journal.c 66.2 KB
Newer Older
1
/*
2
 * linux/fs/jbd2/journal.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
 *
 * Copyright 1998 Red Hat corp --- All Rights Reserved
 *
 * This file is part of the Linux kernel and is made available under
 * the terms of the GNU General Public License, version 2, or at your
 * option, any later version, incorporated herein by reference.
 *
 * Generic filesystem journal-writing code; part of the ext2fs
 * journaling system.
 *
 * This file manages journals: areas of disk reserved for logging
 * transactional updates.  This includes the kernel journaling thread
 * which is responsible for scheduling updates to the log.
 *
 * We do not actually manage the physical storage of the journal in this
 * file: that is left to a per-journal policy function, which allows us
 * to store the journal within a filesystem-specified area for ext2
 * journaling (ext2 can use a reserved inode for storing the log).
 */

#include <linux/module.h>
#include <linux/time.h>
#include <linux/fs.h>
28
#include <linux/jbd2.h>
29 30 31 32
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/mm.h>
33
#include <linux/freezer.h>
34 35 36 37
#include <linux/pagemap.h>
#include <linux/kthread.h>
#include <linux/poison.h>
#include <linux/proc_fs.h>
38
#include <linux/debugfs.h>
39
#include <linux/seq_file.h>
40
#include <linux/math64.h>
41
#include <linux/hash.h>
42 43
#include <linux/log2.h>
#include <linux/vmalloc.h>
44
#include <linux/backing-dev.h>
45
#include <linux/bitops.h>
46
#include <linux/ratelimit.h>
47 48 49

#define CREATE_TRACE_POINTS
#include <trace/events/jbd2.h>
50 51 52

#include <asm/uaccess.h>
#include <asm/page.h>
53
#include <asm/system.h>
54

55 56 57 58 59 60 61
EXPORT_SYMBOL(jbd2_journal_extend);
EXPORT_SYMBOL(jbd2_journal_stop);
EXPORT_SYMBOL(jbd2_journal_lock_updates);
EXPORT_SYMBOL(jbd2_journal_unlock_updates);
EXPORT_SYMBOL(jbd2_journal_get_write_access);
EXPORT_SYMBOL(jbd2_journal_get_create_access);
EXPORT_SYMBOL(jbd2_journal_get_undo_access);
J
Joel Becker 已提交
62
EXPORT_SYMBOL(jbd2_journal_set_triggers);
63 64 65
EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
EXPORT_SYMBOL(jbd2_journal_release_buffer);
EXPORT_SYMBOL(jbd2_journal_forget);
66 67 68
#if 0
EXPORT_SYMBOL(journal_sync_buffer);
#endif
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
EXPORT_SYMBOL(jbd2_journal_flush);
EXPORT_SYMBOL(jbd2_journal_revoke);

EXPORT_SYMBOL(jbd2_journal_init_dev);
EXPORT_SYMBOL(jbd2_journal_init_inode);
EXPORT_SYMBOL(jbd2_journal_update_format);
EXPORT_SYMBOL(jbd2_journal_check_used_features);
EXPORT_SYMBOL(jbd2_journal_check_available_features);
EXPORT_SYMBOL(jbd2_journal_set_features);
EXPORT_SYMBOL(jbd2_journal_load);
EXPORT_SYMBOL(jbd2_journal_destroy);
EXPORT_SYMBOL(jbd2_journal_abort);
EXPORT_SYMBOL(jbd2_journal_errno);
EXPORT_SYMBOL(jbd2_journal_ack_err);
EXPORT_SYMBOL(jbd2_journal_clear_err);
EXPORT_SYMBOL(jbd2_log_wait_commit);
85
EXPORT_SYMBOL(jbd2_log_start_commit);
86 87 88 89 90 91 92
EXPORT_SYMBOL(jbd2_journal_start_commit);
EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
EXPORT_SYMBOL(jbd2_journal_wipe);
EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
EXPORT_SYMBOL(jbd2_journal_invalidatepage);
EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
EXPORT_SYMBOL(jbd2_journal_force_commit);
93 94 95 96
EXPORT_SYMBOL(jbd2_journal_file_inode);
EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97
EXPORT_SYMBOL(jbd2_inode_cache);
98 99 100

static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
static void __journal_abort_soft (journal_t *journal, int errno);
101
static int jbd2_journal_create_slab(size_t slab_size);
102 103 104 105 106 107 108 109 110 111 112 113 114

/*
 * Helper function used to manage commit timeouts
 */

static void commit_timeout(unsigned long __data)
{
	struct task_struct * p = (struct task_struct *) __data;

	wake_up_process(p);
}

/*
115
 * kjournald2: The main thread function used to manage a logging device
116 117 118 119 120 121 122 123 124 125 126 127 128 129
 * journal.
 *
 * This kernel thread is responsible for two things:
 *
 * 1) COMMIT:  Every so often we need to commit the current state of the
 *    filesystem to disk.  The journal thread is responsible for writing
 *    all of the metadata buffers to disk.
 *
 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
 *    of the data in that part of the log has been rewritten elsewhere on
 *    the disk.  Flushing these old buffers to reclaim space in the log is
 *    known as checkpointing, and this thread is responsible for that job.
 */

130
static int kjournald2(void *arg)
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
{
	journal_t *journal = arg;
	transaction_t *transaction;

	/*
	 * Set up an interval timer which can be used to trigger a commit wakeup
	 * after the commit interval expires
	 */
	setup_timer(&journal->j_commit_timer, commit_timeout,
			(unsigned long)current);

	/* Record that the journal thread is running */
	journal->j_task = current;
	wake_up(&journal->j_wait_done_commit);

	/*
	 * And now, wait forever for commit wakeup events.
	 */
149
	write_lock(&journal->j_state_lock);
150 151

loop:
152
	if (journal->j_flags & JBD2_UNMOUNT)
153 154 155 156 157 158 159
		goto end_loop;

	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
		journal->j_commit_sequence, journal->j_commit_request);

	if (journal->j_commit_sequence != journal->j_commit_request) {
		jbd_debug(1, "OK, requests differ\n");
160
		write_unlock(&journal->j_state_lock);
161
		del_timer_sync(&journal->j_commit_timer);
162
		jbd2_journal_commit_transaction(journal);
163
		write_lock(&journal->j_state_lock);
164 165 166 167 168 169 170 171 172 173
		goto loop;
	}

	wake_up(&journal->j_wait_done_commit);
	if (freezing(current)) {
		/*
		 * The simpler the better. Flushing journal isn't a
		 * good idea, because that depends on threads that may
		 * be already stopped.
		 */
174
		jbd_debug(1, "Now suspending kjournald2\n");
175
		write_unlock(&journal->j_state_lock);
176
		refrigerator();
177
		write_lock(&journal->j_state_lock);
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	} else {
		/*
		 * We assume on resume that commits are already there,
		 * so we don't sleep
		 */
		DEFINE_WAIT(wait);
		int should_sleep = 1;

		prepare_to_wait(&journal->j_wait_commit, &wait,
				TASK_INTERRUPTIBLE);
		if (journal->j_commit_sequence != journal->j_commit_request)
			should_sleep = 0;
		transaction = journal->j_running_transaction;
		if (transaction && time_after_eq(jiffies,
						transaction->t_expires))
			should_sleep = 0;
194
		if (journal->j_flags & JBD2_UNMOUNT)
195 196
			should_sleep = 0;
		if (should_sleep) {
197
			write_unlock(&journal->j_state_lock);
198
			schedule();
199
			write_lock(&journal->j_state_lock);
200 201 202 203
		}
		finish_wait(&journal->j_wait_commit, &wait);
	}

204
	jbd_debug(1, "kjournald2 wakes\n");
205 206 207 208 209 210 211 212 213 214 215 216

	/*
	 * Were we woken up by a commit wakeup event?
	 */
	transaction = journal->j_running_transaction;
	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
		journal->j_commit_request = transaction->t_tid;
		jbd_debug(1, "woke because of timeout\n");
	}
	goto loop;

end_loop:
217
	write_unlock(&journal->j_state_lock);
218 219 220 221 222 223 224
	del_timer_sync(&journal->j_commit_timer);
	journal->j_task = NULL;
	wake_up(&journal->j_wait_done_commit);
	jbd_debug(1, "Journal thread exiting.\n");
	return 0;
}

225
static int jbd2_journal_start_thread(journal_t *journal)
226
{
227 228
	struct task_struct *t;

229 230
	t = kthread_run(kjournald2, journal, "jbd2/%s",
			journal->j_devname);
231 232 233
	if (IS_ERR(t))
		return PTR_ERR(t);

A
Al Viro 已提交
234
	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
235
	return 0;
236 237 238 239
}

static void journal_kill_thread(journal_t *journal)
{
240
	write_lock(&journal->j_state_lock);
241
	journal->j_flags |= JBD2_UNMOUNT;
242 243 244

	while (journal->j_task) {
		wake_up(&journal->j_wait_commit);
245
		write_unlock(&journal->j_state_lock);
A
Al Viro 已提交
246
		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
247
		write_lock(&journal->j_state_lock);
248
	}
249
	write_unlock(&journal->j_state_lock);
250 251 252
}

/*
253
 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
254 255 256 257 258 259 260
 *
 * Writes a metadata buffer to a given disk block.  The actual IO is not
 * performed but a new buffer_head is constructed which labels the data
 * to be written with the correct destination disk block.
 *
 * Any magic-number escaping which needs to be done will cause a
 * copy-out here.  If the buffer happens to start with the
261
 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
 * magic number is only written to the log for descripter blocks.  In
 * this case, we copy the data and replace the first word with 0, and we
 * return a result code which indicates that this buffer needs to be
 * marked as an escaped buffer in the corresponding log descriptor
 * block.  The missing word can then be restored when the block is read
 * during recovery.
 *
 * If the source buffer has already been modified by a new transaction
 * since we took the last commit snapshot, we use the frozen copy of
 * that data for IO.  If we end up using the existing buffer_head's data
 * for the write, then we *have* to lock the buffer to prevent anyone
 * else from using and possibly modifying it while the IO is in
 * progress.
 *
 * The function returns a pointer to the buffer_heads to be used for IO.
 *
 * We assume that the journal has already been locked in this function.
 *
 * Return value:
 *  <0: Error
 * >=0: Finished OK
 *
 * On success:
 * Bit 0 set == escape performed on the data
 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
 */

289
int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
290 291
				  struct journal_head  *jh_in,
				  struct journal_head **jh_out,
292
				  unsigned long long blocknr)
293 294 295 296 297 298 299 300 301 302
{
	int need_copy_out = 0;
	int done_copy_out = 0;
	int do_escape = 0;
	char *mapped_data;
	struct buffer_head *new_bh;
	struct journal_head *new_jh;
	struct page *new_page;
	unsigned int new_offset;
	struct buffer_head *bh_in = jh2bh(jh_in);
303
	journal_t *journal = transaction->t_journal;
304 305 306 307 308 309 310 311 312 313 314 315

	/*
	 * The buffer really shouldn't be locked: only the current committing
	 * transaction is allowed to write it, so nobody else is allowed
	 * to do any IO.
	 *
	 * akpm: except if we're journalling data, and write() output is
	 * also part of a shared mapping, and another thread has
	 * decided to launch a writepage() against this buffer.
	 */
	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));

316 317 318 319 320 321 322 323 324 325 326
retry_alloc:
	new_bh = alloc_buffer_head(GFP_NOFS);
	if (!new_bh) {
		/*
		 * Failure is not an option, but __GFP_NOFAIL is going
		 * away; so we retry ourselves here.
		 */
		congestion_wait(BLK_RW_ASYNC, HZ/50);
		goto retry_alloc;
	}

327 328 329 330 331
	/* keep subsequent assertions sane */
	new_bh->b_state = 0;
	init_buffer(new_bh, NULL, NULL);
	atomic_set(&new_bh->b_count, 1);
	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

	/*
	 * If a new transaction has already done a buffer copy-out, then
	 * we use that version of the data for the commit.
	 */
	jbd_lock_bh_state(bh_in);
repeat:
	if (jh_in->b_frozen_data) {
		done_copy_out = 1;
		new_page = virt_to_page(jh_in->b_frozen_data);
		new_offset = offset_in_page(jh_in->b_frozen_data);
	} else {
		new_page = jh2bh(jh_in)->b_page;
		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
	}

	mapped_data = kmap_atomic(new_page, KM_USER0);
J
Joel Becker 已提交
349
	/*
350 351 352 353
	 * Fire data frozen trigger if data already wasn't frozen.  Do this
	 * before checking for escaping, as the trigger may modify the magic
	 * offset.  If a copy-out happens afterwards, it will have the correct
	 * data in the buffer.
J
Joel Becker 已提交
354
	 */
355 356 357
	if (!done_copy_out)
		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
					   jh_in->b_triggers);
J
Joel Becker 已提交
358

359 360 361 362
	/*
	 * Check for escaping
	 */
	if (*((__be32 *)(mapped_data + new_offset)) ==
363
				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
364 365 366 367 368 369 370 371 372 373 374 375
		need_copy_out = 1;
		do_escape = 1;
	}
	kunmap_atomic(mapped_data, KM_USER0);

	/*
	 * Do we need to do a data copy?
	 */
	if (need_copy_out && !done_copy_out) {
		char *tmp;

		jbd_unlock_bh_state(bh_in);
M
Mingming Cao 已提交
376
		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
377 378 379 380
		if (!tmp) {
			jbd2_journal_put_journal_head(new_jh);
			return -ENOMEM;
		}
381 382
		jbd_lock_bh_state(bh_in);
		if (jh_in->b_frozen_data) {
M
Mingming Cao 已提交
383
			jbd2_free(tmp, bh_in->b_size);
384 385 386 387 388 389 390 391 392 393 394
			goto repeat;
		}

		jh_in->b_frozen_data = tmp;
		mapped_data = kmap_atomic(new_page, KM_USER0);
		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
		kunmap_atomic(mapped_data, KM_USER0);

		new_page = virt_to_page(tmp);
		new_offset = offset_in_page(tmp);
		done_copy_out = 1;
J
Joel Becker 已提交
395 396 397 398 399 400 401

		/*
		 * This isn't strictly necessary, as we're using frozen
		 * data for the escaping, but it keeps consistency with
		 * b_frozen_data usage.
		 */
		jh_in->b_frozen_triggers = jh_in->b_triggers;
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
	}

	/*
	 * Did we need to do an escaping?  Now we've done all the
	 * copying, we can finally do so.
	 */
	if (do_escape) {
		mapped_data = kmap_atomic(new_page, KM_USER0);
		*((unsigned int *)(mapped_data + new_offset)) = 0;
		kunmap_atomic(mapped_data, KM_USER0);
	}

	set_bh_page(new_bh, new_page, new_offset);
	new_jh->b_transaction = NULL;
	new_bh->b_size = jh2bh(jh_in)->b_size;
	new_bh->b_bdev = transaction->t_journal->j_dev;
	new_bh->b_blocknr = blocknr;
	set_buffer_mapped(new_bh);
	set_buffer_dirty(new_bh);

	*jh_out = new_jh;

	/*
	 * The to-be-written buffer needs to get moved to the io queue,
	 * and the original buffer whose contents we are shadowing or
	 * copying is moved to the transaction's shadow queue.
	 */
	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
430 431 432 433 434
	spin_lock(&journal->j_list_lock);
	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
	spin_unlock(&journal->j_list_lock);
	jbd_unlock_bh_state(bh_in);

435
	JBUFFER_TRACE(new_jh, "file as BJ_IO");
436
	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
437 438 439 440 441 442 443 444 445 446

	return do_escape | (done_copy_out << 1);
}

/*
 * Allocation code for the journal file.  Manage the space left in the
 * journal, so that we can begin checkpointing when appropriate.
 */

/*
447
 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
448 449 450 451 452 453
 *
 * Called with the journal already locked.
 *
 * Called under j_state_lock
 */

454
int __jbd2_log_space_left(journal_t *journal)
455 456 457
{
	int left = journal->j_free;

458
	/* assert_spin_locked(&journal->j_state_lock); */
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

	/*
	 * Be pessimistic here about the number of those free blocks which
	 * might be required for log descriptor control blocks.
	 */

#define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */

	left -= MIN_LOG_RESERVED_BLOCKS;

	if (left <= 0)
		return 0;
	left -= (left >> 3);
	return left;
}

/*
476 477
 * Called with j_state_lock locked for writing.
 * Returns true if a transaction commit was started.
478
 */
479
int __jbd2_log_start_commit(journal_t *journal, tid_t target)
480 481 482 483 484 485
{
	/*
	 * Are we already doing a recent enough commit?
	 */
	if (!tid_geq(journal->j_commit_request, target)) {
		/*
A
Andrea Gelmini 已提交
486
		 * We want a new commit: OK, mark the request and wakeup the
487 488 489 490 491 492 493 494 495 496 497 498 499
		 * commit thread.  We do _not_ do the commit ourselves.
		 */

		journal->j_commit_request = target;
		jbd_debug(1, "JBD: requesting commit %d/%d\n",
			  journal->j_commit_request,
			  journal->j_commit_sequence);
		wake_up(&journal->j_wait_commit);
		return 1;
	}
	return 0;
}

500
int jbd2_log_start_commit(journal_t *journal, tid_t tid)
501 502 503
{
	int ret;

504
	write_lock(&journal->j_state_lock);
505
	ret = __jbd2_log_start_commit(journal, tid);
506
	write_unlock(&journal->j_state_lock);
507 508 509 510 511 512 513 514 515 516 517 518 519
	return ret;
}

/*
 * Force and wait upon a commit if the calling process is not within
 * transaction.  This is used for forcing out undo-protected data which contains
 * bitmaps, when the fs is running out of space.
 *
 * We can only force the running transaction if we don't have an active handle;
 * otherwise, we will deadlock.
 *
 * Returns true if a transaction was started.
 */
520
int jbd2_journal_force_commit_nested(journal_t *journal)
521 522 523
{
	transaction_t *transaction = NULL;
	tid_t tid;
524
	int need_to_start = 0;
525

526
	read_lock(&journal->j_state_lock);
527 528
	if (journal->j_running_transaction && !current->journal_info) {
		transaction = journal->j_running_transaction;
529 530
		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
			need_to_start = 1;
531 532 533 534
	} else if (journal->j_committing_transaction)
		transaction = journal->j_committing_transaction;

	if (!transaction) {
535
		read_unlock(&journal->j_state_lock);
536 537 538 539
		return 0;	/* Nothing to retry */
	}

	tid = transaction->t_tid;
540
	read_unlock(&journal->j_state_lock);
541 542
	if (need_to_start)
		jbd2_log_start_commit(journal, tid);
543
	jbd2_log_wait_commit(journal, tid);
544 545 546 547 548
	return 1;
}

/*
 * Start a commit of the current running transaction (if any).  Returns true
549 550
 * if a transaction is going to be committed (or is currently already
 * committing), and fills its tid in at *ptid
551
 */
552
int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
553 554 555
{
	int ret = 0;

556
	write_lock(&journal->j_state_lock);
557 558 559
	if (journal->j_running_transaction) {
		tid_t tid = journal->j_running_transaction->t_tid;

560 561 562 563
		__jbd2_log_start_commit(journal, tid);
		/* There's a running transaction and we've just made sure
		 * it's commit has been scheduled. */
		if (ptid)
564
			*ptid = tid;
565 566
		ret = 1;
	} else if (journal->j_committing_transaction) {
567 568 569 570
		/*
		 * If ext3_write_super() recently started a commit, then we
		 * have to wait for completion of that transaction
		 */
571 572
		if (ptid)
			*ptid = journal->j_committing_transaction->t_tid;
573 574
		ret = 1;
	}
575
	write_unlock(&journal->j_state_lock);
576 577 578 579 580 581 582
	return ret;
}

/*
 * Wait for a specified commit to complete.
 * The caller may not hold the journal lock.
 */
583
int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
584 585 586
{
	int err = 0;

587
	read_lock(&journal->j_state_lock);
588
#ifdef CONFIG_JBD2_DEBUG
589 590 591
	if (!tid_geq(journal->j_commit_request, tid)) {
		printk(KERN_EMERG
		       "%s: error: j_commit_request=%d, tid=%d\n",
592
		       __func__, journal->j_commit_request, tid);
593 594 595 596 597 598
	}
#endif
	while (tid_gt(tid, journal->j_commit_sequence)) {
		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
				  tid, journal->j_commit_sequence);
		wake_up(&journal->j_wait_commit);
599
		read_unlock(&journal->j_state_lock);
600 601
		wait_event(journal->j_wait_done_commit,
				!tid_gt(tid, journal->j_commit_sequence));
602
		read_lock(&journal->j_state_lock);
603
	}
604
	read_unlock(&journal->j_state_lock);
605 606 607 608 609 610 611 612 613 614 615 616

	if (unlikely(is_journal_aborted(journal))) {
		printk(KERN_EMERG "journal commit I/O error\n");
		err = -EIO;
	}
	return err;
}

/*
 * Log buffer allocation routines:
 */

617
int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
618 619 620
{
	unsigned long blocknr;

621
	write_lock(&journal->j_state_lock);
622 623 624 625 626 627 628
	J_ASSERT(journal->j_free > 1);

	blocknr = journal->j_head;
	journal->j_head++;
	journal->j_free--;
	if (journal->j_head == journal->j_last)
		journal->j_head = journal->j_first;
629
	write_unlock(&journal->j_state_lock);
630
	return jbd2_journal_bmap(journal, blocknr, retp);
631 632 633 634 635 636 637 638 639
}

/*
 * Conversion of logical to physical block numbers for the journal
 *
 * On external journals the journal blocks are identity-mapped, so
 * this is a no-op.  If needed, we can use j_blk_offset - everything is
 * ready.
 */
640
int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
641
		 unsigned long long *retp)
642 643
{
	int err = 0;
644
	unsigned long long ret;
645 646 647 648 649 650 651 652

	if (journal->j_inode) {
		ret = bmap(journal->j_inode, blocknr);
		if (ret)
			*retp = ret;
		else {
			printk(KERN_ALERT "%s: journal block not found "
					"at offset %lu on %s\n",
653
			       __func__, blocknr, journal->j_devname);
654 655 656 657 658 659 660 661 662 663 664 665 666 667
			err = -EIO;
			__journal_abort_soft(journal, err);
		}
	} else {
		*retp = blocknr; /* +journal->j_blk_offset */
	}
	return err;
}

/*
 * We play buffer_head aliasing tricks to write data/metadata blocks to
 * the journal without copying their contents, but for journal
 * descriptor blocks we do need to generate bona fide buffers.
 *
668
 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
669 670 671 672
 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
 * But we don't bother doing that, so there will be coherency problems with
 * mmaps of blockdevs which hold live JBD-controlled filesystems.
 */
673
struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
674 675
{
	struct buffer_head *bh;
676
	unsigned long long blocknr;
677 678
	int err;

679
	err = jbd2_journal_next_log_block(journal, &blocknr);
680 681 682 683 684

	if (err)
		return NULL;

	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
685 686
	if (!bh)
		return NULL;
687 688 689 690 691
	lock_buffer(bh);
	memset(bh->b_data, 0, journal->j_blocksize);
	set_buffer_uptodate(bh);
	unlock_buffer(bh);
	BUFFER_TRACE(bh, "return this buffer");
692
	return jbd2_journal_add_journal_head(bh);
693 694
}

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
struct jbd2_stats_proc_session {
	journal_t *journal;
	struct transaction_stats_s *stats;
	int start;
	int max;
};

static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
{
	return *pos ? NULL : SEQ_START_TOKEN;
}

static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
{
	return NULL;
}

static int jbd2_seq_info_show(struct seq_file *seq, void *v)
{
	struct jbd2_stats_proc_session *s = seq->private;

	if (v != SEQ_START_TOKEN)
		return 0;
718
	seq_printf(seq, "%lu transaction, each up to %u blocks\n",
719 720 721 722 723
			s->stats->ts_tid,
			s->journal->j_max_transaction_buffers);
	if (s->stats->ts_tid == 0)
		return 0;
	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
724
	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
725
	seq_printf(seq, "  %ums running transaction\n",
726
	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
727
	seq_printf(seq, "  %ums transaction was being locked\n",
728
	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
729
	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
730
	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
731
	seq_printf(seq, "  %ums logging transaction\n",
732
	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
733 734
	seq_printf(seq, "  %lluus average transaction commit time\n",
		   div_u64(s->journal->j_average_commit_time, 1000));
735
	seq_printf(seq, "  %lu handles per transaction\n",
736
	    s->stats->run.rs_handle_count / s->stats->ts_tid);
737
	seq_printf(seq, "  %lu blocks per transaction\n",
738
	    s->stats->run.rs_blocks / s->stats->ts_tid);
739
	seq_printf(seq, "  %lu logged blocks per transaction\n",
740
	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
741 742 743 744 745 746 747
	return 0;
}

static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
{
}

J
James Morris 已提交
748
static const struct seq_operations jbd2_seq_info_ops = {
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
	.start  = jbd2_seq_info_start,
	.next   = jbd2_seq_info_next,
	.stop   = jbd2_seq_info_stop,
	.show   = jbd2_seq_info_show,
};

static int jbd2_seq_info_open(struct inode *inode, struct file *file)
{
	journal_t *journal = PDE(inode)->data;
	struct jbd2_stats_proc_session *s;
	int rc, size;

	s = kmalloc(sizeof(*s), GFP_KERNEL);
	if (s == NULL)
		return -ENOMEM;
	size = sizeof(struct transaction_stats_s);
	s->stats = kmalloc(size, GFP_KERNEL);
	if (s->stats == NULL) {
		kfree(s);
		return -ENOMEM;
	}
	spin_lock(&journal->j_history_lock);
	memcpy(s->stats, &journal->j_stats, size);
	s->journal = journal;
	spin_unlock(&journal->j_history_lock);

	rc = seq_open(file, &jbd2_seq_info_ops);
	if (rc == 0) {
		struct seq_file *m = file->private_data;
		m->private = s;
	} else {
		kfree(s->stats);
		kfree(s);
	}
	return rc;

}

static int jbd2_seq_info_release(struct inode *inode, struct file *file)
{
	struct seq_file *seq = file->private_data;
	struct jbd2_stats_proc_session *s = seq->private;
	kfree(s->stats);
	kfree(s);
	return seq_release(inode, file);
}

796
static const struct file_operations jbd2_seq_info_fops = {
797 798 799 800 801 802 803 804 805 806 807
	.owner		= THIS_MODULE,
	.open           = jbd2_seq_info_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = jbd2_seq_info_release,
};

static struct proc_dir_entry *proc_jbd2_stats;

static void jbd2_stats_proc_init(journal_t *journal)
{
808
	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
809
	if (journal->j_proc_entry) {
810 811
		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
				 &jbd2_seq_info_fops, journal);
812 813 814 815 816 817
	}
}

static void jbd2_stats_proc_exit(journal_t *journal)
{
	remove_proc_entry("info", journal->j_proc_entry);
818
	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
819 820
}

821 822 823 824 825 826 827 828 829 830 831 832 833 834
/*
 * Management for journal control blocks: functions to create and
 * destroy journal_t structures, and to initialise and read existing
 * journal blocks from disk.  */

/* First: create and setup a journal_t object in memory.  We initialise
 * very few fields yet: that has to wait until we have created the
 * journal structures from from scratch, or loaded them from disk. */

static journal_t * journal_init_common (void)
{
	journal_t *journal;
	int err;

835
	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
836
	if (!journal)
837
		return NULL;
838 839 840 841 842 843 844 845 846 847 848

	init_waitqueue_head(&journal->j_wait_transaction_locked);
	init_waitqueue_head(&journal->j_wait_logspace);
	init_waitqueue_head(&journal->j_wait_done_commit);
	init_waitqueue_head(&journal->j_wait_checkpoint);
	init_waitqueue_head(&journal->j_wait_commit);
	init_waitqueue_head(&journal->j_wait_updates);
	mutex_init(&journal->j_barrier);
	mutex_init(&journal->j_checkpoint_mutex);
	spin_lock_init(&journal->j_revoke_lock);
	spin_lock_init(&journal->j_list_lock);
849
	rwlock_init(&journal->j_state_lock);
850

851
	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
852 853
	journal->j_min_batch_time = 0;
	journal->j_max_batch_time = 15000; /* 15ms */
854 855

	/* The journal is marked for error until we succeed with recovery! */
856
	journal->j_flags = JBD2_ABORT;
857 858

	/* Set up a default-sized revoke table for the new mount. */
859
	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
860 861
	if (err) {
		kfree(journal);
862
		return NULL;
863
	}
864

865
	spin_lock_init(&journal->j_history_lock);
866

867 868 869
	return journal;
}

870
/* jbd2_journal_init_dev and jbd2_journal_init_inode:
871 872 873 874 875 876 877 878 879
 *
 * Create a journal structure assigned some fixed set of disk blocks to
 * the journal.  We don't actually touch those disk blocks yet, but we
 * need to set up all of the mapping information to tell the journaling
 * system where the journal blocks are.
 *
 */

/**
R
Randy Dunlap 已提交
880
 *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
881 882 883 884 885
 *  @bdev: Block device on which to create the journal
 *  @fs_dev: Device which hold journalled filesystem for this journal.
 *  @start: Block nr Start of journal.
 *  @len:  Length of the journal in blocks.
 *  @blocksize: blocksize of journalling device
R
Randy Dunlap 已提交
886 887
 *
 *  Returns: a newly created journal_t *
888
 *
889
 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
890 891 892
 *  range of blocks on an arbitrary block device.
 *
 */
893
journal_t * jbd2_journal_init_dev(struct block_device *bdev,
894
			struct block_device *fs_dev,
895
			unsigned long long start, int len, int blocksize)
896 897 898
{
	journal_t *journal = journal_init_common();
	struct buffer_head *bh;
899
	char *p;
900 901 902 903 904 905 906
	int n;

	if (!journal)
		return NULL;

	/* journal descriptor can store up to n blocks -bzzz */
	journal->j_blocksize = blocksize;
907 908 909 910 911 912 913 914
	journal->j_dev = bdev;
	journal->j_fs_dev = fs_dev;
	journal->j_blk_offset = start;
	journal->j_maxlen = len;
	bdevname(journal->j_dev, journal->j_devname);
	p = journal->j_devname;
	while ((p = strchr(p, '/')))
		*p = '!';
915
	jbd2_stats_proc_init(journal);
916 917 918 919
	n = journal->j_blocksize / sizeof(journal_block_tag_t);
	journal->j_wbufsize = n;
	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
	if (!journal->j_wbuf) {
L
Lucas De Marchi 已提交
920
		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
921
			__func__);
922
		goto out_err;
923 924 925
	}

	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
926 927 928 929 930 931
	if (!bh) {
		printk(KERN_ERR
		       "%s: Cannot get buffer for journal superblock\n",
		       __func__);
		goto out_err;
	}
932 933
	journal->j_sb_buffer = bh;
	journal->j_superblock = (journal_superblock_t *)bh->b_data;
934

935
	return journal;
936
out_err:
937
	kfree(journal->j_wbuf);
938 939 940
	jbd2_stats_proc_exit(journal);
	kfree(journal);
	return NULL;
941 942 943
}

/**
944
 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
945 946
 *  @inode: An inode to create the journal in
 *
947
 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
948 949 950
 * the journal.  The inode must exist already, must support bmap() and
 * must have all data blocks preallocated.
 */
951
journal_t * jbd2_journal_init_inode (struct inode *inode)
952 953 954
{
	struct buffer_head *bh;
	journal_t *journal = journal_init_common();
955
	char *p;
956 957
	int err;
	int n;
958
	unsigned long long blocknr;
959 960 961 962 963 964

	if (!journal)
		return NULL;

	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
	journal->j_inode = inode;
965 966 967 968 969
	bdevname(journal->j_dev, journal->j_devname);
	p = journal->j_devname;
	while ((p = strchr(p, '/')))
		*p = '!';
	p = journal->j_devname + strlen(journal->j_devname);
970
	sprintf(p, "-%lu", journal->j_inode->i_ino);
971 972 973 974 975 976 977 978
	jbd_debug(1,
		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
		  journal, inode->i_sb->s_id, inode->i_ino,
		  (long long) inode->i_size,
		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);

	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
	journal->j_blocksize = inode->i_sb->s_blocksize;
979
	jbd2_stats_proc_init(journal);
980 981 982 983 984 985

	/* journal descriptor can store up to n blocks -bzzz */
	n = journal->j_blocksize / sizeof(journal_block_tag_t);
	journal->j_wbufsize = n;
	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
	if (!journal->j_wbuf) {
L
Lucas De Marchi 已提交
986
		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
987
			__func__);
988
		goto out_err;
989 990
	}

991
	err = jbd2_journal_bmap(journal, 0, &blocknr);
992 993
	/* If that failed, give up */
	if (err) {
994
		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
995
		       __func__);
996
		goto out_err;
997 998 999
	}

	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1000 1001 1002 1003 1004 1005
	if (!bh) {
		printk(KERN_ERR
		       "%s: Cannot get buffer for journal superblock\n",
		       __func__);
		goto out_err;
	}
1006 1007 1008 1009
	journal->j_sb_buffer = bh;
	journal->j_superblock = (journal_superblock_t *)bh->b_data;

	return journal;
1010
out_err:
1011
	kfree(journal->j_wbuf);
1012 1013 1014
	jbd2_stats_proc_exit(journal);
	kfree(journal);
	return NULL;
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
}

/*
 * If the journal init or create aborts, we need to mark the journal
 * superblock as being NULL to prevent the journal destroy from writing
 * back a bogus superblock.
 */
static void journal_fail_superblock (journal_t *journal)
{
	struct buffer_head *bh = journal->j_sb_buffer;
	brelse(bh);
	journal->j_sb_buffer = NULL;
}

/*
 * Given a journal_t structure, initialise the various fields for
 * startup of a new journaling session.  We use this both when creating
 * a journal, and after recovering an old journal to reset it for
 * subsequent use.
 */

static int journal_reset(journal_t *journal)
{
	journal_superblock_t *sb = journal->j_superblock;
1039
	unsigned long long first, last;
1040 1041 1042

	first = be32_to_cpu(sb->s_first);
	last = be32_to_cpu(sb->s_maxlen);
1043 1044 1045 1046 1047 1048
	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
		printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
		       first, last);
		journal_fail_superblock(journal);
		return -EINVAL;
	}
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

	journal->j_first = first;
	journal->j_last = last;

	journal->j_head = first;
	journal->j_tail = first;
	journal->j_free = last - first;

	journal->j_tail_sequence = journal->j_transaction_sequence;
	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
	journal->j_commit_request = journal->j_commit_sequence;

	journal->j_max_transaction_buffers = journal->j_maxlen / 4;

	/* Add the dynamic fields and write it to disk. */
1064
	jbd2_journal_update_superblock(journal, 1);
1065
	return jbd2_journal_start_thread(journal);
1066 1067 1068
}

/**
1069
 * void jbd2_journal_update_superblock() - Update journal sb on disk.
1070 1071 1072 1073 1074 1075
 * @journal: The journal to update.
 * @wait: Set to '0' if you don't want to wait for IO completion.
 *
 * Update a journal's dynamic superblock fields and write it to disk,
 * optionally waiting for the IO to complete.
 */
1076
void jbd2_journal_update_superblock(journal_t *journal, int wait)
1077 1078 1079 1080 1081 1082 1083 1084
{
	journal_superblock_t *sb = journal->j_superblock;
	struct buffer_head *bh = journal->j_sb_buffer;

	/*
	 * As a special case, if the on-disk copy is already marked as needing
	 * no recovery (s_start == 0) and there are no outstanding transactions
	 * in the filesystem, then we can safely defer the superblock update
1085
	 * until the next commit by setting JBD2_FLUSHED.  This avoids
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	 * attempting a write to a potential-readonly device.
	 */
	if (sb->s_start == 0 && journal->j_tail_sequence ==
				journal->j_transaction_sequence) {
		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
			"(start %ld, seq %d, errno %d)\n",
			journal->j_tail, journal->j_tail_sequence,
			journal->j_errno);
		goto out;
	}

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	if (buffer_write_io_error(bh)) {
		/*
		 * Oh, dear.  A previous attempt to write the journal
		 * superblock failed.  This could happen because the
		 * USB device was yanked out.  Or it could happen to
		 * be a transient write error and maybe the block will
		 * be remapped.  Nothing we can do but to retry the
		 * write and hope for the best.
		 */
		printk(KERN_ERR "JBD2: previous I/O error detected "
		       "for journal superblock update for %s.\n",
		       journal->j_devname);
		clear_buffer_write_io_error(bh);
		set_buffer_uptodate(bh);
	}

1113
	read_lock(&journal->j_state_lock);
1114 1115 1116 1117 1118 1119
	jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);

	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
	sb->s_start    = cpu_to_be32(journal->j_tail);
	sb->s_errno    = cpu_to_be32(journal->j_errno);
1120
	read_unlock(&journal->j_state_lock);
1121 1122 1123

	BUFFER_TRACE(bh, "marking dirty");
	mark_buffer_dirty(bh);
1124
	if (wait) {
1125
		sync_dirty_buffer(bh);
1126 1127 1128 1129 1130 1131 1132 1133
		if (buffer_write_io_error(bh)) {
			printk(KERN_ERR "JBD2: I/O error detected "
			       "when updating journal superblock for %s.\n",
			       journal->j_devname);
			clear_buffer_write_io_error(bh);
			set_buffer_uptodate(bh);
		}
	} else
C
Christoph Hellwig 已提交
1134
		write_dirty_buffer(bh, WRITE);
1135 1136 1137 1138 1139 1140

out:
	/* If we have just flushed the log (by marking s_start==0), then
	 * any future commit will have to be careful to update the
	 * superblock again to re-record the true start of the log. */

1141
	write_lock(&journal->j_state_lock);
1142
	if (sb->s_start)
1143
		journal->j_flags &= ~JBD2_FLUSHED;
1144
	else
1145
		journal->j_flags |= JBD2_FLUSHED;
1146
	write_unlock(&journal->j_state_lock);
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
}

/*
 * Read the superblock for a given journal, performing initial
 * validation of the format.
 */

static int journal_get_superblock(journal_t *journal)
{
	struct buffer_head *bh;
	journal_superblock_t *sb;
	int err = -EIO;

	bh = journal->j_sb_buffer;

	J_ASSERT(bh != NULL);
	if (!buffer_uptodate(bh)) {
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
			printk (KERN_ERR
				"JBD: IO error reading journal superblock\n");
			goto out;
		}
	}

	sb = journal->j_superblock;

	err = -EINVAL;

1177
	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1178 1179 1180 1181 1182 1183
	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
		goto out;
	}

	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1184
	case JBD2_SUPERBLOCK_V1:
1185 1186
		journal->j_format_version = 1;
		break;
1187
	case JBD2_SUPERBLOCK_V2:
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
		journal->j_format_version = 2;
		break;
	default:
		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
		goto out;
	}

	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
		printk (KERN_WARNING "JBD: journal file too short\n");
		goto out;
	}

	return 0;

out:
	journal_fail_superblock(journal);
	return err;
}

/*
 * Load the on-disk journal superblock and read the key fields into the
 * journal_t.
 */

static int load_superblock(journal_t *journal)
{
	int err;
	journal_superblock_t *sb;

	err = journal_get_superblock(journal);
	if (err)
		return err;

	sb = journal->j_superblock;

	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
	journal->j_tail = be32_to_cpu(sb->s_start);
	journal->j_first = be32_to_cpu(sb->s_first);
	journal->j_last = be32_to_cpu(sb->s_maxlen);
	journal->j_errno = be32_to_cpu(sb->s_errno);

	return 0;
}


/**
1236
 * int jbd2_journal_load() - Read journal from disk.
1237 1238 1239 1240 1241 1242
 * @journal: Journal to act on.
 *
 * Given a journal_t structure which tells us which disk blocks contain
 * a journal, read the journal from disk to initialise the in-memory
 * structures.
 */
1243
int jbd2_journal_load(journal_t *journal)
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
{
	int err;
	journal_superblock_t *sb;

	err = load_superblock(journal);
	if (err)
		return err;

	sb = journal->j_superblock;
	/* If this is a V2 superblock, then we have to check the
	 * features flags on it. */

	if (journal->j_format_version >= 2) {
		if ((sb->s_feature_ro_compat &
1258
		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1259
		    (sb->s_feature_incompat &
1260
		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1261 1262 1263 1264 1265 1266
			printk (KERN_WARNING
				"JBD: Unrecognised features on journal\n");
			return -EINVAL;
		}
	}

1267 1268 1269 1270 1271 1272 1273
	/*
	 * Create a slab for this blocksize
	 */
	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
	if (err)
		return err;

1274 1275
	/* Let the recovery code check whether it needs to recover any
	 * data from the journal. */
1276
	if (jbd2_journal_recover(journal))
1277 1278
		goto recovery_error;

1279 1280 1281 1282 1283 1284 1285
	if (journal->j_failed_commit) {
		printk(KERN_ERR "JBD2: journal transaction %u on %s "
		       "is corrupt.\n", journal->j_failed_commit,
		       journal->j_devname);
		return -EIO;
	}

1286 1287 1288 1289 1290 1291
	/* OK, we've finished with the dynamic journal bits:
	 * reinitialise the dynamic contents of the superblock in memory
	 * and reset them on disk. */
	if (journal_reset(journal))
		goto recovery_error;

1292 1293
	journal->j_flags &= ~JBD2_ABORT;
	journal->j_flags |= JBD2_LOADED;
1294 1295 1296 1297 1298 1299 1300 1301
	return 0;

recovery_error:
	printk (KERN_WARNING "JBD: recovery failed\n");
	return -EIO;
}

/**
1302
 * void jbd2_journal_destroy() - Release a journal_t structure.
1303 1304 1305 1306
 * @journal: Journal to act on.
 *
 * Release a journal_t structure once it is no longer in use by the
 * journaled object.
1307
 * Return <0 if we couldn't clean up the journal.
1308
 */
1309
int jbd2_journal_destroy(journal_t *journal)
1310
{
1311 1312
	int err = 0;

1313 1314 1315 1316 1317
	/* Wait for the commit thread to wake up and die. */
	journal_kill_thread(journal);

	/* Force a final log commit */
	if (journal->j_running_transaction)
1318
		jbd2_journal_commit_transaction(journal);
1319 1320 1321 1322 1323 1324 1325

	/* Force any old transactions to disk */

	/* Totally anal locking here... */
	spin_lock(&journal->j_list_lock);
	while (journal->j_checkpoint_transactions != NULL) {
		spin_unlock(&journal->j_list_lock);
1326
		mutex_lock(&journal->j_checkpoint_mutex);
1327
		jbd2_log_do_checkpoint(journal);
1328
		mutex_unlock(&journal->j_checkpoint_mutex);
1329 1330 1331 1332 1333 1334 1335 1336 1337
		spin_lock(&journal->j_list_lock);
	}

	J_ASSERT(journal->j_running_transaction == NULL);
	J_ASSERT(journal->j_committing_transaction == NULL);
	J_ASSERT(journal->j_checkpoint_transactions == NULL);
	spin_unlock(&journal->j_list_lock);

	if (journal->j_sb_buffer) {
1338 1339 1340 1341 1342 1343 1344 1345 1346
		if (!is_journal_aborted(journal)) {
			/* We can now mark the journal as empty. */
			journal->j_tail = 0;
			journal->j_tail_sequence =
				++journal->j_transaction_sequence;
			jbd2_journal_update_superblock(journal, 1);
		} else {
			err = -EIO;
		}
1347 1348 1349
		brelse(journal->j_sb_buffer);
	}

1350 1351
	if (journal->j_proc_entry)
		jbd2_stats_proc_exit(journal);
1352 1353 1354
	if (journal->j_inode)
		iput(journal->j_inode);
	if (journal->j_revoke)
1355
		jbd2_journal_destroy_revoke(journal);
1356 1357
	kfree(journal->j_wbuf);
	kfree(journal);
1358 1359

	return err;
1360 1361 1362 1363
}


/**
1364
 *int jbd2_journal_check_used_features () - Check if features specified are used.
1365 1366 1367 1368 1369 1370 1371 1372 1373
 * @journal: Journal to check.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Check whether the journal uses all of a given set of
 * features.  Return true (non-zero) if it does.
 **/

1374
int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1375 1376 1377 1378 1379 1380
				 unsigned long ro, unsigned long incompat)
{
	journal_superblock_t *sb;

	if (!compat && !ro && !incompat)
		return 1;
1381 1382 1383 1384
	/* Load journal superblock if it is not loaded yet. */
	if (journal->j_format_version == 0 &&
	    journal_get_superblock(journal) != 0)
		return 0;
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	if (journal->j_format_version == 1)
		return 0;

	sb = journal->j_superblock;

	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
		return 1;

	return 0;
}

/**
1399
 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1400 1401 1402 1403 1404 1405 1406 1407 1408
 * @journal: Journal to check.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Check whether the journaling code supports the use of
 * all of a given set of features on this journal.  Return true
 * (non-zero) if it can. */

1409
int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
				      unsigned long ro, unsigned long incompat)
{
	if (!compat && !ro && !incompat)
		return 1;

	/* We can support any known requested features iff the
	 * superblock is in version 2.  Otherwise we fail to support any
	 * extended sb features. */

	if (journal->j_format_version != 2)
		return 0;

1422 1423 1424
	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1425 1426 1427 1428 1429 1430
		return 1;

	return 0;
}

/**
1431
 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
 * @journal: Journal to act on.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Mark a given journal feature as present on the
 * superblock.  Returns true if the requested features could be set.
 *
 */

1442
int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1443 1444 1445 1446
			  unsigned long ro, unsigned long incompat)
{
	journal_superblock_t *sb;

1447
	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1448 1449
		return 1;

1450
	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
		return 0;

	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
		  compat, ro, incompat);

	sb = journal->j_superblock;

	sb->s_feature_compat    |= cpu_to_be32(compat);
	sb->s_feature_ro_compat |= cpu_to_be32(ro);
	sb->s_feature_incompat  |= cpu_to_be32(incompat);

	return 1;
}

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
/*
 * jbd2_journal_clear_features () - Clear a given journal feature in the
 * 				    superblock
 * @journal: Journal to act on.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Clear a given journal feature as present on the
 * superblock.
 */
void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
				unsigned long ro, unsigned long incompat)
{
	journal_superblock_t *sb;

	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
		  compat, ro, incompat);

	sb = journal->j_superblock;

	sb->s_feature_compat    &= ~cpu_to_be32(compat);
	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
}
EXPORT_SYMBOL(jbd2_journal_clear_features);
1491 1492

/**
1493
 * int jbd2_journal_update_format () - Update on-disk journal structure.
1494 1495 1496 1497 1498
 * @journal: Journal to act on.
 *
 * Given an initialised but unloaded journal struct, poke about in the
 * on-disk structure to update it to the most recent supported version.
 */
1499
int jbd2_journal_update_format (journal_t *journal)
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
{
	journal_superblock_t *sb;
	int err;

	err = journal_get_superblock(journal);
	if (err)
		return err;

	sb = journal->j_superblock;

	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1511
	case JBD2_SUPERBLOCK_V2:
1512
		return 0;
1513
	case JBD2_SUPERBLOCK_V1:
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
		return journal_convert_superblock_v1(journal, sb);
	default:
		break;
	}
	return -EINVAL;
}

static int journal_convert_superblock_v1(journal_t *journal,
					 journal_superblock_t *sb)
{
	int offset, blocksize;
	struct buffer_head *bh;

	printk(KERN_WARNING
		"JBD: Converting superblock from version 1 to 2.\n");

	/* Pre-initialise new fields to zero */
	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
	blocksize = be32_to_cpu(sb->s_blocksize);
	memset(&sb->s_feature_compat, 0, blocksize-offset);

	sb->s_nr_users = cpu_to_be32(1);
1536
	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	journal->j_format_version = 2;

	bh = journal->j_sb_buffer;
	BUFFER_TRACE(bh, "marking dirty");
	mark_buffer_dirty(bh);
	sync_dirty_buffer(bh);
	return 0;
}


/**
1548
 * int jbd2_journal_flush () - Flush journal
1549 1550 1551 1552 1553 1554 1555
 * @journal: Journal to act on.
 *
 * Flush all data for a given journal to disk and empty the journal.
 * Filesystems can use this when remounting readonly to ensure that
 * recovery does not need to happen on remount.
 */

1556
int jbd2_journal_flush(journal_t *journal)
1557 1558 1559 1560 1561
{
	int err = 0;
	transaction_t *transaction = NULL;
	unsigned long old_tail;

1562
	write_lock(&journal->j_state_lock);
1563 1564 1565 1566

	/* Force everything buffered to the log... */
	if (journal->j_running_transaction) {
		transaction = journal->j_running_transaction;
1567
		__jbd2_log_start_commit(journal, transaction->t_tid);
1568 1569 1570 1571 1572 1573 1574
	} else if (journal->j_committing_transaction)
		transaction = journal->j_committing_transaction;

	/* Wait for the log commit to complete... */
	if (transaction) {
		tid_t tid = transaction->t_tid;

1575
		write_unlock(&journal->j_state_lock);
1576
		jbd2_log_wait_commit(journal, tid);
1577
	} else {
1578
		write_unlock(&journal->j_state_lock);
1579 1580 1581 1582 1583 1584
	}

	/* ...and flush everything in the log out to disk. */
	spin_lock(&journal->j_list_lock);
	while (!err && journal->j_checkpoint_transactions != NULL) {
		spin_unlock(&journal->j_list_lock);
1585
		mutex_lock(&journal->j_checkpoint_mutex);
1586
		err = jbd2_log_do_checkpoint(journal);
1587
		mutex_unlock(&journal->j_checkpoint_mutex);
1588 1589 1590
		spin_lock(&journal->j_list_lock);
	}
	spin_unlock(&journal->j_list_lock);
1591 1592 1593 1594

	if (is_journal_aborted(journal))
		return -EIO;

1595
	jbd2_cleanup_journal_tail(journal);
1596 1597 1598 1599 1600 1601

	/* Finally, mark the journal as really needing no recovery.
	 * This sets s_start==0 in the underlying superblock, which is
	 * the magic code for a fully-recovered superblock.  Any future
	 * commits of data to the journal will restore the current
	 * s_start value. */
1602
	write_lock(&journal->j_state_lock);
1603 1604
	old_tail = journal->j_tail;
	journal->j_tail = 0;
1605
	write_unlock(&journal->j_state_lock);
1606
	jbd2_journal_update_superblock(journal, 1);
1607
	write_lock(&journal->j_state_lock);
1608 1609 1610 1611 1612 1613 1614
	journal->j_tail = old_tail;

	J_ASSERT(!journal->j_running_transaction);
	J_ASSERT(!journal->j_committing_transaction);
	J_ASSERT(!journal->j_checkpoint_transactions);
	J_ASSERT(journal->j_head == journal->j_tail);
	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1615
	write_unlock(&journal->j_state_lock);
1616
	return 0;
1617 1618 1619
}

/**
1620
 * int jbd2_journal_wipe() - Wipe journal contents
1621 1622 1623 1624 1625
 * @journal: Journal to act on.
 * @write: flag (see below)
 *
 * Wipe out all of the contents of a journal, safely.  This will produce
 * a warning if the journal contains any valid recovery information.
1626
 * Must be called between journal_init_*() and jbd2_journal_load().
1627 1628 1629 1630 1631
 *
 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
 * we merely suppress recovery.
 */

1632
int jbd2_journal_wipe(journal_t *journal, int write)
1633 1634 1635
{
	int err = 0;

1636
	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

	err = load_superblock(journal);
	if (err)
		return err;

	if (!journal->j_tail)
		goto no_recovery;

	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
		write ? "Clearing" : "Ignoring");

1648
	err = jbd2_journal_skip_recovery(journal);
1649
	if (write)
1650
		jbd2_journal_update_superblock(journal, 1);
1651 1652 1653 1654 1655 1656 1657 1658 1659

 no_recovery:
	return err;
}

/*
 * Journal abort has very specific semantics, which we describe
 * for journal abort.
 *
1660
 * Two internal functions, which provide abort to the jbd layer
1661 1662 1663 1664 1665 1666 1667 1668
 * itself are here.
 */

/*
 * Quick version for internal journal use (doesn't lock the journal).
 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
 * and don't attempt to make any other journal updates.
 */
1669
void __jbd2_journal_abort_hard(journal_t *journal)
1670 1671 1672
{
	transaction_t *transaction;

1673
	if (journal->j_flags & JBD2_ABORT)
1674 1675 1676
		return;

	printk(KERN_ERR "Aborting journal on device %s.\n",
1677
	       journal->j_devname);
1678

1679
	write_lock(&journal->j_state_lock);
1680
	journal->j_flags |= JBD2_ABORT;
1681 1682
	transaction = journal->j_running_transaction;
	if (transaction)
1683
		__jbd2_log_start_commit(journal, transaction->t_tid);
1684
	write_unlock(&journal->j_state_lock);
1685 1686 1687 1688 1689 1690
}

/* Soft abort: record the abort error status in the journal superblock,
 * but don't do any other IO. */
static void __journal_abort_soft (journal_t *journal, int errno)
{
1691
	if (journal->j_flags & JBD2_ABORT)
1692 1693 1694 1695 1696
		return;

	if (!journal->j_errno)
		journal->j_errno = errno;

1697
	__jbd2_journal_abort_hard(journal);
1698 1699

	if (errno)
1700
		jbd2_journal_update_superblock(journal, 1);
1701 1702 1703
}

/**
1704
 * void jbd2_journal_abort () - Shutdown the journal immediately.
1705 1706 1707 1708 1709 1710 1711 1712
 * @journal: the journal to shutdown.
 * @errno:   an error number to record in the journal indicating
 *           the reason for the shutdown.
 *
 * Perform a complete, immediate shutdown of the ENTIRE
 * journal (not of a single transaction).  This operation cannot be
 * undone without closing and reopening the journal.
 *
1713
 * The jbd2_journal_abort function is intended to support higher level error
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
 * recovery mechanisms such as the ext2/ext3 remount-readonly error
 * mode.
 *
 * Journal abort has very specific semantics.  Any existing dirty,
 * unjournaled buffers in the main filesystem will still be written to
 * disk by bdflush, but the journaling mechanism will be suspended
 * immediately and no further transaction commits will be honoured.
 *
 * Any dirty, journaled buffers will be written back to disk without
 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
 * filesystem, but we _do_ attempt to leave as much data as possible
 * behind for fsck to use for cleanup.
 *
 * Any attempt to get a new transaction handle on a journal which is in
 * ABORT state will just result in an -EROFS error return.  A
1729
 * jbd2_journal_stop on an existing handle will return -EIO if we have
1730 1731 1732
 * entered abort state during the update.
 *
 * Recursive transactions are not disturbed by journal abort until the
1733
 * final jbd2_journal_stop, which will receive the -EIO error.
1734
 *
1735
 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
 * which will be recorded (if possible) in the journal superblock.  This
 * allows a client to record failure conditions in the middle of a
 * transaction without having to complete the transaction to record the
 * failure to disk.  ext3_error, for example, now uses this
 * functionality.
 *
 * Errors which originate from within the journaling layer will NOT
 * supply an errno; a null errno implies that absolutely no further
 * writes are done to the journal (unless there are any already in
 * progress).
 *
 */

1749
void jbd2_journal_abort(journal_t *journal, int errno)
1750 1751 1752 1753 1754
{
	__journal_abort_soft(journal, errno);
}

/**
1755
 * int jbd2_journal_errno () - returns the journal's error state.
1756 1757
 * @journal: journal to examine.
 *
1758
 * This is the errno number set with jbd2_journal_abort(), the last
1759 1760 1761 1762 1763 1764
 * time the journal was mounted - if the journal was stopped
 * without calling abort this will be 0.
 *
 * If the journal has been aborted on this mount time -EROFS will
 * be returned.
 */
1765
int jbd2_journal_errno(journal_t *journal)
1766 1767 1768
{
	int err;

1769
	read_lock(&journal->j_state_lock);
1770
	if (journal->j_flags & JBD2_ABORT)
1771 1772 1773
		err = -EROFS;
	else
		err = journal->j_errno;
1774
	read_unlock(&journal->j_state_lock);
1775 1776 1777 1778
	return err;
}

/**
1779
 * int jbd2_journal_clear_err () - clears the journal's error state
1780 1781
 * @journal: journal to act on.
 *
1782
 * An error must be cleared or acked to take a FS out of readonly
1783 1784
 * mode.
 */
1785
int jbd2_journal_clear_err(journal_t *journal)
1786 1787 1788
{
	int err = 0;

1789
	write_lock(&journal->j_state_lock);
1790
	if (journal->j_flags & JBD2_ABORT)
1791 1792 1793
		err = -EROFS;
	else
		journal->j_errno = 0;
1794
	write_unlock(&journal->j_state_lock);
1795 1796 1797 1798
	return err;
}

/**
1799
 * void jbd2_journal_ack_err() - Ack journal err.
1800 1801
 * @journal: journal to act on.
 *
1802
 * An error must be cleared or acked to take a FS out of readonly
1803 1804
 * mode.
 */
1805
void jbd2_journal_ack_err(journal_t *journal)
1806
{
1807
	write_lock(&journal->j_state_lock);
1808
	if (journal->j_errno)
1809
		journal->j_flags |= JBD2_ACK_ERR;
1810
	write_unlock(&journal->j_state_lock);
1811 1812
}

1813
int jbd2_journal_blocks_per_page(struct inode *inode)
1814 1815 1816 1817
{
	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
}

Z
Zach Brown 已提交
1818 1819 1820 1821 1822 1823
/*
 * helper functions to deal with 32 or 64bit block numbers.
 */
size_t journal_tag_bytes(journal_t *journal)
{
	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1824
		return JBD2_TAG_SIZE64;
Z
Zach Brown 已提交
1825
	else
1826
		return JBD2_TAG_SIZE32;
Z
Zach Brown 已提交
1827 1828
}

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
/*
 * JBD memory management
 *
 * These functions are used to allocate block-sized chunks of memory
 * used for making copies of buffer_head data.  Very often it will be
 * page-sized chunks of data, but sometimes it will be in
 * sub-page-size chunks.  (For example, 16k pages on Power systems
 * with a 4k block file system.)  For blocks smaller than a page, we
 * use a SLAB allocator.  There are slab caches for each block size,
 * which are allocated at mount time, if necessary, and we only free
 * (all of) the slab caches when/if the jbd2 module is unloaded.  For
 * this reason we don't need to a mutex to protect access to
 * jbd2_slab[] allocating or releasing memory; only in
 * jbd2_journal_create_slab().
 */
#define JBD2_MAX_SLABS 8
static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];

static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
};


static void jbd2_journal_destroy_slabs(void)
{
	int i;

	for (i = 0; i < JBD2_MAX_SLABS; i++) {
		if (jbd2_slab[i])
			kmem_cache_destroy(jbd2_slab[i]);
		jbd2_slab[i] = NULL;
	}
}

static int jbd2_journal_create_slab(size_t size)
{
1866
	static DEFINE_MUTEX(jbd2_slab_create_mutex);
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	int i = order_base_2(size) - 10;
	size_t slab_size;

	if (size == PAGE_SIZE)
		return 0;

	if (i >= JBD2_MAX_SLABS)
		return -EINVAL;

	if (unlikely(i < 0))
		i = 0;
1878
	mutex_lock(&jbd2_slab_create_mutex);
1879
	if (jbd2_slab[i]) {
1880
		mutex_unlock(&jbd2_slab_create_mutex);
1881 1882 1883 1884 1885 1886
		return 0;	/* Already created */
	}

	slab_size = 1 << (i+10);
	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
					 slab_size, 0, NULL);
1887
	mutex_unlock(&jbd2_slab_create_mutex);
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	if (!jbd2_slab[i]) {
		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
		return -ENOMEM;
	}
	return 0;
}

static struct kmem_cache *get_slab(size_t size)
{
	int i = order_base_2(size) - 10;

	BUG_ON(i >= JBD2_MAX_SLABS);
	if (unlikely(i < 0))
		i = 0;
1902
	BUG_ON(jbd2_slab[i] == NULL);
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	return jbd2_slab[i];
}

void *jbd2_alloc(size_t size, gfp_t flags)
{
	void *ptr;

	BUG_ON(size & (size-1)); /* Must be a power of 2 */

	flags |= __GFP_REPEAT;
	if (size == PAGE_SIZE)
		ptr = (void *)__get_free_pages(flags, 0);
	else if (size > PAGE_SIZE) {
		int order = get_order(size);

		if (order < 3)
			ptr = (void *)__get_free_pages(flags, order);
		else
			ptr = vmalloc(size);
	} else
		ptr = kmem_cache_alloc(get_slab(size), flags);

	/* Check alignment; SLUB has gotten this wrong in the past,
	 * and this can lead to user data corruption! */
	BUG_ON(((unsigned long) ptr) & (size-1));

	return ptr;
}

void jbd2_free(void *ptr, size_t size)
{
	if (size == PAGE_SIZE) {
		free_pages((unsigned long)ptr, 0);
		return;
	}
	if (size > PAGE_SIZE) {
		int order = get_order(size);

		if (order < 3)
			free_pages((unsigned long)ptr, order);
		else
			vfree(ptr);
		return;
	}
	kmem_cache_free(get_slab(size), ptr);
};

1950 1951 1952
/*
 * Journal_head storage management
 */
1953
static struct kmem_cache *jbd2_journal_head_cache;
1954
#ifdef CONFIG_JBD2_DEBUG
1955 1956 1957
static atomic_t nr_journal_heads = ATOMIC_INIT(0);
#endif

1958
static int journal_init_jbd2_journal_head_cache(void)
1959 1960 1961
{
	int retval;

A
Al Viro 已提交
1962
	J_ASSERT(jbd2_journal_head_cache == NULL);
J
Johann Lombardi 已提交
1963
	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1964 1965
				sizeof(struct journal_head),
				0,		/* offset */
1966
				SLAB_TEMPORARY,	/* flags */
1967
				NULL);		/* ctor */
1968
	retval = 0;
A
Al Viro 已提交
1969
	if (!jbd2_journal_head_cache) {
1970 1971 1972 1973 1974 1975
		retval = -ENOMEM;
		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
	}
	return retval;
}

1976
static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1977
{
1978 1979 1980 1981
	if (jbd2_journal_head_cache) {
		kmem_cache_destroy(jbd2_journal_head_cache);
		jbd2_journal_head_cache = NULL;
	}
1982 1983 1984 1985 1986 1987 1988 1989 1990
}

/*
 * journal_head splicing and dicing
 */
static struct journal_head *journal_alloc_journal_head(void)
{
	struct journal_head *ret;

1991
#ifdef CONFIG_JBD2_DEBUG
1992 1993
	atomic_inc(&nr_journal_heads);
#endif
1994
	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
A
Al Viro 已提交
1995
	if (!ret) {
1996
		jbd_debug(1, "out of memory for journal_head\n");
1997
		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
A
Al Viro 已提交
1998
		while (!ret) {
1999
			yield();
2000
			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2001 2002 2003 2004 2005 2006 2007
		}
	}
	return ret;
}

static void journal_free_journal_head(struct journal_head *jh)
{
2008
#ifdef CONFIG_JBD2_DEBUG
2009
	atomic_dec(&nr_journal_heads);
2010
	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2011
#endif
2012
	kmem_cache_free(jbd2_journal_head_cache, jh);
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
}

/*
 * A journal_head is attached to a buffer_head whenever JBD has an
 * interest in the buffer.
 *
 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
 * is set.  This bit is tested in core kernel code where we need to take
 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
 * there.
 *
 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
 *
 * When a buffer has its BH_JBD bit set it is immune from being released by
 * core kernel code, mainly via ->b_count.
 *
 * A journal_head may be detached from its buffer_head when the journal_head's
 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
2031
 * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
2032 2033 2034 2035
 * journal_head can be dropped if needed.
 *
 * Various places in the kernel want to attach a journal_head to a buffer_head
 * _before_ attaching the journal_head to a transaction.  To protect the
2036
 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2037
 * journal_head's b_jcount refcount by one.  The caller must call
2038
 * jbd2_journal_put_journal_head() to undo this.
2039 2040 2041 2042
 *
 * So the typical usage would be:
 *
 *	(Attach a journal_head if needed.  Increments b_jcount)
2043
 *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2044 2045
 *	...
 *	jh->b_transaction = xxx;
2046
 *	jbd2_journal_put_journal_head(jh);
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
 *
 * Now, the journal_head's b_jcount is zero, but it is safe from being released
 * because it has a non-zero b_transaction.
 */

/*
 * Give a buffer_head a journal_head.
 *
 * Doesn't need the journal lock.
 * May sleep.
 */
2058
struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
{
	struct journal_head *jh;
	struct journal_head *new_jh = NULL;

repeat:
	if (!buffer_jbd(bh)) {
		new_jh = journal_alloc_journal_head();
		memset(new_jh, 0, sizeof(*new_jh));
	}

	jbd_lock_bh_journal_head(bh);
	if (buffer_jbd(bh)) {
		jh = bh2jh(bh);
	} else {
		J_ASSERT_BH(bh,
			(atomic_read(&bh->b_count) > 0) ||
			(bh->b_page && bh->b_page->mapping));

		if (!new_jh) {
			jbd_unlock_bh_journal_head(bh);
			goto repeat;
		}

		jh = new_jh;
		new_jh = NULL;		/* We consumed it */
		set_buffer_jbd(bh);
		bh->b_private = jh;
		jh->b_bh = bh;
		get_bh(bh);
		BUFFER_TRACE(bh, "added journal_head");
	}
	jh->b_jcount++;
	jbd_unlock_bh_journal_head(bh);
	if (new_jh)
		journal_free_journal_head(new_jh);
	return bh->b_private;
}

/*
 * Grab a ref against this buffer_head's journal_head.  If it ended up not
 * having a journal_head, return NULL
 */
2101
struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
{
	struct journal_head *jh = NULL;

	jbd_lock_bh_journal_head(bh);
	if (buffer_jbd(bh)) {
		jh = bh2jh(bh);
		jh->b_jcount++;
	}
	jbd_unlock_bh_journal_head(bh);
	return jh;
}

static void __journal_remove_journal_head(struct buffer_head *bh)
{
	struct journal_head *jh = bh2jh(bh);

	J_ASSERT_JH(jh, jh->b_jcount >= 0);

	get_bh(bh);
	if (jh->b_jcount == 0) {
		if (jh->b_transaction == NULL &&
				jh->b_next_transaction == NULL &&
				jh->b_cp_transaction == NULL) {
			J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
			J_ASSERT_BH(bh, buffer_jbd(bh));
			J_ASSERT_BH(bh, jh2bh(jh) == bh);
			BUFFER_TRACE(bh, "remove journal_head");
			if (jh->b_frozen_data) {
				printk(KERN_WARNING "%s: freeing "
						"b_frozen_data\n",
2132
						__func__);
M
Mingming Cao 已提交
2133
				jbd2_free(jh->b_frozen_data, bh->b_size);
2134 2135 2136 2137
			}
			if (jh->b_committed_data) {
				printk(KERN_WARNING "%s: freeing "
						"b_committed_data\n",
2138
						__func__);
M
Mingming Cao 已提交
2139
				jbd2_free(jh->b_committed_data, bh->b_size);
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
			}
			bh->b_private = NULL;
			jh->b_bh = NULL;	/* debug, really */
			clear_buffer_jbd(bh);
			__brelse(bh);
			journal_free_journal_head(jh);
		} else {
			BUFFER_TRACE(bh, "journal_head was locked");
		}
	}
}

/*
2153
 * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2154 2155 2156 2157 2158 2159 2160
 * and has a zero b_jcount then remove and release its journal_head.   If we did
 * see that the buffer is not used by any transaction we also "logically"
 * decrement ->b_count.
 *
 * We in fact take an additional increment on ->b_count as a convenience,
 * because the caller usually wants to do additional things with the bh
 * after calling here.
2161
 * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2162 2163 2164
 * time.  Once the caller has run __brelse(), the buffer is eligible for
 * reaping by try_to_free_buffers().
 */
2165
void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
{
	jbd_lock_bh_journal_head(bh);
	__journal_remove_journal_head(bh);
	jbd_unlock_bh_journal_head(bh);
}

/*
 * Drop a reference on the passed journal_head.  If it fell to zero then try to
 * release the journal_head from the buffer_head.
 */
2176
void jbd2_journal_put_journal_head(struct journal_head *jh)
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
{
	struct buffer_head *bh = jh2bh(jh);

	jbd_lock_bh_journal_head(bh);
	J_ASSERT_JH(jh, jh->b_jcount > 0);
	--jh->b_jcount;
	if (!jh->b_jcount && !jh->b_transaction) {
		__journal_remove_journal_head(bh);
		__brelse(bh);
	}
	jbd_unlock_bh_journal_head(bh);
}

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
/*
 * Initialize jbd inode head
 */
void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
{
	jinode->i_transaction = NULL;
	jinode->i_next_transaction = NULL;
	jinode->i_vfs_inode = inode;
	jinode->i_flags = 0;
	INIT_LIST_HEAD(&jinode->i_list);
}

/*
 * Function to be called before we start removing inode from memory (i.e.,
 * clear_inode() is a fine place to be called from). It removes inode from
 * transaction's lists.
 */
void jbd2_journal_release_jbd_inode(journal_t *journal,
				    struct jbd2_inode *jinode)
{
	if (!journal)
		return;
restart:
	spin_lock(&journal->j_list_lock);
	/* Is commit writing out inode - we have to wait */
2215
	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
		wait_queue_head_t *wq;
		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
		spin_unlock(&journal->j_list_lock);
		schedule();
		finish_wait(wq, &wait.wait);
		goto restart;
	}

	if (jinode->i_transaction) {
		list_del(&jinode->i_list);
		jinode->i_transaction = NULL;
	}
	spin_unlock(&journal->j_list_lock);
}

2233
/*
2234
 * debugfs tunables
2235
 */
J
Jose R. Santos 已提交
2236 2237
#ifdef CONFIG_JBD2_DEBUG
u8 jbd2_journal_enable_debug __read_mostly;
2238
EXPORT_SYMBOL(jbd2_journal_enable_debug);
2239

2240
#define JBD2_DEBUG_NAME "jbd2-debug"
2241

J
Jose R. Santos 已提交
2242 2243
static struct dentry *jbd2_debugfs_dir;
static struct dentry *jbd2_debug;
2244

2245 2246 2247 2248
static void __init jbd2_create_debugfs_entry(void)
{
	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
	if (jbd2_debugfs_dir)
2249 2250
		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
					       S_IRUGO | S_IWUSR,
2251 2252
					       jbd2_debugfs_dir,
					       &jbd2_journal_enable_debug);
2253 2254
}

2255
static void __exit jbd2_remove_debugfs_entry(void)
2256
{
J
Jose R. Santos 已提交
2257 2258
	debugfs_remove(jbd2_debug);
	debugfs_remove(jbd2_debugfs_dir);
2259 2260
}

2261
#else
2262

2263
static void __init jbd2_create_debugfs_entry(void)
2264 2265 2266
{
}

2267
static void __exit jbd2_remove_debugfs_entry(void)
2268 2269 2270 2271 2272
{
}

#endif

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
#ifdef CONFIG_PROC_FS

#define JBD2_STATS_PROC_NAME "fs/jbd2"

static void __init jbd2_create_jbd_stats_proc_entry(void)
{
	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
}

static void __exit jbd2_remove_jbd_stats_proc_entry(void)
{
	if (proc_jbd2_stats)
		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
}

#else

#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)

#endif

2295
struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2296 2297 2298

static int __init journal_init_handle_cache(void)
{
2299
	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2300
	if (jbd2_handle_cache == NULL) {
2301 2302 2303 2304 2305 2306 2307
		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
		return -ENOMEM;
	}
	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
	if (jbd2_inode_cache == NULL) {
		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
		kmem_cache_destroy(jbd2_handle_cache);
2308 2309 2310 2311 2312
		return -ENOMEM;
	}
	return 0;
}

2313
static void jbd2_journal_destroy_handle_cache(void)
2314
{
2315 2316
	if (jbd2_handle_cache)
		kmem_cache_destroy(jbd2_handle_cache);
2317 2318 2319
	if (jbd2_inode_cache)
		kmem_cache_destroy(jbd2_inode_cache);

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
}

/*
 * Module startup and shutdown
 */

static int __init journal_init_caches(void)
{
	int ret;

2330
	ret = jbd2_journal_init_revoke_caches();
2331
	if (ret == 0)
2332
		ret = journal_init_jbd2_journal_head_cache();
2333 2334 2335 2336 2337
	if (ret == 0)
		ret = journal_init_handle_cache();
	return ret;
}

2338
static void jbd2_journal_destroy_caches(void)
2339
{
2340 2341 2342
	jbd2_journal_destroy_revoke_caches();
	jbd2_journal_destroy_jbd2_journal_head_cache();
	jbd2_journal_destroy_handle_cache();
2343
	jbd2_journal_destroy_slabs();
2344 2345 2346 2347 2348 2349 2350 2351 2352
}

static int __init journal_init(void)
{
	int ret;

	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);

	ret = journal_init_caches();
2353 2354 2355 2356
	if (ret == 0) {
		jbd2_create_debugfs_entry();
		jbd2_create_jbd_stats_proc_entry();
	} else {
2357
		jbd2_journal_destroy_caches();
2358
	}
2359 2360 2361 2362 2363
	return ret;
}

static void __exit journal_exit(void)
{
2364
#ifdef CONFIG_JBD2_DEBUG
2365 2366 2367 2368
	int n = atomic_read(&nr_journal_heads);
	if (n)
		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
#endif
2369
	jbd2_remove_debugfs_entry();
2370
	jbd2_remove_jbd_stats_proc_entry();
2371
	jbd2_journal_destroy_caches();
2372 2373
}

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
/* 
 * jbd2_dev_to_name is a utility function used by the jbd2 and ext4 
 * tracing infrastructure to map a dev_t to a device name.
 *
 * The caller should use rcu_read_lock() in order to make sure the
 * device name stays valid until its done with it.  We use
 * rcu_read_lock() as well to make sure we're safe in case the caller
 * gets sloppy, and because rcu_read_lock() is cheap and can be safely
 * nested.
 */
struct devname_cache {
	struct rcu_head	rcu;
	dev_t		device;
	char		devname[BDEVNAME_SIZE];
};
#define CACHE_SIZE_BITS 6
static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
static DEFINE_SPINLOCK(devname_cache_lock);

static void free_devcache(struct rcu_head *rcu)
{
	kfree(rcu);
}

const char *jbd2_dev_to_name(dev_t device)
{
	int	i = hash_32(device, CACHE_SIZE_BITS);
	char	*ret;
	struct block_device *bd;
2403
	static struct devname_cache *new_dev;
2404 2405 2406 2407 2408 2409 2410 2411 2412

	rcu_read_lock();
	if (devcache[i] && devcache[i]->device == device) {
		ret = devcache[i]->devname;
		rcu_read_unlock();
		return ret;
	}
	rcu_read_unlock();

2413 2414 2415
	new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
	if (!new_dev)
		return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2416
	bd = bdget(device);
2417 2418 2419
	spin_lock(&devname_cache_lock);
	if (devcache[i]) {
		if (devcache[i]->device == device) {
2420
			kfree(new_dev);
2421
			bdput(bd);
2422 2423 2424 2425 2426 2427
			ret = devcache[i]->devname;
			spin_unlock(&devname_cache_lock);
			return ret;
		}
		call_rcu(&devcache[i]->rcu, free_devcache);
	}
2428
	devcache[i] = new_dev;
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
	devcache[i]->device = device;
	if (bd) {
		bdevname(bd, devcache[i]->devname);
		bdput(bd);
	} else
		__bdevname(device, devcache[i]->devname);
	ret = devcache[i]->devname;
	spin_unlock(&devname_cache_lock);
	return ret;
}
EXPORT_SYMBOL(jbd2_dev_to_name);

2441 2442 2443 2444
MODULE_LICENSE("GPL");
module_init(journal_init);
module_exit(journal_exit);