->b_more_io, &wb->b_io);
1228 1229 1230
	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
				     EXPIRE_DIRTY_ATIME, work);
1231 1232
	if (moved)
		wb_io_lists_populated(wb);
1233
	trace_writeback_queue_io(wb, work, moved);
1234 1235
}

1236
static int write_inode(struct inode *inode, struct writeback_control *wbc)
1237
{
T
Tejun Heo 已提交
1238 1239 1240 1241 1242 1243 1244 1245
	int ret;

	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
		trace_writeback_write_inode_start(inode, wbc);
		ret = inode->i_sb->s_op->write_inode(inode, wbc);
		trace_writeback_write_inode(inode, wbc);
		return ret;
	}
1246
	return 0;
1247 1248
}

L
Linus Torvalds 已提交
1249
/*
1250 1251
 * Wait for writeback on an inode to complete. Called with i_lock held.
 * Caller must make sure inode cannot go away when we drop i_lock.
1252
 */
1253 1254 1255
static void __inode_wait_for_writeback(struct inode *inode)
	__releases(inode->i_lock)
	__acquires(inode->i_lock)
1256 1257 1258 1259 1260
{
	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
	wait_queue_head_t *wqh;

	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1261 1262
	while (inode->i_state & I_SYNC) {
		spin_unlock(&inode->i_lock);
1263 1264
		__wait_on_bit(wqh, &wq, bit_wait,
			      TASK_UNINTERRUPTIBLE);
1265
		spin_lock(&inode->i_lock);
1266
	}
1267 1268
}

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
/*
 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 */
void inode_wait_for_writeback(struct inode *inode)
{
	spin_lock(&inode->i_lock);
	__inode_wait_for_writeback(inode);
	spin_unlock(&inode->i_lock);
}

/*
 * Sleep until I_SYNC is cleared. This function must be called with i_lock
 * held and drops it. It is aimed for callers not holding any inode reference
 * so once i_lock is dropped, inode can go away.
 */
static void inode_sleep_on_writeback(struct inode *inode)
	__releases(inode->i_lock)
{
	DEFINE_WAIT(wait);
	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
	int sleep;

	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
	sleep = inode->i_state & I_SYNC;
	spin_unlock(&inode->i_lock);
	if (sleep)
		schedule();
	finish_wait(wqh, &wait);
}

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
/*
 * Find proper writeback list for the inode depending on its current state and
 * possibly also change of its state while we were doing writeback.  Here we
 * handle things such as livelock prevention or fairness of writeback among
 * inodes. This function can be called only by flusher thread - noone else
 * processes all inodes in writeback lists and requeueing inodes behind flusher
 * thread's back can have unexpected consequences.
 */
static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
			  struct writeback_control *wbc)
{
	if (inode->i_state & I_FREEING)
		return;

	/*
	 * Sync livelock prevention. Each inode is tagged and synced in one
	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
	 * the dirty time to prevent enqueue and sync it again.
	 */
	if ((inode->i_state & I_DIRTY) &&
	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
		inode->dirtied_when = jiffies;

1322 1323 1324 1325 1326 1327 1328 1329 1330
	if (wbc->pages_skipped) {
		/*
		 * writeback is not making progress due to locked
		 * buffers. Skip this inode for now.
		 */
		redirty_tail(inode, wb);
		return;
	}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
		/*
		 * We didn't write back all the pages.  nfs_writepages()
		 * sometimes bales out without doing anything.
		 */
		if (wbc->nr_to_write <= 0) {
			/* Slice used up. Queue for next turn. */
			requeue_io(inode, wb);
		} else {
			/*
			 * Writeback blocked by something other than
			 * congestion. Delay the inode for some time to
			 * avoid spinning on the CPU (100% iowait)
			 * retrying writeback of the dirty page/inode
			 * that cannot be performed immediately.
			 */
			redirty_tail(inode, wb);
		}
	} else if (inode->i_state & I_DIRTY) {
		/*
		 * Filesystems can dirty the inode during writeback operations,
		 * such as delayed allocation during submission or metadata
		 * updates after data IO completion.
		 */
		redirty_tail(inode, wb);
1356
	} else if (inode->i_state & I_DIRTY_TIME) {
1357
		inode->dirtied_when = jiffies;
1358
		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1359 1360
	} else {
		/* The inode is clean. Remove from writeback lists. */
1361
		inode_io_list_del_locked(inode, wb);
1362 1363 1364
	}
}

1365
/*
1366 1367 1368
 * Write out an inode and its dirty pages. Do not update the writeback list
 * linkage. That is left to the caller. The caller is also responsible for
 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
L
Linus Torvalds 已提交
1369 1370
 */
static int
1371
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
L
Linus Torvalds 已提交
1372 1373
{
	struct address_space *mapping = inode->i_mapping;
1374
	long nr_to_write = wbc->nr_to_write;
1375
	unsigned dirty;
L
Linus Torvalds 已提交
1376 1377
	int ret;

1378
	WARN_ON(!(inode->i_state & I_SYNC));
L
Linus Torvalds 已提交
1379

T
Tejun Heo 已提交
1380 1381
	trace_writeback_single_inode_start(inode, wbc, nr_to_write);

L
Linus Torvalds 已提交
1382 1383
	ret = do_writepages(mapping, wbc);

1384 1385 1386
	/*
	 * Make sure to wait on the data before writing out the metadata.
	 * This is important for filesystems that modify metadata on data
1387 1388 1389
	 * I/O completion. We don't do it for sync(2) writeback because it has a
	 * separate, external IO completion path and ->sync_fs for guaranteeing
	 * inode metadata is written back correctly.
1390
	 */
1391
	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1392
		int err = filemap_fdatawait(mapping);
L
Linus Torvalds 已提交
1393 1394 1395 1396
		if (ret == 0)
			ret = err;
	}

1397 1398 1399 1400 1401
	/*
	 * Some filesystems may redirty the inode during the writeback
	 * due to delalloc, clear dirty metadata flags right before
	 * write_inode()
	 */
1402
	spin_lock(&inode->i_lock);
1403

1404
	dirty = inode->i_state & I_DIRTY;
1405
	if (inode->i_state & I_DIRTY_TIME) {
1406
		if ((dirty & I_DIRTY_INODE) ||
1407
		    wbc->sync_mode == WB_SYNC_ALL ||
1408 1409 1410 1411 1412 1413 1414 1415 1416
		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
		    unlikely(time_after(jiffies,
					(inode->dirtied_time_when +
					 dirtytime_expire_interval * HZ)))) {
			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
			trace_writeback_lazytime(inode);
		}
	} else
		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1417
	inode->i_state &= ~dirty;
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

	/*
	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
	 * either they see the I_DIRTY bits cleared or we see the dirtied
	 * inode.
	 *
	 * I_DIRTY_PAGES is always cleared together above even if @mapping
	 * still has dirty pages.  The flag is reinstated after smp_mb() if
	 * necessary.  This guarantees that either __mark_inode_dirty()
	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
	 */
	smp_mb();

	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		inode->i_state |= I_DIRTY_PAGES;

1435
	spin_unlock(&inode->i_lock);
1436

1437 1438
	if (dirty & I_DIRTY_TIME)
		mark_inode_dirty_sync(inode);
1439
	/* Don't write the inode if only I_DIRTY_PAGES was set */
1440
	if (dirty & ~I_DIRTY_PAGES) {
1441
		int err = write_inode(inode, wbc);
L
Linus Torvalds 已提交
1442 1443 1444
		if (ret == 0)
			ret = err;
	}
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	trace_writeback_single_inode(inode, wbc, nr_to_write);
	return ret;
}

/*
 * Write out an inode's dirty pages. Either the caller has an active reference
 * on the inode or the inode has I_WILL_FREE set.
 *
 * This function is designed to be called for writing back one inode which
 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
 * and does more profound writeback list handling in writeback_sb_inodes().
 */
1457 1458
static int writeback_single_inode(struct inode *inode,
				  struct writeback_control *wbc)
1459
{
1460
	struct bdi_writeback *wb;
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	int ret = 0;

	spin_lock(&inode->i_lock);
	if (!atomic_read(&inode->i_count))
		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
	else
		WARN_ON(inode->i_state & I_WILL_FREE);

	if (inode->i_state & I_SYNC) {
		if (wbc->sync_mode != WB_SYNC_ALL)
			goto out;
		/*
1473 1474 1475
		 * It's a data-integrity sync. We must wait. Since callers hold
		 * inode reference or inode has I_WILL_FREE set, it cannot go
		 * away under us.
1476
		 */
1477
		__inode_wait_for_writeback(inode);
1478 1479 1480
	}
	WARN_ON(inode->i_state & I_SYNC);
	/*
J
Jan Kara 已提交
1481 1482 1483 1484 1485 1486
	 * Skip inode if it is clean and we have no outstanding writeback in
	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
	 * function since flusher thread may be doing for example sync in
	 * parallel and if we move the inode, it could get skipped. So here we
	 * make sure inode is on some writeback list and leave it there unless
	 * we have completely cleaned the inode.
1487
	 */
1488
	if (!(inode->i_state & I_DIRTY_ALL) &&
J
Jan Kara 已提交
1489 1490
	    (wbc->sync_mode != WB_SYNC_ALL ||
	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1491 1492
		goto out;
	inode->i_state |= I_SYNC;
1493
	wbc_attach_and_unlock_inode(wbc, inode);
1494

1495
	ret = __writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
1496

1497
	wbc_detach_inode(wbc);
1498 1499

	wb = inode_to_wb_and_lock_list(inode);
1500
	spin_lock(&inode->i_lock);
1501 1502 1503 1504
	/*
	 * If inode is clean, remove it from writeback lists. Otherwise don't
	 * touch it. See comment above for explanation.
	 */
1505
	if (!(inode->i_state & I_DIRTY_ALL))
1506
		inode_io_list_del_locked(inode, wb);
1507
	spin_unlock(&wb->list_lock);
J
Joern Engel 已提交
1508
	inode_sync_complete(inode);
1509 1510
out:
	spin_unlock(&inode->i_lock);
L
Linus Torvalds 已提交
1511 1512 1513
	return ret;
}

1514
static long writeback_chunk_size(struct bdi_writeback *wb,
1515
				 struct wb_writeback_work *work)
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
{
	long pages;

	/*
	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
	 * here avoids calling into writeback_inodes_wb() more than once.
	 *
	 * The intended call sequence for WB_SYNC_ALL writeback is:
	 *
	 *      wb_writeback()
	 *          writeback_sb_inodes()       <== called only once
	 *              write_cache_pages()     <== called once for each inode
	 *                   (quickly) tag currently dirty pages
	 *                   (maybe slowly) sync all tagged pages
	 */
	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
		pages = LONG_MAX;
1534
	else {
1535
		pages = min(wb->avg_write_bandwidth / 2,
1536
			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1537 1538 1539 1540
		pages = min(pages, work->nr_pages);
		pages = round_down(pages + MIN_WRITEBACK_PAGES,
				   MIN_WRITEBACK_PAGES);
	}
1541 1542 1543 1544

	return pages;
}

1545 1546
/*
 * Write a portion of b_io inodes which belong to @sb.
1547
 *
1548
 * Return the number of pages and/or inodes written.
1549 1550 1551 1552
 *
 * NOTE! This is called with wb->list_lock held, and will
 * unlock and relock that for each inode it ends up doing
 * IO for.
1553
 */
1554 1555 1556
static long writeback_sb_inodes(struct super_block *sb,
				struct bdi_writeback *wb,
				struct wb_writeback_work *work)
L
Linus Torvalds 已提交
1557
{
1558 1559 1560 1561 1562
	struct writeback_control wbc = {
		.sync_mode		= work->sync_mode,
		.tagged_writepages	= work->tagged_writepages,
		.for_kupdate		= work->for_kupdate,
		.for_background		= work->for_background,
1563
		.for_sync		= work->for_sync,
1564 1565 1566 1567 1568 1569 1570 1571
		.range_cyclic		= work->range_cyclic,
		.range_start		= 0,
		.range_end		= LLONG_MAX,
	};
	unsigned long start_time = jiffies;
	long write_chunk;
	long wrote = 0;  /* count both pages and inodes */

1572
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1573
		struct inode *inode = wb_inode(wb->b_io.prev);
1574
		struct bdi_writeback *tmp_wb;
1575 1576

		if (inode->i_sb != sb) {
1577
			if (work->sb) {
1578 1579 1580 1581 1582
				/*
				 * We only want to write back data for this
				 * superblock, move all inodes not belonging
				 * to it back onto the dirty list.
				 */
1583
				redirty_tail(inode, wb);
1584 1585 1586 1587 1588 1589 1590 1591
				continue;
			}

			/*
			 * The inode belongs to a different superblock.
			 * Bounce back to the caller to unpin this and
			 * pin the next superblock.
			 */
1592
			break;
1593 1594
		}

1595
		/*
W
Wanpeng Li 已提交
1596 1597
		 * Don't bother with new inodes or inodes being freed, first
		 * kind does not need periodic writeout yet, and for the latter
1598 1599
		 * kind writeout is handled by the freer.
		 */
1600
		spin_lock(&inode->i_lock);
1601
		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1602
			spin_unlock(&inode->i_lock);
1603
			redirty_tail(inode, wb);
1604 1605
			continue;
		}
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
			/*
			 * If this inode is locked for writeback and we are not
			 * doing writeback-for-data-integrity, move it to
			 * b_more_io so that writeback can proceed with the
			 * other inodes on s_io.
			 *
			 * We'll have another go at writing back this inode
			 * when we completed a full scan of b_io.
			 */
			spin_unlock(&inode->i_lock);
			requeue_io(inode, wb);
			trace_writeback_sb_inodes_requeue(inode);
			continue;
		}
1621 1622
		spin_unlock(&wb->list_lock);

1623 1624 1625 1626 1627
		/*
		 * We already requeued the inode if it had I_SYNC set and we
		 * are doing WB_SYNC_NONE writeback. So this catches only the
		 * WB_SYNC_ALL case.
		 */
1628 1629 1630 1631
		if (inode->i_state & I_SYNC) {
			/* Wait for I_SYNC. This function drops i_lock... */
			inode_sleep_on_writeback(inode);
			/* Inode may be gone, start again */
1632
			spin_lock(&wb->list_lock);
1633 1634
			continue;
		}
1635
		inode->i_state |= I_SYNC;
1636
		wbc_attach_and_unlock_inode(&wbc, inode);
1637

1638
		write_chunk = writeback_chunk_size(wb, work);
1639 1640
		wbc.nr_to_write = write_chunk;
		wbc.pages_skipped = 0;
1641

1642 1643 1644 1645
		/*
		 * We use I_SYNC to pin the inode in memory. While it is set
		 * evict_inode() will wait so the inode cannot be freed.
		 */
1646
		__writeback_single_inode(inode, &wbc);
1647

1648
		wbc_detach_inode(&wbc);
1649 1650
		work->nr_pages -= write_chunk - wbc.nr_to_write;
		wrote += write_chunk - wbc.nr_to_write;
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664

		if (need_resched()) {
			/*
			 * We're trying to balance between building up a nice
			 * long list of IOs to improve our merge rate, and
			 * getting those IOs out quickly for anyone throttling
			 * in balance_dirty_pages().  cond_resched() doesn't
			 * unplug, so get our IOs out the door before we
			 * give up the CPU.
			 */
			blk_flush_plug(current);
			cond_resched();
		}

1665 1666 1667 1668 1669
		/*
		 * Requeue @inode if still dirty.  Be careful as @inode may
		 * have been switched to another wb in the meantime.
		 */
		tmp_wb = inode_to_wb_and_lock_list(inode);
1670
		spin_lock(&inode->i_lock);
1671
		if (!(inode->i_state & I_DIRTY_ALL))
1672
			wrote++;
1673
		requeue_inode(inode, tmp_wb, &wbc);
1674
		inode_sync_complete(inode);
1675
		spin_unlock(&inode->i_lock);
1676

1677 1678 1679 1680 1681
		if (unlikely(tmp_wb != wb)) {
			spin_unlock(&tmp_wb->list_lock);
			spin_lock(&wb->list_lock);
		}

1682 1683 1684 1685 1686 1687 1688 1689 1690
		/*
		 * bail out to wb_writeback() often enough to check
		 * background threshold and other termination conditions.
		 */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
1691
		}
L
Linus Torvalds 已提交
1692
	}
1693
	return wrote;
1694 1695
}

1696 1697
static long __writeback_inodes_wb(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
1698
{
1699 1700
	unsigned long start_time = jiffies;
	long wrote = 0;
N
Nick Piggin 已提交
1701

1702
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1703
		struct inode *inode = wb_inode(wb->b_io.prev);
1704
		struct super_block *sb = inode->i_sb;
1705

1706
		if (!trylock_super(sb)) {
1707
			/*
1708
			 * trylock_super() may fail consistently due to
1709 1710 1711 1712
			 * s_umount being grabbed by someone else. Don't use
			 * requeue_io() to avoid busy retrying the inode/sb.
			 */
			redirty_tail(inode, wb);
1713
			continue;
1714
		}
1715
		wrote += writeback_sb_inodes(sb, wb, work);
1716
		up_read(&sb->s_umount);
1717

1718 1719 1720 1721 1722 1723 1724
		/* refer to the same tests at the end of writeback_sb_inodes */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
		}
1725
	}
1726
	/* Leave any unwritten inodes on b_io */
1727
	return wrote;
1728 1729
}

1730
static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1731
				enum wb_reason reason)
1732
{
1733 1734 1735 1736
	struct wb_writeback_work work = {
		.nr_pages	= nr_pages,
		.sync_mode	= WB_SYNC_NONE,
		.range_cyclic	= 1,
1737
		.reason		= reason,
1738
	};
1739
	struct blk_plug plug;
1740

1741
	blk_start_plug(&plug);
1742
	spin_lock(&wb->list_lock);
W
Wu Fengguang 已提交
1743
	if (list_empty(&wb->b_io))
1744
		queue_io(wb, &work);
1745
	__writeback_inodes_wb(wb, &work);
1746
	spin_unlock(&wb->list_lock);
1747
	blk_finish_plug(&plug);
1748

1749 1750
	return nr_pages - work.nr_pages;
}
1751 1752 1753

/*
 * Explicit flushing or periodic writeback of "old" data.
1754
 *
1755 1756 1757 1758
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 * dirtying-time in the inode's address_space.  So this periodic writeback code
 * just walks the superblock inode list, writing back any inodes which are
 * older than a specific point in time.
1759
 *
1760 1761 1762
 * Try to run once per dirty_writeback_interval.  But if a writeback event
 * takes longer than a dirty_writeback_interval interval, then leave a
 * one-second gap.
1763
 *
1764 1765
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 * all dirty pages if they are all attached to "old" mappings.
1766
 */
1767
static long wb_writeback(struct bdi_writeback *wb,
1768
			 struct wb_writeback_work *work)
1769
{
1770
	unsigned long wb_start = jiffies;
1771
	long nr_pages = work->nr_pages;
1772
	unsigned long oldest_jif;
J
Jan Kara 已提交
1773
	struct inode *inode;
1774
	long progress;
1775
	struct blk_plug plug;
1776

1777 1778
	oldest_jif = jiffies;
	work->older_than_this = &oldest_jif;
N
Nick Piggin 已提交
1779

1780
	blk_start_plug(&plug);
1781
	spin_lock(&wb->list_lock);
1782 1783
	for (;;) {
		/*
1784
		 * Stop writeback when nr_pages has been consumed
1785
		 */
1786
		if (work->nr_pages <= 0)
1787
			break;
1788

1789 1790 1791 1792 1793 1794 1795
		/*
		 * Background writeout and kupdate-style writeback may
		 * run forever. Stop them if there is other work to do
		 * so that e.g. sync can proceed. They'll be restarted
		 * after the other works are all done.
		 */
		if ((work->for_background || work->for_kupdate) &&
1796
		    !list_empty(&wb->work_list))
1797 1798
			break;

N
Nick Piggin 已提交
1799
		/*
1800 1801
		 * For background writeout, stop when we are below the
		 * background dirty threshold
N
Nick Piggin 已提交
1802
		 */
1803
		if (work->for_background && !wb_over_bg_thresh(wb))
1804
			break;
N
Nick Piggin 已提交
1805

1806 1807 1808 1809 1810 1811
		/*
		 * Kupdate and background works are special and we want to
		 * include all inodes that need writing. Livelock avoidance is
		 * handled by these works yielding to any other work so we are
		 * safe.
		 */
1812
		if (work->for_kupdate) {
1813
			oldest_jif = jiffies -
1814
				msecs_to_jiffies(dirty_expire_interval * 10);
1815
		} else if (work->for_background)
1816
			oldest_jif = jiffies;
1817

1818
		trace_writeback_start(wb, work);
1819
		if (list_empty(&wb->b_io))
1820
			queue_io(wb, work);
1821
		if (work->sb)
1822
			progress = writeback_sb_inodes(work->sb, wb, work);
1823
		else
1824
			progress = __writeback_inodes_wb(wb, work);
1825
		trace_writeback_written(wb, work);
1826

1827
		wb_update_bandwidth(wb, wb_start);
1828 1829

		/*
1830 1831 1832 1833 1834 1835
		 * Did we write something? Try for more
		 *
		 * Dirty inodes are moved to b_io for writeback in batches.
		 * The completion of the current batch does not necessarily
		 * mean the overall work is done. So we keep looping as long
		 * as made some progress on cleaning pages or inodes.
1836
		 */
1837
		if (progress)
1838 1839
			continue;
		/*
1840
		 * No more inodes for IO, bail
1841
		 */
1842
		if (list_empty(&wb->b_more_io))
1843
			break;
1844 1845 1846 1847 1848
		/*
		 * Nothing written. Wait for some inode to
		 * become available for writeback. Otherwise
		 * we'll just busyloop.
		 */
1849 1850 1851 1852 1853 1854 1855
		trace_writeback_wait(wb, work);
		inode = wb_inode(wb->b_more_io.prev);
		spin_lock(&inode->i_lock);
		spin_unlock(&wb->list_lock);
		/* This function drops i_lock... */
		inode_sleep_on_writeback(inode);
		spin_lock(&wb->list_lock);
1856
	}
1857
	spin_unlock(&wb->list_lock);
1858
	blk_finish_plug(&plug);
1859

1860
	return nr_pages - work->nr_pages;
1861 1862 1863
}

/*
1864
 * Return the next wb_writeback_work struct that hasn't been processed yet.
1865
 */
1866
static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1867
{
1868
	struct wb_writeback_work *work = NULL;
1869

1870 1871 1872
	spin_lock_bh(&wb->work_lock);
	if (!list_empty(&wb->work_list)) {
		work = list_entry(wb->work_list.next,
1873 1874
				  struct wb_writeback_work, list);
		list_del_init(&work->list);
1875
	}
1876
	spin_unlock_bh(&wb->work_lock);
1877
	return work;
1878 1879
}

1880 1881
static long wb_check_background_flush(struct bdi_writeback *wb)
{
1882
	if (wb_over_bg_thresh(wb)) {
1883 1884 1885 1886 1887 1888

		struct wb_writeback_work work = {
			.nr_pages	= LONG_MAX,
			.sync_mode	= WB_SYNC_NONE,
			.for_background	= 1,
			.range_cyclic	= 1,
1889
			.reason		= WB_REASON_BACKGROUND,
1890 1891 1892 1893 1894 1895 1896 1897
		};

		return wb_writeback(wb, &work);
	}

	return 0;
}

1898 1899 1900 1901 1902
static long wb_check_old_data_flush(struct bdi_writeback *wb)
{
	unsigned long expired;
	long nr_pages;

1903 1904 1905 1906 1907 1908
	/*
	 * When set to zero, disable periodic writeback
	 */
	if (!dirty_writeback_interval)
		return 0;

1909 1910 1911 1912 1913 1914
	expired = wb->last_old_flush +
			msecs_to_jiffies(dirty_writeback_interval * 10);
	if (time_before(jiffies, expired))
		return 0;

	wb->last_old_flush = jiffies;
1915
	nr_pages = get_nr_dirty_pages();
1916

1917
	if (nr_pages) {
1918
		struct wb_writeback_work work = {
1919 1920 1921 1922
			.nr_pages	= nr_pages,
			.sync_mode	= WB_SYNC_NONE,
			.for_kupdate	= 1,
			.range_cyclic	= 1,
1923
			.reason		= WB_REASON_PERIODIC,
1924 1925
		};

1926
		return wb_writeback(wb, &work);
1927
	}
1928 1929 1930 1931

	return 0;
}

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
static long wb_check_start_all(struct bdi_writeback *wb)
{
	long nr_pages;

	if (!test_bit(WB_start_all, &wb->state))
		return 0;

	nr_pages = get_nr_dirty_pages();
	if (nr_pages) {
		struct wb_writeback_work work = {
			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
			.sync_mode	= WB_SYNC_NONE,
			.range_cyclic	= 1,
			.reason		= wb->start_all_reason,
		};

		nr_pages = wb_writeback(wb, &work);
	}

	clear_bit(WB_start_all, &wb->state);
	return nr_pages;
}


1956 1957 1958
/*
 * Retrieve work items and do the writeback they describe
 */
1959
static long wb_do_writeback(struct bdi_writeback *wb)
1960
{
1961
	struct wb_writeback_work *work;
1962
	long wrote = 0;
1963

1964
	set_bit(WB_writeback_running, &wb->state);
1965
	while ((work = get_next_work_item(wb)) != NULL) {
1966
		trace_writeback_exec(wb, work);
1967
		wrote += wb_writeback(wb, work);
1968
		finish_writeback_work(wb, work);
1969 1970
	}

1971 1972 1973 1974 1975
	/*
	 * Check for a flush-everything request
	 */
	wrote += wb_check_start_all(wb);

1976 1977 1978 1979
	/*
	 * Check for periodic writeback, kupdated() style
	 */
	wrote += wb_check_old_data_flush(wb);
1980
	wrote += wb_check_background_flush(wb);
1981
	clear_bit(WB_writeback_running, &wb->state);
1982 1983 1984 1985 1986 1987

	return wrote;
}

/*
 * Handle writeback of dirty data for the device backed by this bdi. Also
1988
 * reschedules periodically and does kupdated style flushing.
1989
 */
1990
void wb_workfn(struct work_struct *work)
1991
{
1992 1993
	struct bdi_writeback *wb = container_of(to_delayed_work(work),
						struct bdi_writeback, dwork);
1994 1995
	long pages_written;

1996
	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
P
Peter Zijlstra 已提交
1997
	current->flags |= PF_SWAPWRITE;
1998

1999
	if (likely(!current_is_workqueue_rescuer() ||
2000
		   !test_bit(WB_registered, &wb->state))) {
2001
		/*
2002
		 * The normal path.  Keep writing back @wb until its
2003
		 * work_list is empty.  Note that this path is also taken
2004
		 * if @wb is shutting down even when we're running off the
2005
		 * rescuer as work_list needs to be drained.
2006
		 */
2007
		do {
2008
			pages_written = wb_do_writeback(wb);
2009
			trace_writeback_pages_written(pages_written);
2010
		} while (!list_empty(&wb->work_list));
2011 2012 2013 2014 2015 2016
	} else {
		/*
		 * bdi_wq can't get enough workers and we're running off
		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
		 * enough for efficient IO.
		 */
2017
		pages_written = writeback_inodes_wb(wb, 1024,
2018
						    WB_REASON_FORKER_THREAD);
2019
		trace_writeback_pages_written(pages_written);
2020 2021
	}

2022
	if (!list_empty(&wb->work_list))
J
Jan Kara 已提交
2023
		wb_wakeup(wb);
2024
	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2025
		wb_wakeup_delayed(wb);
2026

2027
	current->flags &= ~PF_SWAPWRITE;
2028 2029
}

2030 2031 2032 2033 2034
/*
 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
 * write back the whole world.
 */
static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2035
					 enum wb_reason reason)
2036 2037 2038 2039 2040 2041 2042
{
	struct bdi_writeback *wb;

	if (!bdi_has_dirty_io(bdi))
		return;

	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2043
		wb_start_writeback(wb, reason);
2044 2045 2046 2047 2048 2049
}

void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
				enum wb_reason reason)
{
	rcu_read_lock();
2050
	__wakeup_flusher_threads_bdi(bdi, reason);
2051 2052 2053
	rcu_read_unlock();
}

2054
/*
2055
 * Wakeup the flusher threads to start writeback of all currently dirty pages
2056
 */
2057
void wakeup_flusher_threads(enum wb_reason reason)
2058
{
2059
	struct backing_dev_info *bdi;
2060

2061 2062 2063 2064 2065 2066
	/*
	 * If we are expecting writeback progress we must submit plugged IO.
	 */
	if (blk_needs_flush_plug(current))
		blk_schedule_flush_plug(current);

2067
	rcu_read_lock();
2068
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2069
		__wakeup_flusher_threads_bdi(bdi, reason);
2070
	rcu_read_unlock();
L
Linus Torvalds 已提交
2071 2072
}

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
/*
 * Wake up bdi's periodically to make sure dirtytime inodes gets
 * written back periodically.  We deliberately do *not* check the
 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
 * kernel to be constantly waking up once there are any dirtytime
 * inodes on the system.  So instead we define a separate delayed work
 * function which gets called much more rarely.  (By default, only
 * once every 12 hours.)
 *
 * If there is any other write activity going on in the file system,
 * this function won't be necessary.  But if the only thing that has
 * happened on the file system is a dirtytime inode caused by an atime
 * update, we need this infrastructure below to make sure that inode
 * eventually gets pushed out to disk.
 */
static void wakeup_dirtytime_writeback(struct work_struct *w);
static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);

static void wakeup_dirtytime_writeback(struct work_struct *w)
{
	struct backing_dev_info *bdi;

	rcu_read_lock();
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2097 2098
		struct bdi_writeback *wb;

2099
		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2100 2101
			if (!list_empty(&wb->b_dirty_time))
				wb_wakeup(wb);
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
	}
	rcu_read_unlock();
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
}

static int __init start_dirtytime_writeback(void)
{
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
	return 0;
}
__initcall(start_dirtytime_writeback);

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
int dirtytime_interval_handler(struct ctl_table *table, int write,
			       void __user *buffer, size_t *lenp, loff_t *ppos)
{
	int ret;

	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		mod_delayed_work(system_wq, &dirtytime_work, 0);
	return ret;
}

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
static noinline void block_dump___mark_inode_dirty(struct inode *inode)
{
	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
		struct dentry *dentry;
		const char *name = "?";

		dentry = d_find_alias(inode);
		if (dentry) {
			spin_lock(&dentry->d_lock);
			name = (const char *) dentry->d_name.name;
		}
		printk(KERN_DEBUG
		       "%s(%d): dirtied inode %lu (%s) on %s\n",
		       current->comm, task_pid_nr(current), inode->i_ino,
		       name, inode->i_sb->s_id);
		if (dentry) {
			spin_unlock(&dentry->d_lock);
			dput(dentry);
		}
	}
}

/**
2148 2149 2150 2151 2152 2153 2154
 * __mark_inode_dirty -	internal function
 *
 * @inode: inode to mark
 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 *
 * Mark an inode as dirty. Callers should use mark_inode_dirty or
 * mark_inode_dirty_sync.
L
Linus Torvalds 已提交
2155
 *
2156 2157 2158 2159 2160 2161 2162 2163 2164
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but move it onto the
 * dirty list only if it is hashed or if it refers to a blockdev.
 * If it was not hashed, it will never be added to the dirty list
 * even if it is later hashed, as it will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_ you start marking
 * them dirty.
L
Linus Torvalds 已提交
2165
 *
2166 2167 2168 2169 2170 2171
 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
 * the kernel-internal blockdev inode represents the dirtying time of the
 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
 * page->mapping->host, so the page-dirtying time is recorded in the internal
 * blockdev inode.
L
Linus Torvalds 已提交
2172
 */
2173
void __mark_inode_dirty(struct inode *inode, int flags)
L
Linus Torvalds 已提交
2174
{
2175
	struct super_block *sb = inode->i_sb;
2176 2177 2178
	int dirtytime;

	trace_writeback_mark_inode_dirty(inode, flags);
L
Linus Torvalds 已提交
2179

2180 2181 2182 2183
	/*
	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
	 * dirty the inode itself
	 */
2184
	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
T
Tejun Heo 已提交
2185 2186
		trace_writeback_dirty_inode_start(inode, flags);

2187
		if (sb->s_op->dirty_inode)
2188
			sb->s_op->dirty_inode(inode, flags);
T
Tejun Heo 已提交
2189 2190

		trace_writeback_dirty_inode(inode, flags);
2191
	}
2192 2193 2194
	if (flags & I_DIRTY_INODE)
		flags &= ~I_DIRTY_TIME;
	dirtytime = flags & I_DIRTY_TIME;
2195 2196

	/*
2197 2198
	 * Paired with smp_mb() in __writeback_single_inode() for the
	 * following lockless i_state test.  See there for details.
2199 2200 2201
	 */
	smp_mb();

2202 2203
	if (((inode->i_state & flags) == flags) ||
	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2204 2205 2206 2207 2208
		return;

	if (unlikely(block_dump))
		block_dump___mark_inode_dirty(inode);

2209
	spin_lock(&inode->i_lock);
2210 2211
	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
		goto out_unlock_inode;
2212 2213 2214
	if ((inode->i_state & flags) != flags) {
		const int was_dirty = inode->i_state & I_DIRTY;

2215 2216
		inode_attach_wb(inode, NULL);

2217 2218
		if (flags & I_DIRTY_INODE)
			inode->i_state &= ~I_DIRTY_TIME;
2219 2220 2221 2222 2223 2224 2225 2226
		inode->i_state |= flags;

		/*
		 * If the inode is being synced, just update its dirty state.
		 * The unlocker will place the inode on the appropriate
		 * superblock list, based upon its state.
		 */
		if (inode->i_state & I_SYNC)
2227
			goto out_unlock_inode;
2228 2229 2230 2231 2232 2233

		/*
		 * Only add valid (hashed) inodes to the superblock's
		 * dirty list.  Add blockdev inodes as well.
		 */
		if (!S_ISBLK(inode->i_mode)) {
A
Al Viro 已提交
2234
			if (inode_unhashed(inode))
2235
				goto out_unlock_inode;
2236
		}
A
Al Viro 已提交
2237
		if (inode->i_state & I_FREEING)
2238
			goto out_unlock_inode;
2239 2240 2241 2242 2243 2244

		/*
		 * If the inode was already on b_dirty/b_io/b_more_io, don't
		 * reposition it (that would break b_dirty time-ordering).
		 */
		if (!was_dirty) {
2245
			struct bdi_writeback *wb;
2246
			struct list_head *dirty_list;
2247
			bool wakeup_bdi = false;
2248

2249
			wb = locked_inode_to_wb_and_lock_list(inode);
2250

2251 2252 2253
			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
			     !test_bit(WB_registered, &wb->state),
			     "bdi-%s not registered\n", wb->bdi->name);
2254 2255

			inode->dirtied_when = jiffies;
2256 2257
			if (dirtytime)
				inode->dirtied_time_when = jiffies;
2258

2259
			if (inode->i_state & I_DIRTY)
2260
				dirty_list = &wb->b_dirty;
2261
			else
2262
				dirty_list = &wb->b_dirty_time;
2263

2264
			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2265 2266
							       dirty_list);

2267
			spin_unlock(&wb->list_lock);
2268
			trace_writeback_dirty_inode_enqueue(inode);
2269

2270 2271 2272 2273 2274 2275
			/*
			 * If this is the first dirty inode for this bdi,
			 * we have to wake-up the corresponding bdi thread
			 * to make sure background write-back happens
			 * later.
			 */
2276 2277
			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
				wb_wakeup_delayed(wb);
2278
			return;
L
Linus Torvalds 已提交
2279 2280
		}
	}
2281 2282
out_unlock_inode:
	spin_unlock(&inode->i_lock);
2283 2284 2285
}
EXPORT_SYMBOL(__mark_inode_dirty);

2286 2287 2288 2289 2290 2291 2292 2293 2294
/*
 * The @s_sync_lock is used to serialise concurrent sync operations
 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
 * Concurrent callers will block on the s_sync_lock rather than doing contending
 * walks. The queueing maintains sync(2) required behaviour as all the IO that
 * has been issued up to the time this function is enter is guaranteed to be
 * completed by the time we have gained the lock and waited for all IO that is
 * in progress regardless of the order callers are granted the lock.
 */
2295
static void wait_sb_inodes(struct super_block *sb)
2296
{
2297
	LIST_HEAD(sync_list);
2298 2299 2300 2301 2302

	/*
	 * We need to be protected against the filesystem going from
	 * r/o to r/w or vice versa.
	 */
2303
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2304

2305
	mutex_lock(&sb->s_sync_lock);
2306 2307

	/*
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	 * Splice the writeback list onto a temporary list to avoid waiting on
	 * inodes that have started writeback after this point.
	 *
	 * Use rcu_read_lock() to keep the inodes around until we have a
	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
	 * the local list because inodes can be dropped from either by writeback
	 * completion.
	 */
	rcu_read_lock();
	spin_lock_irq(&sb->s_inode_wblist_lock);
	list_splice_init(&sb->s_inodes_wb, &sync_list);

	/*
	 * Data integrity sync. Must wait for all pages under writeback, because
	 * there may have been pages dirtied before our sync call, but which had
	 * writeout started before we write it out.  In which case, the inode
	 * may not be on the dirty list, but we still have to wait for that
	 * writeout.
2326
	 */
2327 2328 2329
	while (!list_empty(&sync_list)) {
		struct inode *inode = list_first_entry(&sync_list, struct inode,
						       i_wb_list);
2330
		struct address_space *mapping = inode->i_mapping;
2331

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
		/*
		 * Move each inode back to the wb list before we drop the lock
		 * to preserve consistency between i_wb_list and the mapping
		 * writeback tag. Writeback completion is responsible to remove
		 * the inode from either list once the writeback tag is cleared.
		 */
		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);

		/*
		 * The mapping can appear untagged while still on-list since we
		 * do not have the mapping lock. Skip it here, wb completion
		 * will remove it.
		 */
		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
			continue;

		spin_unlock_irq(&sb->s_inode_wblist_lock);

2350
		spin_lock(&inode->i_lock);
2351
		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2352
			spin_unlock(&inode->i_lock);
2353 2354

			spin_lock_irq(&sb->s_inode_wblist_lock);
2355
			continue;
2356
		}
2357
		__iget(inode);
2358
		spin_unlock(&inode->i_lock);
2359
		rcu_read_unlock();
2360

2361 2362 2363 2364 2365 2366
		/*
		 * We keep the error status of individual mapping so that
		 * applications can catch the writeback error using fsync(2).
		 * See filemap_fdatawait_keep_errors() for details.
		 */
		filemap_fdatawait_keep_errors(mapping);
2367 2368 2369

		cond_resched();

2370 2371 2372 2373
		iput(inode);

		rcu_read_lock();
		spin_lock_irq(&sb->s_inode_wblist_lock);
2374
	}
2375 2376
	spin_unlock_irq(&sb->s_inode_wblist_lock);
	rcu_read_unlock();
2377
	mutex_unlock(&sb->s_sync_lock);
L
Linus Torvalds 已提交
2378 2379
}

2380 2381
static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				     enum wb_reason reason, bool skip_if_busy)
L
Linus Torvalds 已提交
2382
{
2383
	DEFINE_WB_COMPLETION_ONSTACK(done);
2384
	struct wb_writeback_work work = {
2385 2386 2387 2388 2389
		.sb			= sb,
		.sync_mode		= WB_SYNC_NONE,
		.tagged_writepages	= 1,
		.done			= &done,
		.nr_pages		= nr,
2390
		.reason			= reason,
2391
	};
2392
	struct backing_dev_info *bdi = sb->s_bdi;
2393

2394
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2395
		return;
2396
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2397

2398
	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2399
	wb_wait_for_completion(bdi, &done);
2400
}
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417

/**
 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
 * @sb: the superblock
 * @nr: the number of pages to write
 * @reason: reason why some writeback work initiated
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
void writeback_inodes_sb_nr(struct super_block *sb,
			    unsigned long nr,
			    enum wb_reason reason)
{
	__writeback_inodes_sb_nr(sb, nr, reason, false);
}
2418 2419 2420 2421 2422
EXPORT_SYMBOL(writeback_inodes_sb_nr);

/**
 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
 * @sb: the superblock
2423
 * @reason: reason why some writeback work was initiated
2424 2425 2426 2427 2428
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
2429
void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2430
{
2431
	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2432
}
2433
EXPORT_SYMBOL(writeback_inodes_sb);
2434

2435
/**
2436
 * try_to_writeback_inodes_sb - try to start writeback if none underway
2437
 * @sb: the superblock
2438
 * @reason: reason why some writeback work was initiated
2439
 *
2440
 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2441
 */
2442
void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2443
{
2444
	if (!down_read_trylock(&sb->s_umount))
2445
		return;
2446

2447
	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2448
	up_read(&sb->s_umount);
2449
}
2450
EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2451

2452 2453
/**
 * sync_inodes_sb	-	sync sb inode pages
2454
 * @sb: the superblock
2455 2456
 *
 * This function writes and waits on any dirty inode belonging to this
2457
 * super_block.
2458
 */
2459
void sync_inodes_sb(struct super_block *sb)
2460
{
2461
	DEFINE_WB_COMPLETION_ONSTACK(done);
2462
	struct wb_writeback_work work = {
2463 2464 2465 2466
		.sb		= sb,
		.sync_mode	= WB_SYNC_ALL,
		.nr_pages	= LONG_MAX,
		.range_cyclic	= 0,
2467
		.done		= &done,
2468
		.reason		= WB_REASON_SYNC,
2469
		.for_sync	= 1,
2470
	};
2471
	struct backing_dev_info *bdi = sb->s_bdi;
2472

2473 2474 2475 2476 2477 2478
	/*
	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
	 * bdi_has_dirty() need to be written out too.
	 */
	if (bdi == &noop_backing_dev_info)
2479
		return;
2480 2481
	WARN_ON(!rwsem_is_locked(&sb->s_umount));

2482 2483
	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
	bdi_down_write_wb_switch_rwsem(bdi);
2484
	bdi_split_work_to_wbs(bdi, &work, false);
2485
	wb_wait_for_completion(bdi, &done);
2486
	bdi_up_write_wb_switch_rwsem(bdi);
2487

2488
	wait_sb_inodes(sb);
L
Linus Torvalds 已提交
2489
}
2490
EXPORT_SYMBOL(sync_inodes_sb);
L
Linus Torvalds 已提交
2491 2492

/**
2493 2494 2495 2496 2497 2498
 * write_inode_now	-	write an inode to disk
 * @inode: inode to write to disk
 * @sync: whether the write should be synchronous or not
 *
 * This function commits an inode to disk immediately if it is dirty. This is
 * primarily needed by knfsd.
L
Linus Torvalds 已提交
2499
 *
2500
 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
L
Linus Torvalds 已提交
2501 2502 2503 2504 2505
 */
int write_inode_now(struct inode *inode, int sync)
{
	struct writeback_control wbc = {
		.nr_to_write = LONG_MAX,
2506
		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2507 2508
		.range_start = 0,
		.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
2509 2510 2511
	};

	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2512
		wbc.nr_to_write = 0;
L
Linus Torvalds 已提交
2513 2514

	might_sleep();
2515
	return writeback_single_inode(inode, &wbc);
L
Linus Torvalds 已提交
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
}
EXPORT_SYMBOL(write_inode_now);

/**
 * sync_inode - write an inode and its pages to disk.
 * @inode: the inode to sync
 * @wbc: controls the writeback mode
 *
 * sync_inode() will write an inode and its pages to disk.  It will also
 * correctly update the inode on its superblock's dirty inode lists and will
 * update inode->i_state.
 *
 * The caller must have a ref on the inode.
 */
int sync_inode(struct inode *inode, struct writeback_control *wbc)
{
2532
	return writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
2533 2534
}
EXPORT_SYMBOL(sync_inode);
C
Christoph Hellwig 已提交
2535 2536

/**
A
Andrew Morton 已提交
2537
 * sync_inode_metadata - write an inode to disk
C
Christoph Hellwig 已提交
2538 2539 2540
 * @inode: the inode to sync
 * @wait: wait for I/O to complete.
 *
A
Andrew Morton 已提交
2541
 * Write an inode to disk and adjust its dirty state after completion.
C
Christoph Hellwig 已提交
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
 *
 * Note: only writes the actual inode, no associated data or other metadata.
 */
int sync_inode_metadata(struct inode *inode, int wait)
{
	struct writeback_control wbc = {
		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
		.nr_to_write = 0, /* metadata-only */
	};

	return sync_inode(inode, &wbc);
}
EXPORT_SYMBOL(sync_inode_metadata);