mvneta.c 83.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
 *
 * Copyright (C) 2012 Marvell
 *
 * Rami Rosen <rosenr@marvell.com>
 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/skbuff.h>
#include <linux/inetdevice.h>
#include <linux/mbus.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <net/ip.h>
#include <net/ipv6.h>
25
#include <linux/io.h>
26
#include <net/tso.h>
27 28 29 30 31 32
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_address.h>
#include <linux/phy.h>
T
Thomas Petazzoni 已提交
33
#include <linux/clk.h>
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

/* Registers */
#define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
#define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(1)
#define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
#define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
#define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
#define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
#define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
#define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
#define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
#define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
#define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
#define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
#define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
#define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
#define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
#define MVNETA_PORT_RX_RESET                    0x1cc0
#define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
#define MVNETA_PHY_ADDR                         0x2000
#define      MVNETA_PHY_ADDR_MASK               0x1f
#define MVNETA_MBUS_RETRY                       0x2010
#define MVNETA_UNIT_INTR_CAUSE                  0x2080
#define MVNETA_UNIT_CONTROL                     0x20B0
#define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
#define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
#define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
#define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
#define MVNETA_BASE_ADDR_ENABLE                 0x2290
#define MVNETA_PORT_CONFIG                      0x2400
#define      MVNETA_UNI_PROMISC_MODE            BIT(0)
#define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
#define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
#define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
#define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
#define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
#define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
#define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
#define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
						 MVNETA_DEF_RXQ_ARP(q)	 | \
						 MVNETA_DEF_RXQ_TCP(q)	 | \
						 MVNETA_DEF_RXQ_UDP(q)	 | \
						 MVNETA_DEF_RXQ_BPDU(q)	 | \
						 MVNETA_TX_UNSET_ERR_SUM | \
						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
#define MVNETA_PORT_CONFIG_EXTEND                0x2404
#define MVNETA_MAC_ADDR_LOW                      0x2414
#define MVNETA_MAC_ADDR_HIGH                     0x2418
#define MVNETA_SDMA_CONFIG                       0x241c
#define      MVNETA_SDMA_BRST_SIZE_16            4
#define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
#define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
#define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
87
#define      MVNETA_DESC_SWAP                    BIT(6)
88 89 90 91 92
#define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
#define MVNETA_PORT_STATUS                       0x2444
#define      MVNETA_TX_IN_PRGRS                  BIT(1)
#define      MVNETA_TX_FIFO_EMPTY                BIT(8)
#define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
93
#define MVNETA_SERDES_CFG			 0x24A0
94
#define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
95
#define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
96 97 98 99 100 101 102 103 104 105 106
#define MVNETA_TYPE_PRIO                         0x24bc
#define      MVNETA_FORCE_UNI                    BIT(21)
#define MVNETA_TXQ_CMD_1                         0x24e4
#define MVNETA_TXQ_CMD                           0x2448
#define      MVNETA_TXQ_DISABLE_SHIFT            8
#define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
#define MVNETA_ACC_MODE                          0x2500
#define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
#define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
#define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
#define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
107 108 109

/* Exception Interrupt Port/Queue Cause register */

110 111
#define MVNETA_INTR_NEW_CAUSE                    0x25a0
#define MVNETA_INTR_NEW_MASK                     0x25a4
112 113 114 115 116 117 118 119 120 121 122 123 124

/* bits  0..7  = TXQ SENT, one bit per queue.
 * bits  8..15 = RXQ OCCUP, one bit per queue.
 * bits 16..23 = RXQ FREE, one bit per queue.
 * bit  29 = OLD_REG_SUM, see old reg ?
 * bit  30 = TX_ERR_SUM, one bit for 4 ports
 * bit  31 = MISC_SUM,   one bit for 4 ports
 */
#define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
#define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
#define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
#define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)

125 126
#define MVNETA_INTR_OLD_CAUSE                    0x25a8
#define MVNETA_INTR_OLD_MASK                     0x25ac
127 128

/* Data Path Port/Queue Cause Register */
129 130
#define MVNETA_INTR_MISC_CAUSE                   0x25b0
#define MVNETA_INTR_MISC_MASK                    0x25b4
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

#define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
#define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
#define      MVNETA_CAUSE_PTP                    BIT(4)

#define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
#define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
#define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
#define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
#define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
#define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
#define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
#define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)

#define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
#define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
#define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))

#define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
#define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
#define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))

153 154
#define MVNETA_INTR_ENABLE                       0x25b8
#define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
155 156
#define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0xff000000  // note: neta says it's 0x000000FF

157 158 159 160 161 162 163 164 165 166
#define MVNETA_RXQ_CMD                           0x2680
#define      MVNETA_RXQ_DISABLE_SHIFT            8
#define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
#define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
#define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
#define MVNETA_GMAC_CTRL_0                       0x2c00
#define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
#define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
#define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
#define MVNETA_GMAC_CTRL_2                       0x2c08
167
#define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
#define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
#define      MVNETA_GMAC2_PORT_RESET             BIT(6)
#define MVNETA_GMAC_STATUS                       0x2c10
#define      MVNETA_GMAC_LINK_UP                 BIT(0)
#define      MVNETA_GMAC_SPEED_1000              BIT(1)
#define      MVNETA_GMAC_SPEED_100               BIT(2)
#define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
#define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
#define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
#define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
#define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
#define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
#define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
#define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
#define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
#define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
184
#define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
185
#define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
186
#define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
#define MVNETA_MIB_COUNTERS_BASE                 0x3080
#define      MVNETA_MIB_LATE_COLLISION           0x7c
#define MVNETA_DA_FILT_SPEC_MCAST                0x3400
#define MVNETA_DA_FILT_OTH_MCAST                 0x3500
#define MVNETA_DA_FILT_UCAST_BASE                0x3600
#define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
#define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
#define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
#define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
#define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
#define      MVNETA_TXQ_DEC_SENT_SHIFT           16
#define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
#define      MVNETA_TXQ_SENT_DESC_SHIFT          16
#define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
#define MVNETA_PORT_TX_RESET                     0x3cf0
#define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
#define MVNETA_TX_MTU                            0x3e0c
#define MVNETA_TX_TOKEN_SIZE                     0x3e14
#define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
#define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
#define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff

#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff

/* Descriptor ring Macros */
#define MVNETA_QUEUE_NEXT_DESC(q, index)	\
	(((index) < (q)->last_desc) ? ((index) + 1) : 0)

/* Various constants */

/* Coalescing */
#define MVNETA_TXDONE_COAL_PKTS		16
#define MVNETA_RX_COAL_PKTS		32
#define MVNETA_RX_COAL_USEC		100

222
/* The two bytes Marvell header. Either contains a special value used
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
 * by Marvell switches when a specific hardware mode is enabled (not
 * supported by this driver) or is filled automatically by zeroes on
 * the RX side. Those two bytes being at the front of the Ethernet
 * header, they allow to have the IP header aligned on a 4 bytes
 * boundary automatically: the hardware skips those two bytes on its
 * own.
 */
#define MVNETA_MH_SIZE			2

#define MVNETA_VLAN_TAG_LEN             4

#define MVNETA_CPU_D_CACHE_LINE_SIZE    32
#define MVNETA_TX_CSUM_MAX_SIZE		9800
#define MVNETA_ACC_MODE_EXT		1

/* Timeout constants */
#define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
#define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
#define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000

#define MVNETA_TX_MTU_MAX		0x3ffff

245 246 247
/* TSO header size */
#define TSO_HEADER_SIZE 128

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
/* Max number of Rx descriptors */
#define MVNETA_MAX_RXD 128

/* Max number of Tx descriptors */
#define MVNETA_MAX_TXD 532

/* descriptor aligned size */
#define MVNETA_DESC_ALIGNED_SIZE	32

#define MVNETA_RX_PKT_SIZE(mtu) \
	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
	      ETH_HLEN + ETH_FCS_LEN,			     \
	      MVNETA_CPU_D_CACHE_LINE_SIZE)

#define MVNETA_RX_BUF_SIZE(pkt_size)   ((pkt_size) + NET_SKB_PAD)

264
struct mvneta_pcpu_stats {
265
	struct	u64_stats_sync syncp;
266 267 268 269
	u64	rx_packets;
	u64	rx_bytes;
	u64	tx_packets;
	u64	tx_bytes;
270 271 272 273
};

struct mvneta_port {
	int pkt_size;
274
	unsigned int frag_size;
275 276 277 278 279 280 281 282 283
	void __iomem *base;
	struct mvneta_rx_queue *rxqs;
	struct mvneta_tx_queue *txqs;
	struct net_device *dev;

	u32 cause_rx_tx;
	struct napi_struct napi;

	/* Core clock */
T
Thomas Petazzoni 已提交
284
	struct clk *clk;
285 286 287
	u8 mcast_count[256];
	u16 tx_ring_size;
	u16 rx_ring_size;
288
	struct mvneta_pcpu_stats *stats;
289 290 291 292 293 294 295 296 297 298

	struct mii_bus *mii_bus;
	struct phy_device *phy_dev;
	phy_interface_t phy_interface;
	struct device_node *phy_node;
	unsigned int link;
	unsigned int duplex;
	unsigned int speed;
};

299
/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
300 301 302
 * layout of the transmit and reception DMA descriptors, and their
 * layout is therefore defined by the hardware design
 */
303

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
#define MVNETA_TX_L3_OFF_SHIFT	0
#define MVNETA_TX_IP_HLEN_SHIFT	8
#define MVNETA_TX_L4_UDP	BIT(16)
#define MVNETA_TX_L3_IP6	BIT(17)
#define MVNETA_TXD_IP_CSUM	BIT(18)
#define MVNETA_TXD_Z_PAD	BIT(19)
#define MVNETA_TXD_L_DESC	BIT(20)
#define MVNETA_TXD_F_DESC	BIT(21)
#define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
				 MVNETA_TXD_L_DESC | \
				 MVNETA_TXD_F_DESC)
#define MVNETA_TX_L4_CSUM_FULL	BIT(30)
#define MVNETA_TX_L4_CSUM_NOT	BIT(31)

#define MVNETA_RXD_ERR_CRC		0x0
#define MVNETA_RXD_ERR_SUMMARY		BIT(16)
#define MVNETA_RXD_ERR_OVERRUN		BIT(17)
#define MVNETA_RXD_ERR_LEN		BIT(18)
#define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
#define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
#define MVNETA_RXD_L3_IP4		BIT(25)
#define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
#define MVNETA_RXD_L4_CSUM_OK		BIT(30)

328
#if defined(__LITTLE_ENDIAN)
329 330 331 332 333 334 335 336 337 338 339
struct mvneta_tx_desc {
	u32  command;		/* Options used by HW for packet transmitting.*/
	u16  reserverd1;	/* csum_l4 (for future use)		*/
	u16  data_size;		/* Data size of transmitted packet in bytes */
	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
	u32  reserved3[4];	/* Reserved - (for future use)		*/
};

struct mvneta_rx_desc {
	u32  status;		/* Info about received packet		*/
340 341
	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
	u16  data_size;		/* Size of received packet in bytes	*/
342

343 344
	u32  buf_phys_addr;	/* Physical address of the buffer	*/
	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
345

346 347 348
	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
	u16  reserved3;		/* prefetch_cmd, for future use		*/
	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
349

350 351 352
	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
};
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
#else
struct mvneta_tx_desc {
	u16  data_size;		/* Data size of transmitted packet in bytes */
	u16  reserverd1;	/* csum_l4 (for future use)		*/
	u32  command;		/* Options used by HW for packet transmitting.*/
	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
	u32  reserved3[4];	/* Reserved - (for future use)		*/
};

struct mvneta_rx_desc {
	u16  data_size;		/* Size of received packet in bytes	*/
	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
	u32  status;		/* Info about received packet		*/

	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
	u32  buf_phys_addr;	/* Physical address of the buffer	*/

	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
	u16  reserved3;		/* prefetch_cmd, for future use		*/
	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */

	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
};
#endif
379 380 381 382 383 384 385 386 387

struct mvneta_tx_queue {
	/* Number of this TX queue, in the range 0-7 */
	u8 id;

	/* Number of TX DMA descriptors in the descriptor ring */
	int size;

	/* Number of currently used TX DMA descriptor in the
388 389
	 * descriptor ring
	 */
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	int count;

	/* Array of transmitted skb */
	struct sk_buff **tx_skb;

	/* Index of last TX DMA descriptor that was inserted */
	int txq_put_index;

	/* Index of the TX DMA descriptor to be cleaned up */
	int txq_get_index;

	u32 done_pkts_coal;

	/* Virtual address of the TX DMA descriptors array */
	struct mvneta_tx_desc *descs;

	/* DMA address of the TX DMA descriptors array */
	dma_addr_t descs_phys;

	/* Index of the last TX DMA descriptor */
	int last_desc;

	/* Index of the next TX DMA descriptor to process */
	int next_desc_to_proc;
414 415 416 417 418 419

	/* DMA buffers for TSO headers */
	char *tso_hdrs;

	/* DMA address of TSO headers */
	dma_addr_t tso_hdrs_phys;
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
};

struct mvneta_rx_queue {
	/* rx queue number, in the range 0-7 */
	u8 id;

	/* num of rx descriptors in the rx descriptor ring */
	int size;

	/* counter of times when mvneta_refill() failed */
	int missed;

	u32 pkts_coal;
	u32 time_coal;

	/* Virtual address of the RX DMA descriptors array */
	struct mvneta_rx_desc *descs;

	/* DMA address of the RX DMA descriptors array */
	dma_addr_t descs_phys;

	/* Index of the last RX DMA descriptor */
	int last_desc;

	/* Index of the next RX DMA descriptor to process */
	int next_desc_to_proc;
};

448 449 450 451
/* The hardware supports eight (8) rx queues, but we are only allowing
 * the first one to be used. Therefore, let's just allocate one queue.
 */
static int rxq_number = 1;
452 453 454 455
static int txq_number = 8;

static int rxq_def;

456 457
static int rx_copybreak __read_mostly = 256;

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
#define MVNETA_DRIVER_NAME "mvneta"
#define MVNETA_DRIVER_VERSION "1.0"

/* Utility/helper methods */

/* Write helper method */
static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
{
	writel(data, pp->base + offset);
}

/* Read helper method */
static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
{
	return readl(pp->base + offset);
}

/* Increment txq get counter */
static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
{
	txq->txq_get_index++;
	if (txq->txq_get_index == txq->size)
		txq->txq_get_index = 0;
}

/* Increment txq put counter */
static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
{
	txq->txq_put_index++;
	if (txq->txq_put_index == txq->size)
		txq->txq_put_index = 0;
}


/* Clear all MIB counters */
static void mvneta_mib_counters_clear(struct mvneta_port *pp)
{
	int i;
	u32 dummy;

	/* Perform dummy reads from MIB counters */
	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
}

/* Get System Network Statistics */
struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
					     struct rtnl_link_stats64 *stats)
{
	struct mvneta_port *pp = netdev_priv(dev);
	unsigned int start;
509
	int cpu;
510

511 512 513 514 515 516
	for_each_possible_cpu(cpu) {
		struct mvneta_pcpu_stats *cpu_stats;
		u64 rx_packets;
		u64 rx_bytes;
		u64 tx_packets;
		u64 tx_bytes;
517

518 519
		cpu_stats = per_cpu_ptr(pp->stats, cpu);
		do {
520
			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
521 522 523 524
			rx_packets = cpu_stats->rx_packets;
			rx_bytes   = cpu_stats->rx_bytes;
			tx_packets = cpu_stats->tx_packets;
			tx_bytes   = cpu_stats->tx_bytes;
525
		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
526

527 528 529 530 531
		stats->rx_packets += rx_packets;
		stats->rx_bytes   += rx_bytes;
		stats->tx_packets += tx_packets;
		stats->tx_bytes   += tx_bytes;
	}
532 533 534 535 536 537 538 539 540 541 542

	stats->rx_errors	= dev->stats.rx_errors;
	stats->rx_dropped	= dev->stats.rx_dropped;

	stats->tx_dropped	= dev->stats.tx_dropped;

	return stats;
}

/* Rx descriptors helper methods */

543 544
/* Checks whether the RX descriptor having this status is both the first
 * and the last descriptor for the RX packet. Each RX packet is currently
545 546 547
 * received through a single RX descriptor, so not having each RX
 * descriptor with its first and last bits set is an error
 */
548
static int mvneta_rxq_desc_is_first_last(u32 status)
549
{
550
	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
551 552 553 554 555 556 557 558 559
		MVNETA_RXD_FIRST_LAST_DESC;
}

/* Add number of descriptors ready to receive new packets */
static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
					  struct mvneta_rx_queue *rxq,
					  int ndescs)
{
	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
560 561
	 * be added at once
	 */
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
	}

	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
}

/* Get number of RX descriptors occupied by received packets */
static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
					struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
}

583
/* Update num of rx desc called upon return from rx path or
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
 * from mvneta_rxq_drop_pkts().
 */
static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
				       struct mvneta_rx_queue *rxq,
				       int rx_done, int rx_filled)
{
	u32 val;

	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
		val = rx_done |
		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
		return;
	}

	/* Only 255 descriptors can be added at once */
	while ((rx_done > 0) || (rx_filled > 0)) {
		if (rx_done <= 0xff) {
			val = rx_done;
			rx_done = 0;
		} else {
			val = 0xff;
			rx_done -= 0xff;
		}
		if (rx_filled <= 0xff) {
			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
			rx_filled = 0;
		} else {
			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
			rx_filled -= 0xff;
		}
		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
	}
}

/* Get pointer to next RX descriptor to be processed by SW */
static struct mvneta_rx_desc *
mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
{
	int rx_desc = rxq->next_desc_to_proc;

	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
626
	prefetch(rxq->descs + rxq->next_desc_to_proc);
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
	return rxq->descs + rx_desc;
}

/* Change maximum receive size of the port. */
static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
{
	u32 val;

	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
}


/* Set rx queue offset */
static void mvneta_rxq_offset_set(struct mvneta_port *pp,
				  struct mvneta_rx_queue *rxq,
				  int offset)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;

	/* Offset is in */
	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}


/* Tx descriptors helper methods */

/* Update HW with number of TX descriptors to be sent */
static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
				     struct mvneta_tx_queue *txq,
				     int pend_desc)
{
	u32 val;

	/* Only 255 descriptors can be added at once ; Assume caller
669 670
	 * process TX desriptors in quanta less than 256
	 */
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
	val = pend_desc;
	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
}

/* Get pointer to next TX descriptor to be processed (send) by HW */
static struct mvneta_tx_desc *
mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
{
	int tx_desc = txq->next_desc_to_proc;

	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
	return txq->descs + tx_desc;
}

/* Release the last allocated TX descriptor. Useful to handle DMA
686 687
 * mapping failures in the TX path.
 */
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
{
	if (txq->next_desc_to_proc == 0)
		txq->next_desc_to_proc = txq->last_desc - 1;
	else
		txq->next_desc_to_proc--;
}

/* Set rxq buf size */
static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
				    struct mvneta_rx_queue *rxq,
				    int buf_size)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));

	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);

	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
}

/* Disable buffer management (BM) */
static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
				  struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

/* Start the Ethernet port RX and TX activity */
static void mvneta_port_up(struct mvneta_port *pp)
{
	int queue;
	u32 q_map;

	/* Enable all initialized TXs. */
	mvneta_mib_counters_clear(pp);
	q_map = 0;
	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];
		if (txq->descs != NULL)
			q_map |= (1 << queue);
	}
	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);

	/* Enable all initialized RXQs. */
	q_map = 0;
	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
		if (rxq->descs != NULL)
			q_map |= (1 << queue);
	}

	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
}

/* Stop the Ethernet port activity */
static void mvneta_port_down(struct mvneta_port *pp)
{
	u32 val;
	int count;

	/* Stop Rx port activity. Check port Rx activity. */
	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;

	/* Issue stop command for active channels only */
	if (val != 0)
		mvreg_write(pp, MVNETA_RXQ_CMD,
			    val << MVNETA_RXQ_DISABLE_SHIFT);

	/* Wait for all Rx activity to terminate. */
	count = 0;
	do {
		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
			netdev_warn(pp->dev,
				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
				    val);
			break;
		}
		mdelay(1);

		val = mvreg_read(pp, MVNETA_RXQ_CMD);
	} while (val & 0xff);

	/* Stop Tx port activity. Check port Tx activity. Issue stop
778 779
	 * command for active channels only
	 */
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;

	if (val != 0)
		mvreg_write(pp, MVNETA_TXQ_CMD,
			    (val << MVNETA_TXQ_DISABLE_SHIFT));

	/* Wait for all Tx activity to terminate. */
	count = 0;
	do {
		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
			netdev_warn(pp->dev,
				    "TIMEOUT for TX stopped status=0x%08x\n",
				    val);
			break;
		}
		mdelay(1);

		/* Check TX Command reg that all Txqs are stopped */
		val = mvreg_read(pp, MVNETA_TXQ_CMD);

	} while (val & 0xff);

	/* Double check to verify that TX FIFO is empty */
	count = 0;
	do {
		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
			netdev_warn(pp->dev,
				    "TX FIFO empty timeout status=0x08%x\n",
				    val);
			break;
		}
		mdelay(1);

		val = mvreg_read(pp, MVNETA_PORT_STATUS);
	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
		 (val & MVNETA_TX_IN_PRGRS));

	udelay(200);
}

/* Enable the port by setting the port enable bit of the MAC control register */
static void mvneta_port_enable(struct mvneta_port *pp)
{
	u32 val;

	/* Enable port */
	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
	val |= MVNETA_GMAC0_PORT_ENABLE;
	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
}

/* Disable the port and wait for about 200 usec before retuning */
static void mvneta_port_disable(struct mvneta_port *pp)
{
	u32 val;

	/* Reset the Enable bit in the Serial Control Register */
	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
	val &= ~MVNETA_GMAC0_PORT_ENABLE;
	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);

	udelay(200);
}

/* Multicast tables methods */

/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
{
	int offset;
	u32 val;

	if (queue == -1) {
		val = 0;
	} else {
		val = 0x1 | (queue << 1);
		val |= (val << 24) | (val << 16) | (val << 8);
	}

	for (offset = 0; offset <= 0xc; offset += 4)
		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
}

/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
{
	int offset;
	u32 val;

	if (queue == -1) {
		val = 0;
	} else {
		val = 0x1 | (queue << 1);
		val |= (val << 24) | (val << 16) | (val << 8);
	}

	for (offset = 0; offset <= 0xfc; offset += 4)
		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);

}

/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
{
	int offset;
	u32 val;

	if (queue == -1) {
		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
		val = 0;
	} else {
		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
		val = 0x1 | (queue << 1);
		val |= (val << 24) | (val << 16) | (val << 8);
	}

	for (offset = 0; offset <= 0xfc; offset += 4)
		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
}

/* This method sets defaults to the NETA port:
 *	Clears interrupt Cause and Mask registers.
 *	Clears all MAC tables.
 *	Sets defaults to all registers.
 *	Resets RX and TX descriptor rings.
 *	Resets PHY.
 * This method can be called after mvneta_port_down() to return the port
 *	settings to defaults.
 */
static void mvneta_defaults_set(struct mvneta_port *pp)
{
	int cpu;
	int queue;
	u32 val;

	/* Clear all Cause registers */
	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);

	/* Mask all interrupts */
	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);

	/* Enable MBUS Retry bit16 */
	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);

	/* Set CPU queue access map - all CPUs have access to all RX
930 931
	 * queues and to all TX queues
	 */
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
		mvreg_write(pp, MVNETA_CPU_MAP(cpu),
			    (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
			     MVNETA_CPU_TXQ_ACCESS_ALL_MASK));

	/* Reset RX and TX DMAs */
	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);

	/* Disable Legacy WRR, Disable EJP, Release from reset */
	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
	for (queue = 0; queue < txq_number; queue++) {
		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
	}

	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);

	/* Set Port Acceleration Mode */
	val = MVNETA_ACC_MODE_EXT;
	mvreg_write(pp, MVNETA_ACC_MODE, val);

	/* Update val of portCfg register accordingly with all RxQueue types */
	val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
	mvreg_write(pp, MVNETA_PORT_CONFIG, val);

	val = 0;
	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);

	/* Build PORT_SDMA_CONFIG_REG */
	val = 0;

	/* Default burst size */
	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
969
	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
970

971 972 973
#if defined(__BIG_ENDIAN)
	val |= MVNETA_DESC_SWAP;
#endif
974 975 976 977

	/* Assign port SDMA configuration */
	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);

978 979 980 981 982 983 984
	/* Disable PHY polling in hardware, since we're using the
	 * kernel phylib to do this.
	 */
	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
	val &= ~MVNETA_PHY_POLLING_ENABLE;
	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	mvneta_set_ucast_table(pp, -1);
	mvneta_set_special_mcast_table(pp, -1);
	mvneta_set_other_mcast_table(pp, -1);

	/* Set port interrupt enable register - default enable all */
	mvreg_write(pp, MVNETA_INTR_ENABLE,
		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
}

/* Set max sizes for tx queues */
static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)

{
	u32 val, size, mtu;
	int queue;

	mtu = max_tx_size * 8;
	if (mtu > MVNETA_TX_MTU_MAX)
		mtu = MVNETA_TX_MTU_MAX;

	/* Set MTU */
	val = mvreg_read(pp, MVNETA_TX_MTU);
	val &= ~MVNETA_TX_MTU_MAX;
	val |= mtu;
	mvreg_write(pp, MVNETA_TX_MTU, val);

	/* TX token size and all TXQs token size must be larger that MTU */
	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);

	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
	if (size < mtu) {
		size = mtu;
		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
		val |= size;
		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
	}
	for (queue = 0; queue < txq_number; queue++) {
		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));

		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
		if (size < mtu) {
			size = mtu;
			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
			val |= size;
			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
		}
	}
}

/* Set unicast address */
static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
				  int queue)
{
	unsigned int unicast_reg;
	unsigned int tbl_offset;
	unsigned int reg_offset;

	/* Locate the Unicast table entry */
	last_nibble = (0xf & last_nibble);

	/* offset from unicast tbl base */
	tbl_offset = (last_nibble / 4) * 4;

	/* offset within the above reg  */
	reg_offset = last_nibble % 4;

	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));

	if (queue == -1) {
		/* Clear accepts frame bit at specified unicast DA tbl entry */
		unicast_reg &= ~(0xff << (8 * reg_offset));
	} else {
		unicast_reg &= ~(0xff << (8 * reg_offset));
		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
	}

	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
}

/* Set mac address */
static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
				int queue)
{
	unsigned int mac_h;
	unsigned int mac_l;

	if (queue != -1) {
		mac_l = (addr[4] << 8) | (addr[5]);
		mac_h = (addr[0] << 24) | (addr[1] << 16) |
			(addr[2] << 8) | (addr[3] << 0);

		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
	}

	/* Accept frames of this address */
	mvneta_set_ucast_addr(pp, addr[5], queue);
}

1085 1086
/* Set the number of packets that will be received before RX interrupt
 * will be generated by HW.
1087 1088 1089 1090 1091 1092 1093 1094 1095
 */
static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
				    struct mvneta_rx_queue *rxq, u32 value)
{
	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
		    value | MVNETA_RXQ_NON_OCCUPIED(0));
	rxq->pkts_coal = value;
}

1096 1097
/* Set the time delay in usec before RX interrupt will be generated by
 * HW.
1098 1099 1100 1101
 */
static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
				    struct mvneta_rx_queue *rxq, u32 value)
{
T
Thomas Petazzoni 已提交
1102 1103 1104 1105 1106
	u32 val;
	unsigned long clk_rate;

	clk_rate = clk_get_rate(pp->clk);
	val = (clk_rate / 1000000) * value;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
	rxq->time_coal = value;
}

/* Set threshold for TX_DONE pkts coalescing */
static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
					 struct mvneta_tx_queue *txq, u32 value)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));

	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);

	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);

	txq->done_pkts_coal = value;
}

/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
				u32 phys_addr, u32 cookie)
{
	rx_desc->buf_cookie = cookie;
	rx_desc->buf_phys_addr = phys_addr;
}

/* Decrement sent descriptors counter */
static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
				     struct mvneta_tx_queue *txq,
				     int sent_desc)
{
	u32 val;

	/* Only 255 TX descriptors can be updated at once */
	while (sent_desc > 0xff) {
		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
		sent_desc = sent_desc - 0xff;
	}

	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
}

/* Get number of TX descriptors already sent by HW */
static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
					struct mvneta_tx_queue *txq)
{
	u32 val;
	int sent_desc;

	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
		MVNETA_TXQ_SENT_DESC_SHIFT;

	return sent_desc;
}

1168
/* Get number of sent descriptors and decrement counter.
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
 *  The number of sent descriptors is returned.
 */
static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
				     struct mvneta_tx_queue *txq)
{
	int sent_desc;

	/* Get number of sent descriptors */
	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);

	/* Decrement sent descriptors counter */
	if (sent_desc)
		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);

	return sent_desc;
}

/* Set TXQ descriptors fields relevant for CSUM calculation */
static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
				int ip_hdr_len, int l4_proto)
{
	u32 command;

	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1193 1194 1195
	 * G_L4_chk, L4_type; required only for checksum
	 * calculation
	 */
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;

	if (l3_proto == swab16(ETH_P_IP))
		command |= MVNETA_TXD_IP_CSUM;
	else
		command |= MVNETA_TX_L3_IP6;

	if (l4_proto == IPPROTO_TCP)
		command |=  MVNETA_TX_L4_CSUM_FULL;
	else if (l4_proto == IPPROTO_UDP)
		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
	else
		command |= MVNETA_TX_L4_CSUM_NOT;

	return command;
}


/* Display more error info */
static void mvneta_rx_error(struct mvneta_port *pp,
			    struct mvneta_rx_desc *rx_desc)
{
	u32 status = rx_desc->status;

1221
	if (!mvneta_rxq_desc_is_first_last(status)) {
1222 1223
		netdev_err(pp->dev,
			   "bad rx status %08x (buffer oversize), size=%d\n",
1224
			   status, rx_desc->data_size);
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
		return;
	}

	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
	case MVNETA_RXD_ERR_CRC:
		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	case MVNETA_RXD_ERR_OVERRUN:
		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	case MVNETA_RXD_ERR_LEN:
		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	case MVNETA_RXD_ERR_RESOURCE:
		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	}
}

1248 1249
/* Handle RX checksum offload based on the descriptor's status */
static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1250 1251
			   struct sk_buff *skb)
{
1252 1253
	if ((status & MVNETA_RXD_L3_IP4) &&
	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1254 1255 1256 1257 1258 1259 1260 1261
		skb->csum = 0;
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		return;
	}

	skb->ip_summed = CHECKSUM_NONE;
}

1262 1263 1264 1265
/* Return tx queue pointer (find last set bit) according to <cause> returned
 * form tx_done reg. <cause> must not be null. The return value is always a
 * valid queue for matching the first one found in <cause>.
 */
1266 1267 1268 1269 1270
static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
						     u32 cause)
{
	int queue = fls(cause) - 1;

1271
	return &pp->txqs[queue];
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
}

/* Free tx queue skbuffs */
static void mvneta_txq_bufs_free(struct mvneta_port *pp,
				 struct mvneta_tx_queue *txq, int num)
{
	int i;

	for (i = 0; i < num; i++) {
		struct mvneta_tx_desc *tx_desc = txq->descs +
			txq->txq_get_index;
		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];

		mvneta_txq_inc_get(txq);

		if (!skb)
			continue;

		dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr,
				 tx_desc->data_size, DMA_TO_DEVICE);
		dev_kfree_skb_any(skb);
	}
}

/* Handle end of transmission */
1297
static void mvneta_txq_done(struct mvneta_port *pp,
1298 1299 1300 1301 1302 1303
			   struct mvneta_tx_queue *txq)
{
	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
	int tx_done;

	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1304 1305 1306
	if (!tx_done)
		return;

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	mvneta_txq_bufs_free(pp, txq, tx_done);

	txq->count -= tx_done;

	if (netif_tx_queue_stopped(nq)) {
		if (txq->size - txq->count >= MAX_SKB_FRAGS + 1)
			netif_tx_wake_queue(nq);
	}
}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
static void *mvneta_frag_alloc(const struct mvneta_port *pp)
{
	if (likely(pp->frag_size <= PAGE_SIZE))
		return netdev_alloc_frag(pp->frag_size);
	else
		return kmalloc(pp->frag_size, GFP_ATOMIC);
}

static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
{
	if (likely(pp->frag_size <= PAGE_SIZE))
		put_page(virt_to_head_page(data));
	else
		kfree(data);
}

1333 1334 1335 1336 1337 1338
/* Refill processing */
static int mvneta_rx_refill(struct mvneta_port *pp,
			    struct mvneta_rx_desc *rx_desc)

{
	dma_addr_t phys_addr;
1339
	void *data;
1340

1341 1342
	data = mvneta_frag_alloc(pp);
	if (!data)
1343 1344
		return -ENOMEM;

1345
	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1346 1347 1348
				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
				   DMA_FROM_DEVICE);
	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1349
		mvneta_frag_free(pp, data);
1350 1351 1352
		return -ENOMEM;
	}

1353
	mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	return 0;
}

/* Handle tx checksum */
static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		int ip_hdr_len = 0;
		u8 l4_proto;

		if (skb->protocol == htons(ETH_P_IP)) {
			struct iphdr *ip4h = ip_hdr(skb);

			/* Calculate IPv4 checksum and L4 checksum */
			ip_hdr_len = ip4h->ihl;
			l4_proto = ip4h->protocol;
		} else if (skb->protocol == htons(ETH_P_IPV6)) {
			struct ipv6hdr *ip6h = ipv6_hdr(skb);

			/* Read l4_protocol from one of IPv6 extra headers */
			if (skb_network_header_len(skb) > 0)
				ip_hdr_len = (skb_network_header_len(skb) >> 2);
			l4_proto = ip6h->nexthdr;
		} else
			return MVNETA_TX_L4_CSUM_NOT;

		return mvneta_txq_desc_csum(skb_network_offset(skb),
				skb->protocol, ip_hdr_len, l4_proto);
	}

	return MVNETA_TX_L4_CSUM_NOT;
}

1387
/* Returns rx queue pointer (find last set bit) according to causeRxTx
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
 * value
 */
static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
						u32 cause)
{
	int queue = fls(cause >> 8) - 1;

	return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
}

/* Drop packets received by the RXQ and free buffers */
static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
				 struct mvneta_rx_queue *rxq)
{
	int rx_done, i;

	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
	for (i = 0; i < rxq->size; i++) {
		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1407
		void *data = (void *)rx_desc->buf_cookie;
1408

1409
		mvneta_frag_free(pp, data);
1410
		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1411
				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	}

	if (rx_done)
		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
}

/* Main rx processing */
static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
		     struct mvneta_rx_queue *rxq)
{
	struct net_device *dev = pp->dev;
	int rx_done, rx_filled;
1424 1425
	u32 rcvd_pkts = 0;
	u32 rcvd_bytes = 0;
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439

	/* Get number of received packets */
	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);

	if (rx_todo > rx_done)
		rx_todo = rx_done;

	rx_done = 0;
	rx_filled = 0;

	/* Fairness NAPI loop */
	while (rx_done < rx_todo) {
		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
		struct sk_buff *skb;
1440
		unsigned char *data;
1441 1442 1443 1444 1445 1446
		u32 rx_status;
		int rx_bytes, err;

		rx_done++;
		rx_filled++;
		rx_status = rx_desc->status;
1447
		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1448
		data = (unsigned char *)rx_desc->buf_cookie;
1449

1450
		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1451 1452
		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
		err_drop_frame:
1453 1454
			dev->stats.rx_errors++;
			mvneta_rx_error(pp, rx_desc);
1455
			/* leave the descriptor untouched */
1456 1457 1458
			continue;
		}

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
		if (rx_bytes <= rx_copybreak) {
			/* better copy a small frame and not unmap the DMA region */
			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
			if (unlikely(!skb))
				goto err_drop_frame;

			dma_sync_single_range_for_cpu(dev->dev.parent,
			                              rx_desc->buf_phys_addr,
			                              MVNETA_MH_SIZE + NET_SKB_PAD,
			                              rx_bytes,
			                              DMA_FROM_DEVICE);
			memcpy(skb_put(skb, rx_bytes),
			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
			       rx_bytes);

			skb->protocol = eth_type_trans(skb, dev);
			mvneta_rx_csum(pp, rx_status, skb);
			napi_gro_receive(&pp->napi, skb);

			rcvd_pkts++;
			rcvd_bytes += rx_bytes;

			/* leave the descriptor and buffer untouched */
			continue;
		}

		skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
		if (!skb)
			goto err_drop_frame;

		dma_unmap_single(dev->dev.parent, rx_desc->buf_phys_addr,
1490
				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1491

1492 1493
		rcvd_pkts++;
		rcvd_bytes += rx_bytes;
1494 1495

		/* Linux processing */
1496
		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1497 1498 1499 1500
		skb_put(skb, rx_bytes);

		skb->protocol = eth_type_trans(skb, dev);

1501
		mvneta_rx_csum(pp, rx_status, skb);
1502 1503 1504 1505 1506 1507

		napi_gro_receive(&pp->napi, skb);

		/* Refill processing */
		err = mvneta_rx_refill(pp, rx_desc);
		if (err) {
1508
			netdev_err(dev, "Linux processing - Can't refill\n");
1509 1510 1511 1512 1513
			rxq->missed++;
			rx_filled--;
		}
	}

1514
	if (rcvd_pkts) {
1515 1516 1517 1518 1519 1520
		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);

		u64_stats_update_begin(&stats->syncp);
		stats->rx_packets += rcvd_pkts;
		stats->rx_bytes   += rcvd_bytes;
		u64_stats_update_end(&stats->syncp);
1521 1522
	}

1523 1524 1525 1526 1527 1528
	/* Update rxq management counters */
	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);

	return rx_done;
}

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
static inline void
mvneta_tso_put_hdr(struct sk_buff *skb,
		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
{
	struct mvneta_tx_desc *tx_desc;
	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);

	txq->tx_skb[txq->txq_put_index] = NULL;
	tx_desc = mvneta_txq_next_desc_get(txq);
	tx_desc->data_size = hdr_len;
	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
	tx_desc->command |= MVNETA_TXD_F_DESC;
	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
				 txq->txq_put_index * TSO_HEADER_SIZE;
	mvneta_txq_inc_put(txq);
}

static inline int
mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
		    struct sk_buff *skb, char *data, int size,
		    bool last_tcp, bool is_last)
{
	struct mvneta_tx_desc *tx_desc;

	tx_desc = mvneta_txq_next_desc_get(txq);
	tx_desc->data_size = size;
	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
						size, DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(dev->dev.parent,
		     tx_desc->buf_phys_addr))) {
		mvneta_txq_desc_put(txq);
		return -ENOMEM;
	}

	tx_desc->command = 0;
	txq->tx_skb[txq->txq_put_index] = NULL;

	if (last_tcp) {
		/* last descriptor in the TCP packet */
		tx_desc->command = MVNETA_TXD_L_DESC;

		/* last descriptor in SKB */
		if (is_last)
			txq->tx_skb[txq->txq_put_index] = skb;
	}
	mvneta_txq_inc_put(txq);
	return 0;
}

static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
			 struct mvneta_tx_queue *txq)
{
	int total_len, data_left;
	int desc_count = 0;
	struct mvneta_port *pp = netdev_priv(dev);
	struct tso_t tso;
	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	int i;

	/* Count needed descriptors */
	if ((txq->count + tso_count_descs(skb)) >= txq->size)
		return 0;

	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
		pr_info("*** Is this even  possible???!?!?\n");
		return 0;
	}

	/* Initialize the TSO handler, and prepare the first payload */
	tso_start(skb, &tso);

	total_len = skb->len - hdr_len;
	while (total_len > 0) {
		char *hdr;

		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
		total_len -= data_left;
		desc_count++;

		/* prepare packet headers: MAC + IP + TCP */
		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);

		mvneta_tso_put_hdr(skb, pp, txq);

		while (data_left > 0) {
			int size;
			desc_count++;

			size = min_t(int, tso.size, data_left);

			if (mvneta_tso_put_data(dev, txq, skb,
						 tso.data, size,
						 size == data_left,
						 total_len == 0))
				goto err_release;
			data_left -= size;

			tso_build_data(skb, &tso, size);
		}
	}

	return desc_count;

err_release:
	/* Release all used data descriptors; header descriptors must not
	 * be DMA-unmapped.
	 */
	for (i = desc_count - 1; i >= 0; i--) {
		struct mvneta_tx_desc *tx_desc = txq->descs + i;
		if (!(tx_desc->command & MVNETA_TXD_F_DESC))
			dma_unmap_single(pp->dev->dev.parent,
					 tx_desc->buf_phys_addr,
					 tx_desc->data_size,
					 DMA_TO_DEVICE);
		mvneta_txq_desc_put(txq);
	}
	return 0;
}

1649 1650 1651 1652 1653
/* Handle tx fragmentation processing */
static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
				  struct mvneta_tx_queue *txq)
{
	struct mvneta_tx_desc *tx_desc;
1654
	int i, nr_frags = skb_shinfo(skb)->nr_frags;
1655

1656
	for (i = 0; i < nr_frags; i++) {
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		void *addr = page_address(frag->page.p) + frag->page_offset;

		tx_desc = mvneta_txq_next_desc_get(txq);
		tx_desc->data_size = frag->size;

		tx_desc->buf_phys_addr =
			dma_map_single(pp->dev->dev.parent, addr,
				       tx_desc->data_size, DMA_TO_DEVICE);

		if (dma_mapping_error(pp->dev->dev.parent,
				      tx_desc->buf_phys_addr)) {
			mvneta_txq_desc_put(txq);
			goto error;
		}

1673
		if (i == nr_frags - 1) {
1674 1675 1676 1677 1678 1679 1680 1681
			/* Last descriptor */
			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
			txq->tx_skb[txq->txq_put_index] = skb;
		} else {
			/* Descriptor in the middle: Not First, Not Last */
			tx_desc->command = 0;
			txq->tx_skb[txq->txq_put_index] = NULL;
		}
1682
		mvneta_txq_inc_put(txq);
1683 1684 1685 1686 1687 1688
	}

	return 0;

error:
	/* Release all descriptors that were used to map fragments of
1689 1690
	 * this packet, as well as the corresponding DMA mappings
	 */
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	for (i = i - 1; i >= 0; i--) {
		tx_desc = txq->descs + i;
		dma_unmap_single(pp->dev->dev.parent,
				 tx_desc->buf_phys_addr,
				 tx_desc->data_size,
				 DMA_TO_DEVICE);
		mvneta_txq_desc_put(txq);
	}

	return -ENOMEM;
}

/* Main tx processing */
static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);
1707 1708
	u16 txq_id = skb_get_queue_mapping(skb);
	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
1709 1710 1711 1712 1713 1714 1715
	struct mvneta_tx_desc *tx_desc;
	int frags = 0;
	u32 tx_cmd;

	if (!netif_running(dev))
		goto out;

1716 1717 1718 1719 1720
	if (skb_is_gso(skb)) {
		frags = mvneta_tx_tso(skb, dev, txq);
		goto out;
	}

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	frags = skb_shinfo(skb)->nr_frags + 1;

	/* Get a descriptor for the first part of the packet */
	tx_desc = mvneta_txq_next_desc_get(txq);

	tx_cmd = mvneta_skb_tx_csum(pp, skb);

	tx_desc->data_size = skb_headlen(skb);

	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
						tx_desc->data_size,
						DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(dev->dev.parent,
				       tx_desc->buf_phys_addr))) {
		mvneta_txq_desc_put(txq);
		frags = 0;
		goto out;
	}

	if (frags == 1) {
		/* First and Last descriptor */
		tx_cmd |= MVNETA_TXD_FLZ_DESC;
		tx_desc->command = tx_cmd;
		txq->tx_skb[txq->txq_put_index] = skb;
		mvneta_txq_inc_put(txq);
	} else {
		/* First but not Last */
		tx_cmd |= MVNETA_TXD_F_DESC;
		txq->tx_skb[txq->txq_put_index] = NULL;
		mvneta_txq_inc_put(txq);
		tx_desc->command = tx_cmd;
		/* Continue with other skb fragments */
		if (mvneta_tx_frag_process(pp, skb, txq)) {
			dma_unmap_single(dev->dev.parent,
					 tx_desc->buf_phys_addr,
					 tx_desc->data_size,
					 DMA_TO_DEVICE);
			mvneta_txq_desc_put(txq);
			frags = 0;
			goto out;
		}
	}

out:
	if (frags > 0) {
1766
		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1767 1768 1769 1770 1771 1772 1773
		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);

		txq->count += frags;
		mvneta_txq_pend_desc_add(pp, txq, frags);

		if (txq->size - txq->count < MAX_SKB_FRAGS + 1)
			netif_tx_stop_queue(nq);
1774

1775 1776 1777 1778
		u64_stats_update_begin(&stats->syncp);
		stats->tx_packets++;
		stats->tx_bytes  += skb->len;
		u64_stats_update_end(&stats->syncp);
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	} else {
		dev->stats.tx_dropped++;
		dev_kfree_skb_any(skb);
	}

	return NETDEV_TX_OK;
}


/* Free tx resources, when resetting a port */
static void mvneta_txq_done_force(struct mvneta_port *pp,
				  struct mvneta_tx_queue *txq)

{
	int tx_done = txq->count;

	mvneta_txq_bufs_free(pp, txq, tx_done);

	/* reset txq */
	txq->count = 0;
	txq->txq_put_index = 0;
	txq->txq_get_index = 0;
}

1803 1804 1805
/* Handle tx done - called in softirq context. The <cause_tx_done> argument
 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
 */
1806
static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
1807 1808 1809 1810
{
	struct mvneta_tx_queue *txq;
	struct netdev_queue *nq;

1811
	while (cause_tx_done) {
1812 1813 1814 1815 1816
		txq = mvneta_tx_done_policy(pp, cause_tx_done);

		nq = netdev_get_tx_queue(pp->dev, txq->id);
		__netif_tx_lock(nq, smp_processor_id());

1817 1818
		if (txq->count)
			mvneta_txq_done(pp, txq);
1819 1820 1821 1822 1823 1824

		__netif_tx_unlock(nq);
		cause_tx_done &= ~((1 << txq->id));
	}
}

1825
/* Compute crc8 of the specified address, using a unique algorithm ,
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
 * according to hw spec, different than generic crc8 algorithm
 */
static int mvneta_addr_crc(unsigned char *addr)
{
	int crc = 0;
	int i;

	for (i = 0; i < ETH_ALEN; i++) {
		int j;

		crc = (crc ^ addr[i]) << 8;
		for (j = 7; j >= 0; j--) {
			if (crc & (0x100 << j))
				crc ^= 0x107 << j;
		}
	}

	return crc;
}

/* This method controls the net device special MAC multicast support.
 * The Special Multicast Table for MAC addresses supports MAC of the form
 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
 * Table entries in the DA-Filter table. This method set the Special
 * Multicast Table appropriate entry.
 */
static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
					  unsigned char last_byte,
					  int queue)
{
	unsigned int smc_table_reg;
	unsigned int tbl_offset;
	unsigned int reg_offset;

	/* Register offset from SMC table base    */
	tbl_offset = (last_byte / 4);
	/* Entry offset within the above reg */
	reg_offset = last_byte % 4;

	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
					+ tbl_offset * 4));

	if (queue == -1)
		smc_table_reg &= ~(0xff << (8 * reg_offset));
	else {
		smc_table_reg &= ~(0xff << (8 * reg_offset));
		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
	}

	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
		    smc_table_reg);
}

/* This method controls the network device Other MAC multicast support.
 * The Other Multicast Table is used for multicast of another type.
 * A CRC-8 is used as an index to the Other Multicast Table entries
 * in the DA-Filter table.
 * The method gets the CRC-8 value from the calling routine and
 * sets the Other Multicast Table appropriate entry according to the
 * specified CRC-8 .
 */
static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
					unsigned char crc8,
					int queue)
{
	unsigned int omc_table_reg;
	unsigned int tbl_offset;
	unsigned int reg_offset;

	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */

	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);

	if (queue == -1) {
		/* Clear accepts frame bit at specified Other DA table entry */
		omc_table_reg &= ~(0xff << (8 * reg_offset));
	} else {
		omc_table_reg &= ~(0xff << (8 * reg_offset));
		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
	}

	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
}

/* The network device supports multicast using two tables:
 *    1) Special Multicast Table for MAC addresses of the form
 *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
 *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
 *       Table entries in the DA-Filter table.
 *    2) Other Multicast Table for multicast of another type. A CRC-8 value
 *       is used as an index to the Other Multicast Table entries in the
 *       DA-Filter table.
 */
static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
				 int queue)
{
	unsigned char crc_result = 0;

	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
		return 0;
	}

	crc_result = mvneta_addr_crc(p_addr);
	if (queue == -1) {
		if (pp->mcast_count[crc_result] == 0) {
			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
				    crc_result);
			return -EINVAL;
		}

		pp->mcast_count[crc_result]--;
		if (pp->mcast_count[crc_result] != 0) {
			netdev_info(pp->dev,
				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
				    pp->mcast_count[crc_result], crc_result);
			return -EINVAL;
		}
	} else
		pp->mcast_count[crc_result]++;

	mvneta_set_other_mcast_addr(pp, crc_result, queue);

	return 0;
}

/* Configure Fitering mode of Ethernet port */
static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
					  int is_promisc)
{
	u32 port_cfg_reg, val;

	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);

	val = mvreg_read(pp, MVNETA_TYPE_PRIO);

	/* Set / Clear UPM bit in port configuration register */
	if (is_promisc) {
		/* Accept all Unicast addresses */
		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
		val |= MVNETA_FORCE_UNI;
		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
	} else {
		/* Reject all Unicast addresses */
		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
		val &= ~MVNETA_FORCE_UNI;
	}

	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
}

/* register unicast and multicast addresses */
static void mvneta_set_rx_mode(struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);
	struct netdev_hw_addr *ha;

	if (dev->flags & IFF_PROMISC) {
		/* Accept all: Multicast + Unicast */
		mvneta_rx_unicast_promisc_set(pp, 1);
		mvneta_set_ucast_table(pp, rxq_def);
		mvneta_set_special_mcast_table(pp, rxq_def);
		mvneta_set_other_mcast_table(pp, rxq_def);
	} else {
		/* Accept single Unicast */
		mvneta_rx_unicast_promisc_set(pp, 0);
		mvneta_set_ucast_table(pp, -1);
		mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);

		if (dev->flags & IFF_ALLMULTI) {
			/* Accept all multicast */
			mvneta_set_special_mcast_table(pp, rxq_def);
			mvneta_set_other_mcast_table(pp, rxq_def);
		} else {
			/* Accept only initialized multicast */
			mvneta_set_special_mcast_table(pp, -1);
			mvneta_set_other_mcast_table(pp, -1);

			if (!netdev_mc_empty(dev)) {
				netdev_for_each_mc_addr(ha, dev) {
					mvneta_mcast_addr_set(pp, ha->addr,
							      rxq_def);
				}
			}
		}
	}
}

/* Interrupt handling - the callback for request_irq() */
static irqreturn_t mvneta_isr(int irq, void *dev_id)
{
	struct mvneta_port *pp = (struct mvneta_port *)dev_id;

	/* Mask all interrupts */
	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);

	napi_schedule(&pp->napi);

	return IRQ_HANDLED;
}

/* NAPI handler
 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
 * Bits 8 -15 of the cause Rx Tx register indicate that are received
 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
 * Each CPU has its own causeRxTx register
 */
static int mvneta_poll(struct napi_struct *napi, int budget)
{
	int rx_done = 0;
	u32 cause_rx_tx;
	unsigned long flags;
	struct mvneta_port *pp = netdev_priv(napi->dev);

	if (!netif_running(pp->dev)) {
		napi_complete(napi);
		return rx_done;
	}

	/* Read cause register */
	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
2052 2053 2054 2055
		(MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));

	/* Release Tx descriptors */
	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2056
		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2057 2058
		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
	}
2059

2060
	/* For the case where the last mvneta_poll did not process all
2061 2062 2063 2064
	 * RX packets
	 */
	cause_rx_tx |= pp->cause_rx_tx;
	if (rxq_number > 1) {
2065
		while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) {
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
			int count;
			struct mvneta_rx_queue *rxq;
			/* get rx queue number from cause_rx_tx */
			rxq = mvneta_rx_policy(pp, cause_rx_tx);
			if (!rxq)
				break;

			/* process the packet in that rx queue */
			count = mvneta_rx(pp, budget, rxq);
			rx_done += count;
			budget -= count;
			if (budget > 0) {
2078 2079 2080 2081 2082 2083
				/* set off the rx bit of the
				 * corresponding bit in the cause rx
				 * tx register, so that next iteration
				 * will find the next rx queue where
				 * packets are received on
				 */
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
				cause_rx_tx &= ~((1 << rxq->id) << 8);
			}
		}
	} else {
		rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
		budget -= rx_done;
	}

	if (budget > 0) {
		cause_rx_tx = 0;
		napi_complete(napi);
		local_irq_save(flags);
		mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2097
			    MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
		local_irq_restore(flags);
	}

	pp->cause_rx_tx = cause_rx_tx;
	return rx_done;
}

/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
			   int num)
{
	int i;

	for (i = 0; i < num; i++) {
2112 2113 2114
		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
		if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2115 2116 2117 2118 2119 2120
				__func__, rxq->id, i, num);
			break;
		}
	}

	/* Add this number of RX descriptors as non occupied (ready to
2121 2122
	 * get packets)
	 */
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	mvneta_rxq_non_occup_desc_add(pp, rxq, i);

	return i;
}

/* Free all packets pending transmit from all TXQs and reset TX port */
static void mvneta_tx_reset(struct mvneta_port *pp)
{
	int queue;

2133
	/* free the skb's in the tx ring */
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	for (queue = 0; queue < txq_number; queue++)
		mvneta_txq_done_force(pp, &pp->txqs[queue]);

	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
}

static void mvneta_rx_reset(struct mvneta_port *pp)
{
	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
}

/* Rx/Tx queue initialization/cleanup methods */

/* Create a specified RX queue */
static int mvneta_rxq_init(struct mvneta_port *pp,
			   struct mvneta_rx_queue *rxq)

{
	rxq->size = pp->rx_ring_size;

	/* Allocate memory for RX descriptors */
	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
					&rxq->descs_phys, GFP_KERNEL);
2160
	if (rxq->descs == NULL)
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
		return -ENOMEM;

	BUG_ON(rxq->descs !=
	       PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));

	rxq->last_desc = rxq->size - 1;

	/* Set Rx descriptors queue starting address */
	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);

	/* Set Offset */
	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);

	/* Set coalescing pkts and time */
	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);

	/* Fill RXQ with buffers from RX pool */
	mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
	mvneta_rxq_bm_disable(pp, rxq);
	mvneta_rxq_fill(pp, rxq, rxq->size);

	return 0;
}

/* Cleanup Rx queue */
static void mvneta_rxq_deinit(struct mvneta_port *pp,
			      struct mvneta_rx_queue *rxq)
{
	mvneta_rxq_drop_pkts(pp, rxq);

	if (rxq->descs)
		dma_free_coherent(pp->dev->dev.parent,
				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
				  rxq->descs,
				  rxq->descs_phys);

	rxq->descs             = NULL;
	rxq->last_desc         = 0;
	rxq->next_desc_to_proc = 0;
	rxq->descs_phys        = 0;
}

/* Create and initialize a tx queue */
static int mvneta_txq_init(struct mvneta_port *pp,
			   struct mvneta_tx_queue *txq)
{
	txq->size = pp->tx_ring_size;

	/* Allocate memory for TX descriptors */
	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
					txq->size * MVNETA_DESC_ALIGNED_SIZE,
					&txq->descs_phys, GFP_KERNEL);
2215
	if (txq->descs == NULL)
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
		return -ENOMEM;

	/* Make sure descriptor address is cache line size aligned  */
	BUG_ON(txq->descs !=
	       PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));

	txq->last_desc = txq->size - 1;

	/* Set maximum bandwidth for enabled TXQs */
	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);

	/* Set Tx descriptors queue starting address */
	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);

	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
	if (txq->tx_skb == NULL) {
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
				  txq->descs, txq->descs_phys);
		return -ENOMEM;
	}
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250

	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
					   txq->size * TSO_HEADER_SIZE,
					   &txq->tso_hdrs_phys, GFP_KERNEL);
	if (txq->tso_hdrs == NULL) {
		kfree(txq->tx_skb);
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
				  txq->descs, txq->descs_phys);
		return -ENOMEM;
	}
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);

	return 0;
}

/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
static void mvneta_txq_deinit(struct mvneta_port *pp,
			      struct mvneta_tx_queue *txq)
{
	kfree(txq->tx_skb);

2262 2263 2264 2265
	if (txq->tso_hdrs)
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * TSO_HEADER_SIZE,
				  txq->tso_hdrs, txq->tso_hdrs_phys);
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
	if (txq->descs)
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
				  txq->descs, txq->descs_phys);

	txq->descs             = NULL;
	txq->last_desc         = 0;
	txq->next_desc_to_proc = 0;
	txq->descs_phys        = 0;

	/* Set minimum bandwidth for disabled TXQs */
	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);

	/* Set Tx descriptors queue starting address and size */
	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
}

/* Cleanup all Tx queues */
static void mvneta_cleanup_txqs(struct mvneta_port *pp)
{
	int queue;

	for (queue = 0; queue < txq_number; queue++)
		mvneta_txq_deinit(pp, &pp->txqs[queue]);
}

/* Cleanup all Rx queues */
static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
{
	int queue;

	for (queue = 0; queue < rxq_number; queue++)
		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
}


/* Init all Rx queues */
static int mvneta_setup_rxqs(struct mvneta_port *pp)
{
	int queue;

	for (queue = 0; queue < rxq_number; queue++) {
		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
		if (err) {
			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
				   __func__, queue);
			mvneta_cleanup_rxqs(pp);
			return err;
		}
	}

	return 0;
}

/* Init all tx queues */
static int mvneta_setup_txqs(struct mvneta_port *pp)
{
	int queue;

	for (queue = 0; queue < txq_number; queue++) {
		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
		if (err) {
			netdev_err(pp->dev, "%s: can't create txq=%d\n",
				   __func__, queue);
			mvneta_cleanup_txqs(pp);
			return err;
		}
	}

	return 0;
}

static void mvneta_start_dev(struct mvneta_port *pp)
{
	mvneta_max_rx_size_set(pp, pp->pkt_size);
	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);

	/* start the Rx/Tx activity */
	mvneta_port_enable(pp);

	/* Enable polling on the port */
	napi_enable(&pp->napi);

	/* Unmask interrupts */
	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2353
		    MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393

	phy_start(pp->phy_dev);
	netif_tx_start_all_queues(pp->dev);
}

static void mvneta_stop_dev(struct mvneta_port *pp)
{
	phy_stop(pp->phy_dev);

	napi_disable(&pp->napi);

	netif_carrier_off(pp->dev);

	mvneta_port_down(pp);
	netif_tx_stop_all_queues(pp->dev);

	/* Stop the port activity */
	mvneta_port_disable(pp);

	/* Clear all ethernet port interrupts */
	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);

	/* Mask all ethernet port interrupts */
	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);

	mvneta_tx_reset(pp);
	mvneta_rx_reset(pp);
}

/* Return positive if MTU is valid */
static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
{
	if (mtu < 68) {
		netdev_err(dev, "cannot change mtu to less than 68\n");
		return -EINVAL;
	}

2394
	/* 9676 == 9700 - 20 and rounding to 8 */
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	if (mtu > 9676) {
		netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
		mtu = 9676;
	}

	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
			mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
	}

	return mtu;
}

/* Change the device mtu */
static int mvneta_change_mtu(struct net_device *dev, int mtu)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int ret;

	mtu = mvneta_check_mtu_valid(dev, mtu);
	if (mtu < 0)
		return -EINVAL;

	dev->mtu = mtu;

	if (!netif_running(dev))
		return 0;

2424
	/* The interface is running, so we have to force a
2425
	 * reallocation of the queues
2426 2427 2428 2429 2430 2431
	 */
	mvneta_stop_dev(pp);

	mvneta_cleanup_txqs(pp);
	mvneta_cleanup_rxqs(pp);

2432
	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
2433 2434
	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2435 2436 2437

	ret = mvneta_setup_rxqs(pp);
	if (ret) {
2438
		netdev_err(dev, "unable to setup rxqs after MTU change\n");
2439 2440 2441
		return ret;
	}

2442 2443 2444 2445 2446
	ret = mvneta_setup_txqs(pp);
	if (ret) {
		netdev_err(dev, "unable to setup txqs after MTU change\n");
		return ret;
	}
2447 2448 2449 2450 2451 2452 2453

	mvneta_start_dev(pp);
	mvneta_port_up(pp);

	return 0;
}

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
/* Get mac address */
static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
{
	u32 mac_addr_l, mac_addr_h;

	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
	addr[0] = (mac_addr_h >> 24) & 0xFF;
	addr[1] = (mac_addr_h >> 16) & 0xFF;
	addr[2] = (mac_addr_h >> 8) & 0xFF;
	addr[3] = mac_addr_h & 0xFF;
	addr[4] = (mac_addr_l >> 8) & 0xFF;
	addr[5] = mac_addr_l & 0xFF;
}

2469 2470 2471 2472
/* Handle setting mac address */
static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
{
	struct mvneta_port *pp = netdev_priv(dev);
2473 2474
	struct sockaddr *sockaddr = addr;
	int ret;
2475

2476 2477 2478
	ret = eth_prepare_mac_addr_change(dev, addr);
	if (ret < 0)
		return ret;
2479 2480 2481 2482
	/* Remove previous address table entry */
	mvneta_mac_addr_set(pp, dev->dev_addr, -1);

	/* Set new addr in hw */
2483
	mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def);
2484

2485
	eth_commit_mac_addr_change(dev, addr);
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	return 0;
}

static void mvneta_adjust_link(struct net_device *ndev)
{
	struct mvneta_port *pp = netdev_priv(ndev);
	struct phy_device *phydev = pp->phy_dev;
	int status_change = 0;

	if (phydev->link) {
		if ((pp->speed != phydev->speed) ||
		    (pp->duplex != phydev->duplex)) {
			u32 val;

			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
				 MVNETA_GMAC_CONFIG_GMII_SPEED |
2503 2504 2505
				 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
				 MVNETA_GMAC_AN_SPEED_EN |
				 MVNETA_GMAC_AN_DUPLEX_EN);
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580

			if (phydev->duplex)
				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;

			if (phydev->speed == SPEED_1000)
				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
			else
				val |= MVNETA_GMAC_CONFIG_MII_SPEED;

			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);

			pp->duplex = phydev->duplex;
			pp->speed  = phydev->speed;
		}
	}

	if (phydev->link != pp->link) {
		if (!phydev->link) {
			pp->duplex = -1;
			pp->speed = 0;
		}

		pp->link = phydev->link;
		status_change = 1;
	}

	if (status_change) {
		if (phydev->link) {
			u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
			val |= (MVNETA_GMAC_FORCE_LINK_PASS |
				MVNETA_GMAC_FORCE_LINK_DOWN);
			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
			mvneta_port_up(pp);
			netdev_info(pp->dev, "link up\n");
		} else {
			mvneta_port_down(pp);
			netdev_info(pp->dev, "link down\n");
		}
	}
}

static int mvneta_mdio_probe(struct mvneta_port *pp)
{
	struct phy_device *phy_dev;

	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
				 pp->phy_interface);
	if (!phy_dev) {
		netdev_err(pp->dev, "could not find the PHY\n");
		return -ENODEV;
	}

	phy_dev->supported &= PHY_GBIT_FEATURES;
	phy_dev->advertising = phy_dev->supported;

	pp->phy_dev = phy_dev;
	pp->link    = 0;
	pp->duplex  = 0;
	pp->speed   = 0;

	return 0;
}

static void mvneta_mdio_remove(struct mvneta_port *pp)
{
	phy_disconnect(pp->phy_dev);
	pp->phy_dev = NULL;
}

static int mvneta_open(struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int ret;

	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2581 2582
	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635

	ret = mvneta_setup_rxqs(pp);
	if (ret)
		return ret;

	ret = mvneta_setup_txqs(pp);
	if (ret)
		goto err_cleanup_rxqs;

	/* Connect to port interrupt line */
	ret = request_irq(pp->dev->irq, mvneta_isr, 0,
			  MVNETA_DRIVER_NAME, pp);
	if (ret) {
		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
		goto err_cleanup_txqs;
	}

	/* In default link is down */
	netif_carrier_off(pp->dev);

	ret = mvneta_mdio_probe(pp);
	if (ret < 0) {
		netdev_err(dev, "cannot probe MDIO bus\n");
		goto err_free_irq;
	}

	mvneta_start_dev(pp);

	return 0;

err_free_irq:
	free_irq(pp->dev->irq, pp);
err_cleanup_txqs:
	mvneta_cleanup_txqs(pp);
err_cleanup_rxqs:
	mvneta_cleanup_rxqs(pp);
	return ret;
}

/* Stop the port, free port interrupt line */
static int mvneta_stop(struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);

	mvneta_stop_dev(pp);
	mvneta_mdio_remove(pp);
	free_irq(dev->irq, pp);
	mvneta_cleanup_rxqs(pp);
	mvneta_cleanup_txqs(pp);

	return 0;
}

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int ret;

	if (!pp->phy_dev)
		return -ENOTSUPP;

	ret = phy_mii_ioctl(pp->phy_dev, ifr, cmd);
	if (!ret)
		mvneta_adjust_link(dev);

	return ret;
}

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
/* Ethtool methods */

/* Get settings (phy address, speed) for ethtools */
int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct mvneta_port *pp = netdev_priv(dev);

	if (!pp->phy_dev)
		return -ENODEV;

	return phy_ethtool_gset(pp->phy_dev, cmd);
}

/* Set settings (phy address, speed) for ethtools */
int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct mvneta_port *pp = netdev_priv(dev);

	if (!pp->phy_dev)
		return -ENODEV;

	return phy_ethtool_sset(pp->phy_dev, cmd);
}

/* Set interrupt coalescing for ethtools */
static int mvneta_ethtool_set_coalesce(struct net_device *dev,
				       struct ethtool_coalesce *c)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int queue;

	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
		rxq->time_coal = c->rx_coalesce_usecs;
		rxq->pkts_coal = c->rx_max_coalesced_frames;
		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
	}

	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];
		txq->done_pkts_coal = c->tx_max_coalesced_frames;
		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
	}

	return 0;
}

/* get coalescing for ethtools */
static int mvneta_ethtool_get_coalesce(struct net_device *dev,
				       struct ethtool_coalesce *c)
{
	struct mvneta_port *pp = netdev_priv(dev);

	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;

	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
	return 0;
}


static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
				    struct ethtool_drvinfo *drvinfo)
{
	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
		sizeof(drvinfo->driver));
	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
		sizeof(drvinfo->version));
	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
		sizeof(drvinfo->bus_info));
}


static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
					 struct ethtool_ringparam *ring)
{
	struct mvneta_port *pp = netdev_priv(netdev);

	ring->rx_max_pending = MVNETA_MAX_RXD;
	ring->tx_max_pending = MVNETA_MAX_TXD;
	ring->rx_pending = pp->rx_ring_size;
	ring->tx_pending = pp->tx_ring_size;
}

static int mvneta_ethtool_set_ringparam(struct net_device *dev,
					struct ethtool_ringparam *ring)
{
	struct mvneta_port *pp = netdev_priv(dev);

	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
		return -EINVAL;
	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
		ring->rx_pending : MVNETA_MAX_RXD;
	pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ?
		ring->tx_pending : MVNETA_MAX_TXD;

	if (netif_running(dev)) {
		mvneta_stop(dev);
		if (mvneta_open(dev)) {
			netdev_err(dev,
				   "error on opening device after ring param change\n");
			return -ENOMEM;
		}
	}

	return 0;
}

static const struct net_device_ops mvneta_netdev_ops = {
	.ndo_open            = mvneta_open,
	.ndo_stop            = mvneta_stop,
	.ndo_start_xmit      = mvneta_tx,
	.ndo_set_rx_mode     = mvneta_set_rx_mode,
	.ndo_set_mac_address = mvneta_set_mac_addr,
	.ndo_change_mtu      = mvneta_change_mtu,
	.ndo_get_stats64     = mvneta_get_stats64,
2768
	.ndo_do_ioctl        = mvneta_ioctl,
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
};

const struct ethtool_ops mvneta_eth_tool_ops = {
	.get_link       = ethtool_op_get_link,
	.get_settings   = mvneta_ethtool_get_settings,
	.set_settings   = mvneta_ethtool_set_settings,
	.set_coalesce   = mvneta_ethtool_set_coalesce,
	.get_coalesce   = mvneta_ethtool_get_coalesce,
	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
	.get_ringparam  = mvneta_ethtool_get_ringparam,
	.set_ringparam	= mvneta_ethtool_set_ringparam,
};

/* Initialize hw */
2783
static int mvneta_init(struct device *dev, struct mvneta_port *pp)
2784 2785 2786 2787 2788 2789 2790 2791 2792
{
	int queue;

	/* Disable port */
	mvneta_port_disable(pp);

	/* Set port default values */
	mvneta_defaults_set(pp);

2793 2794
	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
				GFP_KERNEL);
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
	if (!pp->txqs)
		return -ENOMEM;

	/* Initialize TX descriptor rings */
	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];
		txq->id = queue;
		txq->size = pp->tx_ring_size;
		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
	}

2806 2807 2808
	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
				GFP_KERNEL);
	if (!pp->rxqs)
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
		return -ENOMEM;

	/* Create Rx descriptor rings */
	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
		rxq->id = queue;
		rxq->size = pp->rx_ring_size;
		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
		rxq->time_coal = MVNETA_RX_COAL_USEC;
	}

	return 0;
}

/* platform glue : initialize decoding windows */
G
Greg KH 已提交
2824 2825
static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
				     const struct mbus_dram_target_info *dram)
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
{
	u32 win_enable;
	u32 win_protect;
	int i;

	for (i = 0; i < 6; i++) {
		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);

		if (i < 4)
			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
	}

	win_enable = 0x3f;
	win_protect = 0;

	for (i = 0; i < dram->num_cs; i++) {
		const struct mbus_dram_window *cs = dram->cs + i;
		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);

		mvreg_write(pp, MVNETA_WIN_SIZE(i),
			    (cs->size - 1) & 0xffff0000);

		win_enable &= ~(1 << i);
		win_protect |= 3 << (2 * i);
	}

	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
}

/* Power up the port */
2858
static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
2859
{
2860
	u32 ctrl;
2861 2862 2863 2864

	/* MAC Cause register should be cleared */
	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);

2865
	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
2866

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
	/* Even though it might look weird, when we're configured in
	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
	 */
	switch(phy_mode) {
	case PHY_INTERFACE_MODE_QSGMII:
		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
		break;
	case PHY_INTERFACE_MODE_SGMII:
		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
		break;
	case PHY_INTERFACE_MODE_RGMII:
	case PHY_INTERFACE_MODE_RGMII_ID:
		ctrl |= MVNETA_GMAC2_PORT_RGMII;
		break;
	default:
		return -EINVAL;
	}
2886 2887

	/* Cancel Port Reset */
2888 2889
	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
2890 2891 2892 2893

	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
		MVNETA_GMAC2_PORT_RESET) != 0)
		continue;
2894 2895

	return 0;
2896 2897 2898
}

/* Device initialization routine */
G
Greg KH 已提交
2899
static int mvneta_probe(struct platform_device *pdev)
2900 2901
{
	const struct mbus_dram_target_info *dram_target_info;
2902
	struct resource *res;
2903 2904 2905 2906
	struct device_node *dn = pdev->dev.of_node;
	struct device_node *phy_node;
	struct mvneta_port *pp;
	struct net_device *dev;
2907 2908 2909
	const char *dt_mac_addr;
	char hw_mac_addr[ETH_ALEN];
	const char *mac_from;
2910 2911 2912
	int phy_mode;
	int err;

2913
	/* Our multiqueue support is not complete, so for now, only
2914 2915 2916 2917 2918 2919 2920
	 * allow the usage of the first RX queue
	 */
	if (rxq_def != 0) {
		dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
		return -EINVAL;
	}

2921
	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	if (!dev)
		return -ENOMEM;

	dev->irq = irq_of_parse_and_map(dn, 0);
	if (dev->irq == 0) {
		err = -EINVAL;
		goto err_free_netdev;
	}

	phy_node = of_parse_phandle(dn, "phy", 0);
	if (!phy_node) {
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
		if (!of_phy_is_fixed_link(dn)) {
			dev_err(&pdev->dev, "no PHY specified\n");
			err = -ENODEV;
			goto err_free_irq;
		}

		err = of_phy_register_fixed_link(dn);
		if (err < 0) {
			dev_err(&pdev->dev, "cannot register fixed PHY\n");
			goto err_free_irq;
		}

		/* In the case of a fixed PHY, the DT node associated
		 * to the PHY is the Ethernet MAC DT node.
		 */
		phy_node = dn;
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
	}

	phy_mode = of_get_phy_mode(dn);
	if (phy_mode < 0) {
		dev_err(&pdev->dev, "incorrect phy-mode\n");
		err = -EINVAL;
		goto err_free_irq;
	}

	dev->tx_queue_len = MVNETA_MAX_TXD;
	dev->watchdog_timeo = 5 * HZ;
	dev->netdev_ops = &mvneta_netdev_ops;

2962
	dev->ethtool_ops = &mvneta_eth_tool_ops;
2963 2964 2965 2966 2967

	pp = netdev_priv(dev);
	pp->phy_node = phy_node;
	pp->phy_interface = phy_mode;

T
Thomas Petazzoni 已提交
2968 2969 2970
	pp->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(pp->clk)) {
		err = PTR_ERR(pp->clk);
2971
		goto err_free_irq;
T
Thomas Petazzoni 已提交
2972 2973 2974 2975
	}

	clk_prepare_enable(pp->clk);

2976 2977 2978 2979
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	pp->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(pp->base)) {
		err = PTR_ERR(pp->base);
2980 2981 2982
		goto err_clk;
	}

2983
	/* Alloc per-cpu stats */
2984
	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
2985 2986
	if (!pp->stats) {
		err = -ENOMEM;
2987
		goto err_clk;
2988 2989
	}

2990
	dt_mac_addr = of_get_mac_address(dn);
2991
	if (dt_mac_addr) {
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
		mac_from = "device tree";
		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
	} else {
		mvneta_get_mac_addr(pp, hw_mac_addr);
		if (is_valid_ether_addr(hw_mac_addr)) {
			mac_from = "hardware";
			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
		} else {
			mac_from = "random";
			eth_hw_addr_random(dev);
		}
	}

3005 3006 3007 3008 3009 3010
	pp->tx_ring_size = MVNETA_MAX_TXD;
	pp->rx_ring_size = MVNETA_MAX_RXD;

	pp->dev = dev;
	SET_NETDEV_DEV(dev, &pdev->dev);

3011 3012
	err = mvneta_init(&pdev->dev, pp);
	if (err < 0)
3013
		goto err_free_stats;
3014 3015 3016 3017

	err = mvneta_port_power_up(pp, phy_mode);
	if (err < 0) {
		dev_err(&pdev->dev, "can't power up port\n");
3018
		goto err_free_stats;
3019
	}
3020 3021 3022 3023 3024

	dram_target_info = mv_mbus_dram_info();
	if (dram_target_info)
		mvneta_conf_mbus_windows(pp, dram_target_info);

3025
	netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
3026

3027
	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3028 3029
	dev->hw_features |= dev->features;
	dev->vlan_features |= dev->features;
3030 3031
	dev->priv_flags |= IFF_UNICAST_FLT;

3032 3033 3034
	err = register_netdev(dev);
	if (err < 0) {
		dev_err(&pdev->dev, "failed to register\n");
3035
		goto err_free_stats;
3036 3037
	}

3038 3039
	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
		    dev->dev_addr);
3040 3041 3042 3043 3044

	platform_set_drvdata(pdev, pp->dev);

	return 0;

3045 3046
err_free_stats:
	free_percpu(pp->stats);
3047 3048
err_clk:
	clk_disable_unprepare(pp->clk);
3049 3050 3051 3052 3053 3054 3055 3056
err_free_irq:
	irq_dispose_mapping(dev->irq);
err_free_netdev:
	free_netdev(dev);
	return err;
}

/* Device removal routine */
G
Greg KH 已提交
3057
static int mvneta_remove(struct platform_device *pdev)
3058 3059 3060 3061 3062
{
	struct net_device  *dev = platform_get_drvdata(pdev);
	struct mvneta_port *pp = netdev_priv(dev);

	unregister_netdev(dev);
T
Thomas Petazzoni 已提交
3063
	clk_disable_unprepare(pp->clk);
3064
	free_percpu(pp->stats);
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
	irq_dispose_mapping(dev->irq);
	free_netdev(dev);

	return 0;
}

static const struct of_device_id mvneta_match[] = {
	{ .compatible = "marvell,armada-370-neta" },
	{ }
};
MODULE_DEVICE_TABLE(of, mvneta_match);

static struct platform_driver mvneta_driver = {
	.probe = mvneta_probe,
G
Greg KH 已提交
3079
	.remove = mvneta_remove,
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
	.driver = {
		.name = MVNETA_DRIVER_NAME,
		.of_match_table = mvneta_match,
	},
};

module_platform_driver(mvneta_driver);

MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
MODULE_LICENSE("GPL");

module_param(rxq_number, int, S_IRUGO);
module_param(txq_number, int, S_IRUGO);

module_param(rxq_def, int, S_IRUGO);
3096
module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);