mvneta.c 121.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
 *
 * Copyright (C) 2012 Marvell
 *
 * Rami Rosen <rosenr@marvell.com>
 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

14 15
#include <linux/clk.h>
#include <linux/cpu.h>
16
#include <linux/etherdevice.h>
17
#include <linux/if_vlan.h>
18 19
#include <linux/inetdevice.h>
#include <linux/interrupt.h>
20
#include <linux/io.h>
21 22 23 24
#include <linux/kernel.h>
#include <linux/mbus.h>
#include <linux/module.h>
#include <linux/netdevice.h>
25
#include <linux/of.h>
26
#include <linux/of_address.h>
27 28 29 30
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/phy.h>
31
#include <linux/phy_fixed.h>
32 33
#include <linux/platform_device.h>
#include <linux/skbuff.h>
34
#include <net/hwbm.h>
35
#include "mvneta_bm.h"
36 37 38
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/tso.h>
39 40 41

/* Registers */
#define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
42
#define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
43 44 45 46
#define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
#define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
#define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
#define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
47 48 49 50 51 52 53 54 55 56 57 58 59
#define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
#define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
#define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
#define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
#define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
#define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
#define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
#define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
#define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
#define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
#define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
#define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
#define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
60 61 62
#define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
#define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
#define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
63 64 65 66 67 68 69 70 71 72 73 74
#define MVNETA_PORT_RX_RESET                    0x1cc0
#define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
#define MVNETA_PHY_ADDR                         0x2000
#define      MVNETA_PHY_ADDR_MASK               0x1f
#define MVNETA_MBUS_RETRY                       0x2010
#define MVNETA_UNIT_INTR_CAUSE                  0x2080
#define MVNETA_UNIT_CONTROL                     0x20B0
#define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
#define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
#define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
#define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
#define MVNETA_BASE_ADDR_ENABLE                 0x2290
75
#define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
#define MVNETA_PORT_CONFIG                      0x2400
#define      MVNETA_UNI_PROMISC_MODE            BIT(0)
#define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
#define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
#define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
#define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
#define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
#define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
#define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
#define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
						 MVNETA_DEF_RXQ_ARP(q)	 | \
						 MVNETA_DEF_RXQ_TCP(q)	 | \
						 MVNETA_DEF_RXQ_UDP(q)	 | \
						 MVNETA_DEF_RXQ_BPDU(q)	 | \
						 MVNETA_TX_UNSET_ERR_SUM | \
						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
#define MVNETA_PORT_CONFIG_EXTEND                0x2404
#define MVNETA_MAC_ADDR_LOW                      0x2414
#define MVNETA_MAC_ADDR_HIGH                     0x2418
#define MVNETA_SDMA_CONFIG                       0x241c
#define      MVNETA_SDMA_BRST_SIZE_16            4
#define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
#define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
#define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
100
#define      MVNETA_DESC_SWAP                    BIT(6)
101 102 103 104 105
#define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
#define MVNETA_PORT_STATUS                       0x2444
#define      MVNETA_TX_IN_PRGRS                  BIT(1)
#define      MVNETA_TX_FIFO_EMPTY                BIT(8)
#define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
106
#define MVNETA_SERDES_CFG			 0x24A0
107
#define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
108
#define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
109 110 111 112 113 114
#define MVNETA_TYPE_PRIO                         0x24bc
#define      MVNETA_FORCE_UNI                    BIT(21)
#define MVNETA_TXQ_CMD_1                         0x24e4
#define MVNETA_TXQ_CMD                           0x2448
#define      MVNETA_TXQ_DISABLE_SHIFT            8
#define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
115 116
#define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
#define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
117 118
#define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
#define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
119
#define MVNETA_ACC_MODE                          0x2500
120
#define MVNETA_BM_ADDRESS                        0x2504
121 122 123
#define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
#define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
#define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
124
#define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
125
#define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
126
#define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
127

128 129 130 131 132 133 134
/* Exception Interrupt Port/Queue Cause register
 *
 * Their behavior depend of the mapping done using the PCPX2Q
 * registers. For a given CPU if the bit associated to a queue is not
 * set, then for the register a read from this CPU will always return
 * 0 and a write won't do anything
 */
135

136 137
#define MVNETA_INTR_NEW_CAUSE                    0x25a0
#define MVNETA_INTR_NEW_MASK                     0x25a4
138 139 140 141 142 143 144 145 146 147 148 149

/* bits  0..7  = TXQ SENT, one bit per queue.
 * bits  8..15 = RXQ OCCUP, one bit per queue.
 * bits 16..23 = RXQ FREE, one bit per queue.
 * bit  29 = OLD_REG_SUM, see old reg ?
 * bit  30 = TX_ERR_SUM, one bit for 4 ports
 * bit  31 = MISC_SUM,   one bit for 4 ports
 */
#define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
#define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
#define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
#define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
150
#define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
151

152 153
#define MVNETA_INTR_OLD_CAUSE                    0x25a8
#define MVNETA_INTR_OLD_MASK                     0x25ac
154 155

/* Data Path Port/Queue Cause Register */
156 157
#define MVNETA_INTR_MISC_CAUSE                   0x25b0
#define MVNETA_INTR_MISC_MASK                    0x25b4
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

#define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
#define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
#define      MVNETA_CAUSE_PTP                    BIT(4)

#define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
#define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
#define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
#define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
#define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
#define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
#define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
#define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)

#define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
#define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
#define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))

#define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
#define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
#define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))

180 181
#define MVNETA_INTR_ENABLE                       0x25b8
#define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
182
#define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
183

184 185 186 187 188 189 190 191 192 193
#define MVNETA_RXQ_CMD                           0x2680
#define      MVNETA_RXQ_DISABLE_SHIFT            8
#define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
#define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
#define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
#define MVNETA_GMAC_CTRL_0                       0x2c00
#define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
#define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
#define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
#define MVNETA_GMAC_CTRL_2                       0x2c08
194
#define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
195
#define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
196 197 198 199 200 201 202 203 204 205 206 207 208 209
#define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
#define      MVNETA_GMAC2_PORT_RESET             BIT(6)
#define MVNETA_GMAC_STATUS                       0x2c10
#define      MVNETA_GMAC_LINK_UP                 BIT(0)
#define      MVNETA_GMAC_SPEED_1000              BIT(1)
#define      MVNETA_GMAC_SPEED_100               BIT(2)
#define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
#define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
#define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
#define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
#define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
#define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
#define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
#define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
210
#define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
211 212
#define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
#define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
213
#define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
214
#define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
215
#define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
216
#define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
217
#define MVNETA_MIB_COUNTERS_BASE                 0x3000
218 219 220 221 222 223 224 225 226 227
#define      MVNETA_MIB_LATE_COLLISION           0x7c
#define MVNETA_DA_FILT_SPEC_MCAST                0x3400
#define MVNETA_DA_FILT_OTH_MCAST                 0x3500
#define MVNETA_DA_FILT_UCAST_BASE                0x3600
#define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
#define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
#define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
#define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
#define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
#define      MVNETA_TXQ_DEC_SENT_SHIFT           16
228
#define      MVNETA_TXQ_DEC_SENT_MASK            0xff
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
#define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
#define      MVNETA_TXQ_SENT_DESC_SHIFT          16
#define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
#define MVNETA_PORT_TX_RESET                     0x3cf0
#define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
#define MVNETA_TX_MTU                            0x3e0c
#define MVNETA_TX_TOKEN_SIZE                     0x3e14
#define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
#define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
#define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff

#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff

/* Descriptor ring Macros */
#define MVNETA_QUEUE_NEXT_DESC(q, index)	\
	(((index) < (q)->last_desc) ? ((index) + 1) : 0)

/* Various constants */

/* Coalescing */
249
#define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
250 251 252
#define MVNETA_RX_COAL_PKTS		32
#define MVNETA_RX_COAL_USEC		100

253
/* The two bytes Marvell header. Either contains a special value used
254 255 256 257 258 259 260 261 262 263 264
 * by Marvell switches when a specific hardware mode is enabled (not
 * supported by this driver) or is filled automatically by zeroes on
 * the RX side. Those two bytes being at the front of the Ethernet
 * header, they allow to have the IP header aligned on a 4 bytes
 * boundary automatically: the hardware skips those two bytes on its
 * own.
 */
#define MVNETA_MH_SIZE			2

#define MVNETA_VLAN_TAG_LEN             4

265
#define MVNETA_TX_CSUM_DEF_SIZE		1600
266
#define MVNETA_TX_CSUM_MAX_SIZE		9800
267 268 269 270
#define MVNETA_ACC_MODE_EXT1		1
#define MVNETA_ACC_MODE_EXT2		2

#define MVNETA_MAX_DECODE_WIN		6
271 272 273 274 275 276 277 278

/* Timeout constants */
#define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
#define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
#define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000

#define MVNETA_TX_MTU_MAX		0x3ffff

279 280 281 282 283
/* The RSS lookup table actually has 256 entries but we do not use
 * them yet
 */
#define MVNETA_RSS_LU_TABLE_SIZE	1

284 285 286
/* TSO header size */
#define TSO_HEADER_SIZE 128

287 288 289 290 291 292
/* Max number of Rx descriptors */
#define MVNETA_MAX_RXD 128

/* Max number of Tx descriptors */
#define MVNETA_MAX_TXD 532

293 294 295 296 297
/* Max number of allowed TCP segments for software TSO */
#define MVNETA_MAX_TSO_SEGS 100

#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)

298 299 300
/* descriptor aligned size */
#define MVNETA_DESC_ALIGNED_SIZE	32

301 302 303 304 305 306
/* Number of bytes to be taken into account by HW when putting incoming data
 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
 */
#define MVNETA_RX_PKT_OFFSET_CORRECTION		64

307 308 309
#define MVNETA_RX_PKT_SIZE(mtu) \
	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
	      ETH_HLEN + ETH_FCS_LEN,			     \
310
	      cache_line_size())
311

312 313 314 315
#define IS_TSO_HEADER(txq, addr) \
	((addr >= txq->tso_hdrs_phys) && \
	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))

316 317
#define MVNETA_RX_GET_BM_POOL_ID(rxd) \
	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
318

R
Russell King 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
struct mvneta_statistic {
	unsigned short offset;
	unsigned short type;
	const char name[ETH_GSTRING_LEN];
};

#define T_REG_32	32
#define T_REG_64	64

static const struct mvneta_statistic mvneta_statistics[] = {
	{ 0x3000, T_REG_64, "good_octets_received", },
	{ 0x3010, T_REG_32, "good_frames_received", },
	{ 0x3008, T_REG_32, "bad_octets_received", },
	{ 0x3014, T_REG_32, "bad_frames_received", },
	{ 0x3018, T_REG_32, "broadcast_frames_received", },
	{ 0x301c, T_REG_32, "multicast_frames_received", },
	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
	{ 0x3058, T_REG_32, "good_fc_received", },
	{ 0x305c, T_REG_32, "bad_fc_received", },
	{ 0x3060, T_REG_32, "undersize_received", },
	{ 0x3064, T_REG_32, "fragments_received", },
	{ 0x3068, T_REG_32, "oversize_received", },
	{ 0x306c, T_REG_32, "jabber_received", },
	{ 0x3070, T_REG_32, "mac_receive_error", },
	{ 0x3074, T_REG_32, "bad_crc_event", },
	{ 0x3078, T_REG_32, "collision", },
	{ 0x307c, T_REG_32, "late_collision", },
	{ 0x2484, T_REG_32, "rx_discard", },
	{ 0x2488, T_REG_32, "rx_overrun", },
	{ 0x3020, T_REG_32, "frames_64_octets", },
	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
	{ 0x3038, T_REG_64, "good_octets_sent", },
	{ 0x3040, T_REG_32, "good_frames_sent", },
	{ 0x3044, T_REG_32, "excessive_collision", },
	{ 0x3048, T_REG_32, "multicast_frames_sent", },
	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
	{ 0x3054, T_REG_32, "fc_sent", },
	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
};

363
struct mvneta_pcpu_stats {
364
	struct	u64_stats_sync syncp;
365 366 367 368
	u64	rx_packets;
	u64	rx_bytes;
	u64	tx_packets;
	u64	tx_bytes;
369 370
};

371 372 373 374 375 376 377 378 379 380 381
struct mvneta_pcpu_port {
	/* Pointer to the shared port */
	struct mvneta_port	*pp;

	/* Pointer to the CPU-local NAPI struct */
	struct napi_struct	napi;

	/* Cause of the previous interrupt */
	u32			cause_rx_tx;
};

382
struct mvneta_port {
383
	u8 id;
384 385 386
	struct mvneta_pcpu_port __percpu	*ports;
	struct mvneta_pcpu_stats __percpu	*stats;

387
	int pkt_size;
388
	unsigned int frag_size;
389 390 391 392
	void __iomem *base;
	struct mvneta_rx_queue *rxqs;
	struct mvneta_tx_queue *txqs;
	struct net_device *dev;
393 394
	struct hlist_node node_online;
	struct hlist_node node_dead;
395
	int rxq_def;
396 397 398 399
	/* Protect the access to the percpu interrupt registers,
	 * ensuring that the configuration remains coherent.
	 */
	spinlock_t lock;
400
	bool is_stopped;
401

402 403 404
	u32 cause_rx_tx;
	struct napi_struct napi;

405
	/* Core clock */
T
Thomas Petazzoni 已提交
406
	struct clk *clk;
407 408
	/* AXI clock */
	struct clk *clk_bus;
409 410 411 412 413 414 415 416 417 418
	u8 mcast_count[256];
	u16 tx_ring_size;
	u16 rx_ring_size;

	struct mii_bus *mii_bus;
	phy_interface_t phy_interface;
	struct device_node *phy_node;
	unsigned int link;
	unsigned int duplex;
	unsigned int speed;
419
	unsigned int tx_csum_limit;
420
	unsigned int use_inband_status:1;
R
Russell King 已提交
421

422 423 424 425 426
	struct mvneta_bm *bm_priv;
	struct mvneta_bm_pool *pool_long;
	struct mvneta_bm_pool *pool_short;
	int bm_win_id;

R
Russell King 已提交
427
	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
428 429

	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
430 431 432

	/* Flags for special SoC configurations */
	bool neta_armada3700;
433
	u16 rx_offset_correction;
434
	const struct mbus_dram_target_info *dram_target_info;
435 436
};

437
/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
438 439 440
 * layout of the transmit and reception DMA descriptors, and their
 * layout is therefore defined by the hardware design
 */
441

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
#define MVNETA_TX_L3_OFF_SHIFT	0
#define MVNETA_TX_IP_HLEN_SHIFT	8
#define MVNETA_TX_L4_UDP	BIT(16)
#define MVNETA_TX_L3_IP6	BIT(17)
#define MVNETA_TXD_IP_CSUM	BIT(18)
#define MVNETA_TXD_Z_PAD	BIT(19)
#define MVNETA_TXD_L_DESC	BIT(20)
#define MVNETA_TXD_F_DESC	BIT(21)
#define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
				 MVNETA_TXD_L_DESC | \
				 MVNETA_TXD_F_DESC)
#define MVNETA_TX_L4_CSUM_FULL	BIT(30)
#define MVNETA_TX_L4_CSUM_NOT	BIT(31)

#define MVNETA_RXD_ERR_CRC		0x0
457 458
#define MVNETA_RXD_BM_POOL_SHIFT	13
#define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
459 460 461 462 463 464 465 466 467
#define MVNETA_RXD_ERR_SUMMARY		BIT(16)
#define MVNETA_RXD_ERR_OVERRUN		BIT(17)
#define MVNETA_RXD_ERR_LEN		BIT(18)
#define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
#define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
#define MVNETA_RXD_L3_IP4		BIT(25)
#define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
#define MVNETA_RXD_L4_CSUM_OK		BIT(30)

468
#if defined(__LITTLE_ENDIAN)
469 470 471 472 473 474 475 476 477 478 479
struct mvneta_tx_desc {
	u32  command;		/* Options used by HW for packet transmitting.*/
	u16  reserverd1;	/* csum_l4 (for future use)		*/
	u16  data_size;		/* Data size of transmitted packet in bytes */
	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
	u32  reserved3[4];	/* Reserved - (for future use)		*/
};

struct mvneta_rx_desc {
	u32  status;		/* Info about received packet		*/
480 481
	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
	u16  data_size;		/* Size of received packet in bytes	*/
482

483 484
	u32  buf_phys_addr;	/* Physical address of the buffer	*/
	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
485

486 487 488
	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
	u16  reserved3;		/* prefetch_cmd, for future use		*/
	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
489

490 491 492
	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
};
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
#else
struct mvneta_tx_desc {
	u16  data_size;		/* Data size of transmitted packet in bytes */
	u16  reserverd1;	/* csum_l4 (for future use)		*/
	u32  command;		/* Options used by HW for packet transmitting.*/
	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
	u32  reserved3[4];	/* Reserved - (for future use)		*/
};

struct mvneta_rx_desc {
	u16  data_size;		/* Size of received packet in bytes	*/
	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
	u32  status;		/* Info about received packet		*/

	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
	u32  buf_phys_addr;	/* Physical address of the buffer	*/

	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
	u16  reserved3;		/* prefetch_cmd, for future use		*/
	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */

	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
};
#endif
519 520 521 522 523 524 525 526 527

struct mvneta_tx_queue {
	/* Number of this TX queue, in the range 0-7 */
	u8 id;

	/* Number of TX DMA descriptors in the descriptor ring */
	int size;

	/* Number of currently used TX DMA descriptor in the
528 529
	 * descriptor ring
	 */
530
	int count;
531
	int pending;
532 533
	int tx_stop_threshold;
	int tx_wake_threshold;
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556

	/* Array of transmitted skb */
	struct sk_buff **tx_skb;

	/* Index of last TX DMA descriptor that was inserted */
	int txq_put_index;

	/* Index of the TX DMA descriptor to be cleaned up */
	int txq_get_index;

	u32 done_pkts_coal;

	/* Virtual address of the TX DMA descriptors array */
	struct mvneta_tx_desc *descs;

	/* DMA address of the TX DMA descriptors array */
	dma_addr_t descs_phys;

	/* Index of the last TX DMA descriptor */
	int last_desc;

	/* Index of the next TX DMA descriptor to process */
	int next_desc_to_proc;
557 558 559 560 561 562

	/* DMA buffers for TSO headers */
	char *tso_hdrs;

	/* DMA address of TSO headers */
	dma_addr_t tso_hdrs_phys;
563 564 565

	/* Affinity mask for CPUs*/
	cpumask_t affinity_mask;
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
};

struct mvneta_rx_queue {
	/* rx queue number, in the range 0-7 */
	u8 id;

	/* num of rx descriptors in the rx descriptor ring */
	int size;

	/* counter of times when mvneta_refill() failed */
	int missed;

	u32 pkts_coal;
	u32 time_coal;

581 582 583
	/* Virtual address of the RX buffer */
	void  **buf_virt_addr;

584 585 586 587 588 589 590 591 592 593 594 595 596
	/* Virtual address of the RX DMA descriptors array */
	struct mvneta_rx_desc *descs;

	/* DMA address of the RX DMA descriptors array */
	dma_addr_t descs_phys;

	/* Index of the last RX DMA descriptor */
	int last_desc;

	/* Index of the next RX DMA descriptor to process */
	int next_desc_to_proc;
};

597
static enum cpuhp_state online_hpstate;
598 599 600
/* The hardware supports eight (8) rx queues, but we are only allowing
 * the first one to be used. Therefore, let's just allocate one queue.
 */
601
static int rxq_number = 8;
602 603 604 605
static int txq_number = 8;

static int rxq_def;

606 607
static int rx_copybreak __read_mostly = 256;

608 609 610
/* HW BM need that each port be identify by a unique ID */
static int global_port_id;

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
#define MVNETA_DRIVER_NAME "mvneta"
#define MVNETA_DRIVER_VERSION "1.0"

/* Utility/helper methods */

/* Write helper method */
static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
{
	writel(data, pp->base + offset);
}

/* Read helper method */
static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
{
	return readl(pp->base + offset);
}

/* Increment txq get counter */
static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
{
	txq->txq_get_index++;
	if (txq->txq_get_index == txq->size)
		txq->txq_get_index = 0;
}

/* Increment txq put counter */
static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
{
	txq->txq_put_index++;
	if (txq->txq_put_index == txq->size)
		txq->txq_put_index = 0;
}


/* Clear all MIB counters */
static void mvneta_mib_counters_clear(struct mvneta_port *pp)
{
	int i;
	u32 dummy;

	/* Perform dummy reads from MIB counters */
	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
654 655
	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
656 657 658
}

/* Get System Network Statistics */
659
static void
660 661
mvneta_get_stats64(struct net_device *dev,
		   struct rtnl_link_stats64 *stats)
662 663 664
{
	struct mvneta_port *pp = netdev_priv(dev);
	unsigned int start;
665
	int cpu;
666

667 668 669 670 671 672
	for_each_possible_cpu(cpu) {
		struct mvneta_pcpu_stats *cpu_stats;
		u64 rx_packets;
		u64 rx_bytes;
		u64 tx_packets;
		u64 tx_bytes;
673

674 675
		cpu_stats = per_cpu_ptr(pp->stats, cpu);
		do {
676
			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
677 678 679 680
			rx_packets = cpu_stats->rx_packets;
			rx_bytes   = cpu_stats->rx_bytes;
			tx_packets = cpu_stats->tx_packets;
			tx_bytes   = cpu_stats->tx_bytes;
681
		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
682

683 684 685 686 687
		stats->rx_packets += rx_packets;
		stats->rx_bytes   += rx_bytes;
		stats->tx_packets += tx_packets;
		stats->tx_bytes   += tx_bytes;
	}
688 689 690 691 692 693 694 695 696

	stats->rx_errors	= dev->stats.rx_errors;
	stats->rx_dropped	= dev->stats.rx_dropped;

	stats->tx_dropped	= dev->stats.tx_dropped;
}

/* Rx descriptors helper methods */

697 698
/* Checks whether the RX descriptor having this status is both the first
 * and the last descriptor for the RX packet. Each RX packet is currently
699 700 701
 * received through a single RX descriptor, so not having each RX
 * descriptor with its first and last bits set is an error
 */
702
static int mvneta_rxq_desc_is_first_last(u32 status)
703
{
704
	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
705 706 707 708 709 710 711 712 713
		MVNETA_RXD_FIRST_LAST_DESC;
}

/* Add number of descriptors ready to receive new packets */
static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
					  struct mvneta_rx_queue *rxq,
					  int ndescs)
{
	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
714 715
	 * be added at once
	 */
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
	}

	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
}

/* Get number of RX descriptors occupied by received packets */
static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
					struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
}

737
/* Update num of rx desc called upon return from rx path or
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
 * from mvneta_rxq_drop_pkts().
 */
static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
				       struct mvneta_rx_queue *rxq,
				       int rx_done, int rx_filled)
{
	u32 val;

	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
		val = rx_done |
		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
		return;
	}

	/* Only 255 descriptors can be added at once */
	while ((rx_done > 0) || (rx_filled > 0)) {
		if (rx_done <= 0xff) {
			val = rx_done;
			rx_done = 0;
		} else {
			val = 0xff;
			rx_done -= 0xff;
		}
		if (rx_filled <= 0xff) {
			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
			rx_filled = 0;
		} else {
			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
			rx_filled -= 0xff;
		}
		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
	}
}

/* Get pointer to next RX descriptor to be processed by SW */
static struct mvneta_rx_desc *
mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
{
	int rx_desc = rxq->next_desc_to_proc;

	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
780
	prefetch(rxq->descs + rxq->next_desc_to_proc);
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
	return rxq->descs + rx_desc;
}

/* Change maximum receive size of the port. */
static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
{
	u32 val;

	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
}


/* Set rx queue offset */
static void mvneta_rxq_offset_set(struct mvneta_port *pp,
				  struct mvneta_rx_queue *rxq,
				  int offset)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;

	/* Offset is in */
	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}


/* Tx descriptors helper methods */

/* Update HW with number of TX descriptors to be sent */
static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
				     struct mvneta_tx_queue *txq,
				     int pend_desc)
{
	u32 val;

	/* Only 255 descriptors can be added at once ; Assume caller
823 824
	 * process TX desriptors in quanta less than 256
	 */
825
	val = pend_desc + txq->pending;
826
	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
827
	txq->pending = 0;
828 829 830 831 832 833 834 835 836 837 838 839 840
}

/* Get pointer to next TX descriptor to be processed (send) by HW */
static struct mvneta_tx_desc *
mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
{
	int tx_desc = txq->next_desc_to_proc;

	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
	return txq->descs + tx_desc;
}

/* Release the last allocated TX descriptor. Useful to handle DMA
841 842
 * mapping failures in the TX path.
 */
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
{
	if (txq->next_desc_to_proc == 0)
		txq->next_desc_to_proc = txq->last_desc - 1;
	else
		txq->next_desc_to_proc--;
}

/* Set rxq buf size */
static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
				    struct mvneta_rx_queue *rxq,
				    int buf_size)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));

	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);

	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
}

/* Disable buffer management (BM) */
static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
				  struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
/* Enable buffer management (BM) */
static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
				 struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val |= MVNETA_RXQ_HW_BUF_ALLOC;
	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

/* Notify HW about port's assignment of pool for bigger packets */
static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
				     struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);

	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

/* Notify HW about port's assignment of pool for smaller packets */
static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
				      struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);

	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

/* Set port's receive buffer size for assigned BM pool */
static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
					      int buf_size,
					      u8 pool_id)
{
	u32 val;

	if (!IS_ALIGNED(buf_size, 8)) {
		dev_warn(pp->dev->dev.parent,
			 "illegal buf_size value %d, round to %d\n",
			 buf_size, ALIGN(buf_size, 8));
		buf_size = ALIGN(buf_size, 8);
	}

	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
}

/* Configure MBUS window in order to enable access BM internal SRAM */
static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
				  u8 target, u8 attr)
{
	u32 win_enable, win_protect;
	int i;

	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);

	if (pp->bm_win_id < 0) {
		/* Find first not occupied window */
		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
			if (win_enable & (1 << i)) {
				pp->bm_win_id = i;
				break;
			}
		}
		if (i == MVNETA_MAX_DECODE_WIN)
			return -ENOMEM;
	} else {
		i = pp->bm_win_id;
	}

	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);

	if (i < 4)
		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);

	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
		    (attr << 8) | target);

	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);

	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
	win_protect |= 3 << (2 * i);
	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);

	win_enable &= ~(1 << i);
	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);

	return 0;
}

977
static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
978
{
979
	u32 wsize;
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
	u8 target, attr;
	int err;

	/* Get BM window information */
	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
					 &target, &attr);
	if (err < 0)
		return err;

	pp->bm_win_id = -1;

	/* Open NETA -> BM window */
	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
				     target, attr);
	if (err < 0) {
		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
		return err;
	}
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	return 0;
}

/* Assign and initialize pools for port. In case of fail
 * buffer manager will remain disabled for current port.
 */
static int mvneta_bm_port_init(struct platform_device *pdev,
			       struct mvneta_port *pp)
{
	struct device_node *dn = pdev->dev.of_node;
	u32 long_pool_id, short_pool_id;

	if (!pp->neta_armada3700) {
		int ret;

		ret = mvneta_bm_port_mbus_init(pp);
		if (ret)
			return ret;
	}
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
		netdev_info(pp->dev, "missing long pool id\n");
		return -EINVAL;
	}

	/* Create port's long pool depending on mtu */
	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
					   MVNETA_BM_LONG, pp->id,
					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
	if (!pp->pool_long) {
		netdev_info(pp->dev, "fail to obtain long pool for port\n");
		return -ENOMEM;
	}

	pp->pool_long->port_map |= 1 << pp->id;

	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
				   pp->pool_long->id);

	/* If short pool id is not defined, assume using single pool */
	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
		short_pool_id = long_pool_id;

	/* Create port's short pool */
	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
					    MVNETA_BM_SHORT, pp->id,
					    MVNETA_BM_SHORT_PKT_SIZE);
	if (!pp->pool_short) {
		netdev_info(pp->dev, "fail to obtain short pool for port\n");
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
		return -ENOMEM;
	}

	if (short_pool_id != long_pool_id) {
		pp->pool_short->port_map |= 1 << pp->id;
		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
					   pp->pool_short->id);
	}

	return 0;
}

/* Update settings of a pool for bigger packets */
static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
{
	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1064
	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1065 1066 1067 1068
	int num;

	/* Release all buffers from long pool */
	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1069
	if (hwbm_pool->buf_num) {
1070 1071 1072 1073 1074 1075 1076
		WARN(1, "cannot free all buffers in pool %d\n",
		     bm_pool->id);
		goto bm_mtu_err;
	}

	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1077 1078
	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1079 1080

	/* Fill entire long pool */
1081 1082
	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
	if (num != hwbm_pool->size) {
1083
		WARN(1, "pool %d: %d of %d allocated\n",
1084
		     bm_pool->id, num, hwbm_pool->size);
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
		goto bm_mtu_err;
	}
	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);

	return;

bm_mtu_err:
	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);

	pp->bm_priv = NULL;
	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
/* Start the Ethernet port RX and TX activity */
static void mvneta_port_up(struct mvneta_port *pp)
{
	int queue;
	u32 q_map;

	/* Enable all initialized TXs. */
	q_map = 0;
	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1110
		if (txq->descs)
1111 1112 1113 1114 1115
			q_map |= (1 << queue);
	}
	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);

	/* Enable all initialized RXQs. */
1116 1117 1118
	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];

1119
		if (rxq->descs)
1120 1121 1122
			q_map |= (1 << queue);
	}
	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
}

/* Stop the Ethernet port activity */
static void mvneta_port_down(struct mvneta_port *pp)
{
	u32 val;
	int count;

	/* Stop Rx port activity. Check port Rx activity. */
	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;

	/* Issue stop command for active channels only */
	if (val != 0)
		mvreg_write(pp, MVNETA_RXQ_CMD,
			    val << MVNETA_RXQ_DISABLE_SHIFT);

	/* Wait for all Rx activity to terminate. */
	count = 0;
	do {
		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
			netdev_warn(pp->dev,
1144
				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1145 1146 1147 1148 1149 1150
				    val);
			break;
		}
		mdelay(1);

		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1151
	} while (val & MVNETA_RXQ_ENABLE_MASK);
1152 1153

	/* Stop Tx port activity. Check port Tx activity. Issue stop
1154 1155
	 * command for active channels only
	 */
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;

	if (val != 0)
		mvreg_write(pp, MVNETA_TXQ_CMD,
			    (val << MVNETA_TXQ_DISABLE_SHIFT));

	/* Wait for all Tx activity to terminate. */
	count = 0;
	do {
		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
			netdev_warn(pp->dev,
				    "TIMEOUT for TX stopped status=0x%08x\n",
				    val);
			break;
		}
		mdelay(1);

		/* Check TX Command reg that all Txqs are stopped */
		val = mvreg_read(pp, MVNETA_TXQ_CMD);

1176
	} while (val & MVNETA_TXQ_ENABLE_MASK);
1177 1178 1179 1180 1181 1182

	/* Double check to verify that TX FIFO is empty */
	count = 0;
	do {
		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
			netdev_warn(pp->dev,
1183
				    "TX FIFO empty timeout status=0x%08x\n",
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
				    val);
			break;
		}
		mdelay(1);

		val = mvreg_read(pp, MVNETA_PORT_STATUS);
	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
		 (val & MVNETA_TX_IN_PRGRS));

	udelay(200);
}

/* Enable the port by setting the port enable bit of the MAC control register */
static void mvneta_port_enable(struct mvneta_port *pp)
{
	u32 val;

	/* Enable port */
	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
	val |= MVNETA_GMAC0_PORT_ENABLE;
	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
}

/* Disable the port and wait for about 200 usec before retuning */
static void mvneta_port_disable(struct mvneta_port *pp)
{
	u32 val;

	/* Reset the Enable bit in the Serial Control Register */
	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
	val &= ~MVNETA_GMAC0_PORT_ENABLE;
	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);

	udelay(200);
}

/* Multicast tables methods */

/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
{
	int offset;
	u32 val;

	if (queue == -1) {
		val = 0;
	} else {
		val = 0x1 | (queue << 1);
		val |= (val << 24) | (val << 16) | (val << 8);
	}

	for (offset = 0; offset <= 0xc; offset += 4)
		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
}

/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
{
	int offset;
	u32 val;

	if (queue == -1) {
		val = 0;
	} else {
		val = 0x1 | (queue << 1);
		val |= (val << 24) | (val << 16) | (val << 8);
	}

	for (offset = 0; offset <= 0xfc; offset += 4)
		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);

}

/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
{
	int offset;
	u32 val;

	if (queue == -1) {
		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
		val = 0;
	} else {
		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
		val = 0x1 | (queue << 1);
		val |= (val << 24) | (val << 16) | (val << 8);
	}

	for (offset = 0; offset <= 0xfc; offset += 4)
		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
{
	u32 val;

	if (enable) {
		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
		val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
			 MVNETA_GMAC_FORCE_LINK_DOWN |
			 MVNETA_GMAC_AN_FLOW_CTRL_EN);
		val |= MVNETA_GMAC_INBAND_AN_ENABLE |
		       MVNETA_GMAC_AN_SPEED_EN |
		       MVNETA_GMAC_AN_DUPLEX_EN;
		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);

		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
		val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);

		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
		val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
	} else {
		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
		val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
		       MVNETA_GMAC_AN_SPEED_EN |
		       MVNETA_GMAC_AN_DUPLEX_EN);
		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);

		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
		val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);

		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
		val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
	}
}

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
static void mvneta_percpu_unmask_interrupt(void *arg)
{
	struct mvneta_port *pp = arg;

	/* All the queue are unmasked, but actually only the ones
	 * mapped to this CPU will be unmasked
	 */
	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
		    MVNETA_RX_INTR_MASK_ALL |
		    MVNETA_TX_INTR_MASK_ALL |
		    MVNETA_MISCINTR_INTR_MASK);
}

static void mvneta_percpu_mask_interrupt(void *arg)
{
	struct mvneta_port *pp = arg;

	/* All the queue are masked, but actually only the ones
	 * mapped to this CPU will be masked
	 */
	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
}

static void mvneta_percpu_clear_intr_cause(void *arg)
{
	struct mvneta_port *pp = arg;

	/* All the queue are cleared, but actually only the ones
	 * mapped to this CPU will be cleared
	 */
	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
}

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
/* This method sets defaults to the NETA port:
 *	Clears interrupt Cause and Mask registers.
 *	Clears all MAC tables.
 *	Sets defaults to all registers.
 *	Resets RX and TX descriptor rings.
 *	Resets PHY.
 * This method can be called after mvneta_port_down() to return the port
 *	settings to defaults.
 */
static void mvneta_defaults_set(struct mvneta_port *pp)
{
	int cpu;
	int queue;
	u32 val;
1365
	int max_cpu = num_present_cpus();
1366 1367

	/* Clear all Cause registers */
1368
	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1369 1370

	/* Mask all interrupts */
1371
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1372 1373 1374 1375 1376
	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);

	/* Enable MBUS Retry bit16 */
	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);

1377 1378 1379 1380
	/* Set CPU queue access map. CPUs are assigned to the RX and
	 * TX queues modulo their number. If there is only one TX
	 * queue then it is assigned to the CPU associated to the
	 * default RX queue.
1381
	 */
1382 1383
	for_each_present_cpu(cpu) {
		int rxq_map = 0, txq_map = 0;
1384
		int rxq, txq;
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
		if (!pp->neta_armada3700) {
			for (rxq = 0; rxq < rxq_number; rxq++)
				if ((rxq % max_cpu) == cpu)
					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);

			for (txq = 0; txq < txq_number; txq++)
				if ((txq % max_cpu) == cpu)
					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);

			/* With only one TX queue we configure a special case
			 * which will allow to get all the irq on a single
			 * CPU
			 */
			if (txq_number == 1)
				txq_map = (cpu == pp->rxq_def) ?
					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1401

1402 1403 1404 1405
		} else {
			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
		}
1406 1407 1408

		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
	}
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424

	/* Reset RX and TX DMAs */
	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);

	/* Disable Legacy WRR, Disable EJP, Release from reset */
	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
	for (queue = 0; queue < txq_number; queue++) {
		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
	}

	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);

	/* Set Port Acceleration Mode */
1425 1426 1427 1428 1429 1430
	if (pp->bm_priv)
		/* HW buffer management + legacy parser */
		val = MVNETA_ACC_MODE_EXT2;
	else
		/* SW buffer management + legacy parser */
		val = MVNETA_ACC_MODE_EXT1;
1431 1432
	mvreg_write(pp, MVNETA_ACC_MODE, val);

1433 1434 1435
	if (pp->bm_priv)
		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);

1436
	/* Update val of portCfg register accordingly with all RxQueue types */
1437
	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	mvreg_write(pp, MVNETA_PORT_CONFIG, val);

	val = 0;
	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);

	/* Build PORT_SDMA_CONFIG_REG */
	val = 0;

	/* Default burst size */
	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1450
	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1451

1452 1453 1454
#if defined(__BIG_ENDIAN)
	val |= MVNETA_DESC_SWAP;
#endif
1455 1456 1457 1458

	/* Assign port SDMA configuration */
	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);

1459 1460 1461 1462 1463 1464 1465
	/* Disable PHY polling in hardware, since we're using the
	 * kernel phylib to do this.
	 */
	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
	val &= ~MVNETA_PHY_POLLING_ENABLE;
	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);

1466
	mvneta_set_autoneg(pp, pp->use_inband_status);
1467 1468 1469 1470 1471 1472 1473 1474
	mvneta_set_ucast_table(pp, -1);
	mvneta_set_special_mcast_table(pp, -1);
	mvneta_set_other_mcast_table(pp, -1);

	/* Set port interrupt enable register - default enable all */
	mvreg_write(pp, MVNETA_INTR_ENABLE,
		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1475 1476

	mvneta_mib_counters_clear(pp);
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
}

/* Set max sizes for tx queues */
static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)

{
	u32 val, size, mtu;
	int queue;

	mtu = max_tx_size * 8;
	if (mtu > MVNETA_TX_MTU_MAX)
		mtu = MVNETA_TX_MTU_MAX;

	/* Set MTU */
	val = mvreg_read(pp, MVNETA_TX_MTU);
	val &= ~MVNETA_TX_MTU_MAX;
	val |= mtu;
	mvreg_write(pp, MVNETA_TX_MTU, val);

	/* TX token size and all TXQs token size must be larger that MTU */
	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);

	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
	if (size < mtu) {
		size = mtu;
		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
		val |= size;
		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
	}
	for (queue = 0; queue < txq_number; queue++) {
		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));

		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
		if (size < mtu) {
			size = mtu;
			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
			val |= size;
			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
		}
	}
}

/* Set unicast address */
static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
				  int queue)
{
	unsigned int unicast_reg;
	unsigned int tbl_offset;
	unsigned int reg_offset;

	/* Locate the Unicast table entry */
	last_nibble = (0xf & last_nibble);

	/* offset from unicast tbl base */
	tbl_offset = (last_nibble / 4) * 4;

	/* offset within the above reg  */
	reg_offset = last_nibble % 4;

	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));

	if (queue == -1) {
		/* Clear accepts frame bit at specified unicast DA tbl entry */
		unicast_reg &= ~(0xff << (8 * reg_offset));
	} else {
		unicast_reg &= ~(0xff << (8 * reg_offset));
		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
	}

	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
}

/* Set mac address */
static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
				int queue)
{
	unsigned int mac_h;
	unsigned int mac_l;

	if (queue != -1) {
		mac_l = (addr[4] << 8) | (addr[5]);
		mac_h = (addr[0] << 24) | (addr[1] << 16) |
			(addr[2] << 8) | (addr[3] << 0);

		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
	}

	/* Accept frames of this address */
	mvneta_set_ucast_addr(pp, addr[5], queue);
}

1569 1570
/* Set the number of packets that will be received before RX interrupt
 * will be generated by HW.
1571 1572 1573 1574 1575 1576 1577 1578 1579
 */
static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
				    struct mvneta_rx_queue *rxq, u32 value)
{
	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
		    value | MVNETA_RXQ_NON_OCCUPIED(0));
	rxq->pkts_coal = value;
}

1580 1581
/* Set the time delay in usec before RX interrupt will be generated by
 * HW.
1582 1583 1584 1585
 */
static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
				    struct mvneta_rx_queue *rxq, u32 value)
{
T
Thomas Petazzoni 已提交
1586 1587 1588 1589 1590
	u32 val;
	unsigned long clk_rate;

	clk_rate = clk_get_rate(pp->clk);
	val = (clk_rate / 1000000) * value;
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
	rxq->time_coal = value;
}

/* Set threshold for TX_DONE pkts coalescing */
static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
					 struct mvneta_tx_queue *txq, u32 value)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));

	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);

	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);

	txq->done_pkts_coal = value;
}

/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1614 1615
				u32 phys_addr, void *virt_addr,
				struct mvneta_rx_queue *rxq)
1616
{
1617 1618
	int i;

1619
	rx_desc->buf_phys_addr = phys_addr;
1620 1621
	i = rx_desc - rxq->descs;
	rxq->buf_virt_addr[i] = virt_addr;
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
}

/* Decrement sent descriptors counter */
static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
				     struct mvneta_tx_queue *txq,
				     int sent_desc)
{
	u32 val;

	/* Only 255 TX descriptors can be updated at once */
	while (sent_desc > 0xff) {
		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
		sent_desc = sent_desc - 0xff;
	}

	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
}

/* Get number of TX descriptors already sent by HW */
static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
					struct mvneta_tx_queue *txq)
{
	u32 val;
	int sent_desc;

	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
		MVNETA_TXQ_SENT_DESC_SHIFT;

	return sent_desc;
}

1656
/* Get number of sent descriptors and decrement counter.
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
 *  The number of sent descriptors is returned.
 */
static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
				     struct mvneta_tx_queue *txq)
{
	int sent_desc;

	/* Get number of sent descriptors */
	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);

	/* Decrement sent descriptors counter */
	if (sent_desc)
		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);

	return sent_desc;
}

/* Set TXQ descriptors fields relevant for CSUM calculation */
static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
				int ip_hdr_len, int l4_proto)
{
	u32 command;

	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1681 1682 1683
	 * G_L4_chk, L4_type; required only for checksum
	 * calculation
	 */
1684 1685 1686
	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;

1687
	if (l3_proto == htons(ETH_P_IP))
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
		command |= MVNETA_TXD_IP_CSUM;
	else
		command |= MVNETA_TX_L3_IP6;

	if (l4_proto == IPPROTO_TCP)
		command |=  MVNETA_TX_L4_CSUM_FULL;
	else if (l4_proto == IPPROTO_UDP)
		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
	else
		command |= MVNETA_TX_L4_CSUM_NOT;

	return command;
}


/* Display more error info */
static void mvneta_rx_error(struct mvneta_port *pp,
			    struct mvneta_rx_desc *rx_desc)
{
	u32 status = rx_desc->status;

1709
	if (!mvneta_rxq_desc_is_first_last(status)) {
1710 1711
		netdev_err(pp->dev,
			   "bad rx status %08x (buffer oversize), size=%d\n",
1712
			   status, rx_desc->data_size);
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
		return;
	}

	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
	case MVNETA_RXD_ERR_CRC:
		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	case MVNETA_RXD_ERR_OVERRUN:
		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	case MVNETA_RXD_ERR_LEN:
		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	case MVNETA_RXD_ERR_RESOURCE:
		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	}
}

1736 1737
/* Handle RX checksum offload based on the descriptor's status */
static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1738 1739
			   struct sk_buff *skb)
{
1740 1741
	if ((status & MVNETA_RXD_L3_IP4) &&
	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1742 1743 1744 1745 1746 1747 1748 1749
		skb->csum = 0;
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		return;
	}

	skb->ip_summed = CHECKSUM_NONE;
}

1750 1751 1752 1753
/* Return tx queue pointer (find last set bit) according to <cause> returned
 * form tx_done reg. <cause> must not be null. The return value is always a
 * valid queue for matching the first one found in <cause>.
 */
1754 1755 1756 1757 1758
static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
						     u32 cause)
{
	int queue = fls(cause) - 1;

1759
	return &pp->txqs[queue];
1760 1761 1762 1763
}

/* Free tx queue skbuffs */
static void mvneta_txq_bufs_free(struct mvneta_port *pp,
M
Marcin Wojtas 已提交
1764 1765
				 struct mvneta_tx_queue *txq, int num,
				 struct netdev_queue *nq)
1766
{
M
Marcin Wojtas 已提交
1767
	unsigned int bytes_compl = 0, pkts_compl = 0;
1768 1769 1770 1771 1772 1773 1774
	int i;

	for (i = 0; i < num; i++) {
		struct mvneta_tx_desc *tx_desc = txq->descs +
			txq->txq_get_index;
		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];

M
Marcin Wojtas 已提交
1775 1776 1777 1778 1779
		if (skb) {
			bytes_compl += skb->len;
			pkts_compl++;
		}

1780 1781
		mvneta_txq_inc_get(txq);

1782 1783 1784 1785
		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
			dma_unmap_single(pp->dev->dev.parent,
					 tx_desc->buf_phys_addr,
					 tx_desc->data_size, DMA_TO_DEVICE);
1786 1787
		if (!skb)
			continue;
1788 1789
		dev_kfree_skb_any(skb);
	}
M
Marcin Wojtas 已提交
1790 1791

	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1792 1793 1794
}

/* Handle end of transmission */
1795
static void mvneta_txq_done(struct mvneta_port *pp,
1796 1797 1798 1799 1800 1801
			   struct mvneta_tx_queue *txq)
{
	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
	int tx_done;

	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1802 1803 1804
	if (!tx_done)
		return;

M
Marcin Wojtas 已提交
1805
	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1806 1807 1808 1809

	txq->count -= tx_done;

	if (netif_tx_queue_stopped(nq)) {
1810
		if (txq->count <= txq->tx_wake_threshold)
1811 1812 1813 1814
			netif_tx_wake_queue(nq);
	}
}

1815
void *mvneta_frag_alloc(unsigned int frag_size)
1816
{
1817 1818
	if (likely(frag_size <= PAGE_SIZE))
		return netdev_alloc_frag(frag_size);
1819
	else
1820
		return kmalloc(frag_size, GFP_ATOMIC);
1821
}
1822
EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1823

1824
void mvneta_frag_free(unsigned int frag_size, void *data)
1825
{
1826
	if (likely(frag_size <= PAGE_SIZE))
1827
		skb_free_frag(data);
1828 1829 1830
	else
		kfree(data);
}
1831
EXPORT_SYMBOL_GPL(mvneta_frag_free);
1832

1833
/* Refill processing for SW buffer management */
1834
static int mvneta_rx_refill(struct mvneta_port *pp,
1835 1836
			    struct mvneta_rx_desc *rx_desc,
			    struct mvneta_rx_queue *rxq)
1837 1838 1839

{
	dma_addr_t phys_addr;
1840
	void *data;
1841

1842
	data = mvneta_frag_alloc(pp->frag_size);
1843
	if (!data)
1844 1845
		return -ENOMEM;

1846
	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1847 1848 1849
				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
				   DMA_FROM_DEVICE);
	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1850
		mvneta_frag_free(pp->frag_size, data);
1851 1852 1853
		return -ENOMEM;
	}

1854
	phys_addr += pp->rx_offset_correction;
1855
	mvneta_rx_desc_fill(rx_desc, phys_addr, data, rxq);
1856 1857 1858 1859 1860 1861 1862 1863
	return 0;
}

/* Handle tx checksum */
static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		int ip_hdr_len = 0;
1864
		__be16 l3_proto = vlan_get_protocol(skb);
1865 1866
		u8 l4_proto;

1867
		if (l3_proto == htons(ETH_P_IP)) {
1868 1869 1870 1871 1872
			struct iphdr *ip4h = ip_hdr(skb);

			/* Calculate IPv4 checksum and L4 checksum */
			ip_hdr_len = ip4h->ihl;
			l4_proto = ip4h->protocol;
1873
		} else if (l3_proto == htons(ETH_P_IPV6)) {
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
			struct ipv6hdr *ip6h = ipv6_hdr(skb);

			/* Read l4_protocol from one of IPv6 extra headers */
			if (skb_network_header_len(skb) > 0)
				ip_hdr_len = (skb_network_header_len(skb) >> 2);
			l4_proto = ip6h->nexthdr;
		} else
			return MVNETA_TX_L4_CSUM_NOT;

		return mvneta_txq_desc_csum(skb_network_offset(skb),
1884
					    l3_proto, ip_hdr_len, l4_proto);
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
	}

	return MVNETA_TX_L4_CSUM_NOT;
}

/* Drop packets received by the RXQ and free buffers */
static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
				 struct mvneta_rx_queue *rxq)
{
	int rx_done, i;

	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
	if (rx_done)
		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);

	if (pp->bm_priv) {
		for (i = 0; i < rx_done; i++) {
			struct mvneta_rx_desc *rx_desc =
						  mvneta_rxq_next_desc_get(rxq);
			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
			struct mvneta_bm_pool *bm_pool;

			bm_pool = &pp->bm_priv->bm_pools[pool_id];
			/* Return dropped buffer to the pool */
			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
					      rx_desc->buf_phys_addr);
		}
		return;
	}

1915 1916
	for (i = 0; i < rxq->size; i++) {
		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1917
		void *data = rxq->buf_virt_addr[i];
1918 1919

		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1920
				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1921
		mvneta_frag_free(pp->frag_size, data);
1922
	}
1923
}
1924

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
/* Main rx processing when using software buffer management */
static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
			  struct mvneta_rx_queue *rxq)
{
	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
	struct net_device *dev = pp->dev;
	int rx_done;
	u32 rcvd_pkts = 0;
	u32 rcvd_bytes = 0;

	/* Get number of received packets */
	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);

	if (rx_todo > rx_done)
		rx_todo = rx_done;

	rx_done = 0;

	/* Fairness NAPI loop */
	while (rx_done < rx_todo) {
		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
		struct sk_buff *skb;
		unsigned char *data;
		dma_addr_t phys_addr;
		u32 rx_status, frag_size;
1950
		int rx_bytes, err, index;
1951 1952 1953 1954

		rx_done++;
		rx_status = rx_desc->status;
		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1955 1956
		index = rx_desc - rxq->descs;
		data = rxq->buf_virt_addr[index];
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
		phys_addr = rx_desc->buf_phys_addr;

		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
err_drop_frame:
			dev->stats.rx_errors++;
			mvneta_rx_error(pp, rx_desc);
			/* leave the descriptor untouched */
			continue;
		}

		if (rx_bytes <= rx_copybreak) {
		/* better copy a small frame and not unmap the DMA region */
			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
			if (unlikely(!skb))
				goto err_drop_frame;

			dma_sync_single_range_for_cpu(dev->dev.parent,
1975
						      phys_addr,
1976 1977 1978
						      MVNETA_MH_SIZE + NET_SKB_PAD,
						      rx_bytes,
						      DMA_FROM_DEVICE);
1979 1980
			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
				     rx_bytes);
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

			skb->protocol = eth_type_trans(skb, dev);
			mvneta_rx_csum(pp, rx_status, skb);
			napi_gro_receive(&port->napi, skb);

			rcvd_pkts++;
			rcvd_bytes += rx_bytes;

			/* leave the descriptor and buffer untouched */
			continue;
		}

		/* Refill processing */
1994
		err = mvneta_rx_refill(pp, rx_desc, rxq);
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
		if (err) {
			netdev_err(dev, "Linux processing - Can't refill\n");
			rxq->missed++;
			goto err_drop_frame;
		}

		frag_size = pp->frag_size;

		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);

		/* After refill old buffer has to be unmapped regardless
		 * the skb is successfully built or not.
		 */
		dma_unmap_single(dev->dev.parent, phys_addr,
				 MVNETA_RX_BUF_SIZE(pp->pkt_size),
				 DMA_FROM_DEVICE);

		if (!skb)
			goto err_drop_frame;

		rcvd_pkts++;
		rcvd_bytes += rx_bytes;

		/* Linux processing */
		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
		skb_put(skb, rx_bytes);

		skb->protocol = eth_type_trans(skb, dev);

		mvneta_rx_csum(pp, rx_status, skb);

		napi_gro_receive(&port->napi, skb);
	}

	if (rcvd_pkts) {
		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);

		u64_stats_update_begin(&stats->syncp);
		stats->rx_packets += rcvd_pkts;
		stats->rx_bytes   += rcvd_bytes;
		u64_stats_update_end(&stats->syncp);
	}

	/* Update rxq management counters */
	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);

	return rx_done;
2042 2043
}

2044 2045 2046
/* Main rx processing when using hardware buffer management */
static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
			  struct mvneta_rx_queue *rxq)
2047
{
2048
	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2049
	struct net_device *dev = pp->dev;
2050
	int rx_done;
2051 2052
	u32 rcvd_pkts = 0;
	u32 rcvd_bytes = 0;
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064

	/* Get number of received packets */
	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);

	if (rx_todo > rx_done)
		rx_todo = rx_done;

	rx_done = 0;

	/* Fairness NAPI loop */
	while (rx_done < rx_todo) {
		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2065
		struct mvneta_bm_pool *bm_pool = NULL;
2066
		struct sk_buff *skb;
2067
		unsigned char *data;
2068
		dma_addr_t phys_addr;
2069
		u32 rx_status, frag_size;
2070
		int rx_bytes, err;
2071
		u8 pool_id;
2072 2073 2074

		rx_done++;
		rx_status = rx_desc->status;
2075
		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2076
		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2077
		phys_addr = rx_desc->buf_phys_addr;
2078 2079
		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2080

2081
		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2082
		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2083 2084 2085 2086 2087
err_drop_frame_ret_pool:
			/* Return the buffer to the pool */
			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
					      rx_desc->buf_phys_addr);
err_drop_frame:
2088 2089
			dev->stats.rx_errors++;
			mvneta_rx_error(pp, rx_desc);
2090
			/* leave the descriptor untouched */
2091 2092 2093
			continue;
		}

2094 2095 2096 2097
		if (rx_bytes <= rx_copybreak) {
			/* better copy a small frame and not unmap the DMA region */
			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
			if (unlikely(!skb))
2098
				goto err_drop_frame_ret_pool;
2099 2100 2101 2102 2103 2104

			dma_sync_single_range_for_cpu(dev->dev.parent,
			                              rx_desc->buf_phys_addr,
			                              MVNETA_MH_SIZE + NET_SKB_PAD,
			                              rx_bytes,
			                              DMA_FROM_DEVICE);
2105 2106
			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
				     rx_bytes);
2107 2108 2109

			skb->protocol = eth_type_trans(skb, dev);
			mvneta_rx_csum(pp, rx_status, skb);
2110
			napi_gro_receive(&port->napi, skb);
2111 2112 2113 2114

			rcvd_pkts++;
			rcvd_bytes += rx_bytes;

2115 2116 2117 2118
			/* Return the buffer to the pool */
			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
					      rx_desc->buf_phys_addr);

2119 2120 2121 2122
			/* leave the descriptor and buffer untouched */
			continue;
		}

2123
		/* Refill processing */
2124
		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2125 2126 2127
		if (err) {
			netdev_err(dev, "Linux processing - Can't refill\n");
			rxq->missed++;
2128
			goto err_drop_frame_ret_pool;
2129 2130
		}

2131
		frag_size = bm_pool->hwbm_pool.frag_size;
2132 2133

		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2134

2135 2136 2137
		/* After refill old buffer has to be unmapped regardless
		 * the skb is successfully built or not.
		 */
2138 2139
		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
				 bm_pool->buf_size, DMA_FROM_DEVICE);
2140 2141 2142
		if (!skb)
			goto err_drop_frame;

2143 2144
		rcvd_pkts++;
		rcvd_bytes += rx_bytes;
2145 2146

		/* Linux processing */
2147
		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2148 2149 2150 2151
		skb_put(skb, rx_bytes);

		skb->protocol = eth_type_trans(skb, dev);

2152
		mvneta_rx_csum(pp, rx_status, skb);
2153

2154
		napi_gro_receive(&port->napi, skb);
2155 2156
	}

2157
	if (rcvd_pkts) {
2158 2159 2160 2161 2162 2163
		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);

		u64_stats_update_begin(&stats->syncp);
		stats->rx_packets += rcvd_pkts;
		stats->rx_bytes   += rcvd_bytes;
		u64_stats_update_end(&stats->syncp);
2164 2165
	}

2166
	/* Update rxq management counters */
2167
	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2168 2169 2170 2171

	return rx_done;
}

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
static inline void
mvneta_tso_put_hdr(struct sk_buff *skb,
		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
{
	struct mvneta_tx_desc *tx_desc;
	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);

	txq->tx_skb[txq->txq_put_index] = NULL;
	tx_desc = mvneta_txq_next_desc_get(txq);
	tx_desc->data_size = hdr_len;
	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
	tx_desc->command |= MVNETA_TXD_F_DESC;
	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
				 txq->txq_put_index * TSO_HEADER_SIZE;
	mvneta_txq_inc_put(txq);
}

static inline int
mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
		    struct sk_buff *skb, char *data, int size,
		    bool last_tcp, bool is_last)
{
	struct mvneta_tx_desc *tx_desc;

	tx_desc = mvneta_txq_next_desc_get(txq);
	tx_desc->data_size = size;
	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
						size, DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(dev->dev.parent,
		     tx_desc->buf_phys_addr))) {
		mvneta_txq_desc_put(txq);
		return -ENOMEM;
	}

	tx_desc->command = 0;
	txq->tx_skb[txq->txq_put_index] = NULL;

	if (last_tcp) {
		/* last descriptor in the TCP packet */
		tx_desc->command = MVNETA_TXD_L_DESC;

		/* last descriptor in SKB */
		if (is_last)
			txq->tx_skb[txq->txq_put_index] = skb;
	}
	mvneta_txq_inc_put(txq);
	return 0;
}

static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
			 struct mvneta_tx_queue *txq)
{
	int total_len, data_left;
	int desc_count = 0;
	struct mvneta_port *pp = netdev_priv(dev);
	struct tso_t tso;
	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	int i;

	/* Count needed descriptors */
	if ((txq->count + tso_count_descs(skb)) >= txq->size)
		return 0;

	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
		pr_info("*** Is this even  possible???!?!?\n");
		return 0;
	}

	/* Initialize the TSO handler, and prepare the first payload */
	tso_start(skb, &tso);

	total_len = skb->len - hdr_len;
	while (total_len > 0) {
		char *hdr;

		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
		total_len -= data_left;
		desc_count++;

		/* prepare packet headers: MAC + IP + TCP */
		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);

		mvneta_tso_put_hdr(skb, pp, txq);

		while (data_left > 0) {
			int size;
			desc_count++;

			size = min_t(int, tso.size, data_left);

			if (mvneta_tso_put_data(dev, txq, skb,
						 tso.data, size,
						 size == data_left,
						 total_len == 0))
				goto err_release;
			data_left -= size;

			tso_build_data(skb, &tso, size);
		}
	}

	return desc_count;

err_release:
	/* Release all used data descriptors; header descriptors must not
	 * be DMA-unmapped.
	 */
	for (i = desc_count - 1; i >= 0; i--) {
		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2282
		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2283 2284 2285 2286 2287 2288 2289 2290 2291
			dma_unmap_single(pp->dev->dev.parent,
					 tx_desc->buf_phys_addr,
					 tx_desc->data_size,
					 DMA_TO_DEVICE);
		mvneta_txq_desc_put(txq);
	}
	return 0;
}

2292 2293 2294 2295 2296
/* Handle tx fragmentation processing */
static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
				  struct mvneta_tx_queue *txq)
{
	struct mvneta_tx_desc *tx_desc;
2297
	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2298

2299
	for (i = 0; i < nr_frags; i++) {
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		void *addr = page_address(frag->page.p) + frag->page_offset;

		tx_desc = mvneta_txq_next_desc_get(txq);
		tx_desc->data_size = frag->size;

		tx_desc->buf_phys_addr =
			dma_map_single(pp->dev->dev.parent, addr,
				       tx_desc->data_size, DMA_TO_DEVICE);

		if (dma_mapping_error(pp->dev->dev.parent,
				      tx_desc->buf_phys_addr)) {
			mvneta_txq_desc_put(txq);
			goto error;
		}

2316
		if (i == nr_frags - 1) {
2317 2318 2319 2320 2321 2322 2323 2324
			/* Last descriptor */
			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
			txq->tx_skb[txq->txq_put_index] = skb;
		} else {
			/* Descriptor in the middle: Not First, Not Last */
			tx_desc->command = 0;
			txq->tx_skb[txq->txq_put_index] = NULL;
		}
2325
		mvneta_txq_inc_put(txq);
2326 2327 2328 2329 2330 2331
	}

	return 0;

error:
	/* Release all descriptors that were used to map fragments of
2332 2333
	 * this packet, as well as the corresponding DMA mappings
	 */
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	for (i = i - 1; i >= 0; i--) {
		tx_desc = txq->descs + i;
		dma_unmap_single(pp->dev->dev.parent,
				 tx_desc->buf_phys_addr,
				 tx_desc->data_size,
				 DMA_TO_DEVICE);
		mvneta_txq_desc_put(txq);
	}

	return -ENOMEM;
}

/* Main tx processing */
static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);
2350 2351
	u16 txq_id = skb_get_queue_mapping(skb);
	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2352
	struct mvneta_tx_desc *tx_desc;
2353
	int len = skb->len;
2354 2355 2356 2357 2358 2359
	int frags = 0;
	u32 tx_cmd;

	if (!netif_running(dev))
		goto out;

2360 2361 2362 2363 2364
	if (skb_is_gso(skb)) {
		frags = mvneta_tx_tso(skb, dev, txq);
		goto out;
	}

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	frags = skb_shinfo(skb)->nr_frags + 1;

	/* Get a descriptor for the first part of the packet */
	tx_desc = mvneta_txq_next_desc_get(txq);

	tx_cmd = mvneta_skb_tx_csum(pp, skb);

	tx_desc->data_size = skb_headlen(skb);

	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
						tx_desc->data_size,
						DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(dev->dev.parent,
				       tx_desc->buf_phys_addr))) {
		mvneta_txq_desc_put(txq);
		frags = 0;
		goto out;
	}

	if (frags == 1) {
		/* First and Last descriptor */
		tx_cmd |= MVNETA_TXD_FLZ_DESC;
		tx_desc->command = tx_cmd;
		txq->tx_skb[txq->txq_put_index] = skb;
		mvneta_txq_inc_put(txq);
	} else {
		/* First but not Last */
		tx_cmd |= MVNETA_TXD_F_DESC;
		txq->tx_skb[txq->txq_put_index] = NULL;
		mvneta_txq_inc_put(txq);
		tx_desc->command = tx_cmd;
		/* Continue with other skb fragments */
		if (mvneta_tx_frag_process(pp, skb, txq)) {
			dma_unmap_single(dev->dev.parent,
					 tx_desc->buf_phys_addr,
					 tx_desc->data_size,
					 DMA_TO_DEVICE);
			mvneta_txq_desc_put(txq);
			frags = 0;
			goto out;
		}
	}

out:
	if (frags > 0) {
2410
		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2411 2412
		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);

M
Marcin Wojtas 已提交
2413 2414
		netdev_tx_sent_queue(nq, len);

2415
		txq->count += frags;
2416
		if (txq->count >= txq->tx_stop_threshold)
2417
			netif_tx_stop_queue(nq);
2418

2419 2420 2421 2422 2423 2424
		if (!skb->xmit_more || netif_xmit_stopped(nq) ||
		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
			mvneta_txq_pend_desc_add(pp, txq, frags);
		else
			txq->pending += frags;

2425 2426
		u64_stats_update_begin(&stats->syncp);
		stats->tx_packets++;
2427
		stats->tx_bytes  += len;
2428
		u64_stats_update_end(&stats->syncp);
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	} else {
		dev->stats.tx_dropped++;
		dev_kfree_skb_any(skb);
	}

	return NETDEV_TX_OK;
}


/* Free tx resources, when resetting a port */
static void mvneta_txq_done_force(struct mvneta_port *pp,
				  struct mvneta_tx_queue *txq)

{
M
Marcin Wojtas 已提交
2443
	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2444 2445
	int tx_done = txq->count;

M
Marcin Wojtas 已提交
2446
	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2447 2448 2449 2450 2451 2452 2453

	/* reset txq */
	txq->count = 0;
	txq->txq_put_index = 0;
	txq->txq_get_index = 0;
}

2454 2455 2456
/* Handle tx done - called in softirq context. The <cause_tx_done> argument
 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
 */
2457
static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2458 2459 2460 2461
{
	struct mvneta_tx_queue *txq;
	struct netdev_queue *nq;

2462
	while (cause_tx_done) {
2463 2464 2465 2466 2467
		txq = mvneta_tx_done_policy(pp, cause_tx_done);

		nq = netdev_get_tx_queue(pp->dev, txq->id);
		__netif_tx_lock(nq, smp_processor_id());

2468 2469
		if (txq->count)
			mvneta_txq_done(pp, txq);
2470 2471 2472 2473 2474 2475

		__netif_tx_unlock(nq);
		cause_tx_done &= ~((1 << txq->id));
	}
}

2476
/* Compute crc8 of the specified address, using a unique algorithm ,
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
 * according to hw spec, different than generic crc8 algorithm
 */
static int mvneta_addr_crc(unsigned char *addr)
{
	int crc = 0;
	int i;

	for (i = 0; i < ETH_ALEN; i++) {
		int j;

		crc = (crc ^ addr[i]) << 8;
		for (j = 7; j >= 0; j--) {
			if (crc & (0x100 << j))
				crc ^= 0x107 << j;
		}
	}

	return crc;
}

/* This method controls the net device special MAC multicast support.
 * The Special Multicast Table for MAC addresses supports MAC of the form
 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
 * Table entries in the DA-Filter table. This method set the Special
 * Multicast Table appropriate entry.
 */
static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
					  unsigned char last_byte,
					  int queue)
{
	unsigned int smc_table_reg;
	unsigned int tbl_offset;
	unsigned int reg_offset;

	/* Register offset from SMC table base    */
	tbl_offset = (last_byte / 4);
	/* Entry offset within the above reg */
	reg_offset = last_byte % 4;

	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
					+ tbl_offset * 4));

	if (queue == -1)
		smc_table_reg &= ~(0xff << (8 * reg_offset));
	else {
		smc_table_reg &= ~(0xff << (8 * reg_offset));
		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
	}

	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
		    smc_table_reg);
}

/* This method controls the network device Other MAC multicast support.
 * The Other Multicast Table is used for multicast of another type.
 * A CRC-8 is used as an index to the Other Multicast Table entries
 * in the DA-Filter table.
 * The method gets the CRC-8 value from the calling routine and
 * sets the Other Multicast Table appropriate entry according to the
 * specified CRC-8 .
 */
static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
					unsigned char crc8,
					int queue)
{
	unsigned int omc_table_reg;
	unsigned int tbl_offset;
	unsigned int reg_offset;

	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */

	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);

	if (queue == -1) {
		/* Clear accepts frame bit at specified Other DA table entry */
		omc_table_reg &= ~(0xff << (8 * reg_offset));
	} else {
		omc_table_reg &= ~(0xff << (8 * reg_offset));
		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
	}

	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
}

/* The network device supports multicast using two tables:
 *    1) Special Multicast Table for MAC addresses of the form
 *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
 *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
 *       Table entries in the DA-Filter table.
 *    2) Other Multicast Table for multicast of another type. A CRC-8 value
 *       is used as an index to the Other Multicast Table entries in the
 *       DA-Filter table.
 */
static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
				 int queue)
{
	unsigned char crc_result = 0;

	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
		return 0;
	}

	crc_result = mvneta_addr_crc(p_addr);
	if (queue == -1) {
		if (pp->mcast_count[crc_result] == 0) {
			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
				    crc_result);
			return -EINVAL;
		}

		pp->mcast_count[crc_result]--;
		if (pp->mcast_count[crc_result] != 0) {
			netdev_info(pp->dev,
				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
				    pp->mcast_count[crc_result], crc_result);
			return -EINVAL;
		}
	} else
		pp->mcast_count[crc_result]++;

	mvneta_set_other_mcast_addr(pp, crc_result, queue);

	return 0;
}

/* Configure Fitering mode of Ethernet port */
static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
					  int is_promisc)
{
	u32 port_cfg_reg, val;

	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);

	val = mvreg_read(pp, MVNETA_TYPE_PRIO);

	/* Set / Clear UPM bit in port configuration register */
	if (is_promisc) {
		/* Accept all Unicast addresses */
		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
		val |= MVNETA_FORCE_UNI;
		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
	} else {
		/* Reject all Unicast addresses */
		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
		val &= ~MVNETA_FORCE_UNI;
	}

	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
}

/* register unicast and multicast addresses */
static void mvneta_set_rx_mode(struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);
	struct netdev_hw_addr *ha;

	if (dev->flags & IFF_PROMISC) {
		/* Accept all: Multicast + Unicast */
		mvneta_rx_unicast_promisc_set(pp, 1);
2641 2642 2643
		mvneta_set_ucast_table(pp, pp->rxq_def);
		mvneta_set_special_mcast_table(pp, pp->rxq_def);
		mvneta_set_other_mcast_table(pp, pp->rxq_def);
2644 2645 2646 2647
	} else {
		/* Accept single Unicast */
		mvneta_rx_unicast_promisc_set(pp, 0);
		mvneta_set_ucast_table(pp, -1);
2648
		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2649 2650 2651

		if (dev->flags & IFF_ALLMULTI) {
			/* Accept all multicast */
2652 2653
			mvneta_set_special_mcast_table(pp, pp->rxq_def);
			mvneta_set_other_mcast_table(pp, pp->rxq_def);
2654 2655 2656 2657 2658 2659 2660 2661
		} else {
			/* Accept only initialized multicast */
			mvneta_set_special_mcast_table(pp, -1);
			mvneta_set_other_mcast_table(pp, -1);

			if (!netdev_mc_empty(dev)) {
				netdev_for_each_mc_addr(ha, dev) {
					mvneta_mcast_addr_set(pp, ha->addr,
2662
							      pp->rxq_def);
2663 2664 2665 2666 2667 2668 2669 2670
				}
			}
		}
	}
}

/* Interrupt handling - the callback for request_irq() */
static irqreturn_t mvneta_isr(int irq, void *dev_id)
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
{
	struct mvneta_port *pp = (struct mvneta_port *)dev_id;

	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
	napi_schedule(&pp->napi);

	return IRQ_HANDLED;
}

/* Interrupt handling - the callback for request_percpu_irq() */
static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2682
{
2683
	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2684

2685 2686
	disable_percpu_irq(port->pp->dev->irq);
	napi_schedule(&port->napi);
2687 2688 2689 2690

	return IRQ_HANDLED;
}

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
static int mvneta_fixed_link_update(struct mvneta_port *pp,
				    struct phy_device *phy)
{
	struct fixed_phy_status status;
	struct fixed_phy_status changed = {};
	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);

	status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
		status.speed = SPEED_1000;
	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
		status.speed = SPEED_100;
	else
		status.speed = SPEED_10;
	status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
	changed.link = 1;
	changed.speed = 1;
	changed.duplex = 1;
	fixed_phy_update_state(phy, &status, &changed);
	return 0;
}

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
/* NAPI handler
 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
 * Bits 8 -15 of the cause Rx Tx register indicate that are received
 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
 * Each CPU has its own causeRxTx register
 */
static int mvneta_poll(struct napi_struct *napi, int budget)
{
	int rx_done = 0;
	u32 cause_rx_tx;
2724
	int rx_queue;
2725
	struct mvneta_port *pp = netdev_priv(napi->dev);
2726
	struct net_device *ndev = pp->dev;
2727
	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2728 2729

	if (!netif_running(pp->dev)) {
2730
		napi_complete(napi);
2731 2732 2733 2734
		return rx_done;
	}

	/* Read cause register */
2735 2736 2737 2738 2739 2740 2741 2742 2743
	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);

		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
		if (pp->use_inband_status && (cause_misc &
				(MVNETA_CAUSE_PHY_STATUS_CHANGE |
				 MVNETA_CAUSE_LINK_CHANGE |
				 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2744
			mvneta_fixed_link_update(pp, ndev->phydev);
2745 2746
		}
	}
2747 2748 2749

	/* Release Tx descriptors */
	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2750
		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2751 2752
		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
	}
2753

2754
	/* For the case where the last mvneta_poll did not process all
2755 2756
	 * RX packets
	 */
2757 2758
	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));

2759 2760
	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
		port->cause_rx_tx;
2761 2762 2763

	if (rx_queue) {
		rx_queue = rx_queue - 1;
2764 2765 2766 2767
		if (pp->bm_priv)
			rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
		else
			rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2768 2769
	}

2770
	if (rx_done < budget) {
2771
		cause_rx_tx = 0;
2772
		napi_complete_done(napi, rx_done);
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785

		if (pp->neta_armada3700) {
			unsigned long flags;

			local_irq_save(flags);
			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
				    MVNETA_RX_INTR_MASK(rxq_number) |
				    MVNETA_TX_INTR_MASK(txq_number) |
				    MVNETA_MISCINTR_INTR_MASK);
			local_irq_restore(flags);
		} else {
			enable_percpu_irq(pp->dev->irq, 0);
		}
2786 2787
	}

2788 2789 2790 2791 2792
	if (pp->neta_armada3700)
		pp->cause_rx_tx = cause_rx_tx;
	else
		port->cause_rx_tx = cause_rx_tx;

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
	return rx_done;
}

/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
			   int num)
{
	int i;

	for (i = 0; i < num; i++) {
2803
		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2804
		if (mvneta_rx_refill(pp, rxq->descs + i, rxq) != 0) {
2805
			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2806 2807 2808 2809 2810 2811
				__func__, rxq->id, i, num);
			break;
		}
	}

	/* Add this number of RX descriptors as non occupied (ready to
2812 2813
	 * get packets)
	 */
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
	mvneta_rxq_non_occup_desc_add(pp, rxq, i);

	return i;
}

/* Free all packets pending transmit from all TXQs and reset TX port */
static void mvneta_tx_reset(struct mvneta_port *pp)
{
	int queue;

2824
	/* free the skb's in the tx ring */
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
	for (queue = 0; queue < txq_number; queue++)
		mvneta_txq_done_force(pp, &pp->txqs[queue]);

	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
}

static void mvneta_rx_reset(struct mvneta_port *pp)
{
	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
}

/* Rx/Tx queue initialization/cleanup methods */

/* Create a specified RX queue */
static int mvneta_rxq_init(struct mvneta_port *pp,
			   struct mvneta_rx_queue *rxq)

{
	rxq->size = pp->rx_ring_size;

	/* Allocate memory for RX descriptors */
	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
					&rxq->descs_phys, GFP_KERNEL);
2851
	if (!rxq->descs)
2852 2853 2854 2855 2856 2857 2858 2859 2860
		return -ENOMEM;

	rxq->last_desc = rxq->size - 1;

	/* Set Rx descriptors queue starting address */
	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);

	/* Set Offset */
2861
	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD - pp->rx_offset_correction);
2862 2863 2864 2865 2866

	/* Set coalescing pkts and time */
	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);

2867 2868 2869 2870 2871
	if (!pp->bm_priv) {
		/* Fill RXQ with buffers from RX pool */
		mvneta_rxq_buf_size_set(pp, rxq,
					MVNETA_RX_BUF_SIZE(pp->pkt_size));
		mvneta_rxq_bm_disable(pp, rxq);
2872
		mvneta_rxq_fill(pp, rxq, rxq->size);
2873 2874 2875 2876
	} else {
		mvneta_rxq_bm_enable(pp, rxq);
		mvneta_rxq_long_pool_set(pp, rxq);
		mvneta_rxq_short_pool_set(pp, rxq);
2877
		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2878 2879
	}

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
	return 0;
}

/* Cleanup Rx queue */
static void mvneta_rxq_deinit(struct mvneta_port *pp,
			      struct mvneta_rx_queue *rxq)
{
	mvneta_rxq_drop_pkts(pp, rxq);

	if (rxq->descs)
		dma_free_coherent(pp->dev->dev.parent,
				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
				  rxq->descs,
				  rxq->descs_phys);

	rxq->descs             = NULL;
	rxq->last_desc         = 0;
	rxq->next_desc_to_proc = 0;
	rxq->descs_phys        = 0;
}

/* Create and initialize a tx queue */
static int mvneta_txq_init(struct mvneta_port *pp,
			   struct mvneta_tx_queue *txq)
{
2905 2906
	int cpu;

2907 2908
	txq->size = pp->tx_ring_size;

2909 2910 2911 2912 2913 2914 2915 2916
	/* A queue must always have room for at least one skb.
	 * Therefore, stop the queue when the free entries reaches
	 * the maximum number of descriptors per skb.
	 */
	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;


2917 2918 2919 2920
	/* Allocate memory for TX descriptors */
	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
					txq->size * MVNETA_DESC_ALIGNED_SIZE,
					&txq->descs_phys, GFP_KERNEL);
2921
	if (!txq->descs)
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
		return -ENOMEM;

	txq->last_desc = txq->size - 1;

	/* Set maximum bandwidth for enabled TXQs */
	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);

	/* Set Tx descriptors queue starting address */
	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);

2934 2935
	txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb),
				    GFP_KERNEL);
2936
	if (!txq->tx_skb) {
2937 2938 2939 2940 2941
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
				  txq->descs, txq->descs_phys);
		return -ENOMEM;
	}
2942 2943 2944 2945 2946

	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
					   txq->size * TSO_HEADER_SIZE,
					   &txq->tso_hdrs_phys, GFP_KERNEL);
2947
	if (!txq->tso_hdrs) {
2948 2949 2950 2951 2952 2953
		kfree(txq->tx_skb);
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
				  txq->descs, txq->descs_phys);
		return -ENOMEM;
	}
2954 2955
	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);

2956 2957 2958 2959 2960 2961 2962 2963
	/* Setup XPS mapping */
	if (txq_number > 1)
		cpu = txq->id % num_present_cpus();
	else
		cpu = pp->rxq_def % num_present_cpus();
	cpumask_set_cpu(cpu, &txq->affinity_mask);
	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);

2964 2965 2966 2967 2968 2969 2970
	return 0;
}

/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
static void mvneta_txq_deinit(struct mvneta_port *pp,
			      struct mvneta_tx_queue *txq)
{
M
Marcin Wojtas 已提交
2971 2972
	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);

2973 2974
	kfree(txq->tx_skb);

2975 2976 2977 2978
	if (txq->tso_hdrs)
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * TSO_HEADER_SIZE,
				  txq->tso_hdrs, txq->tso_hdrs_phys);
2979 2980 2981 2982 2983
	if (txq->descs)
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
				  txq->descs, txq->descs_phys);

M
Marcin Wojtas 已提交
2984 2985
	netdev_tx_reset_queue(nq);

2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
	txq->descs             = NULL;
	txq->last_desc         = 0;
	txq->next_desc_to_proc = 0;
	txq->descs_phys        = 0;

	/* Set minimum bandwidth for disabled TXQs */
	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);

	/* Set Tx descriptors queue starting address and size */
	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
}

/* Cleanup all Tx queues */
static void mvneta_cleanup_txqs(struct mvneta_port *pp)
{
	int queue;

	for (queue = 0; queue < txq_number; queue++)
		mvneta_txq_deinit(pp, &pp->txqs[queue]);
}

/* Cleanup all Rx queues */
static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
{
3012 3013 3014 3015
	int queue;

	for (queue = 0; queue < txq_number; queue++)
		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3016 3017 3018 3019 3020 3021
}


/* Init all Rx queues */
static int mvneta_setup_rxqs(struct mvneta_port *pp)
{
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
	int queue;

	for (queue = 0; queue < rxq_number; queue++) {
		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);

		if (err) {
			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
				   __func__, queue);
			mvneta_cleanup_rxqs(pp);
			return err;
		}
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
	}

	return 0;
}

/* Init all tx queues */
static int mvneta_setup_txqs(struct mvneta_port *pp)
{
	int queue;

	for (queue = 0; queue < txq_number; queue++) {
		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
		if (err) {
			netdev_err(pp->dev, "%s: can't create txq=%d\n",
				   __func__, queue);
			mvneta_cleanup_txqs(pp);
			return err;
		}
	}

	return 0;
}

static void mvneta_start_dev(struct mvneta_port *pp)
{
3058
	int cpu;
3059
	struct net_device *ndev = pp->dev;
3060

3061 3062 3063 3064 3065 3066
	mvneta_max_rx_size_set(pp, pp->pkt_size);
	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);

	/* start the Rx/Tx activity */
	mvneta_port_enable(pp);

3067 3068 3069 3070 3071
	if (!pp->neta_armada3700) {
		/* Enable polling on the port */
		for_each_online_cpu(cpu) {
			struct mvneta_pcpu_port *port =
				per_cpu_ptr(pp->ports, cpu);
3072

3073 3074 3075 3076
			napi_enable(&port->napi);
		}
	} else {
		napi_enable(&pp->napi);
3077
	}
3078

3079
	/* Unmask interrupts. It has to be done from each CPU */
3080 3081
	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);

3082 3083 3084 3085
	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
		    MVNETA_CAUSE_LINK_CHANGE |
		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
3086

3087
	phy_start(ndev->phydev);
3088 3089 3090 3091 3092
	netif_tx_start_all_queues(pp->dev);
}

static void mvneta_stop_dev(struct mvneta_port *pp)
{
3093
	unsigned int cpu;
3094
	struct net_device *ndev = pp->dev;
3095

3096
	phy_stop(ndev->phydev);
3097

3098 3099 3100 3101
	if (!pp->neta_armada3700) {
		for_each_online_cpu(cpu) {
			struct mvneta_pcpu_port *port =
				per_cpu_ptr(pp->ports, cpu);
3102

3103 3104 3105 3106
			napi_disable(&port->napi);
		}
	} else {
		napi_disable(&pp->napi);
3107
	}
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117

	netif_carrier_off(pp->dev);

	mvneta_port_down(pp);
	netif_tx_stop_all_queues(pp->dev);

	/* Stop the port activity */
	mvneta_port_disable(pp);

	/* Clear all ethernet port interrupts */
3118
	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3119 3120

	/* Mask all ethernet port interrupts */
3121
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3122 3123 3124 3125 3126

	mvneta_tx_reset(pp);
	mvneta_rx_reset(pp);
}

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
static void mvneta_percpu_enable(void *arg)
{
	struct mvneta_port *pp = arg;

	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
}

static void mvneta_percpu_disable(void *arg)
{
	struct mvneta_port *pp = arg;

	disable_percpu_irq(pp->dev->irq);
}

3141 3142 3143 3144 3145 3146
/* Change the device mtu */
static int mvneta_change_mtu(struct net_device *dev, int mtu)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int ret;

3147 3148 3149 3150 3151
	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
	}
3152 3153 3154

	dev->mtu = mtu;

3155
	if (!netif_running(dev)) {
3156 3157 3158
		if (pp->bm_priv)
			mvneta_bm_update_mtu(pp, mtu);

3159
		netdev_update_features(dev);
3160
		return 0;
3161
	}
3162

3163
	/* The interface is running, so we have to force a
3164
	 * reallocation of the queues
3165 3166
	 */
	mvneta_stop_dev(pp);
3167
	on_each_cpu(mvneta_percpu_disable, pp, true);
3168 3169 3170 3171

	mvneta_cleanup_txqs(pp);
	mvneta_cleanup_rxqs(pp);

3172 3173 3174
	if (pp->bm_priv)
		mvneta_bm_update_mtu(pp, mtu);

3175
	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3176 3177
	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3178 3179 3180

	ret = mvneta_setup_rxqs(pp);
	if (ret) {
3181
		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3182 3183 3184
		return ret;
	}

3185 3186 3187 3188 3189
	ret = mvneta_setup_txqs(pp);
	if (ret) {
		netdev_err(dev, "unable to setup txqs after MTU change\n");
		return ret;
	}
3190

3191
	on_each_cpu(mvneta_percpu_enable, pp, true);
3192 3193 3194
	mvneta_start_dev(pp);
	mvneta_port_up(pp);

3195 3196
	netdev_update_features(dev);

3197 3198 3199
	return 0;
}

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
static netdev_features_t mvneta_fix_features(struct net_device *dev,
					     netdev_features_t features)
{
	struct mvneta_port *pp = netdev_priv(dev);

	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
		netdev_info(dev,
			    "Disable IP checksum for MTU greater than %dB\n",
			    pp->tx_csum_limit);
	}

	return features;
}

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
/* Get mac address */
static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
{
	u32 mac_addr_l, mac_addr_h;

	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
	addr[0] = (mac_addr_h >> 24) & 0xFF;
	addr[1] = (mac_addr_h >> 16) & 0xFF;
	addr[2] = (mac_addr_h >> 8) & 0xFF;
	addr[3] = mac_addr_h & 0xFF;
	addr[4] = (mac_addr_l >> 8) & 0xFF;
	addr[5] = mac_addr_l & 0xFF;
}

3230 3231 3232 3233
/* Handle setting mac address */
static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
{
	struct mvneta_port *pp = netdev_priv(dev);
3234 3235
	struct sockaddr *sockaddr = addr;
	int ret;
3236

3237 3238 3239
	ret = eth_prepare_mac_addr_change(dev, addr);
	if (ret < 0)
		return ret;
3240 3241 3242 3243
	/* Remove previous address table entry */
	mvneta_mac_addr_set(pp, dev->dev_addr, -1);

	/* Set new addr in hw */
3244
	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3245

3246
	eth_commit_mac_addr_change(dev, addr);
3247 3248 3249 3250 3251 3252
	return 0;
}

static void mvneta_adjust_link(struct net_device *ndev)
{
	struct mvneta_port *pp = netdev_priv(ndev);
3253
	struct phy_device *phydev = ndev->phydev;
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
	int status_change = 0;

	if (phydev->link) {
		if ((pp->speed != phydev->speed) ||
		    (pp->duplex != phydev->duplex)) {
			u32 val;

			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
				 MVNETA_GMAC_CONFIG_GMII_SPEED |
3264
				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3265 3266 3267 3268 3269 3270

			if (phydev->duplex)
				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;

			if (phydev->speed == SPEED_1000)
				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3271
			else if (phydev->speed == SPEED_100)
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
				val |= MVNETA_GMAC_CONFIG_MII_SPEED;

			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);

			pp->duplex = phydev->duplex;
			pp->speed  = phydev->speed;
		}
	}

	if (phydev->link != pp->link) {
		if (!phydev->link) {
			pp->duplex = -1;
			pp->speed = 0;
		}

		pp->link = phydev->link;
		status_change = 1;
	}

	if (status_change) {
		if (phydev->link) {
3293 3294 3295 3296 3297 3298 3299 3300
			if (!pp->use_inband_status) {
				u32 val = mvreg_read(pp,
						  MVNETA_GMAC_AUTONEG_CONFIG);
				val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
				val |= MVNETA_GMAC_FORCE_LINK_PASS;
				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
					    val);
			}
3301 3302
			mvneta_port_up(pp);
		} else {
3303 3304 3305 3306 3307 3308 3309 3310
			if (!pp->use_inband_status) {
				u32 val = mvreg_read(pp,
						  MVNETA_GMAC_AUTONEG_CONFIG);
				val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
				val |= MVNETA_GMAC_FORCE_LINK_DOWN;
				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
					    val);
			}
3311 3312
			mvneta_port_down(pp);
		}
3313
		phy_print_status(phydev);
3314 3315 3316 3317 3318 3319
	}
}

static int mvneta_mdio_probe(struct mvneta_port *pp)
{
	struct phy_device *phy_dev;
3320
	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
3321 3322 3323 3324 3325 3326 3327 3328

	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
				 pp->phy_interface);
	if (!phy_dev) {
		netdev_err(pp->dev, "could not find the PHY\n");
		return -ENODEV;
	}

3329 3330 3331
	phy_ethtool_get_wol(phy_dev, &wol);
	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
	phy_dev->supported &= PHY_GBIT_FEATURES;
	phy_dev->advertising = phy_dev->supported;

	pp->link    = 0;
	pp->duplex  = 0;
	pp->speed   = 0;

	return 0;
}

static void mvneta_mdio_remove(struct mvneta_port *pp)
{
3344 3345 3346
	struct net_device *ndev = pp->dev;

	phy_disconnect(ndev->phydev);
3347 3348
}

3349 3350 3351 3352
/* Electing a CPU must be done in an atomic way: it should be done
 * after or before the removal/insertion of a CPU and this function is
 * not reentrant.
 */
3353 3354
static void mvneta_percpu_elect(struct mvneta_port *pp)
{
3355 3356 3357 3358 3359 3360 3361
	int elected_cpu = 0, max_cpu, cpu, i = 0;

	/* Use the cpu associated to the rxq when it is online, in all
	 * the other cases, use the cpu 0 which can't be offline.
	 */
	if (cpu_online(pp->rxq_def))
		elected_cpu = pp->rxq_def;
3362

3363
	max_cpu = num_present_cpus();
3364 3365

	for_each_online_cpu(cpu) {
3366 3367 3368 3369 3370 3371 3372
		int rxq_map = 0, txq_map = 0;
		int rxq;

		for (rxq = 0; rxq < rxq_number; rxq++)
			if ((rxq % max_cpu) == cpu)
				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);

3373
		if (cpu == elected_cpu)
3374 3375
			/* Map the default receive queue queue to the
			 * elected CPU
3376
			 */
3377
			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3378 3379 3380 3381 3382 3383

		/* We update the TX queue map only if we have one
		 * queue. In this case we associate the TX queue to
		 * the CPU bound to the default RX queue
		 */
		if (txq_number == 1)
3384
			txq_map = (cpu == elected_cpu) ?
3385 3386 3387 3388 3389
				MVNETA_CPU_TXQ_ACCESS(1) : 0;
		else
			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;

3390 3391 3392 3393 3394 3395 3396
		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);

		/* Update the interrupt mask on each CPU according the
		 * new mapping
		 */
		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
					 pp, true);
3397
		i++;
3398

3399 3400 3401
	}
};

3402
static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3403
{
3404 3405 3406
	int other_cpu;
	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
						  node_online);
3407 3408 3409
	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);


3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
	spin_lock(&pp->lock);
	/*
	 * Configuring the driver for a new CPU while the driver is
	 * stopping is racy, so just avoid it.
	 */
	if (pp->is_stopped) {
		spin_unlock(&pp->lock);
		return 0;
	}
	netif_tx_stop_all_queues(pp->dev);
3420

3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
	/*
	 * We have to synchronise on tha napi of each CPU except the one
	 * just being woken up
	 */
	for_each_online_cpu(other_cpu) {
		if (other_cpu != cpu) {
			struct mvneta_pcpu_port *other_port =
				per_cpu_ptr(pp->ports, other_cpu);

			napi_synchronize(&other_port->napi);
3431
		}
3432
	}
3433

3434 3435 3436
	/* Mask all ethernet port interrupts */
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
	napi_enable(&port->napi);
3437

3438 3439 3440 3441 3442
	/*
	 * Enable per-CPU interrupts on the CPU that is
	 * brought up.
	 */
	mvneta_percpu_enable(pp);
3443

3444 3445 3446 3447 3448
	/*
	 * Enable per-CPU interrupt on the one CPU we care
	 * about.
	 */
	mvneta_percpu_elect(pp);
3449

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
	/* Unmask all ethernet port interrupts */
	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
		    MVNETA_CAUSE_LINK_CHANGE |
		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
	netif_tx_start_all_queues(pp->dev);
	spin_unlock(&pp->lock);
	return 0;
}
3460

3461 3462 3463 3464 3465
static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
{
	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
						  node_online);
	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3466

3467 3468 3469 3470 3471 3472 3473 3474
	/*
	 * Thanks to this lock we are sure that any pending cpu election is
	 * done.
	 */
	spin_lock(&pp->lock);
	/* Mask all ethernet port interrupts */
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
	spin_unlock(&pp->lock);
3475

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
	napi_synchronize(&port->napi);
	napi_disable(&port->napi);
	/* Disable per-CPU interrupts on the CPU that is brought down. */
	mvneta_percpu_disable(pp);
	return 0;
}

static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
{
	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
						  node_dead);

	/* Check if a new CPU must be elected now this on is down */
	spin_lock(&pp->lock);
	mvneta_percpu_elect(pp);
	spin_unlock(&pp->lock);
	/* Unmask all ethernet port interrupts */
	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
		    MVNETA_CAUSE_LINK_CHANGE |
		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
	netif_tx_start_all_queues(pp->dev);
	return 0;
3500 3501
}

3502 3503 3504
static int mvneta_open(struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);
3505
	int ret;
3506 3507

	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3508 3509
	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

	ret = mvneta_setup_rxqs(pp);
	if (ret)
		return ret;

	ret = mvneta_setup_txqs(pp);
	if (ret)
		goto err_cleanup_rxqs;

	/* Connect to port interrupt line */
3520 3521 3522 3523 3524 3525
	if (pp->neta_armada3700)
		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
				  dev->name, pp);
	else
		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
					 dev->name, pp->ports);
3526 3527 3528 3529 3530
	if (ret) {
		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
		goto err_cleanup_txqs;
	}

3531 3532 3533 3534 3535
	if (!pp->neta_armada3700) {
		/* Enable per-CPU interrupt on all the CPU to handle our RX
		 * queue interrupts
		 */
		on_each_cpu(mvneta_percpu_enable, pp, true);
3536

3537 3538 3539 3540 3541 3542 3543 3544
		pp->is_stopped = false;
		/* Register a CPU notifier to handle the case where our CPU
		 * might be taken offline.
		 */
		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
						       &pp->node_online);
		if (ret)
			goto err_free_irq;
3545

3546 3547 3548 3549 3550
		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
						       &pp->node_dead);
		if (ret)
			goto err_free_online_hp;
	}
3551

3552 3553 3554 3555 3556 3557
	/* In default link is down */
	netif_carrier_off(pp->dev);

	ret = mvneta_mdio_probe(pp);
	if (ret < 0) {
		netdev_err(dev, "cannot probe MDIO bus\n");
3558
		goto err_free_dead_hp;
3559 3560 3561 3562 3563 3564
	}

	mvneta_start_dev(pp);

	return 0;

3565
err_free_dead_hp:
3566 3567 3568
	if (!pp->neta_armada3700)
		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
						    &pp->node_dead);
3569
err_free_online_hp:
3570 3571 3572
	if (!pp->neta_armada3700)
		cpuhp_state_remove_instance_nocalls(online_hpstate,
						    &pp->node_online);
3573
err_free_irq:
3574 3575 3576 3577 3578 3579
	if (pp->neta_armada3700) {
		free_irq(pp->dev->irq, pp);
	} else {
		on_each_cpu(mvneta_percpu_disable, pp, true);
		free_percpu_irq(pp->dev->irq, pp->ports);
	}
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
err_cleanup_txqs:
	mvneta_cleanup_txqs(pp);
err_cleanup_rxqs:
	mvneta_cleanup_rxqs(pp);
	return ret;
}

/* Stop the port, free port interrupt line */
static int mvneta_stop(struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);

3592 3593 3594 3595 3596 3597 3598 3599 3600
	if (!pp->neta_armada3700) {
		/* Inform that we are stopping so we don't want to setup the
		 * driver for new CPUs in the notifiers. The code of the
		 * notifier for CPU online is protected by the same spinlock,
		 * so when we get the lock, the notifer work is done.
		 */
		spin_lock(&pp->lock);
		pp->is_stopped = true;
		spin_unlock(&pp->lock);
3601

3602 3603
		mvneta_stop_dev(pp);
		mvneta_mdio_remove(pp);
3604

3605 3606 3607 3608
		cpuhp_state_remove_instance_nocalls(online_hpstate,
						    &pp->node_online);
		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
						    &pp->node_dead);
3609 3610 3611 3612 3613 3614 3615 3616
		on_each_cpu(mvneta_percpu_disable, pp, true);
		free_percpu_irq(dev->irq, pp->ports);
	} else {
		mvneta_stop_dev(pp);
		mvneta_mdio_remove(pp);
		free_irq(dev->irq, pp);
	}

3617 3618 3619 3620 3621 3622
	mvneta_cleanup_rxqs(pp);
	mvneta_cleanup_txqs(pp);

	return 0;
}

3623 3624
static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
3625
	if (!dev->phydev)
3626 3627
		return -ENOTSUPP;

3628
	return phy_mii_ioctl(dev->phydev, ifr, cmd);
3629 3630
}

3631 3632
/* Ethtool methods */

3633
/* Set link ksettings (phy address, speed) for ethtools */
3634 3635 3636
static int
mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
				  const struct ethtool_link_ksettings *cmd)
3637
{
3638 3639
	struct mvneta_port *pp = netdev_priv(ndev);
	struct phy_device *phydev = ndev->phydev;
3640

3641
	if (!phydev)
3642 3643
		return -ENODEV;

3644
	if ((cmd->base.autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3645 3646
		u32 val;

3647
		mvneta_set_autoneg(pp, cmd->base.autoneg == AUTONEG_ENABLE);
3648

3649
		if (cmd->base.autoneg == AUTONEG_DISABLE) {
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
				 MVNETA_GMAC_CONFIG_GMII_SPEED |
				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);

			if (phydev->duplex)
				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;

			if (phydev->speed == SPEED_1000)
				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
			else if (phydev->speed == SPEED_100)
				val |= MVNETA_GMAC_CONFIG_MII_SPEED;

			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
		}

3666
		pp->use_inband_status = (cmd->base.autoneg == AUTONEG_ENABLE);
3667 3668 3669
		netdev_info(pp->dev, "autoneg status set to %i\n",
			    pp->use_inband_status);

3670
		if (netif_running(ndev)) {
3671 3672 3673 3674 3675
			mvneta_port_down(pp);
			mvneta_port_up(pp);
		}
	}

3676
	return phy_ethtool_ksettings_set(ndev->phydev, cmd);
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
}

/* Set interrupt coalescing for ethtools */
static int mvneta_ethtool_set_coalesce(struct net_device *dev,
				       struct ethtool_coalesce *c)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int queue;

	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
		rxq->time_coal = c->rx_coalesce_usecs;
		rxq->pkts_coal = c->rx_max_coalesced_frames;
		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
	}

	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];
		txq->done_pkts_coal = c->tx_max_coalesced_frames;
		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
	}

	return 0;
}

/* get coalescing for ethtools */
static int mvneta_ethtool_get_coalesce(struct net_device *dev,
				       struct ethtool_coalesce *c)
{
	struct mvneta_port *pp = netdev_priv(dev);

	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;

	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
	return 0;
}


static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
				    struct ethtool_drvinfo *drvinfo)
{
	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
		sizeof(drvinfo->driver));
	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
		sizeof(drvinfo->version));
	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
		sizeof(drvinfo->bus_info));
}


static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
					 struct ethtool_ringparam *ring)
{
	struct mvneta_port *pp = netdev_priv(netdev);

	ring->rx_max_pending = MVNETA_MAX_RXD;
	ring->tx_max_pending = MVNETA_MAX_TXD;
	ring->rx_pending = pp->rx_ring_size;
	ring->tx_pending = pp->tx_ring_size;
}

static int mvneta_ethtool_set_ringparam(struct net_device *dev,
					struct ethtool_ringparam *ring)
{
	struct mvneta_port *pp = netdev_priv(dev);

	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
		return -EINVAL;
	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
		ring->rx_pending : MVNETA_MAX_RXD;
3749 3750 3751 3752 3753 3754

	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
	if (pp->tx_ring_size != ring->tx_pending)
		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
			    pp->tx_ring_size, ring->tx_pending);
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767

	if (netif_running(dev)) {
		mvneta_stop(dev);
		if (mvneta_open(dev)) {
			netdev_err(dev,
				   "error on opening device after ring param change\n");
			return -ENOMEM;
		}
	}

	return 0;
}

R
Russell King 已提交
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
				       u8 *data)
{
	if (sset == ETH_SS_STATS) {
		int i;

		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
			memcpy(data + i * ETH_GSTRING_LEN,
			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
	}
}

static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
{
	const struct mvneta_statistic *s;
	void __iomem *base = pp->base;
	u32 high, low, val;
3785
	u64 val64;
R
Russell King 已提交
3786 3787 3788 3789 3790 3791 3792 3793
	int i;

	for (i = 0, s = mvneta_statistics;
	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
	     s++, i++) {
		switch (s->type) {
		case T_REG_32:
			val = readl_relaxed(base + s->offset);
3794
			pp->ethtool_stats[i] += val;
R
Russell King 已提交
3795 3796 3797 3798 3799
			break;
		case T_REG_64:
			/* Docs say to read low 32-bit then high */
			low = readl_relaxed(base + s->offset);
			high = readl_relaxed(base + s->offset + 4);
3800 3801
			val64 = (u64)high << 32 | low;
			pp->ethtool_stats[i] += val64;
R
Russell King 已提交
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
			break;
		}
	}
}

static void mvneta_ethtool_get_stats(struct net_device *dev,
				     struct ethtool_stats *stats, u64 *data)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int i;

	mvneta_ethtool_update_stats(pp);

	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
		*data++ = pp->ethtool_stats[i];
}

static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
{
	if (sset == ETH_SS_STATS)
		return ARRAY_SIZE(mvneta_statistics);
	return -EOPNOTSUPP;
}

3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
{
	return MVNETA_RSS_LU_TABLE_SIZE;
}

static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
				    struct ethtool_rxnfc *info,
				    u32 *rules __always_unused)
{
	switch (info->cmd) {
	case ETHTOOL_GRXRINGS:
		info->data =  rxq_number;
		return 0;
	case ETHTOOL_GRXFH:
		return -EOPNOTSUPP;
	default:
		return -EOPNOTSUPP;
	}
}

static int  mvneta_config_rss(struct mvneta_port *pp)
{
	int cpu;
	u32 val;

	netif_tx_stop_all_queues(pp->dev);

3853
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873

	/* We have to synchronise on the napi of each CPU */
	for_each_online_cpu(cpu) {
		struct mvneta_pcpu_port *pcpu_port =
			per_cpu_ptr(pp->ports, cpu);

		napi_synchronize(&pcpu_port->napi);
		napi_disable(&pcpu_port->napi);
	}

	pp->rxq_def = pp->indir[0];

	/* Update unicast mapping */
	mvneta_set_rx_mode(pp->dev);

	/* Update val of portCfg register accordingly with all RxQueue types */
	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
	mvreg_write(pp, MVNETA_PORT_CONFIG, val);

	/* Update the elected CPU matching the new rxq_def */
3874
	spin_lock(&pp->lock);
3875
	mvneta_percpu_elect(pp);
3876
	spin_unlock(&pp->lock);
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894

	/* We have to synchronise on the napi of each CPU */
	for_each_online_cpu(cpu) {
		struct mvneta_pcpu_port *pcpu_port =
			per_cpu_ptr(pp->ports, cpu);

		napi_enable(&pcpu_port->napi);
	}

	netif_tx_start_all_queues(pp->dev);

	return 0;
}

static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
				   const u8 *key, const u8 hfunc)
{
	struct mvneta_port *pp = netdev_priv(dev);
3895 3896 3897 3898 3899

	/* Current code for Armada 3700 doesn't support RSS features yet */
	if (pp->neta_armada3700)
		return -EOPNOTSUPP;

3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
	/* We require at least one supported parameter to be changed
	 * and no change in any of the unsupported parameters
	 */
	if (key ||
	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
		return -EOPNOTSUPP;

	if (!indir)
		return 0;

	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);

	return mvneta_config_rss(pp);
}

static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
				   u8 *hfunc)
{
	struct mvneta_port *pp = netdev_priv(dev);

3920 3921 3922 3923
	/* Current code for Armada 3700 doesn't support RSS features yet */
	if (pp->neta_armada3700)
		return -EOPNOTSUPP;

3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
	if (hfunc)
		*hfunc = ETH_RSS_HASH_TOP;

	if (!indir)
		return 0;

	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);

	return 0;
}

3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
static void mvneta_ethtool_get_wol(struct net_device *dev,
				   struct ethtool_wolinfo *wol)
{
	wol->supported = 0;
	wol->wolopts = 0;

	if (dev->phydev)
		phy_ethtool_get_wol(dev->phydev, wol);
}

static int mvneta_ethtool_set_wol(struct net_device *dev,
				  struct ethtool_wolinfo *wol)
{
3948 3949
	int ret;

3950 3951 3952
	if (!dev->phydev)
		return -EOPNOTSUPP;

3953 3954 3955 3956 3957
	ret = phy_ethtool_set_wol(dev->phydev, wol);
	if (!ret)
		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);

	return ret;
3958 3959
}

3960 3961 3962 3963 3964 3965 3966
static const struct net_device_ops mvneta_netdev_ops = {
	.ndo_open            = mvneta_open,
	.ndo_stop            = mvneta_stop,
	.ndo_start_xmit      = mvneta_tx,
	.ndo_set_rx_mode     = mvneta_set_rx_mode,
	.ndo_set_mac_address = mvneta_set_mac_addr,
	.ndo_change_mtu      = mvneta_change_mtu,
3967
	.ndo_fix_features    = mvneta_fix_features,
3968
	.ndo_get_stats64     = mvneta_get_stats64,
3969
	.ndo_do_ioctl        = mvneta_ioctl,
3970 3971
};

3972
static const struct ethtool_ops mvneta_eth_tool_ops = {
3973
	.nway_reset	= phy_ethtool_nway_reset,
3974 3975 3976 3977 3978 3979
	.get_link       = ethtool_op_get_link,
	.set_coalesce   = mvneta_ethtool_set_coalesce,
	.get_coalesce   = mvneta_ethtool_get_coalesce,
	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
	.get_ringparam  = mvneta_ethtool_get_ringparam,
	.set_ringparam	= mvneta_ethtool_set_ringparam,
R
Russell King 已提交
3980 3981 3982
	.get_strings	= mvneta_ethtool_get_strings,
	.get_ethtool_stats = mvneta_ethtool_get_stats,
	.get_sset_count	= mvneta_ethtool_get_sset_count,
3983 3984 3985 3986
	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
	.get_rxfh	= mvneta_ethtool_get_rxfh,
	.set_rxfh	= mvneta_ethtool_set_rxfh,
3987 3988
	.get_link_ksettings = phy_ethtool_get_link_ksettings,
	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
3989 3990
	.get_wol        = mvneta_ethtool_get_wol,
	.set_wol        = mvneta_ethtool_set_wol,
3991 3992 3993
};

/* Initialize hw */
3994
static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3995 3996 3997 3998 3999 4000 4001 4002 4003
{
	int queue;

	/* Disable port */
	mvneta_port_disable(pp);

	/* Set port default values */
	mvneta_defaults_set(pp);

4004
	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
	if (!pp->txqs)
		return -ENOMEM;

	/* Initialize TX descriptor rings */
	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];
		txq->id = queue;
		txq->size = pp->tx_ring_size;
		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
	}

4016
	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4017
	if (!pp->rxqs)
4018 4019 4020 4021 4022 4023 4024 4025 4026
		return -ENOMEM;

	/* Create Rx descriptor rings */
	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
		rxq->id = queue;
		rxq->size = pp->rx_ring_size;
		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
		rxq->time_coal = MVNETA_RX_COAL_USEC;
4027 4028 4029 4030 4031
		rxq->buf_virt_addr
			= devm_kmalloc_array(pp->dev->dev.parent,
					     rxq->size,
					     sizeof(*rxq->buf_virt_addr),
					     GFP_KERNEL);
4032 4033
		if (!rxq->buf_virt_addr)
			return -ENOMEM;
4034 4035 4036 4037 4038 4039
	}

	return 0;
}

/* platform glue : initialize decoding windows */
G
Greg KH 已提交
4040 4041
static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
				     const struct mbus_dram_target_info *dram)
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
{
	u32 win_enable;
	u32 win_protect;
	int i;

	for (i = 0; i < 6; i++) {
		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);

		if (i < 4)
			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
	}

	win_enable = 0x3f;
	win_protect = 0;

4058 4059 4060 4061 4062 4063 4064 4065
	if (dram) {
		for (i = 0; i < dram->num_cs; i++) {
			const struct mbus_dram_window *cs = dram->cs + i;

			mvreg_write(pp, MVNETA_WIN_BASE(i),
				    (cs->base & 0xffff0000) |
				    (cs->mbus_attr << 8) |
				    dram->mbus_dram_target_id);
4066

4067 4068
			mvreg_write(pp, MVNETA_WIN_SIZE(i),
				    (cs->size - 1) & 0xffff0000);
4069

4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
			win_enable &= ~(1 << i);
			win_protect |= 3 << (2 * i);
		}
	} else {
		/* For Armada3700 open default 4GB Mbus window, leaving
		 * arbitration of target/attribute to a different layer
		 * of configuration.
		 */
		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
		win_enable &= ~BIT(0);
		win_protect = 3;
4081 4082 4083
	}

	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4084
	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4085 4086 4087
}

/* Power up the port */
4088
static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4089
{
4090
	u32 ctrl;
4091 4092 4093 4094

	/* MAC Cause register should be cleared */
	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);

4095
	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
4096

4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
	/* Even though it might look weird, when we're configured in
	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
	 */
	switch(phy_mode) {
	case PHY_INTERFACE_MODE_QSGMII:
		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
		break;
	case PHY_INTERFACE_MODE_SGMII:
		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
		break;
	case PHY_INTERFACE_MODE_RGMII:
	case PHY_INTERFACE_MODE_RGMII_ID:
4111 4112
	case PHY_INTERFACE_MODE_RGMII_RXID:
	case PHY_INTERFACE_MODE_RGMII_TXID:
4113 4114 4115 4116 4117
		ctrl |= MVNETA_GMAC2_PORT_RGMII;
		break;
	default:
		return -EINVAL;
	}
4118 4119

	/* Cancel Port Reset */
4120 4121
	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
4122 4123 4124 4125

	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
		MVNETA_GMAC2_PORT_RESET) != 0)
		continue;
4126 4127

	return 0;
4128 4129 4130
}

/* Device initialization routine */
G
Greg KH 已提交
4131
static int mvneta_probe(struct platform_device *pdev)
4132
{
4133
	struct resource *res;
4134 4135
	struct device_node *dn = pdev->dev.of_node;
	struct device_node *phy_node;
4136
	struct device_node *bm_node;
4137 4138
	struct mvneta_port *pp;
	struct net_device *dev;
4139 4140 4141
	const char *dt_mac_addr;
	char hw_mac_addr[ETH_ALEN];
	const char *mac_from;
4142
	const char *managed;
4143
	int tx_csum_limit;
4144 4145
	int phy_mode;
	int err;
4146
	int cpu;
4147

4148
	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
	if (!dev)
		return -ENOMEM;

	dev->irq = irq_of_parse_and_map(dn, 0);
	if (dev->irq == 0) {
		err = -EINVAL;
		goto err_free_netdev;
	}

	phy_node = of_parse_phandle(dn, "phy", 0);
	if (!phy_node) {
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
		if (!of_phy_is_fixed_link(dn)) {
			dev_err(&pdev->dev, "no PHY specified\n");
			err = -ENODEV;
			goto err_free_irq;
		}

		err = of_phy_register_fixed_link(dn);
		if (err < 0) {
			dev_err(&pdev->dev, "cannot register fixed PHY\n");
			goto err_free_irq;
		}

		/* In the case of a fixed PHY, the DT node associated
		 * to the PHY is the Ethernet MAC DT node.
		 */
4175
		phy_node = of_node_get(dn);
4176 4177 4178 4179 4180 4181
	}

	phy_mode = of_get_phy_mode(dn);
	if (phy_mode < 0) {
		dev_err(&pdev->dev, "incorrect phy-mode\n");
		err = -EINVAL;
4182
		goto err_put_phy_node;
4183 4184 4185 4186 4187 4188
	}

	dev->tx_queue_len = MVNETA_MAX_TXD;
	dev->watchdog_timeo = 5 * HZ;
	dev->netdev_ops = &mvneta_netdev_ops;

4189
	dev->ethtool_ops = &mvneta_eth_tool_ops;
4190 4191

	pp = netdev_priv(dev);
4192
	spin_lock_init(&pp->lock);
4193 4194
	pp->phy_node = phy_node;
	pp->phy_interface = phy_mode;
4195 4196 4197 4198

	err = of_property_read_string(dn, "managed", &managed);
	pp->use_inband_status = (err == 0 &&
				 strcmp(managed, "in-band-status") == 0);
4199

4200 4201
	pp->rxq_def = rxq_def;

4202 4203 4204 4205 4206 4207 4208
	/* Set RX packet offset correction for platforms, whose
	 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
	 * platforms and 0B for 32-bit ones.
	 */
	pp->rx_offset_correction =
		max(0, NET_SKB_PAD - MVNETA_RX_PKT_OFFSET_CORRECTION);

4209 4210
	pp->indir[0] = rxq_def;

4211 4212 4213 4214
	/* Get special SoC configurations */
	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
		pp->neta_armada3700 = true;

4215 4216 4217
	pp->clk = devm_clk_get(&pdev->dev, "core");
	if (IS_ERR(pp->clk))
		pp->clk = devm_clk_get(&pdev->dev, NULL);
T
Thomas Petazzoni 已提交
4218 4219
	if (IS_ERR(pp->clk)) {
		err = PTR_ERR(pp->clk);
4220
		goto err_put_phy_node;
T
Thomas Petazzoni 已提交
4221 4222 4223 4224
	}

	clk_prepare_enable(pp->clk);

4225 4226 4227 4228
	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
	if (!IS_ERR(pp->clk_bus))
		clk_prepare_enable(pp->clk_bus);

4229 4230 4231 4232
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	pp->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(pp->base)) {
		err = PTR_ERR(pp->base);
4233 4234 4235
		goto err_clk;
	}

4236 4237 4238 4239 4240 4241 4242
	/* Alloc per-cpu port structure */
	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
	if (!pp->ports) {
		err = -ENOMEM;
		goto err_clk;
	}

4243
	/* Alloc per-cpu stats */
4244
	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4245 4246
	if (!pp->stats) {
		err = -ENOMEM;
4247
		goto err_free_ports;
4248 4249
	}

4250
	dt_mac_addr = of_get_mac_address(dn);
4251
	if (dt_mac_addr) {
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
		mac_from = "device tree";
		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
	} else {
		mvneta_get_mac_addr(pp, hw_mac_addr);
		if (is_valid_ether_addr(hw_mac_addr)) {
			mac_from = "hardware";
			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
		} else {
			mac_from = "random";
			eth_hw_addr_random(dev);
		}
	}

4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
		if (tx_csum_limit < 0 ||
		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
			dev_info(&pdev->dev,
				 "Wrong TX csum limit in DT, set to %dB\n",
				 MVNETA_TX_CSUM_DEF_SIZE);
		}
	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
	} else {
		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
	}

	pp->tx_csum_limit = tx_csum_limit;
4280

4281
	pp->dram_target_info = mv_mbus_dram_info();
4282 4283 4284 4285
	/* Armada3700 requires setting default configuration of Mbus
	 * windows, however without using filled mbus_dram_target_info
	 * structure.
	 */
4286 4287
	if (pp->dram_target_info || pp->neta_armada3700)
		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4288

4289 4290 4291 4292 4293 4294
	pp->tx_ring_size = MVNETA_MAX_TXD;
	pp->rx_ring_size = MVNETA_MAX_RXD;

	pp->dev = dev;
	SET_NETDEV_DEV(dev, &pdev->dev);

4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
	pp->id = global_port_id++;

	/* Obtain access to BM resources if enabled and already initialized */
	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
	if (bm_node && bm_node->data) {
		pp->bm_priv = bm_node->data;
		err = mvneta_bm_port_init(pdev, pp);
		if (err < 0) {
			dev_info(&pdev->dev, "use SW buffer management\n");
			pp->bm_priv = NULL;
		}
	}
4307
	of_node_put(bm_node);
4308

4309 4310
	err = mvneta_init(&pdev->dev, pp);
	if (err < 0)
4311
		goto err_netdev;
4312 4313 4314 4315

	err = mvneta_port_power_up(pp, phy_mode);
	if (err < 0) {
		dev_err(&pdev->dev, "can't power up port\n");
4316
		goto err_netdev;
4317
	}
4318

4319 4320 4321 4322 4323 4324 4325 4326 4327
	/* Armada3700 network controller does not support per-cpu
	 * operation, so only single NAPI should be initialized.
	 */
	if (pp->neta_armada3700) {
		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
	} else {
		for_each_present_cpu(cpu) {
			struct mvneta_pcpu_port *port =
				per_cpu_ptr(pp->ports, cpu);
4328

4329 4330 4331 4332
			netif_napi_add(dev, &port->napi, mvneta_poll,
				       NAPI_POLL_WEIGHT);
			port->pp = pp;
		}
4333
	}
4334

4335
	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
4336 4337
	dev->hw_features |= dev->features;
	dev->vlan_features |= dev->features;
4338
	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4339
	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4340

4341 4342 4343 4344 4345
	/* MTU range: 68 - 9676 */
	dev->min_mtu = ETH_MIN_MTU;
	/* 9676 == 9700 - 20 and rounding to 8 */
	dev->max_mtu = 9676;

4346 4347 4348
	err = register_netdev(dev);
	if (err < 0) {
		dev_err(&pdev->dev, "failed to register\n");
4349
		goto err_free_stats;
4350 4351
	}

4352 4353
	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
		    dev->dev_addr);
4354 4355 4356

	platform_set_drvdata(pdev, pp->dev);

4357 4358 4359 4360
	if (pp->use_inband_status) {
		struct phy_device *phy = of_phy_find_device(dn);

		mvneta_fixed_link_update(pp, phy);
4361

A
Andrew Lunn 已提交
4362
		put_device(&phy->mdio.dev);
4363 4364
	}

4365 4366
	return 0;

4367 4368 4369 4370 4371 4372 4373
err_netdev:
	unregister_netdev(dev);
	if (pp->bm_priv) {
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
				       1 << pp->id);
	}
4374 4375
err_free_stats:
	free_percpu(pp->stats);
4376 4377
err_free_ports:
	free_percpu(pp->ports);
4378
err_clk:
4379
	clk_disable_unprepare(pp->clk_bus);
4380
	clk_disable_unprepare(pp->clk);
4381 4382
err_put_phy_node:
	of_node_put(phy_node);
4383 4384
	if (of_phy_is_fixed_link(dn))
		of_phy_deregister_fixed_link(dn);
4385 4386 4387 4388 4389 4390 4391 4392
err_free_irq:
	irq_dispose_mapping(dev->irq);
err_free_netdev:
	free_netdev(dev);
	return err;
}

/* Device removal routine */
G
Greg KH 已提交
4393
static int mvneta_remove(struct platform_device *pdev)
4394 4395
{
	struct net_device  *dev = platform_get_drvdata(pdev);
4396
	struct device_node *dn = pdev->dev.of_node;
4397 4398 4399
	struct mvneta_port *pp = netdev_priv(dev);

	unregister_netdev(dev);
4400
	clk_disable_unprepare(pp->clk_bus);
T
Thomas Petazzoni 已提交
4401
	clk_disable_unprepare(pp->clk);
4402
	free_percpu(pp->ports);
4403
	free_percpu(pp->stats);
4404 4405
	if (of_phy_is_fixed_link(dn))
		of_phy_deregister_fixed_link(dn);
4406
	irq_dispose_mapping(dev->irq);
4407
	of_node_put(pp->phy_node);
4408 4409
	free_netdev(dev);

4410 4411 4412 4413 4414 4415
	if (pp->bm_priv) {
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
				       1 << pp->id);
	}

4416 4417 4418
	return 0;
}

4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
#ifdef CONFIG_PM_SLEEP
static int mvneta_suspend(struct device *device)
{
	struct net_device *dev = dev_get_drvdata(device);
	struct mvneta_port *pp = netdev_priv(dev);

	if (netif_running(dev))
		mvneta_stop(dev);
	netif_device_detach(dev);
	clk_disable_unprepare(pp->clk_bus);
	clk_disable_unprepare(pp->clk);
	return 0;
}

static int mvneta_resume(struct device *device)
{
	struct platform_device *pdev = to_platform_device(device);
	struct net_device *dev = dev_get_drvdata(device);
	struct mvneta_port *pp = netdev_priv(dev);
	int err;

	clk_prepare_enable(pp->clk);
	if (!IS_ERR(pp->clk_bus))
		clk_prepare_enable(pp->clk_bus);
	if (pp->dram_target_info || pp->neta_armada3700)
		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
	if (pp->bm_priv) {
		err = mvneta_bm_port_init(pdev, pp);
		if (err < 0) {
			dev_info(&pdev->dev, "use SW buffer management\n");
			pp->bm_priv = NULL;
		}
	}
	mvneta_defaults_set(pp);
	err = mvneta_port_power_up(pp, pp->phy_interface);
	if (err < 0) {
		dev_err(device, "can't power up port\n");
		return err;
	}

	if (pp->use_inband_status)
		mvneta_fixed_link_update(pp, dev->phydev);

	netif_device_attach(dev);
4463
	if (netif_running(dev)) {
4464
		mvneta_open(dev);
4465 4466 4467
		mvneta_set_rx_mode(dev);
	}

4468 4469 4470 4471 4472 4473
	return 0;
}
#endif

static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);

4474 4475
static const struct of_device_id mvneta_match[] = {
	{ .compatible = "marvell,armada-370-neta" },
4476
	{ .compatible = "marvell,armada-xp-neta" },
4477
	{ .compatible = "marvell,armada-3700-neta" },
4478 4479 4480 4481 4482 4483
	{ }
};
MODULE_DEVICE_TABLE(of, mvneta_match);

static struct platform_driver mvneta_driver = {
	.probe = mvneta_probe,
G
Greg KH 已提交
4484
	.remove = mvneta_remove,
4485 4486 4487
	.driver = {
		.name = MVNETA_DRIVER_NAME,
		.of_match_table = mvneta_match,
4488
		.pm = &mvneta_pm_ops,
4489 4490 4491
	},
};

4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
static int __init mvneta_driver_init(void)
{
	int ret;

	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
				      mvneta_cpu_online,
				      mvneta_cpu_down_prepare);
	if (ret < 0)
		goto out;
	online_hpstate = ret;
	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
				      NULL, mvneta_cpu_dead);
	if (ret)
		goto err_dead;

	ret = platform_driver_register(&mvneta_driver);
	if (ret)
		goto err;
	return 0;

err:
	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
err_dead:
	cpuhp_remove_multi_state(online_hpstate);
out:
	return ret;
}
module_init(mvneta_driver_init);

static void __exit mvneta_driver_exit(void)
{
	platform_driver_unregister(&mvneta_driver);
	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
	cpuhp_remove_multi_state(online_hpstate);
}
module_exit(mvneta_driver_exit);
4528 4529 4530 4531 4532 4533 4534 4535 4536

MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
MODULE_LICENSE("GPL");

module_param(rxq_number, int, S_IRUGO);
module_param(txq_number, int, S_IRUGO);

module_param(rxq_def, int, S_IRUGO);
4537
module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);