fs-writeback.c 72.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11
/*
 * fs/fs-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains all the functions related to writing back and waiting
 * upon dirty inodes against superblocks, and writing back dirty
 * pages against inodes.  ie: data writeback.  Writeout of the
 * inode itself is not handled here.
 *
12
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
13 14 15 16 17
 *		Split out of fs/inode.c
 *		Additions for address_space-based writeback
 */

#include <linux/kernel.h>
18
#include <linux/export.h>
L
Linus Torvalds 已提交
19
#include <linux/spinlock.h>
20
#include <linux/slab.h>
L
Linus Torvalds 已提交
21 22 23
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
24
#include <linux/pagemap.h>
25
#include <linux/kthread.h>
L
Linus Torvalds 已提交
26 27 28
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
29
#include <linux/tracepoint.h>
30
#include <linux/device.h>
31
#include <linux/memcontrol.h>
32
#include "internal.h"
L
Linus Torvalds 已提交
33

34 35 36
/*
 * 4MB minimal write chunk size
 */
37
#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38

39 40 41 42
struct wb_completion {
	atomic_t		cnt;
};

43 44 45
/*
 * Passed into wb_writeback(), essentially a subset of writeback_control
 */
46
struct wb_writeback_work {
47 48
	long nr_pages;
	struct super_block *sb;
49
	unsigned long *older_than_this;
50
	enum writeback_sync_modes sync_mode;
51
	unsigned int tagged_writepages:1;
52 53 54
	unsigned int for_kupdate:1;
	unsigned int range_cyclic:1;
	unsigned int for_background:1;
55
	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
56
	unsigned int auto_free:1;	/* free on completion */
57
	enum wb_reason reason;		/* why was writeback initiated? */
58

59
	struct list_head list;		/* pending work list */
60
	struct wb_completion *done;	/* set if the caller waits */
61 62
};

63 64 65 66 67 68 69 70 71 72 73 74 75
/*
 * If one wants to wait for one or more wb_writeback_works, each work's
 * ->done should be set to a wb_completion defined using the following
 * macro.  Once all work items are issued with wb_queue_work(), the caller
 * can wait for the completion of all using wb_wait_for_completion().  Work
 * items which are waited upon aren't freed automatically on completion.
 */
#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
	struct wb_completion cmpl = {					\
		.cnt		= ATOMIC_INIT(1),			\
	}


76 77 78 79 80 81 82 83 84 85 86 87
/*
 * If an inode is constantly having its pages dirtied, but then the
 * updates stop dirtytime_expire_interval seconds in the past, it's
 * possible for the worst case time between when an inode has its
 * timestamps updated and when they finally get written out to be two
 * dirtytime_expire_intervals.  We set the default to 12 hours (in
 * seconds), which means most of the time inodes will have their
 * timestamps written to disk after 12 hours, but in the worst case a
 * few inodes might not their timestamps updated for 24 hours.
 */
unsigned int dirtytime_expire_interval = 12 * 60 * 60;

N
Nick Piggin 已提交
88 89
static inline struct inode *wb_inode(struct list_head *head)
{
90
	return list_entry(head, struct inode, i_io_list);
N
Nick Piggin 已提交
91 92
}

93 94 95 96 97 98 99 100
/*
 * Include the creation of the trace points after defining the
 * wb_writeback_work structure and inline functions so that the definition
 * remains local to this file.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/writeback.h>

101 102
EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);

103 104 105 106 107 108
static bool wb_io_lists_populated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb)) {
		return false;
	} else {
		set_bit(WB_has_dirty_io, &wb->state);
109
		WARN_ON_ONCE(!wb->avg_write_bandwidth);
110 111
		atomic_long_add(wb->avg_write_bandwidth,
				&wb->bdi->tot_write_bandwidth);
112 113 114 115 116 117 118
		return true;
	}
}

static void wb_io_lists_depopulated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
119
	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
120
		clear_bit(WB_has_dirty_io, &wb->state);
121 122
		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
					&wb->bdi->tot_write_bandwidth) < 0);
123
	}
124 125 126
}

/**
127
 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
128 129
 * @inode: inode to be moved
 * @wb: target bdi_writeback
130
 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
131
 *
132
 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
133 134 135
 * Returns %true if @inode is the first occupant of the !dirty_time IO
 * lists; otherwise, %false.
 */
136
static bool inode_io_list_move_locked(struct inode *inode,
137 138 139 140 141
				      struct bdi_writeback *wb,
				      struct list_head *head)
{
	assert_spin_locked(&wb->list_lock);

142
	list_move(&inode->i_io_list, head);
143 144 145 146 147 148 149 150 151 152

	/* dirty_time doesn't count as dirty_io until expiration */
	if (head != &wb->b_dirty_time)
		return wb_io_lists_populated(wb);

	wb_io_lists_depopulated(wb);
	return false;
}

/**
153
 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
154 155 156 157 158 159
 * @inode: inode to be removed
 * @wb: bdi_writeback @inode is being removed from
 *
 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 * clear %WB_has_dirty_io if all are empty afterwards.
 */
160
static void inode_io_list_del_locked(struct inode *inode,
161 162 163 164
				     struct bdi_writeback *wb)
{
	assert_spin_locked(&wb->list_lock);

165
	list_del_init(&inode->i_io_list);
166 167 168
	wb_io_lists_depopulated(wb);
}

169
static void wb_wakeup(struct bdi_writeback *wb)
J
Jan Kara 已提交
170
{
171 172 173 174
	spin_lock_bh(&wb->work_lock);
	if (test_bit(WB_registered, &wb->state))
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	spin_unlock_bh(&wb->work_lock);
J
Jan Kara 已提交
175 176
}

177 178 179 180 181 182 183 184 185 186 187
static void finish_writeback_work(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
{
	struct wb_completion *done = work->done;

	if (work->auto_free)
		kfree(work);
	if (done && atomic_dec_and_test(&done->cnt))
		wake_up_all(&wb->bdi->wb_waitq);
}

188 189
static void wb_queue_work(struct bdi_writeback *wb,
			  struct wb_writeback_work *work)
190
{
191
	trace_writeback_queue(wb, work);
192

193 194
	if (work->done)
		atomic_inc(&work->done->cnt);
195 196 197 198 199 200 201 202 203

	spin_lock_bh(&wb->work_lock);

	if (test_bit(WB_registered, &wb->state)) {
		list_add_tail(&work->list, &wb->work_list);
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	} else
		finish_writeback_work(wb, work);

204
	spin_unlock_bh(&wb->work_lock);
L
Linus Torvalds 已提交
205 206
}

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
/**
 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 * @bdi: bdi work items were issued to
 * @done: target wb_completion
 *
 * Wait for one or more work items issued to @bdi with their ->done field
 * set to @done, which should have been defined with
 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 * work items are completed.  Work items which are waited upon aren't freed
 * automatically on completion.
 */
static void wb_wait_for_completion(struct backing_dev_info *bdi,
				   struct wb_completion *done)
{
	atomic_dec(&done->cnt);		/* put down the initial count */
	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
}

225 226
#ifdef CONFIG_CGROUP_WRITEBACK

227 228 229 230 231 232 233 234 235 236 237 238 239 240
/* parameters for foreign inode detection, see wb_detach_inode() */
#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */

#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
					/* each slot's duration is 2s / 16 */
#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
					/* if foreign slots >= 8, switch */
#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
					/* one round can affect upto 5 slots */

241 242 243
static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
static struct workqueue_struct *isw_wq;

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
void __inode_attach_wb(struct inode *inode, struct page *page)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;

	if (inode_cgwb_enabled(inode)) {
		struct cgroup_subsys_state *memcg_css;

		if (page) {
			memcg_css = mem_cgroup_css_from_page(page);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
		} else {
			/* must pin memcg_css, see wb_get_create() */
			memcg_css = task_get_css(current, memory_cgrp_id);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
			css_put(memcg_css);
		}
	}

	if (!wb)
		wb = &bdi->wb;

	/*
	 * There may be multiple instances of this function racing to
	 * update the same inode.  Use cmpxchg() to tell the winner.
	 */
	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
		wb_put(wb);
}
273
EXPORT_SYMBOL_GPL(__inode_attach_wb);
274

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
/**
 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 * @inode: inode of interest with i_lock held
 *
 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 * held on entry and is released on return.  The returned wb is guaranteed
 * to stay @inode's associated wb until its list_lock is released.
 */
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	while (true) {
		struct bdi_writeback *wb = inode_to_wb(inode);

		/*
		 * inode_to_wb() association is protected by both
		 * @inode->i_lock and @wb->list_lock but list_lock nests
		 * outside i_lock.  Drop i_lock and verify that the
		 * association hasn't changed after acquiring list_lock.
		 */
		wb_get(wb);
		spin_unlock(&inode->i_lock);
		spin_lock(&wb->list_lock);

301
		/* i_wb may have changed inbetween, can't use inode_to_wb() */
302 303 304 305
		if (likely(wb == inode->i_wb)) {
			wb_put(wb);	/* @inode already has ref */
			return wb;
		}
306 307

		spin_unlock(&wb->list_lock);
308
		wb_put(wb);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
		cpu_relax();
		spin_lock(&inode->i_lock);
	}
}

/**
 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 * @inode: inode of interest
 *
 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 * on entry.
 */
static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	spin_lock(&inode->i_lock);
	return locked_inode_to_wb_and_lock_list(inode);
}

328 329 330 331 332 333 334 335
struct inode_switch_wbs_context {
	struct inode		*inode;
	struct bdi_writeback	*new_wb;

	struct rcu_head		rcu_head;
	struct work_struct	work;
};

336 337 338 339 340 341 342 343 344 345
static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
{
	down_write(&bdi->wb_switch_rwsem);
}

static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
{
	up_write(&bdi->wb_switch_rwsem);
}

346 347 348 349 350
static void inode_switch_wbs_work_fn(struct work_struct *work)
{
	struct inode_switch_wbs_context *isw =
		container_of(work, struct inode_switch_wbs_context, work);
	struct inode *inode = isw->inode;
351
	struct backing_dev_info *bdi = inode_to_bdi(inode);
352 353
	struct address_space *mapping = inode->i_mapping;
	struct bdi_writeback *old_wb = inode->i_wb;
354
	struct bdi_writeback *new_wb = isw->new_wb;
M
Matthew Wilcox 已提交
355 356
	XA_STATE(xas, &mapping->i_pages, 0);
	struct page *page;
357
	bool switched = false;
358

359 360 361 362 363 364
	/*
	 * If @inode switches cgwb membership while sync_inodes_sb() is
	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
	 */
	down_read(&bdi->wb_switch_rwsem);

365 366 367 368
	/*
	 * By the time control reaches here, RCU grace period has passed
	 * since I_WB_SWITCH assertion and all wb stat update transactions
	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
M
Matthew Wilcox 已提交
369
	 * synchronizing against the i_pages lock.
370
	 *
M
Matthew Wilcox 已提交
371
	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
372 373
	 * gives us exclusion against all wb related operations on @inode
	 * including IO list manipulations and stat updates.
374
	 */
375 376 377 378 379 380 381
	if (old_wb < new_wb) {
		spin_lock(&old_wb->list_lock);
		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
	} else {
		spin_lock(&new_wb->list_lock);
		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
	}
382
	spin_lock(&inode->i_lock);
M
Matthew Wilcox 已提交
383
	xa_lock_irq(&mapping->i_pages);
384 385 386

	/*
	 * Once I_FREEING is visible under i_lock, the eviction path owns
387
	 * the inode and we shouldn't modify ->i_io_list.
388 389 390 391 392 393 394
	 */
	if (unlikely(inode->i_state & I_FREEING))
		goto skip_switch;

	/*
	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
M
Matthew Wilcox 已提交
395
	 * pages actually under writeback.
396
	 */
M
Matthew Wilcox 已提交
397 398
	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
		if (PageDirty(page)) {
399 400
			dec_wb_stat(old_wb, WB_RECLAIMABLE);
			inc_wb_stat(new_wb, WB_RECLAIMABLE);
401 402 403
		}
	}

M
Matthew Wilcox 已提交
404 405 406 407 408
	xas_set(&xas, 0);
	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
		WARN_ON_ONCE(!PageWriteback(page));
		dec_wb_stat(old_wb, WB_WRITEBACK);
		inc_wb_stat(new_wb, WB_WRITEBACK);
409 410 411 412 413 414 415 416 417 418
	}

	wb_get(new_wb);

	/*
	 * Transfer to @new_wb's IO list if necessary.  The specific list
	 * @inode was on is ignored and the inode is put on ->b_dirty which
	 * is always correct including from ->b_dirty_time.  The transfer
	 * preserves @inode->dirtied_when ordering.
	 */
419
	if (!list_empty(&inode->i_io_list)) {
420 421
		struct inode *pos;

422
		inode_io_list_del_locked(inode, old_wb);
423
		inode->i_wb = new_wb;
424
		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
425 426 427
			if (time_after_eq(inode->dirtied_when,
					  pos->dirtied_when))
				break;
428
		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
429 430 431
	} else {
		inode->i_wb = new_wb;
	}
432

433
	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
434 435 436
	inode->i_wb_frn_winner = 0;
	inode->i_wb_frn_avg_time = 0;
	inode->i_wb_frn_history = 0;
437 438
	switched = true;
skip_switch:
439 440 441 442 443 444
	/*
	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
	 */
	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);

M
Matthew Wilcox 已提交
445
	xa_unlock_irq(&mapping->i_pages);
446
	spin_unlock(&inode->i_lock);
447 448
	spin_unlock(&new_wb->list_lock);
	spin_unlock(&old_wb->list_lock);
449

450 451
	up_read(&bdi->wb_switch_rwsem);

452 453 454 455
	if (switched) {
		wb_wakeup(new_wb);
		wb_put(old_wb);
	}
456
	wb_put(new_wb);
457 458

	iput(inode);
459
	kfree(isw);
460 461

	atomic_dec(&isw_nr_in_flight);
462 463 464 465 466 467 468 469 470
}

static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
{
	struct inode_switch_wbs_context *isw = container_of(rcu_head,
				struct inode_switch_wbs_context, rcu_head);

	/* needs to grab bh-unsafe locks, bounce to work item */
	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
471
	queue_work(isw_wq, &isw->work);
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
}

/**
 * inode_switch_wbs - change the wb association of an inode
 * @inode: target inode
 * @new_wb_id: ID of the new wb
 *
 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 * switching is performed asynchronously and may fail silently.
 */
static void inode_switch_wbs(struct inode *inode, int new_wb_id)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct cgroup_subsys_state *memcg_css;
	struct inode_switch_wbs_context *isw;

	/* noop if seems to be already in progress */
	if (inode->i_state & I_WB_SWITCH)
		return;

492 493 494 495 496 497 498 499 500
	/*
	 * Avoid starting new switches while sync_inodes_sb() is in
	 * progress.  Otherwise, if the down_write protected issue path
	 * blocks heavily, we might end up starting a large number of
	 * switches which will block on the rwsem.
	 */
	if (!down_read_trylock(&bdi->wb_switch_rwsem))
		return;

501 502
	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
	if (!isw)
503
		goto out_unlock;
504 505 506 507 508 509 510 511 512 513 514 515

	/* find and pin the new wb */
	rcu_read_lock();
	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
	if (memcg_css)
		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
	rcu_read_unlock();
	if (!isw->new_wb)
		goto out_free;

	/* while holding I_WB_SWITCH, no one else can update the association */
	spin_lock(&inode->i_lock);
516
	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
517 518 519 520 521
	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
	    inode_to_wb(inode) == isw->new_wb) {
		spin_unlock(&inode->i_lock);
		goto out_free;
	}
522
	inode->i_state |= I_WB_SWITCH;
523
	__iget(inode);
524 525 526 527 528 529
	spin_unlock(&inode->i_lock);

	isw->inode = inode;

	/*
	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
M
Matthew Wilcox 已提交
530 531
	 * the RCU protected stat update paths to grab the i_page
	 * lock so that stat transfer can synchronize against them.
532 533 534
	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
	 */
	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
535 536 537

	atomic_inc(&isw_nr_in_flight);

538
	goto out_unlock;
539 540 541 542 543

out_free:
	if (isw->new_wb)
		wb_put(isw->new_wb);
	kfree(isw);
544 545
out_unlock:
	up_read(&bdi->wb_switch_rwsem);
546 547
}

548 549 550 551 552 553 554 555 556 557 558 559 560
/**
 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 * @wbc: writeback_control of interest
 * @inode: target inode
 *
 * @inode is locked and about to be written back under the control of @wbc.
 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 * writeback completion, wbc_detach_inode() should be called.  This is used
 * to track the cgroup writeback context.
 */
void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
				 struct inode *inode)
{
561 562 563 564 565
	if (!inode_cgwb_enabled(inode)) {
		spin_unlock(&inode->i_lock);
		return;
	}

566
	wbc->wb = inode_to_wb(inode);
567 568 569 570 571 572 573 574 575
	wbc->inode = inode;

	wbc->wb_id = wbc->wb->memcg_css->id;
	wbc->wb_lcand_id = inode->i_wb_frn_winner;
	wbc->wb_tcand_id = 0;
	wbc->wb_bytes = 0;
	wbc->wb_lcand_bytes = 0;
	wbc->wb_tcand_bytes = 0;

576 577
	wb_get(wbc->wb);
	spin_unlock(&inode->i_lock);
578 579 580 581 582 583 584

	/*
	 * A dying wb indicates that the memcg-blkcg mapping has changed
	 * and a new wb is already serving the memcg.  Switch immediately.
	 */
	if (unlikely(wb_dying(wbc->wb)))
		inode_switch_wbs(inode, wbc->wb_id);
585
}
586
EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
587 588

/**
589 590
 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 * @wbc: writeback_control of the just finished writeback
591 592 593
 *
 * To be called after a writeback attempt of an inode finishes and undoes
 * wbc_attach_and_unlock_inode().  Can be called under any context.
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
 *
 * As concurrent write sharing of an inode is expected to be very rare and
 * memcg only tracks page ownership on first-use basis severely confining
 * the usefulness of such sharing, cgroup writeback tracks ownership
 * per-inode.  While the support for concurrent write sharing of an inode
 * is deemed unnecessary, an inode being written to by different cgroups at
 * different points in time is a lot more common, and, more importantly,
 * charging only by first-use can too readily lead to grossly incorrect
 * behaviors (single foreign page can lead to gigabytes of writeback to be
 * incorrectly attributed).
 *
 * To resolve this issue, cgroup writeback detects the majority dirtier of
 * an inode and transfers the ownership to it.  To avoid unnnecessary
 * oscillation, the detection mechanism keeps track of history and gives
 * out the switch verdict only if the foreign usage pattern is stable over
 * a certain amount of time and/or writeback attempts.
 *
 * On each writeback attempt, @wbc tries to detect the majority writer
 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 * count from the majority voting, it also counts the bytes written for the
 * current wb and the last round's winner wb (max of last round's current
 * wb, the winner from two rounds ago, and the last round's majority
 * candidate).  Keeping track of the historical winner helps the algorithm
 * to semi-reliably detect the most active writer even when it's not the
 * absolute majority.
 *
 * Once the winner of the round is determined, whether the winner is
 * foreign or not and how much IO time the round consumed is recorded in
 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 * over a certain threshold, the switch verdict is given.
624 625 626
 */
void wbc_detach_inode(struct writeback_control *wbc)
{
627 628
	struct bdi_writeback *wb = wbc->wb;
	struct inode *inode = wbc->inode;
629 630
	unsigned long avg_time, max_bytes, max_time;
	u16 history;
631 632
	int max_id;

633 634 635 636 637 638
	if (!wb)
		return;

	history = inode->i_wb_frn_history;
	avg_time = inode->i_wb_frn_avg_time;

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
	/* pick the winner of this round */
	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_id;
		max_bytes = wbc->wb_bytes;
	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_lcand_id;
		max_bytes = wbc->wb_lcand_bytes;
	} else {
		max_id = wbc->wb_tcand_id;
		max_bytes = wbc->wb_tcand_bytes;
	}

	/*
	 * Calculate the amount of IO time the winner consumed and fold it
	 * into the running average kept per inode.  If the consumed IO
	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
	 * deciding whether to switch or not.  This is to prevent one-off
	 * small dirtiers from skewing the verdict.
	 */
	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
				wb->avg_write_bandwidth);
	if (avg_time)
		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
	else
		avg_time = max_time;	/* immediate catch up on first run */

	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
		int slots;

		/*
		 * The switch verdict is reached if foreign wb's consume
		 * more than a certain proportion of IO time in a
		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
		 * history mask where each bit represents one sixteenth of
		 * the period.  Determine the number of slots to shift into
		 * history from @max_time.
		 */
		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
		history <<= slots;
		if (wbc->wb_id != max_id)
			history |= (1U << slots) - 1;

		/*
		 * Switch if the current wb isn't the consistent winner.
		 * If there are multiple closely competing dirtiers, the
		 * inode may switch across them repeatedly over time, which
		 * is okay.  The main goal is avoiding keeping an inode on
		 * the wrong wb for an extended period of time.
		 */
691 692
		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
			inode_switch_wbs(inode, max_id);
693 694 695 696 697 698 699 700 701 702
	}

	/*
	 * Multiple instances of this function may race to update the
	 * following fields but we don't mind occassional inaccuracies.
	 */
	inode->i_wb_frn_winner = max_id;
	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
	inode->i_wb_frn_history = history;

703 704 705
	wb_put(wbc->wb);
	wbc->wb = NULL;
}
706
EXPORT_SYMBOL_GPL(wbc_detach_inode);
707

708
/**
709
 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
710 711 712 713 714 715 716 717
 * @wbc: writeback_control of the writeback in progress
 * @page: page being written out
 * @bytes: number of bytes being written out
 *
 * @bytes from @page are about to written out during the writeback
 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 * wbc_detach_inode().
 */
718 719
void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
			      size_t bytes)
720
{
721
	struct cgroup_subsys_state *css;
722 723 724 725 726 727 728 729 730 731 732
	int id;

	/*
	 * pageout() path doesn't attach @wbc to the inode being written
	 * out.  This is intentional as we don't want the function to block
	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
	 * regular writeback instead of writing things out itself.
	 */
	if (!wbc->wb)
		return;

733 734 735 736 737 738
	css = mem_cgroup_css_from_page(page);
	/* dead cgroups shouldn't contribute to inode ownership arbitration */
	if (!(css->flags & CSS_ONLINE))
		return;

	id = css->id;
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

	if (id == wbc->wb_id) {
		wbc->wb_bytes += bytes;
		return;
	}

	if (id == wbc->wb_lcand_id)
		wbc->wb_lcand_bytes += bytes;

	/* Boyer-Moore majority vote algorithm */
	if (!wbc->wb_tcand_bytes)
		wbc->wb_tcand_id = id;
	if (id == wbc->wb_tcand_id)
		wbc->wb_tcand_bytes += bytes;
	else
		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
}
756
EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
757

758 759
/**
 * inode_congested - test whether an inode is congested
760
 * @inode: inode to test for congestion (may be NULL)
761 762 763 764 765 766 767 768 769
 * @cong_bits: mask of WB_[a]sync_congested bits to test
 *
 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 * bits to test and the return value is the mask of set bits.
 *
 * If cgroup writeback is enabled for @inode, the congestion state is
 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 * associated with @inode is congested; otherwise, the root wb's congestion
 * state is used.
770 771 772
 *
 * @inode is allowed to be NULL as this function is often called on
 * mapping->host which is NULL for the swapper space.
773 774 775
 */
int inode_congested(struct inode *inode, int cong_bits)
{
776 777 778 779
	/*
	 * Once set, ->i_wb never becomes NULL while the inode is alive.
	 * Start transaction iff ->i_wb is visible.
	 */
780
	if (inode && inode_to_wb_is_valid(inode)) {
781
		struct bdi_writeback *wb;
G
Greg Thelen 已提交
782 783
		struct wb_lock_cookie lock_cookie = {};
		bool congested;
784

G
Greg Thelen 已提交
785
		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
786
		congested = wb_congested(wb, cong_bits);
G
Greg Thelen 已提交
787
		unlocked_inode_to_wb_end(inode, &lock_cookie);
788
		return congested;
789 790 791 792 793 794
	}

	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
}
EXPORT_SYMBOL_GPL(inode_congested);

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
/**
 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 * @wb: target bdi_writeback to split @nr_pages to
 * @nr_pages: number of pages to write for the whole bdi
 *
 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 * @wb->bdi.
 */
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);

	if (nr_pages == LONG_MAX)
		return LONG_MAX;

	/*
	 * This may be called on clean wb's and proportional distribution
	 * may not make sense, just use the original @nr_pages in those
	 * cases.  In general, we wanna err on the side of writing more.
	 */
	if (!tot_bw || this_bw >= tot_bw)
		return nr_pages;
	else
		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
}

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
/**
 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 * @bdi: target backing_dev_info
 * @base_work: wb_writeback_work to issue
 * @skip_if_busy: skip wb's which already have writeback in progress
 *
 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 * distributed to the busy wbs according to each wb's proportion in the
 * total active write bandwidth of @bdi.
 */
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
838
	struct bdi_writeback *last_wb = NULL;
839 840
	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
					      struct bdi_writeback, bdi_node);
841 842 843 844

	might_sleep();
restart:
	rcu_read_lock();
845
	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
846 847 848 849 850
		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
		struct wb_writeback_work fallback_work;
		struct wb_writeback_work *work;
		long nr_pages;

851 852 853 854 855
		if (last_wb) {
			wb_put(last_wb);
			last_wb = NULL;
		}

856 857 858 859 860 861
		/* SYNC_ALL writes out I_DIRTY_TIME too */
		if (!wb_has_dirty_io(wb) &&
		    (base_work->sync_mode == WB_SYNC_NONE ||
		     list_empty(&wb->b_dirty_time)))
			continue;
		if (skip_if_busy && writeback_in_progress(wb))
862 863
			continue;

864 865 866 867 868 869 870 871 872
		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);

		work = kmalloc(sizeof(*work), GFP_ATOMIC);
		if (work) {
			*work = *base_work;
			work->nr_pages = nr_pages;
			work->auto_free = 1;
			wb_queue_work(wb, work);
			continue;
873
		}
874 875 876 877 878 879 880 881 882 883

		/* alloc failed, execute synchronously using on-stack fallback */
		work = &fallback_work;
		*work = *base_work;
		work->nr_pages = nr_pages;
		work->auto_free = 0;
		work->done = &fallback_work_done;

		wb_queue_work(wb, work);

884 885 886 887 888 889 890 891
		/*
		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
		 * continuing iteration from @wb after dropping and
		 * regrabbing rcu read lock.
		 */
		wb_get(wb);
		last_wb = wb;

892 893 894
		rcu_read_unlock();
		wb_wait_for_completion(bdi, &fallback_work_done);
		goto restart;
895 896
	}
	rcu_read_unlock();
897 898 899

	if (last_wb)
		wb_put(last_wb);
900 901
}

902 903 904 905 906 907 908 909 910 911 912 913 914
/**
 * cgroup_writeback_umount - flush inode wb switches for umount
 *
 * This function is called when a super_block is about to be destroyed and
 * flushes in-flight inode wb switches.  An inode wb switch goes through
 * RCU and then workqueue, so the two need to be flushed in order to ensure
 * that all previously scheduled switches are finished.  As wb switches are
 * rare occurrences and synchronize_rcu() can take a while, perform
 * flushing iff wb switches are in flight.
 */
void cgroup_writeback_umount(void)
{
	if (atomic_read(&isw_nr_in_flight)) {
915 916 917 918 919
		/*
		 * Use rcu_barrier() to wait for all pending callbacks to
		 * ensure that all in-flight wb switches are in the workqueue.
		 */
		rcu_barrier();
920 921 922 923 924 925 926 927 928 929 930 931 932
		flush_workqueue(isw_wq);
	}
}

static int __init cgroup_writeback_init(void)
{
	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
	if (!isw_wq)
		return -ENOMEM;
	return 0;
}
fs_initcall(cgroup_writeback_init);

933 934
#else	/* CONFIG_CGROUP_WRITEBACK */

935 936 937
static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_unlock(&inode->i_lock);
	spin_lock(&wb->list_lock);
	return wb;
}

static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_lock(&wb->list_lock);
	return wb;
}

959 960 961 962 963
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	return nr_pages;
}

964 965 966 967 968 969
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	might_sleep();

970
	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
971 972 973 974 975
		base_work->auto_free = 0;
		wb_queue_work(&bdi->wb, base_work);
	}
}

976 977
#endif	/* CONFIG_CGROUP_WRITEBACK */

978 979 980 981 982 983 984 985 986 987 988 989
/*
 * Add in the number of potentially dirty inodes, because each inode
 * write can dirty pagecache in the underlying blockdev.
 */
static unsigned long get_nr_dirty_pages(void)
{
	return global_node_page_state(NR_FILE_DIRTY) +
		global_node_page_state(NR_UNSTABLE_NFS) +
		get_nr_dirty_inodes();
}

static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
990
{
991 992 993
	if (!wb_has_dirty_io(wb))
		return;

994 995 996 997 998 999
	/*
	 * All callers of this function want to start writeback of all
	 * dirty pages. Places like vmscan can call this at a very
	 * high frequency, causing pointless allocations of tons of
	 * work items and keeping the flusher threads busy retrieving
	 * that work. Ensure that we only allow one of them pending and
1000
	 * inflight at the time.
1001
	 */
1002 1003
	if (test_bit(WB_start_all, &wb->state) ||
	    test_and_set_bit(WB_start_all, &wb->state))
1004 1005
		return;

1006 1007
	wb->start_all_reason = reason;
	wb_wakeup(wb);
1008
}
1009

1010
/**
1011 1012
 * wb_start_background_writeback - start background writeback
 * @wb: bdi_writback to write from
1013 1014
 *
 * Description:
1015
 *   This makes sure WB_SYNC_NONE background writeback happens. When
1016
 *   this function returns, it is only guaranteed that for given wb
1017 1018
 *   some IO is happening if we are over background dirty threshold.
 *   Caller need not hold sb s_umount semaphore.
1019
 */
1020
void wb_start_background_writeback(struct bdi_writeback *wb)
1021
{
1022 1023 1024 1025
	/*
	 * We just wake up the flusher thread. It will perform background
	 * writeback as soon as there is no other work to do.
	 */
1026
	trace_writeback_wake_background(wb);
1027
	wb_wakeup(wb);
L
Linus Torvalds 已提交
1028 1029
}

1030 1031 1032
/*
 * Remove the inode from the writeback list it is on.
 */
1033
void inode_io_list_del(struct inode *inode)
1034
{
1035
	struct bdi_writeback *wb;
1036

1037
	wb = inode_to_wb_and_lock_list(inode);
1038
	inode_io_list_del_locked(inode, wb);
1039
	spin_unlock(&wb->list_lock);
1040 1041
}

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
/*
 * mark an inode as under writeback on the sb
 */
void sb_mark_inode_writeback(struct inode *inode)
{
	struct super_block *sb = inode->i_sb;
	unsigned long flags;

	if (list_empty(&inode->i_wb_list)) {
		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1052
		if (list_empty(&inode->i_wb_list)) {
1053
			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1054 1055
			trace_sb_mark_inode_writeback(inode);
		}
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
	}
}

/*
 * clear an inode as under writeback on the sb
 */
void sb_clear_inode_writeback(struct inode *inode)
{
	struct super_block *sb = inode->i_sb;
	unsigned long flags;

	if (!list_empty(&inode->i_wb_list)) {
		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1070 1071 1072 1073
		if (!list_empty(&inode->i_wb_list)) {
			list_del_init(&inode->i_wb_list);
			trace_sb_clear_inode_writeback(inode);
		}
1074 1075 1076 1077
		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
	}
}

1078 1079 1080 1081 1082
/*
 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 * furthest end of its superblock's dirty-inode list.
 *
 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1083
 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1084 1085 1086
 * the case then the inode must have been redirtied while it was being written
 * out and we don't reset its dirtied_when.
 */
1087
static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1088
{
1089
	if (!list_empty(&wb->b_dirty)) {
1090
		struct inode *tail;
1091

N
Nick Piggin 已提交
1092
		tail = wb_inode(wb->b_dirty.next);
1093
		if (time_before(inode->dirtied_when, tail->dirtied_when))
1094 1095
			inode->dirtied_when = jiffies;
	}
1096
	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1097 1098
}

1099
/*
1100
 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1101
 */
1102
static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1103
{
1104
	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1105 1106
}

J
Joern Engel 已提交
1107 1108
static void inode_sync_complete(struct inode *inode)
{
1109
	inode->i_state &= ~I_SYNC;
1110 1111
	/* If inode is clean an unused, put it into LRU now... */
	inode_add_lru(inode);
1112
	/* Waiters must see I_SYNC cleared before being woken up */
J
Joern Engel 已提交
1113 1114 1115 1116
	smp_mb();
	wake_up_bit(&inode->i_state, __I_SYNC);
}

1117 1118 1119 1120 1121 1122 1123 1124
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
{
	bool ret = time_after(inode->dirtied_when, t);
#ifndef CONFIG_64BIT
	/*
	 * For inodes being constantly redirtied, dirtied_when can get stuck.
	 * It _appears_ to be in the future, but is actually in distant past.
	 * This test is necessary to prevent such wrapped-around relative times
1125
	 * from permanently stopping the whole bdi writeback.
1126 1127 1128 1129 1130 1131
	 */
	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
#endif
	return ret;
}

1132 1133
#define EXPIRE_DIRTY_ATIME 0x0001

1134
/*
1135
 * Move expired (dirtied before work->older_than_this) dirty inodes from
J
Jan Kara 已提交
1136
 * @delaying_queue to @dispatch_queue.
1137
 */
1138
static int move_expired_inodes(struct list_head *delaying_queue,
1139
			       struct list_head *dispatch_queue,
1140
			       int flags,
1141
			       struct wb_writeback_work *work)
1142
{
1143 1144
	unsigned long *older_than_this = NULL;
	unsigned long expire_time;
1145 1146
	LIST_HEAD(tmp);
	struct list_head *pos, *node;
1147
	struct super_block *sb = NULL;
1148
	struct inode *inode;
1149
	int do_sb_sort = 0;
1150
	int moved = 0;
1151

1152 1153
	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
		older_than_this = work->older_than_this;
1154 1155
	else if (!work->for_sync) {
		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1156 1157
		older_than_this = &expire_time;
	}
1158
	while (!list_empty(delaying_queue)) {
N
Nick Piggin 已提交
1159
		inode = wb_inode(delaying_queue->prev);
1160 1161
		if (older_than_this &&
		    inode_dirtied_after(inode, *older_than_this))
1162
			break;
1163
		list_move(&inode->i_io_list, &tmp);
1164
		moved++;
1165 1166
		if (flags & EXPIRE_DIRTY_ATIME)
			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1167 1168
		if (sb_is_blkdev_sb(inode->i_sb))
			continue;
1169 1170 1171
		if (sb && sb != inode->i_sb)
			do_sb_sort = 1;
		sb = inode->i_sb;
1172 1173
	}

1174 1175 1176
	/* just one sb in list, splice to dispatch_queue and we're done */
	if (!do_sb_sort) {
		list_splice(&tmp, dispatch_queue);
1177
		goto out;
1178 1179
	}

1180 1181
	/* Move inodes from one superblock together */
	while (!list_empty(&tmp)) {
N
Nick Piggin 已提交
1182
		sb = wb_inode(tmp.prev)->i_sb;
1183
		list_for_each_prev_safe(pos, node, &tmp) {
N
Nick Piggin 已提交
1184
			inode = wb_inode(pos);
1185
			if (inode->i_sb == sb)
1186
				list_move(&inode->i_io_list, dispatch_queue);
1187
		}
1188
	}
1189 1190
out:
	return moved;
1191 1192 1193 1194
}

/*
 * Queue all expired dirty inodes for io, eldest first.
1195 1196 1197 1198 1199 1200 1201 1202
 * Before
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    gf         edc     BA
 * After
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    g          fBAedc
 *                                           |
 *                                           +--> dequeue for IO
1203
 */
1204
static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1205
{
1206
	int moved;
1207

1208
	assert_spin_locked(&wb->list_lock);
1209
	list_splice_init(&wb->b_more_io, &wb->b_io);
1210 1211 1212
	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
				     EXPIRE_DIRTY_ATIME, work);
1213 1214
	if (moved)
		wb_io_lists_populated(wb);
1215
	trace_writeback_queue_io(wb, work, moved);
1216 1217
}

1218
static int write_inode(struct inode *inode, struct writeback_control *wbc)
1219
{
T
Tejun Heo 已提交
1220 1221 1222 1223 1224 1225 1226 1227
	int ret;

	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
		trace_writeback_write_inode_start(inode, wbc);
		ret = inode->i_sb->s_op->write_inode(inode, wbc);
		trace_writeback_write_inode(inode, wbc);
		return ret;
	}
1228
	return 0;
1229 1230
}

L
Linus Torvalds 已提交
1231
/*
1232 1233
 * Wait for writeback on an inode to complete. Called with i_lock held.
 * Caller must make sure inode cannot go away when we drop i_lock.
1234
 */
1235 1236 1237
static void __inode_wait_for_writeback(struct inode *inode)
	__releases(inode->i_lock)
	__acquires(inode->i_lock)
1238 1239 1240 1241 1242
{
	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
	wait_queue_head_t *wqh;

	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1243 1244
	while (inode->i_state & I_SYNC) {
		spin_unlock(&inode->i_lock);
1245 1246
		__wait_on_bit(wqh, &wq, bit_wait,
			      TASK_UNINTERRUPTIBLE);
1247
		spin_lock(&inode->i_lock);
1248
	}
1249 1250
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
/*
 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 */
void inode_wait_for_writeback(struct inode *inode)
{
	spin_lock(&inode->i_lock);
	__inode_wait_for_writeback(inode);
	spin_unlock(&inode->i_lock);
}

/*
 * Sleep until I_SYNC is cleared. This function must be called with i_lock
 * held and drops it. It is aimed for callers not holding any inode reference
 * so once i_lock is dropped, inode can go away.
 */
static void inode_sleep_on_writeback(struct inode *inode)
	__releases(inode->i_lock)
{
	DEFINE_WAIT(wait);
	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
	int sleep;

	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
	sleep = inode->i_state & I_SYNC;
	spin_unlock(&inode->i_lock);
	if (sleep)
		schedule();
	finish_wait(wqh, &wait);
}

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
/*
 * Find proper writeback list for the inode depending on its current state and
 * possibly also change of its state while we were doing writeback.  Here we
 * handle things such as livelock prevention or fairness of writeback among
 * inodes. This function can be called only by flusher thread - noone else
 * processes all inodes in writeback lists and requeueing inodes behind flusher
 * thread's back can have unexpected consequences.
 */
static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
			  struct writeback_control *wbc)
{
	if (inode->i_state & I_FREEING)
		return;

	/*
	 * Sync livelock prevention. Each inode is tagged and synced in one
	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
	 * the dirty time to prevent enqueue and sync it again.
	 */
	if ((inode->i_state & I_DIRTY) &&
	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
		inode->dirtied_when = jiffies;

1304 1305 1306 1307 1308 1309 1310 1311 1312
	if (wbc->pages_skipped) {
		/*
		 * writeback is not making progress due to locked
		 * buffers. Skip this inode for now.
		 */
		redirty_tail(inode, wb);
		return;
	}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
		/*
		 * We didn't write back all the pages.  nfs_writepages()
		 * sometimes bales out without doing anything.
		 */
		if (wbc->nr_to_write <= 0) {
			/* Slice used up. Queue for next turn. */
			requeue_io(inode, wb);
		} else {
			/*
			 * Writeback blocked by something other than
			 * congestion. Delay the inode for some time to
			 * avoid spinning on the CPU (100% iowait)
			 * retrying writeback of the dirty page/inode
			 * that cannot be performed immediately.
			 */
			redirty_tail(inode, wb);
		}
	} else if (inode->i_state & I_DIRTY) {
		/*
		 * Filesystems can dirty the inode during writeback operations,
		 * such as delayed allocation during submission or metadata
		 * updates after data IO completion.
		 */
		redirty_tail(inode, wb);
1338
	} else if (inode->i_state & I_DIRTY_TIME) {
1339
		inode->dirtied_when = jiffies;
1340
		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1341 1342
	} else {
		/* The inode is clean. Remove from writeback lists. */
1343
		inode_io_list_del_locked(inode, wb);
1344 1345 1346
	}
}

1347
/*
1348 1349 1350
 * Write out an inode and its dirty pages. Do not update the writeback list
 * linkage. That is left to the caller. The caller is also responsible for
 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
L
Linus Torvalds 已提交
1351 1352
 */
static int
1353
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
L
Linus Torvalds 已提交
1354 1355
{
	struct address_space *mapping = inode->i_mapping;
1356
	long nr_to_write = wbc->nr_to_write;
1357
	unsigned dirty;
L
Linus Torvalds 已提交
1358 1359
	int ret;

1360
	WARN_ON(!(inode->i_state & I_SYNC));
L
Linus Torvalds 已提交
1361

T
Tejun Heo 已提交
1362 1363
	trace_writeback_single_inode_start(inode, wbc, nr_to_write);

L
Linus Torvalds 已提交
1364 1365
	ret = do_writepages(mapping, wbc);

1366 1367 1368
	/*
	 * Make sure to wait on the data before writing out the metadata.
	 * This is important for filesystems that modify metadata on data
1369 1370 1371
	 * I/O completion. We don't do it for sync(2) writeback because it has a
	 * separate, external IO completion path and ->sync_fs for guaranteeing
	 * inode metadata is written back correctly.
1372
	 */
1373
	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1374
		int err = filemap_fdatawait(mapping);
L
Linus Torvalds 已提交
1375 1376 1377 1378
		if (ret == 0)
			ret = err;
	}

1379 1380 1381 1382 1383
	/*
	 * Some filesystems may redirty the inode during the writeback
	 * due to delalloc, clear dirty metadata flags right before
	 * write_inode()
	 */
1384
	spin_lock(&inode->i_lock);
1385

1386
	dirty = inode->i_state & I_DIRTY;
1387
	if (inode->i_state & I_DIRTY_TIME) {
1388
		if ((dirty & I_DIRTY_INODE) ||
1389
		    wbc->sync_mode == WB_SYNC_ALL ||
1390 1391 1392 1393 1394 1395 1396 1397 1398
		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
		    unlikely(time_after(jiffies,
					(inode->dirtied_time_when +
					 dirtytime_expire_interval * HZ)))) {
			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
			trace_writeback_lazytime(inode);
		}
	} else
		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1399
	inode->i_state &= ~dirty;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416

	/*
	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
	 * either they see the I_DIRTY bits cleared or we see the dirtied
	 * inode.
	 *
	 * I_DIRTY_PAGES is always cleared together above even if @mapping
	 * still has dirty pages.  The flag is reinstated after smp_mb() if
	 * necessary.  This guarantees that either __mark_inode_dirty()
	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
	 */
	smp_mb();

	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		inode->i_state |= I_DIRTY_PAGES;

1417
	spin_unlock(&inode->i_lock);
1418

1419 1420
	if (dirty & I_DIRTY_TIME)
		mark_inode_dirty_sync(inode);
1421
	/* Don't write the inode if only I_DIRTY_PAGES was set */
1422
	if (dirty & ~I_DIRTY_PAGES) {
1423
		int err = write_inode(inode, wbc);
L
Linus Torvalds 已提交
1424 1425 1426
		if (ret == 0)
			ret = err;
	}
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	trace_writeback_single_inode(inode, wbc, nr_to_write);
	return ret;
}

/*
 * Write out an inode's dirty pages. Either the caller has an active reference
 * on the inode or the inode has I_WILL_FREE set.
 *
 * This function is designed to be called for writing back one inode which
 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
 * and does more profound writeback list handling in writeback_sb_inodes().
 */
1439 1440
static int writeback_single_inode(struct inode *inode,
				  struct writeback_control *wbc)
1441
{
1442
	struct bdi_writeback *wb;
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	int ret = 0;

	spin_lock(&inode->i_lock);
	if (!atomic_read(&inode->i_count))
		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
	else
		WARN_ON(inode->i_state & I_WILL_FREE);

	if (inode->i_state & I_SYNC) {
		if (wbc->sync_mode != WB_SYNC_ALL)
			goto out;
		/*
1455 1456 1457
		 * It's a data-integrity sync. We must wait. Since callers hold
		 * inode reference or inode has I_WILL_FREE set, it cannot go
		 * away under us.
1458
		 */
1459
		__inode_wait_for_writeback(inode);
1460 1461 1462
	}
	WARN_ON(inode->i_state & I_SYNC);
	/*
J
Jan Kara 已提交
1463 1464 1465 1466 1467 1468
	 * Skip inode if it is clean and we have no outstanding writeback in
	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
	 * function since flusher thread may be doing for example sync in
	 * parallel and if we move the inode, it could get skipped. So here we
	 * make sure inode is on some writeback list and leave it there unless
	 * we have completely cleaned the inode.
1469
	 */
1470
	if (!(inode->i_state & I_DIRTY_ALL) &&
J
Jan Kara 已提交
1471 1472
	    (wbc->sync_mode != WB_SYNC_ALL ||
	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1473 1474
		goto out;
	inode->i_state |= I_SYNC;
1475
	wbc_attach_and_unlock_inode(wbc, inode);
1476

1477
	ret = __writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
1478

1479
	wbc_detach_inode(wbc);
1480 1481

	wb = inode_to_wb_and_lock_list(inode);
1482
	spin_lock(&inode->i_lock);
1483 1484 1485 1486
	/*
	 * If inode is clean, remove it from writeback lists. Otherwise don't
	 * touch it. See comment above for explanation.
	 */
1487
	if (!(inode->i_state & I_DIRTY_ALL))
1488
		inode_io_list_del_locked(inode, wb);
1489
	spin_unlock(&wb->list_lock);
J
Joern Engel 已提交
1490
	inode_sync_complete(inode);
1491 1492
out:
	spin_unlock(&inode->i_lock);
L
Linus Torvalds 已提交
1493 1494 1495
	return ret;
}

1496
static long writeback_chunk_size(struct bdi_writeback *wb,
1497
				 struct wb_writeback_work *work)
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
{
	long pages;

	/*
	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
	 * here avoids calling into writeback_inodes_wb() more than once.
	 *
	 * The intended call sequence for WB_SYNC_ALL writeback is:
	 *
	 *      wb_writeback()
	 *          writeback_sb_inodes()       <== called only once
	 *              write_cache_pages()     <== called once for each inode
	 *                   (quickly) tag currently dirty pages
	 *                   (maybe slowly) sync all tagged pages
	 */
	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
		pages = LONG_MAX;
1516
	else {
1517
		pages = min(wb->avg_write_bandwidth / 2,
1518
			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1519 1520 1521 1522
		pages = min(pages, work->nr_pages);
		pages = round_down(pages + MIN_WRITEBACK_PAGES,
				   MIN_WRITEBACK_PAGES);
	}
1523 1524 1525 1526

	return pages;
}

1527 1528
/*
 * Write a portion of b_io inodes which belong to @sb.
1529
 *
1530
 * Return the number of pages and/or inodes written.
1531 1532 1533 1534
 *
 * NOTE! This is called with wb->list_lock held, and will
 * unlock and relock that for each inode it ends up doing
 * IO for.
1535
 */
1536 1537 1538
static long writeback_sb_inodes(struct super_block *sb,
				struct bdi_writeback *wb,
				struct wb_writeback_work *work)
L
Linus Torvalds 已提交
1539
{
1540 1541 1542 1543 1544
	struct writeback_control wbc = {
		.sync_mode		= work->sync_mode,
		.tagged_writepages	= work->tagged_writepages,
		.for_kupdate		= work->for_kupdate,
		.for_background		= work->for_background,
1545
		.for_sync		= work->for_sync,
1546 1547 1548 1549 1550 1551 1552 1553
		.range_cyclic		= work->range_cyclic,
		.range_start		= 0,
		.range_end		= LLONG_MAX,
	};
	unsigned long start_time = jiffies;
	long write_chunk;
	long wrote = 0;  /* count both pages and inodes */

1554
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1555
		struct inode *inode = wb_inode(wb->b_io.prev);
1556
		struct bdi_writeback *tmp_wb;
1557 1558

		if (inode->i_sb != sb) {
1559
			if (work->sb) {
1560 1561 1562 1563 1564
				/*
				 * We only want to write back data for this
				 * superblock, move all inodes not belonging
				 * to it back onto the dirty list.
				 */
1565
				redirty_tail(inode, wb);
1566 1567 1568 1569 1570 1571 1572 1573
				continue;
			}

			/*
			 * The inode belongs to a different superblock.
			 * Bounce back to the caller to unpin this and
			 * pin the next superblock.
			 */
1574
			break;
1575 1576
		}

1577
		/*
W
Wanpeng Li 已提交
1578 1579
		 * Don't bother with new inodes or inodes being freed, first
		 * kind does not need periodic writeout yet, and for the latter
1580 1581
		 * kind writeout is handled by the freer.
		 */
1582
		spin_lock(&inode->i_lock);
1583
		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1584
			spin_unlock(&inode->i_lock);
1585
			redirty_tail(inode, wb);
1586 1587
			continue;
		}
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
			/*
			 * If this inode is locked for writeback and we are not
			 * doing writeback-for-data-integrity, move it to
			 * b_more_io so that writeback can proceed with the
			 * other inodes on s_io.
			 *
			 * We'll have another go at writing back this inode
			 * when we completed a full scan of b_io.
			 */
			spin_unlock(&inode->i_lock);
			requeue_io(inode, wb);
			trace_writeback_sb_inodes_requeue(inode);
			continue;
		}
1603 1604
		spin_unlock(&wb->list_lock);

1605 1606 1607 1608 1609
		/*
		 * We already requeued the inode if it had I_SYNC set and we
		 * are doing WB_SYNC_NONE writeback. So this catches only the
		 * WB_SYNC_ALL case.
		 */
1610 1611 1612 1613
		if (inode->i_state & I_SYNC) {
			/* Wait for I_SYNC. This function drops i_lock... */
			inode_sleep_on_writeback(inode);
			/* Inode may be gone, start again */
1614
			spin_lock(&wb->list_lock);
1615 1616
			continue;
		}
1617
		inode->i_state |= I_SYNC;
1618
		wbc_attach_and_unlock_inode(&wbc, inode);
1619

1620
		write_chunk = writeback_chunk_size(wb, work);
1621 1622
		wbc.nr_to_write = write_chunk;
		wbc.pages_skipped = 0;
1623

1624 1625 1626 1627
		/*
		 * We use I_SYNC to pin the inode in memory. While it is set
		 * evict_inode() will wait so the inode cannot be freed.
		 */
1628
		__writeback_single_inode(inode, &wbc);
1629

1630
		wbc_detach_inode(&wbc);
1631 1632
		work->nr_pages -= write_chunk - wbc.nr_to_write;
		wrote += write_chunk - wbc.nr_to_write;
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646

		if (need_resched()) {
			/*
			 * We're trying to balance between building up a nice
			 * long list of IOs to improve our merge rate, and
			 * getting those IOs out quickly for anyone throttling
			 * in balance_dirty_pages().  cond_resched() doesn't
			 * unplug, so get our IOs out the door before we
			 * give up the CPU.
			 */
			blk_flush_plug(current);
			cond_resched();
		}

1647 1648 1649 1650 1651
		/*
		 * Requeue @inode if still dirty.  Be careful as @inode may
		 * have been switched to another wb in the meantime.
		 */
		tmp_wb = inode_to_wb_and_lock_list(inode);
1652
		spin_lock(&inode->i_lock);
1653
		if (!(inode->i_state & I_DIRTY_ALL))
1654
			wrote++;
1655
		requeue_inode(inode, tmp_wb, &wbc);
1656
		inode_sync_complete(inode);
1657
		spin_unlock(&inode->i_lock);
1658

1659 1660 1661 1662 1663
		if (unlikely(tmp_wb != wb)) {
			spin_unlock(&tmp_wb->list_lock);
			spin_lock(&wb->list_lock);
		}

1664 1665 1666 1667 1668 1669 1670 1671 1672
		/*
		 * bail out to wb_writeback() often enough to check
		 * background threshold and other termination conditions.
		 */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
1673
		}
L
Linus Torvalds 已提交
1674
	}
1675
	return wrote;
1676 1677
}

1678 1679
static long __writeback_inodes_wb(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
1680
{
1681 1682
	unsigned long start_time = jiffies;
	long wrote = 0;
N
Nick Piggin 已提交
1683

1684
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1685
		struct inode *inode = wb_inode(wb->b_io.prev);
1686
		struct super_block *sb = inode->i_sb;
1687

1688
		if (!trylock_super(sb)) {
1689
			/*
1690
			 * trylock_super() may fail consistently due to
1691 1692 1693 1694
			 * s_umount being grabbed by someone else. Don't use
			 * requeue_io() to avoid busy retrying the inode/sb.
			 */
			redirty_tail(inode, wb);
1695
			continue;
1696
		}
1697
		wrote += writeback_sb_inodes(sb, wb, work);
1698
		up_read(&sb->s_umount);
1699

1700 1701 1702 1703 1704 1705 1706
		/* refer to the same tests at the end of writeback_sb_inodes */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
		}
1707
	}
1708
	/* Leave any unwritten inodes on b_io */
1709
	return wrote;
1710 1711
}

1712
static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1713
				enum wb_reason reason)
1714
{
1715 1716 1717 1718
	struct wb_writeback_work work = {
		.nr_pages	= nr_pages,
		.sync_mode	= WB_SYNC_NONE,
		.range_cyclic	= 1,
1719
		.reason		= reason,
1720
	};
1721
	struct blk_plug plug;
1722

1723
	blk_start_plug(&plug);
1724
	spin_lock(&wb->list_lock);
W
Wu Fengguang 已提交
1725
	if (list_empty(&wb->b_io))
1726
		queue_io(wb, &work);
1727
	__writeback_inodes_wb(wb, &work);
1728
	spin_unlock(&wb->list_lock);
1729
	blk_finish_plug(&plug);
1730

1731 1732
	return nr_pages - work.nr_pages;
}
1733 1734 1735

/*
 * Explicit flushing or periodic writeback of "old" data.
1736
 *
1737 1738 1739 1740
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 * dirtying-time in the inode's address_space.  So this periodic writeback code
 * just walks the superblock inode list, writing back any inodes which are
 * older than a specific point in time.
1741
 *
1742 1743 1744
 * Try to run once per dirty_writeback_interval.  But if a writeback event
 * takes longer than a dirty_writeback_interval interval, then leave a
 * one-second gap.
1745
 *
1746 1747
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 * all dirty pages if they are all attached to "old" mappings.
1748
 */
1749
static long wb_writeback(struct bdi_writeback *wb,
1750
			 struct wb_writeback_work *work)
1751
{
1752
	unsigned long wb_start = jiffies;
1753
	long nr_pages = work->nr_pages;
1754
	unsigned long oldest_jif;
J
Jan Kara 已提交
1755
	struct inode *inode;
1756
	long progress;
1757
	struct blk_plug plug;
1758

1759 1760
	oldest_jif = jiffies;
	work->older_than_this = &oldest_jif;
N
Nick Piggin 已提交
1761

1762
	blk_start_plug(&plug);
1763
	spin_lock(&wb->list_lock);
1764 1765
	for (;;) {
		/*
1766
		 * Stop writeback when nr_pages has been consumed
1767
		 */
1768
		if (work->nr_pages <= 0)
1769
			break;
1770

1771 1772 1773 1774 1775 1776 1777
		/*
		 * Background writeout and kupdate-style writeback may
		 * run forever. Stop them if there is other work to do
		 * so that e.g. sync can proceed. They'll be restarted
		 * after the other works are all done.
		 */
		if ((work->for_background || work->for_kupdate) &&
1778
		    !list_empty(&wb->work_list))
1779 1780
			break;

N
Nick Piggin 已提交
1781
		/*
1782 1783
		 * For background writeout, stop when we are below the
		 * background dirty threshold
N
Nick Piggin 已提交
1784
		 */
1785
		if (work->for_background && !wb_over_bg_thresh(wb))
1786
			break;
N
Nick Piggin 已提交
1787

1788 1789 1790 1791 1792 1793
		/*
		 * Kupdate and background works are special and we want to
		 * include all inodes that need writing. Livelock avoidance is
		 * handled by these works yielding to any other work so we are
		 * safe.
		 */
1794
		if (work->for_kupdate) {
1795
			oldest_jif = jiffies -
1796
				msecs_to_jiffies(dirty_expire_interval * 10);
1797
		} else if (work->for_background)
1798
			oldest_jif = jiffies;
1799

1800
		trace_writeback_start(wb, work);
1801
		if (list_empty(&wb->b_io))
1802
			queue_io(wb, work);
1803
		if (work->sb)
1804
			progress = writeback_sb_inodes(work->sb, wb, work);
1805
		else
1806
			progress = __writeback_inodes_wb(wb, work);
1807
		trace_writeback_written(wb, work);
1808

1809
		wb_update_bandwidth(wb, wb_start);
1810 1811

		/*
1812 1813 1814 1815 1816 1817
		 * Did we write something? Try for more
		 *
		 * Dirty inodes are moved to b_io for writeback in batches.
		 * The completion of the current batch does not necessarily
		 * mean the overall work is done. So we keep looping as long
		 * as made some progress on cleaning pages or inodes.
1818
		 */
1819
		if (progress)
1820 1821
			continue;
		/*
1822
		 * No more inodes for IO, bail
1823
		 */
1824
		if (list_empty(&wb->b_more_io))
1825
			break;
1826 1827 1828 1829 1830
		/*
		 * Nothing written. Wait for some inode to
		 * become available for writeback. Otherwise
		 * we'll just busyloop.
		 */
1831 1832 1833 1834 1835 1836 1837
		trace_writeback_wait(wb, work);
		inode = wb_inode(wb->b_more_io.prev);
		spin_lock(&inode->i_lock);
		spin_unlock(&wb->list_lock);
		/* This function drops i_lock... */
		inode_sleep_on_writeback(inode);
		spin_lock(&wb->list_lock);
1838
	}
1839
	spin_unlock(&wb->list_lock);
1840
	blk_finish_plug(&plug);
1841

1842
	return nr_pages - work->nr_pages;
1843 1844 1845
}

/*
1846
 * Return the next wb_writeback_work struct that hasn't been processed yet.
1847
 */
1848
static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1849
{
1850
	struct wb_writeback_work *work = NULL;
1851

1852 1853 1854
	spin_lock_bh(&wb->work_lock);
	if (!list_empty(&wb->work_list)) {
		work = list_entry(wb->work_list.next,
1855 1856
				  struct wb_writeback_work, list);
		list_del_init(&work->list);
1857
	}
1858
	spin_unlock_bh(&wb->work_lock);
1859
	return work;
1860 1861
}

1862 1863
static long wb_check_background_flush(struct bdi_writeback *wb)
{
1864
	if (wb_over_bg_thresh(wb)) {
1865 1866 1867 1868 1869 1870

		struct wb_writeback_work work = {
			.nr_pages	= LONG_MAX,
			.sync_mode	= WB_SYNC_NONE,
			.for_background	= 1,
			.range_cyclic	= 1,
1871
			.reason		= WB_REASON_BACKGROUND,
1872 1873 1874 1875 1876 1877 1878 1879
		};

		return wb_writeback(wb, &work);
	}

	return 0;
}

1880 1881 1882 1883 1884
static long wb_check_old_data_flush(struct bdi_writeback *wb)
{
	unsigned long expired;
	long nr_pages;

1885 1886 1887 1888 1889 1890
	/*
	 * When set to zero, disable periodic writeback
	 */
	if (!dirty_writeback_interval)
		return 0;

1891 1892 1893 1894 1895 1896
	expired = wb->last_old_flush +
			msecs_to_jiffies(dirty_writeback_interval * 10);
	if (time_before(jiffies, expired))
		return 0;

	wb->last_old_flush = jiffies;
1897
	nr_pages = get_nr_dirty_pages();
1898

1899
	if (nr_pages) {
1900
		struct wb_writeback_work work = {
1901 1902 1903 1904
			.nr_pages	= nr_pages,
			.sync_mode	= WB_SYNC_NONE,
			.for_kupdate	= 1,
			.range_cyclic	= 1,
1905
			.reason		= WB_REASON_PERIODIC,
1906 1907
		};

1908
		return wb_writeback(wb, &work);
1909
	}
1910 1911 1912 1913

	return 0;
}

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
static long wb_check_start_all(struct bdi_writeback *wb)
{
	long nr_pages;

	if (!test_bit(WB_start_all, &wb->state))
		return 0;

	nr_pages = get_nr_dirty_pages();
	if (nr_pages) {
		struct wb_writeback_work work = {
			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
			.sync_mode	= WB_SYNC_NONE,
			.range_cyclic	= 1,
			.reason		= wb->start_all_reason,
		};

		nr_pages = wb_writeback(wb, &work);
	}

	clear_bit(WB_start_all, &wb->state);
	return nr_pages;
}


1938 1939 1940
/*
 * Retrieve work items and do the writeback they describe
 */
1941
static long wb_do_writeback(struct bdi_writeback *wb)
1942
{
1943
	struct wb_writeback_work *work;
1944
	long wrote = 0;
1945

1946
	set_bit(WB_writeback_running, &wb->state);
1947
	while ((work = get_next_work_item(wb)) != NULL) {
1948
		trace_writeback_exec(wb, work);
1949
		wrote += wb_writeback(wb, work);
1950
		finish_writeback_work(wb, work);
1951 1952
	}

1953 1954 1955 1956 1957
	/*
	 * Check for a flush-everything request
	 */
	wrote += wb_check_start_all(wb);

1958 1959 1960 1961
	/*
	 * Check for periodic writeback, kupdated() style
	 */
	wrote += wb_check_old_data_flush(wb);
1962
	wrote += wb_check_background_flush(wb);
1963
	clear_bit(WB_writeback_running, &wb->state);
1964 1965 1966 1967 1968 1969

	return wrote;
}

/*
 * Handle writeback of dirty data for the device backed by this bdi. Also
1970
 * reschedules periodically and does kupdated style flushing.
1971
 */
1972
void wb_workfn(struct work_struct *work)
1973
{
1974 1975
	struct bdi_writeback *wb = container_of(to_delayed_work(work),
						struct bdi_writeback, dwork);
1976 1977
	long pages_written;

1978
	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
P
Peter Zijlstra 已提交
1979
	current->flags |= PF_SWAPWRITE;
1980

1981
	if (likely(!current_is_workqueue_rescuer() ||
1982
		   !test_bit(WB_registered, &wb->state))) {
1983
		/*
1984
		 * The normal path.  Keep writing back @wb until its
1985
		 * work_list is empty.  Note that this path is also taken
1986
		 * if @wb is shutting down even when we're running off the
1987
		 * rescuer as work_list needs to be drained.
1988
		 */
1989
		do {
1990
			pages_written = wb_do_writeback(wb);
1991
			trace_writeback_pages_written(pages_written);
1992
		} while (!list_empty(&wb->work_list));
1993 1994 1995 1996 1997 1998
	} else {
		/*
		 * bdi_wq can't get enough workers and we're running off
		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
		 * enough for efficient IO.
		 */
1999
		pages_written = writeback_inodes_wb(wb, 1024,
2000
						    WB_REASON_FORKER_THREAD);
2001
		trace_writeback_pages_written(pages_written);
2002 2003
	}

2004
	if (!list_empty(&wb->work_list))
J
Jan Kara 已提交
2005
		wb_wakeup(wb);
2006
	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2007
		wb_wakeup_delayed(wb);
2008

2009
	current->flags &= ~PF_SWAPWRITE;
2010 2011
}

2012 2013 2014 2015 2016
/*
 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
 * write back the whole world.
 */
static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2017
					 enum wb_reason reason)
2018 2019 2020 2021 2022 2023 2024
{
	struct bdi_writeback *wb;

	if (!bdi_has_dirty_io(bdi))
		return;

	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2025
		wb_start_writeback(wb, reason);
2026 2027 2028 2029 2030 2031
}

void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
				enum wb_reason reason)
{
	rcu_read_lock();
2032
	__wakeup_flusher_threads_bdi(bdi, reason);
2033 2034 2035
	rcu_read_unlock();
}

2036
/*
2037
 * Wakeup the flusher threads to start writeback of all currently dirty pages
2038
 */
2039
void wakeup_flusher_threads(enum wb_reason reason)
2040
{
2041
	struct backing_dev_info *bdi;
2042

2043 2044 2045 2046 2047 2048
	/*
	 * If we are expecting writeback progress we must submit plugged IO.
	 */
	if (blk_needs_flush_plug(current))
		blk_schedule_flush_plug(current);

2049
	rcu_read_lock();
2050
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2051
		__wakeup_flusher_threads_bdi(bdi, reason);
2052
	rcu_read_unlock();
L
Linus Torvalds 已提交
2053 2054
}

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
/*
 * Wake up bdi's periodically to make sure dirtytime inodes gets
 * written back periodically.  We deliberately do *not* check the
 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
 * kernel to be constantly waking up once there are any dirtytime
 * inodes on the system.  So instead we define a separate delayed work
 * function which gets called much more rarely.  (By default, only
 * once every 12 hours.)
 *
 * If there is any other write activity going on in the file system,
 * this function won't be necessary.  But if the only thing that has
 * happened on the file system is a dirtytime inode caused by an atime
 * update, we need this infrastructure below to make sure that inode
 * eventually gets pushed out to disk.
 */
static void wakeup_dirtytime_writeback(struct work_struct *w);
static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);

static void wakeup_dirtytime_writeback(struct work_struct *w)
{
	struct backing_dev_info *bdi;

	rcu_read_lock();
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2079 2080
		struct bdi_writeback *wb;

2081
		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2082 2083
			if (!list_empty(&wb->b_dirty_time))
				wb_wakeup(wb);
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
	}
	rcu_read_unlock();
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
}

static int __init start_dirtytime_writeback(void)
{
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
	return 0;
}
__initcall(start_dirtytime_writeback);

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
int dirtytime_interval_handler(struct ctl_table *table, int write,
			       void __user *buffer, size_t *lenp, loff_t *ppos)
{
	int ret;

	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		mod_delayed_work(system_wq, &dirtytime_work, 0);
	return ret;
}

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
static noinline void block_dump___mark_inode_dirty(struct inode *inode)
{
	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
		struct dentry *dentry;
		const char *name = "?";

		dentry = d_find_alias(inode);
		if (dentry) {
			spin_lock(&dentry->d_lock);
			name = (const char *) dentry->d_name.name;
		}
		printk(KERN_DEBUG
		       "%s(%d): dirtied inode %lu (%s) on %s\n",
		       current->comm, task_pid_nr(current), inode->i_ino,
		       name, inode->i_sb->s_id);
		if (dentry) {
			spin_unlock(&dentry->d_lock);
			dput(dentry);
		}
	}
}

/**
2130 2131 2132 2133 2134 2135 2136
 * __mark_inode_dirty -	internal function
 *
 * @inode: inode to mark
 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 *
 * Mark an inode as dirty. Callers should use mark_inode_dirty or
 * mark_inode_dirty_sync.
L
Linus Torvalds 已提交
2137
 *
2138 2139 2140 2141 2142 2143 2144 2145 2146
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but move it onto the
 * dirty list only if it is hashed or if it refers to a blockdev.
 * If it was not hashed, it will never be added to the dirty list
 * even if it is later hashed, as it will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_ you start marking
 * them dirty.
L
Linus Torvalds 已提交
2147
 *
2148 2149 2150 2151 2152 2153
 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
 * the kernel-internal blockdev inode represents the dirtying time of the
 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
 * page->mapping->host, so the page-dirtying time is recorded in the internal
 * blockdev inode.
L
Linus Torvalds 已提交
2154
 */
2155
void __mark_inode_dirty(struct inode *inode, int flags)
L
Linus Torvalds 已提交
2156
{
2157
	struct super_block *sb = inode->i_sb;
2158 2159 2160
	int dirtytime;

	trace_writeback_mark_inode_dirty(inode, flags);
L
Linus Torvalds 已提交
2161

2162 2163 2164 2165
	/*
	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
	 * dirty the inode itself
	 */
2166
	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
T
Tejun Heo 已提交
2167 2168
		trace_writeback_dirty_inode_start(inode, flags);

2169
		if (sb->s_op->dirty_inode)
2170
			sb->s_op->dirty_inode(inode, flags);
T
Tejun Heo 已提交
2171 2172

		trace_writeback_dirty_inode(inode, flags);
2173
	}
2174 2175 2176
	if (flags & I_DIRTY_INODE)
		flags &= ~I_DIRTY_TIME;
	dirtytime = flags & I_DIRTY_TIME;
2177 2178

	/*
2179 2180
	 * Paired with smp_mb() in __writeback_single_inode() for the
	 * following lockless i_state test.  See there for details.
2181 2182 2183
	 */
	smp_mb();

2184 2185
	if (((inode->i_state & flags) == flags) ||
	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2186 2187 2188 2189 2190
		return;

	if (unlikely(block_dump))
		block_dump___mark_inode_dirty(inode);

2191
	spin_lock(&inode->i_lock);
2192 2193
	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
		goto out_unlock_inode;
2194 2195 2196
	if ((inode->i_state & flags) != flags) {
		const int was_dirty = inode->i_state & I_DIRTY;

2197 2198
		inode_attach_wb(inode, NULL);

2199 2200
		if (flags & I_DIRTY_INODE)
			inode->i_state &= ~I_DIRTY_TIME;
2201 2202 2203 2204 2205 2206 2207 2208
		inode->i_state |= flags;

		/*
		 * If the inode is being synced, just update its dirty state.
		 * The unlocker will place the inode on the appropriate
		 * superblock list, based upon its state.
		 */
		if (inode->i_state & I_SYNC)
2209
			goto out_unlock_inode;
2210 2211 2212 2213 2214 2215

		/*
		 * Only add valid (hashed) inodes to the superblock's
		 * dirty list.  Add blockdev inodes as well.
		 */
		if (!S_ISBLK(inode->i_mode)) {
A
Al Viro 已提交
2216
			if (inode_unhashed(inode))
2217
				goto out_unlock_inode;
2218
		}
A
Al Viro 已提交
2219
		if (inode->i_state & I_FREEING)
2220
			goto out_unlock_inode;
2221 2222 2223 2224 2225 2226

		/*
		 * If the inode was already on b_dirty/b_io/b_more_io, don't
		 * reposition it (that would break b_dirty time-ordering).
		 */
		if (!was_dirty) {
2227
			struct bdi_writeback *wb;
2228
			struct list_head *dirty_list;
2229
			bool wakeup_bdi = false;
2230

2231
			wb = locked_inode_to_wb_and_lock_list(inode);
2232

2233 2234 2235
			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
			     !test_bit(WB_registered, &wb->state),
			     "bdi-%s not registered\n", wb->bdi->name);
2236 2237

			inode->dirtied_when = jiffies;
2238 2239
			if (dirtytime)
				inode->dirtied_time_when = jiffies;
2240

2241
			if (inode->i_state & I_DIRTY)
2242
				dirty_list = &wb->b_dirty;
2243
			else
2244
				dirty_list = &wb->b_dirty_time;
2245

2246
			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2247 2248
							       dirty_list);

2249
			spin_unlock(&wb->list_lock);
2250
			trace_writeback_dirty_inode_enqueue(inode);
2251

2252 2253 2254 2255 2256 2257
			/*
			 * If this is the first dirty inode for this bdi,
			 * we have to wake-up the corresponding bdi thread
			 * to make sure background write-back happens
			 * later.
			 */
2258 2259
			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
				wb_wakeup_delayed(wb);
2260
			return;
L
Linus Torvalds 已提交
2261 2262
		}
	}
2263 2264
out_unlock_inode:
	spin_unlock(&inode->i_lock);
2265 2266 2267
}
EXPORT_SYMBOL(__mark_inode_dirty);

2268 2269 2270 2271 2272 2273 2274 2275 2276
/*
 * The @s_sync_lock is used to serialise concurrent sync operations
 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
 * Concurrent callers will block on the s_sync_lock rather than doing contending
 * walks. The queueing maintains sync(2) required behaviour as all the IO that
 * has been issued up to the time this function is enter is guaranteed to be
 * completed by the time we have gained the lock and waited for all IO that is
 * in progress regardless of the order callers are granted the lock.
 */
2277
static void wait_sb_inodes(struct super_block *sb)
2278
{
2279
	LIST_HEAD(sync_list);
2280 2281 2282 2283 2284

	/*
	 * We need to be protected against the filesystem going from
	 * r/o to r/w or vice versa.
	 */
2285
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2286

2287
	mutex_lock(&sb->s_sync_lock);
2288 2289

	/*
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
	 * Splice the writeback list onto a temporary list to avoid waiting on
	 * inodes that have started writeback after this point.
	 *
	 * Use rcu_read_lock() to keep the inodes around until we have a
	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
	 * the local list because inodes can be dropped from either by writeback
	 * completion.
	 */
	rcu_read_lock();
	spin_lock_irq(&sb->s_inode_wblist_lock);
	list_splice_init(&sb->s_inodes_wb, &sync_list);

	/*
	 * Data integrity sync. Must wait for all pages under writeback, because
	 * there may have been pages dirtied before our sync call, but which had
	 * writeout started before we write it out.  In which case, the inode
	 * may not be on the dirty list, but we still have to wait for that
	 * writeout.
2308
	 */
2309 2310 2311
	while (!list_empty(&sync_list)) {
		struct inode *inode = list_first_entry(&sync_list, struct inode,
						       i_wb_list);
2312
		struct address_space *mapping = inode->i_mapping;
2313

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
		/*
		 * Move each inode back to the wb list before we drop the lock
		 * to preserve consistency between i_wb_list and the mapping
		 * writeback tag. Writeback completion is responsible to remove
		 * the inode from either list once the writeback tag is cleared.
		 */
		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);

		/*
		 * The mapping can appear untagged while still on-list since we
		 * do not have the mapping lock. Skip it here, wb completion
		 * will remove it.
		 */
		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
			continue;

		spin_unlock_irq(&sb->s_inode_wblist_lock);

2332
		spin_lock(&inode->i_lock);
2333
		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2334
			spin_unlock(&inode->i_lock);
2335 2336

			spin_lock_irq(&sb->s_inode_wblist_lock);
2337
			continue;
2338
		}
2339
		__iget(inode);
2340
		spin_unlock(&inode->i_lock);
2341
		rcu_read_unlock();
2342

2343 2344 2345 2346 2347 2348
		/*
		 * We keep the error status of individual mapping so that
		 * applications can catch the writeback error using fsync(2).
		 * See filemap_fdatawait_keep_errors() for details.
		 */
		filemap_fdatawait_keep_errors(mapping);
2349 2350 2351

		cond_resched();

2352 2353 2354 2355
		iput(inode);

		rcu_read_lock();
		spin_lock_irq(&sb->s_inode_wblist_lock);
2356
	}
2357 2358
	spin_unlock_irq(&sb->s_inode_wblist_lock);
	rcu_read_unlock();
2359
	mutex_unlock(&sb->s_sync_lock);
L
Linus Torvalds 已提交
2360 2361
}

2362 2363
static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				     enum wb_reason reason, bool skip_if_busy)
L
Linus Torvalds 已提交
2364
{
2365
	DEFINE_WB_COMPLETION_ONSTACK(done);
2366
	struct wb_writeback_work work = {
2367 2368 2369 2370 2371
		.sb			= sb,
		.sync_mode		= WB_SYNC_NONE,
		.tagged_writepages	= 1,
		.done			= &done,
		.nr_pages		= nr,
2372
		.reason			= reason,
2373
	};
2374
	struct backing_dev_info *bdi = sb->s_bdi;
2375

2376
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2377
		return;
2378
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2379

2380
	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2381
	wb_wait_for_completion(bdi, &done);
2382
}
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399

/**
 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
 * @sb: the superblock
 * @nr: the number of pages to write
 * @reason: reason why some writeback work initiated
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
void writeback_inodes_sb_nr(struct super_block *sb,
			    unsigned long nr,
			    enum wb_reason reason)
{
	__writeback_inodes_sb_nr(sb, nr, reason, false);
}
2400 2401 2402 2403 2404
EXPORT_SYMBOL(writeback_inodes_sb_nr);

/**
 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
 * @sb: the superblock
2405
 * @reason: reason why some writeback work was initiated
2406 2407 2408 2409 2410
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
2411
void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2412
{
2413
	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2414
}
2415
EXPORT_SYMBOL(writeback_inodes_sb);
2416

2417
/**
2418
 * try_to_writeback_inodes_sb - try to start writeback if none underway
2419
 * @sb: the superblock
2420
 * @reason: reason why some writeback work was initiated
2421
 *
2422
 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2423
 */
2424
void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2425
{
2426
	if (!down_read_trylock(&sb->s_umount))
2427
		return;
2428

2429
	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2430
	up_read(&sb->s_umount);
2431
}
2432
EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2433

2434 2435
/**
 * sync_inodes_sb	-	sync sb inode pages
2436
 * @sb: the superblock
2437 2438
 *
 * This function writes and waits on any dirty inode belonging to this
2439
 * super_block.
2440
 */
2441
void sync_inodes_sb(struct super_block *sb)
2442
{
2443
	DEFINE_WB_COMPLETION_ONSTACK(done);
2444
	struct wb_writeback_work work = {
2445 2446 2447 2448
		.sb		= sb,
		.sync_mode	= WB_SYNC_ALL,
		.nr_pages	= LONG_MAX,
		.range_cyclic	= 0,
2449
		.done		= &done,
2450
		.reason		= WB_REASON_SYNC,
2451
		.for_sync	= 1,
2452
	};
2453
	struct backing_dev_info *bdi = sb->s_bdi;
2454

2455 2456 2457 2458 2459 2460
	/*
	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
	 * bdi_has_dirty() need to be written out too.
	 */
	if (bdi == &noop_backing_dev_info)
2461
		return;
2462 2463
	WARN_ON(!rwsem_is_locked(&sb->s_umount));

2464 2465
	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
	bdi_down_write_wb_switch_rwsem(bdi);
2466
	bdi_split_work_to_wbs(bdi, &work, false);
2467
	wb_wait_for_completion(bdi, &done);
2468
	bdi_up_write_wb_switch_rwsem(bdi);
2469

2470
	wait_sb_inodes(sb);
L
Linus Torvalds 已提交
2471
}
2472
EXPORT_SYMBOL(sync_inodes_sb);
L
Linus Torvalds 已提交
2473 2474

/**
2475 2476 2477 2478 2479 2480
 * write_inode_now	-	write an inode to disk
 * @inode: inode to write to disk
 * @sync: whether the write should be synchronous or not
 *
 * This function commits an inode to disk immediately if it is dirty. This is
 * primarily needed by knfsd.
L
Linus Torvalds 已提交
2481
 *
2482
 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
L
Linus Torvalds 已提交
2483 2484 2485 2486 2487
 */
int write_inode_now(struct inode *inode, int sync)
{
	struct writeback_control wbc = {
		.nr_to_write = LONG_MAX,
2488
		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2489 2490
		.range_start = 0,
		.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
2491 2492 2493
	};

	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2494
		wbc.nr_to_write = 0;
L
Linus Torvalds 已提交
2495 2496

	might_sleep();
2497
	return writeback_single_inode(inode, &wbc);
L
Linus Torvalds 已提交
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
}
EXPORT_SYMBOL(write_inode_now);

/**
 * sync_inode - write an inode and its pages to disk.
 * @inode: the inode to sync
 * @wbc: controls the writeback mode
 *
 * sync_inode() will write an inode and its pages to disk.  It will also
 * correctly update the inode on its superblock's dirty inode lists and will
 * update inode->i_state.
 *
 * The caller must have a ref on the inode.
 */
int sync_inode(struct inode *inode, struct writeback_control *wbc)
{
2514
	return writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
2515 2516
}
EXPORT_SYMBOL(sync_inode);
C
Christoph Hellwig 已提交
2517 2518

/**
A
Andrew Morton 已提交
2519
 * sync_inode_metadata - write an inode to disk
C
Christoph Hellwig 已提交
2520 2521 2522
 * @inode: the inode to sync
 * @wait: wait for I/O to complete.
 *
A
Andrew Morton 已提交
2523
 * Write an inode to disk and adjust its dirty state after completion.
C
Christoph Hellwig 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
 *
 * Note: only writes the actual inode, no associated data or other metadata.
 */
int sync_inode_metadata(struct inode *inode, int wait)
{
	struct writeback_control wbc = {
		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
		.nr_to_write = 0, /* metadata-only */
	};

	return sync_inode(inode, &wbc);
}
EXPORT_SYMBOL(sync_inode_metadata);