journal.c 64.7 KB
Newer Older
1
/*
2
 * linux/fs/jbd2/journal.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
 *
 * Copyright 1998 Red Hat corp --- All Rights Reserved
 *
 * This file is part of the Linux kernel and is made available under
 * the terms of the GNU General Public License, version 2, or at your
 * option, any later version, incorporated herein by reference.
 *
 * Generic filesystem journal-writing code; part of the ext2fs
 * journaling system.
 *
 * This file manages journals: areas of disk reserved for logging
 * transactional updates.  This includes the kernel journaling thread
 * which is responsible for scheduling updates to the log.
 *
 * We do not actually manage the physical storage of the journal in this
 * file: that is left to a per-journal policy function, which allows us
 * to store the journal within a filesystem-specified area for ext2
 * journaling (ext2 can use a reserved inode for storing the log).
 */

#include <linux/module.h>
#include <linux/time.h>
#include <linux/fs.h>
28
#include <linux/jbd2.h>
29 30 31 32
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/mm.h>
33
#include <linux/freezer.h>
34 35 36 37
#include <linux/pagemap.h>
#include <linux/kthread.h>
#include <linux/poison.h>
#include <linux/proc_fs.h>
38
#include <linux/debugfs.h>
39
#include <linux/seq_file.h>
40
#include <linux/math64.h>
41 42 43 44

#include <asm/uaccess.h>
#include <asm/page.h>

45 46 47 48 49 50 51 52 53
EXPORT_SYMBOL(jbd2_journal_start);
EXPORT_SYMBOL(jbd2_journal_restart);
EXPORT_SYMBOL(jbd2_journal_extend);
EXPORT_SYMBOL(jbd2_journal_stop);
EXPORT_SYMBOL(jbd2_journal_lock_updates);
EXPORT_SYMBOL(jbd2_journal_unlock_updates);
EXPORT_SYMBOL(jbd2_journal_get_write_access);
EXPORT_SYMBOL(jbd2_journal_get_create_access);
EXPORT_SYMBOL(jbd2_journal_get_undo_access);
J
Joel Becker 已提交
54
EXPORT_SYMBOL(jbd2_journal_set_triggers);
55 56 57
EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
EXPORT_SYMBOL(jbd2_journal_release_buffer);
EXPORT_SYMBOL(jbd2_journal_forget);
58 59 60
#if 0
EXPORT_SYMBOL(journal_sync_buffer);
#endif
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
EXPORT_SYMBOL(jbd2_journal_flush);
EXPORT_SYMBOL(jbd2_journal_revoke);

EXPORT_SYMBOL(jbd2_journal_init_dev);
EXPORT_SYMBOL(jbd2_journal_init_inode);
EXPORT_SYMBOL(jbd2_journal_update_format);
EXPORT_SYMBOL(jbd2_journal_check_used_features);
EXPORT_SYMBOL(jbd2_journal_check_available_features);
EXPORT_SYMBOL(jbd2_journal_set_features);
EXPORT_SYMBOL(jbd2_journal_load);
EXPORT_SYMBOL(jbd2_journal_destroy);
EXPORT_SYMBOL(jbd2_journal_abort);
EXPORT_SYMBOL(jbd2_journal_errno);
EXPORT_SYMBOL(jbd2_journal_ack_err);
EXPORT_SYMBOL(jbd2_journal_clear_err);
EXPORT_SYMBOL(jbd2_log_wait_commit);
EXPORT_SYMBOL(jbd2_journal_start_commit);
EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
EXPORT_SYMBOL(jbd2_journal_wipe);
EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
EXPORT_SYMBOL(jbd2_journal_invalidatepage);
EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
EXPORT_SYMBOL(jbd2_journal_force_commit);
84 85 86 87
EXPORT_SYMBOL(jbd2_journal_file_inode);
EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
static void __journal_abort_soft (journal_t *journal, int errno);

/*
 * Helper function used to manage commit timeouts
 */

static void commit_timeout(unsigned long __data)
{
	struct task_struct * p = (struct task_struct *) __data;

	wake_up_process(p);
}

/*
104
 * kjournald2: The main thread function used to manage a logging device
105 106 107 108 109 110 111 112 113 114 115 116 117 118
 * journal.
 *
 * This kernel thread is responsible for two things:
 *
 * 1) COMMIT:  Every so often we need to commit the current state of the
 *    filesystem to disk.  The journal thread is responsible for writing
 *    all of the metadata buffers to disk.
 *
 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
 *    of the data in that part of the log has been rewritten elsewhere on
 *    the disk.  Flushing these old buffers to reclaim space in the log is
 *    known as checkpointing, and this thread is responsible for that job.
 */

119
static int kjournald2(void *arg)
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
{
	journal_t *journal = arg;
	transaction_t *transaction;

	/*
	 * Set up an interval timer which can be used to trigger a commit wakeup
	 * after the commit interval expires
	 */
	setup_timer(&journal->j_commit_timer, commit_timeout,
			(unsigned long)current);

	/* Record that the journal thread is running */
	journal->j_task = current;
	wake_up(&journal->j_wait_done_commit);

135 136 137
	printk(KERN_INFO "kjournald2 starting: pid %d, dev %s, "
	       "commit interval %ld seconds\n", current->pid,
	       journal->j_devname, journal->j_commit_interval / HZ);
138 139 140 141 142 143 144

	/*
	 * And now, wait forever for commit wakeup events.
	 */
	spin_lock(&journal->j_state_lock);

loop:
145
	if (journal->j_flags & JBD2_UNMOUNT)
146 147 148 149 150 151 152 153 154
		goto end_loop;

	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
		journal->j_commit_sequence, journal->j_commit_request);

	if (journal->j_commit_sequence != journal->j_commit_request) {
		jbd_debug(1, "OK, requests differ\n");
		spin_unlock(&journal->j_state_lock);
		del_timer_sync(&journal->j_commit_timer);
155
		jbd2_journal_commit_transaction(journal);
156 157 158 159 160 161 162 163 164 165 166
		spin_lock(&journal->j_state_lock);
		goto loop;
	}

	wake_up(&journal->j_wait_done_commit);
	if (freezing(current)) {
		/*
		 * The simpler the better. Flushing journal isn't a
		 * good idea, because that depends on threads that may
		 * be already stopped.
		 */
167
		jbd_debug(1, "Now suspending kjournald2\n");
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
		spin_unlock(&journal->j_state_lock);
		refrigerator();
		spin_lock(&journal->j_state_lock);
	} else {
		/*
		 * We assume on resume that commits are already there,
		 * so we don't sleep
		 */
		DEFINE_WAIT(wait);
		int should_sleep = 1;

		prepare_to_wait(&journal->j_wait_commit, &wait,
				TASK_INTERRUPTIBLE);
		if (journal->j_commit_sequence != journal->j_commit_request)
			should_sleep = 0;
		transaction = journal->j_running_transaction;
		if (transaction && time_after_eq(jiffies,
						transaction->t_expires))
			should_sleep = 0;
187
		if (journal->j_flags & JBD2_UNMOUNT)
188 189 190 191 192 193 194 195 196
			should_sleep = 0;
		if (should_sleep) {
			spin_unlock(&journal->j_state_lock);
			schedule();
			spin_lock(&journal->j_state_lock);
		}
		finish_wait(&journal->j_wait_commit, &wait);
	}

197
	jbd_debug(1, "kjournald2 wakes\n");
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

	/*
	 * Were we woken up by a commit wakeup event?
	 */
	transaction = journal->j_running_transaction;
	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
		journal->j_commit_request = transaction->t_tid;
		jbd_debug(1, "woke because of timeout\n");
	}
	goto loop;

end_loop:
	spin_unlock(&journal->j_state_lock);
	del_timer_sync(&journal->j_commit_timer);
	journal->j_task = NULL;
	wake_up(&journal->j_wait_done_commit);
	jbd_debug(1, "Journal thread exiting.\n");
	return 0;
}

218
static int jbd2_journal_start_thread(journal_t *journal)
219
{
220 221 222 223 224 225
	struct task_struct *t;

	t = kthread_run(kjournald2, journal, "kjournald2");
	if (IS_ERR(t))
		return PTR_ERR(t);

A
Al Viro 已提交
226
	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
227
	return 0;
228 229 230 231 232
}

static void journal_kill_thread(journal_t *journal)
{
	spin_lock(&journal->j_state_lock);
233
	journal->j_flags |= JBD2_UNMOUNT;
234 235 236 237

	while (journal->j_task) {
		wake_up(&journal->j_wait_commit);
		spin_unlock(&journal->j_state_lock);
A
Al Viro 已提交
238
		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
239 240 241 242 243 244
		spin_lock(&journal->j_state_lock);
	}
	spin_unlock(&journal->j_state_lock);
}

/*
245
 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
246 247 248 249 250 251 252
 *
 * Writes a metadata buffer to a given disk block.  The actual IO is not
 * performed but a new buffer_head is constructed which labels the data
 * to be written with the correct destination disk block.
 *
 * Any magic-number escaping which needs to be done will cause a
 * copy-out here.  If the buffer happens to start with the
253
 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
 * magic number is only written to the log for descripter blocks.  In
 * this case, we copy the data and replace the first word with 0, and we
 * return a result code which indicates that this buffer needs to be
 * marked as an escaped buffer in the corresponding log descriptor
 * block.  The missing word can then be restored when the block is read
 * during recovery.
 *
 * If the source buffer has already been modified by a new transaction
 * since we took the last commit snapshot, we use the frozen copy of
 * that data for IO.  If we end up using the existing buffer_head's data
 * for the write, then we *have* to lock the buffer to prevent anyone
 * else from using and possibly modifying it while the IO is in
 * progress.
 *
 * The function returns a pointer to the buffer_heads to be used for IO.
 *
 * We assume that the journal has already been locked in this function.
 *
 * Return value:
 *  <0: Error
 * >=0: Finished OK
 *
 * On success:
 * Bit 0 set == escape performed on the data
 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
 */

281
int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
282 283
				  struct journal_head  *jh_in,
				  struct journal_head **jh_out,
284
				  unsigned long long blocknr)
285 286 287 288 289 290 291 292 293 294
{
	int need_copy_out = 0;
	int done_copy_out = 0;
	int do_escape = 0;
	char *mapped_data;
	struct buffer_head *new_bh;
	struct journal_head *new_jh;
	struct page *new_page;
	unsigned int new_offset;
	struct buffer_head *bh_in = jh2bh(jh_in);
J
Joel Becker 已提交
295
	struct jbd2_buffer_trigger_type *triggers;
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

	/*
	 * The buffer really shouldn't be locked: only the current committing
	 * transaction is allowed to write it, so nobody else is allowed
	 * to do any IO.
	 *
	 * akpm: except if we're journalling data, and write() output is
	 * also part of a shared mapping, and another thread has
	 * decided to launch a writepage() against this buffer.
	 */
	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));

	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);

	/*
	 * If a new transaction has already done a buffer copy-out, then
	 * we use that version of the data for the commit.
	 */
	jbd_lock_bh_state(bh_in);
repeat:
	if (jh_in->b_frozen_data) {
		done_copy_out = 1;
		new_page = virt_to_page(jh_in->b_frozen_data);
		new_offset = offset_in_page(jh_in->b_frozen_data);
J
Joel Becker 已提交
320
		triggers = jh_in->b_frozen_triggers;
321 322 323
	} else {
		new_page = jh2bh(jh_in)->b_page;
		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
J
Joel Becker 已提交
324
		triggers = jh_in->b_triggers;
325 326 327
	}

	mapped_data = kmap_atomic(new_page, KM_USER0);
J
Joel Becker 已提交
328 329 330 331 332 333 334 335
	/*
	 * Fire any commit trigger.  Do this before checking for escaping,
	 * as the trigger may modify the magic offset.  If a copy-out
	 * happens afterwards, it will have the correct data in the buffer.
	 */
	jbd2_buffer_commit_trigger(jh_in, mapped_data + new_offset,
				   triggers);

336 337 338 339
	/*
	 * Check for escaping
	 */
	if (*((__be32 *)(mapped_data + new_offset)) ==
340
				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
341 342 343 344 345 346 347 348 349 350 351 352
		need_copy_out = 1;
		do_escape = 1;
	}
	kunmap_atomic(mapped_data, KM_USER0);

	/*
	 * Do we need to do a data copy?
	 */
	if (need_copy_out && !done_copy_out) {
		char *tmp;

		jbd_unlock_bh_state(bh_in);
M
Mingming Cao 已提交
353
		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
354 355
		jbd_lock_bh_state(bh_in);
		if (jh_in->b_frozen_data) {
M
Mingming Cao 已提交
356
			jbd2_free(tmp, bh_in->b_size);
357 358 359 360 361 362 363 364 365 366 367
			goto repeat;
		}

		jh_in->b_frozen_data = tmp;
		mapped_data = kmap_atomic(new_page, KM_USER0);
		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
		kunmap_atomic(mapped_data, KM_USER0);

		new_page = virt_to_page(tmp);
		new_offset = offset_in_page(tmp);
		done_copy_out = 1;
J
Joel Becker 已提交
368 369 370 371 372 373 374

		/*
		 * This isn't strictly necessary, as we're using frozen
		 * data for the escaping, but it keeps consistency with
		 * b_frozen_data usage.
		 */
		jh_in->b_frozen_triggers = jh_in->b_triggers;
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
	}

	/*
	 * Did we need to do an escaping?  Now we've done all the
	 * copying, we can finally do so.
	 */
	if (do_escape) {
		mapped_data = kmap_atomic(new_page, KM_USER0);
		*((unsigned int *)(mapped_data + new_offset)) = 0;
		kunmap_atomic(mapped_data, KM_USER0);
	}

	/* keep subsequent assertions sane */
	new_bh->b_state = 0;
	init_buffer(new_bh, NULL, NULL);
	atomic_set(&new_bh->b_count, 1);
	jbd_unlock_bh_state(bh_in);

393
	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

	set_bh_page(new_bh, new_page, new_offset);
	new_jh->b_transaction = NULL;
	new_bh->b_size = jh2bh(jh_in)->b_size;
	new_bh->b_bdev = transaction->t_journal->j_dev;
	new_bh->b_blocknr = blocknr;
	set_buffer_mapped(new_bh);
	set_buffer_dirty(new_bh);

	*jh_out = new_jh;

	/*
	 * The to-be-written buffer needs to get moved to the io queue,
	 * and the original buffer whose contents we are shadowing or
	 * copying is moved to the transaction's shadow queue.
	 */
	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
411
	jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
412
	JBUFFER_TRACE(new_jh, "file as BJ_IO");
413
	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
414 415 416 417 418 419 420 421 422 423

	return do_escape | (done_copy_out << 1);
}

/*
 * Allocation code for the journal file.  Manage the space left in the
 * journal, so that we can begin checkpointing when appropriate.
 */

/*
424
 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
425 426 427 428 429 430
 *
 * Called with the journal already locked.
 *
 * Called under j_state_lock
 */

431
int __jbd2_log_space_left(journal_t *journal)
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
{
	int left = journal->j_free;

	assert_spin_locked(&journal->j_state_lock);

	/*
	 * Be pessimistic here about the number of those free blocks which
	 * might be required for log descriptor control blocks.
	 */

#define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */

	left -= MIN_LOG_RESERVED_BLOCKS;

	if (left <= 0)
		return 0;
	left -= (left >> 3);
	return left;
}

/*
453
 * Called under j_state_lock.  Returns true if a transaction commit was started.
454
 */
455
int __jbd2_log_start_commit(journal_t *journal, tid_t target)
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
{
	/*
	 * Are we already doing a recent enough commit?
	 */
	if (!tid_geq(journal->j_commit_request, target)) {
		/*
		 * We want a new commit: OK, mark the request and wakup the
		 * commit thread.  We do _not_ do the commit ourselves.
		 */

		journal->j_commit_request = target;
		jbd_debug(1, "JBD: requesting commit %d/%d\n",
			  journal->j_commit_request,
			  journal->j_commit_sequence);
		wake_up(&journal->j_wait_commit);
		return 1;
	}
	return 0;
}

476
int jbd2_log_start_commit(journal_t *journal, tid_t tid)
477 478 479 480
{
	int ret;

	spin_lock(&journal->j_state_lock);
481
	ret = __jbd2_log_start_commit(journal, tid);
482 483 484 485 486 487 488 489 490 491 492 493 494 495
	spin_unlock(&journal->j_state_lock);
	return ret;
}

/*
 * Force and wait upon a commit if the calling process is not within
 * transaction.  This is used for forcing out undo-protected data which contains
 * bitmaps, when the fs is running out of space.
 *
 * We can only force the running transaction if we don't have an active handle;
 * otherwise, we will deadlock.
 *
 * Returns true if a transaction was started.
 */
496
int jbd2_journal_force_commit_nested(journal_t *journal)
497 498 499 500 501 502 503
{
	transaction_t *transaction = NULL;
	tid_t tid;

	spin_lock(&journal->j_state_lock);
	if (journal->j_running_transaction && !current->journal_info) {
		transaction = journal->j_running_transaction;
504
		__jbd2_log_start_commit(journal, transaction->t_tid);
505 506 507 508 509 510 511 512 513 514
	} else if (journal->j_committing_transaction)
		transaction = journal->j_committing_transaction;

	if (!transaction) {
		spin_unlock(&journal->j_state_lock);
		return 0;	/* Nothing to retry */
	}

	tid = transaction->t_tid;
	spin_unlock(&journal->j_state_lock);
515
	jbd2_log_wait_commit(journal, tid);
516 517 518 519 520
	return 1;
}

/*
 * Start a commit of the current running transaction (if any).  Returns true
521 522
 * if a transaction is going to be committed (or is currently already
 * committing), and fills its tid in at *ptid
523
 */
524
int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
525 526 527 528 529 530 531
{
	int ret = 0;

	spin_lock(&journal->j_state_lock);
	if (journal->j_running_transaction) {
		tid_t tid = journal->j_running_transaction->t_tid;

532 533 534 535
		__jbd2_log_start_commit(journal, tid);
		/* There's a running transaction and we've just made sure
		 * it's commit has been scheduled. */
		if (ptid)
536
			*ptid = tid;
537 538
		ret = 1;
	} else if (journal->j_committing_transaction) {
539 540 541 542
		/*
		 * If ext3_write_super() recently started a commit, then we
		 * have to wait for completion of that transaction
		 */
543 544
		if (ptid)
			*ptid = journal->j_committing_transaction->t_tid;
545 546 547 548 549 550 551 552 553 554
		ret = 1;
	}
	spin_unlock(&journal->j_state_lock);
	return ret;
}

/*
 * Wait for a specified commit to complete.
 * The caller may not hold the journal lock.
 */
555
int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
556 557 558
{
	int err = 0;

559
#ifdef CONFIG_JBD2_DEBUG
560 561 562 563
	spin_lock(&journal->j_state_lock);
	if (!tid_geq(journal->j_commit_request, tid)) {
		printk(KERN_EMERG
		       "%s: error: j_commit_request=%d, tid=%d\n",
564
		       __func__, journal->j_commit_request, tid);
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
	}
	spin_unlock(&journal->j_state_lock);
#endif
	spin_lock(&journal->j_state_lock);
	while (tid_gt(tid, journal->j_commit_sequence)) {
		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
				  tid, journal->j_commit_sequence);
		wake_up(&journal->j_wait_commit);
		spin_unlock(&journal->j_state_lock);
		wait_event(journal->j_wait_done_commit,
				!tid_gt(tid, journal->j_commit_sequence));
		spin_lock(&journal->j_state_lock);
	}
	spin_unlock(&journal->j_state_lock);

	if (unlikely(is_journal_aborted(journal))) {
		printk(KERN_EMERG "journal commit I/O error\n");
		err = -EIO;
	}
	return err;
}

/*
 * Log buffer allocation routines:
 */

591
int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
592 593 594 595 596 597 598 599 600 601 602 603
{
	unsigned long blocknr;

	spin_lock(&journal->j_state_lock);
	J_ASSERT(journal->j_free > 1);

	blocknr = journal->j_head;
	journal->j_head++;
	journal->j_free--;
	if (journal->j_head == journal->j_last)
		journal->j_head = journal->j_first;
	spin_unlock(&journal->j_state_lock);
604
	return jbd2_journal_bmap(journal, blocknr, retp);
605 606 607 608 609 610 611 612 613
}

/*
 * Conversion of logical to physical block numbers for the journal
 *
 * On external journals the journal blocks are identity-mapped, so
 * this is a no-op.  If needed, we can use j_blk_offset - everything is
 * ready.
 */
614
int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
615
		 unsigned long long *retp)
616 617
{
	int err = 0;
618
	unsigned long long ret;
619 620 621 622 623 624 625 626

	if (journal->j_inode) {
		ret = bmap(journal->j_inode, blocknr);
		if (ret)
			*retp = ret;
		else {
			printk(KERN_ALERT "%s: journal block not found "
					"at offset %lu on %s\n",
627
			       __func__, blocknr, journal->j_devname);
628 629 630 631 632 633 634 635 636 637 638 639 640 641
			err = -EIO;
			__journal_abort_soft(journal, err);
		}
	} else {
		*retp = blocknr; /* +journal->j_blk_offset */
	}
	return err;
}

/*
 * We play buffer_head aliasing tricks to write data/metadata blocks to
 * the journal without copying their contents, but for journal
 * descriptor blocks we do need to generate bona fide buffers.
 *
642
 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
643 644 645 646
 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
 * But we don't bother doing that, so there will be coherency problems with
 * mmaps of blockdevs which hold live JBD-controlled filesystems.
 */
647
struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
648 649
{
	struct buffer_head *bh;
650
	unsigned long long blocknr;
651 652
	int err;

653
	err = jbd2_journal_next_log_block(journal, &blocknr);
654 655 656 657 658

	if (err)
		return NULL;

	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
659 660
	if (!bh)
		return NULL;
661 662 663 664 665
	lock_buffer(bh);
	memset(bh->b_data, 0, journal->j_blocksize);
	set_buffer_uptodate(bh);
	unlock_buffer(bh);
	BUFFER_TRACE(bh, "return this buffer");
666
	return jbd2_journal_add_journal_head(bh);
667 668
}

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
struct jbd2_stats_proc_session {
	journal_t *journal;
	struct transaction_stats_s *stats;
	int start;
	int max;
};

static void *jbd2_history_skip_empty(struct jbd2_stats_proc_session *s,
					struct transaction_stats_s *ts,
					int first)
{
	if (ts == s->stats + s->max)
		ts = s->stats;
	if (!first && ts == s->stats + s->start)
		return NULL;
	while (ts->ts_type == 0) {
		ts++;
		if (ts == s->stats + s->max)
			ts = s->stats;
		if (ts == s->stats + s->start)
			return NULL;
	}
	return ts;

}

static void *jbd2_seq_history_start(struct seq_file *seq, loff_t *pos)
{
	struct jbd2_stats_proc_session *s = seq->private;
	struct transaction_stats_s *ts;
	int l = *pos;

	if (l == 0)
		return SEQ_START_TOKEN;
	ts = jbd2_history_skip_empty(s, s->stats + s->start, 1);
	if (!ts)
		return NULL;
	l--;
	while (l) {
		ts = jbd2_history_skip_empty(s, ++ts, 0);
		if (!ts)
			break;
		l--;
	}
	return ts;
}

static void *jbd2_seq_history_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct jbd2_stats_proc_session *s = seq->private;
	struct transaction_stats_s *ts = v;

	++*pos;
	if (v == SEQ_START_TOKEN)
		return jbd2_history_skip_empty(s, s->stats + s->start, 1);
	else
		return jbd2_history_skip_empty(s, ++ts, 0);
}

static int jbd2_seq_history_show(struct seq_file *seq, void *v)
{
	struct transaction_stats_s *ts = v;
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-4s %-5s %-5s %-5s %-5s %-5s %-5s %-6s %-5s "
				"%-5s %-5s %-5s %-5s %-5s\n", "R/C", "tid",
				"wait", "run", "lock", "flush", "log", "hndls",
				"block", "inlog", "ctime", "write", "drop",
				"close");
		return 0;
	}
	if (ts->ts_type == JBD2_STATS_RUN)
		seq_printf(seq, "%-4s %-5lu %-5u %-5u %-5u %-5u %-5u "
				"%-6lu %-5lu %-5lu\n", "R", ts->ts_tid,
				jiffies_to_msecs(ts->u.run.rs_wait),
				jiffies_to_msecs(ts->u.run.rs_running),
				jiffies_to_msecs(ts->u.run.rs_locked),
				jiffies_to_msecs(ts->u.run.rs_flushing),
				jiffies_to_msecs(ts->u.run.rs_logging),
				ts->u.run.rs_handle_count,
				ts->u.run.rs_blocks,
				ts->u.run.rs_blocks_logged);
	else if (ts->ts_type == JBD2_STATS_CHECKPOINT)
		seq_printf(seq, "%-4s %-5lu %48s %-5u %-5lu %-5lu %-5lu\n",
				"C", ts->ts_tid, " ",
				jiffies_to_msecs(ts->u.chp.cs_chp_time),
				ts->u.chp.cs_written, ts->u.chp.cs_dropped,
				ts->u.chp.cs_forced_to_close);
	else
		J_ASSERT(0);
	return 0;
}

static void jbd2_seq_history_stop(struct seq_file *seq, void *v)
{
}

static struct seq_operations jbd2_seq_history_ops = {
	.start  = jbd2_seq_history_start,
	.next   = jbd2_seq_history_next,
	.stop   = jbd2_seq_history_stop,
	.show   = jbd2_seq_history_show,
};

static int jbd2_seq_history_open(struct inode *inode, struct file *file)
{
	journal_t *journal = PDE(inode)->data;
	struct jbd2_stats_proc_session *s;
	int rc, size;

	s = kmalloc(sizeof(*s), GFP_KERNEL);
	if (s == NULL)
		return -ENOMEM;
	size = sizeof(struct transaction_stats_s) * journal->j_history_max;
	s->stats = kmalloc(size, GFP_KERNEL);
	if (s->stats == NULL) {
		kfree(s);
		return -ENOMEM;
	}
	spin_lock(&journal->j_history_lock);
	memcpy(s->stats, journal->j_history, size);
	s->max = journal->j_history_max;
	s->start = journal->j_history_cur % s->max;
	spin_unlock(&journal->j_history_lock);

	rc = seq_open(file, &jbd2_seq_history_ops);
	if (rc == 0) {
		struct seq_file *m = file->private_data;
		m->private = s;
	} else {
		kfree(s->stats);
		kfree(s);
	}
	return rc;

}

static int jbd2_seq_history_release(struct inode *inode, struct file *file)
{
	struct seq_file *seq = file->private_data;
	struct jbd2_stats_proc_session *s = seq->private;

	kfree(s->stats);
	kfree(s);
	return seq_release(inode, file);
}

static struct file_operations jbd2_seq_history_fops = {
	.owner		= THIS_MODULE,
	.open           = jbd2_seq_history_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = jbd2_seq_history_release,
};

static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
{
	return *pos ? NULL : SEQ_START_TOKEN;
}

static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
{
	return NULL;
}

static int jbd2_seq_info_show(struct seq_file *seq, void *v)
{
	struct jbd2_stats_proc_session *s = seq->private;

	if (v != SEQ_START_TOKEN)
		return 0;
	seq_printf(seq, "%lu transaction, each upto %u blocks\n",
			s->stats->ts_tid,
			s->journal->j_max_transaction_buffers);
	if (s->stats->ts_tid == 0)
		return 0;
	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
	    jiffies_to_msecs(s->stats->u.run.rs_wait / s->stats->ts_tid));
	seq_printf(seq, "  %ums running transaction\n",
	    jiffies_to_msecs(s->stats->u.run.rs_running / s->stats->ts_tid));
	seq_printf(seq, "  %ums transaction was being locked\n",
	    jiffies_to_msecs(s->stats->u.run.rs_locked / s->stats->ts_tid));
	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
	    jiffies_to_msecs(s->stats->u.run.rs_flushing / s->stats->ts_tid));
	seq_printf(seq, "  %ums logging transaction\n",
	    jiffies_to_msecs(s->stats->u.run.rs_logging / s->stats->ts_tid));
854 855
	seq_printf(seq, "  %lluus average transaction commit time\n",
		   div_u64(s->journal->j_average_commit_time, 1000));
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
	seq_printf(seq, "  %lu handles per transaction\n",
	    s->stats->u.run.rs_handle_count / s->stats->ts_tid);
	seq_printf(seq, "  %lu blocks per transaction\n",
	    s->stats->u.run.rs_blocks / s->stats->ts_tid);
	seq_printf(seq, "  %lu logged blocks per transaction\n",
	    s->stats->u.run.rs_blocks_logged / s->stats->ts_tid);
	return 0;
}

static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
{
}

static struct seq_operations jbd2_seq_info_ops = {
	.start  = jbd2_seq_info_start,
	.next   = jbd2_seq_info_next,
	.stop   = jbd2_seq_info_stop,
	.show   = jbd2_seq_info_show,
};

static int jbd2_seq_info_open(struct inode *inode, struct file *file)
{
	journal_t *journal = PDE(inode)->data;
	struct jbd2_stats_proc_session *s;
	int rc, size;

	s = kmalloc(sizeof(*s), GFP_KERNEL);
	if (s == NULL)
		return -ENOMEM;
	size = sizeof(struct transaction_stats_s);
	s->stats = kmalloc(size, GFP_KERNEL);
	if (s->stats == NULL) {
		kfree(s);
		return -ENOMEM;
	}
	spin_lock(&journal->j_history_lock);
	memcpy(s->stats, &journal->j_stats, size);
	s->journal = journal;
	spin_unlock(&journal->j_history_lock);

	rc = seq_open(file, &jbd2_seq_info_ops);
	if (rc == 0) {
		struct seq_file *m = file->private_data;
		m->private = s;
	} else {
		kfree(s->stats);
		kfree(s);
	}
	return rc;

}

static int jbd2_seq_info_release(struct inode *inode, struct file *file)
{
	struct seq_file *seq = file->private_data;
	struct jbd2_stats_proc_session *s = seq->private;
	kfree(s->stats);
	kfree(s);
	return seq_release(inode, file);
}

static struct file_operations jbd2_seq_info_fops = {
	.owner		= THIS_MODULE,
	.open           = jbd2_seq_info_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = jbd2_seq_info_release,
};

static struct proc_dir_entry *proc_jbd2_stats;

static void jbd2_stats_proc_init(journal_t *journal)
{
929
	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
930
	if (journal->j_proc_entry) {
931 932 933 934
		proc_create_data("history", S_IRUGO, journal->j_proc_entry,
				 &jbd2_seq_history_fops, journal);
		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
				 &jbd2_seq_info_fops, journal);
935 936 937 938 939 940 941
	}
}

static void jbd2_stats_proc_exit(journal_t *journal)
{
	remove_proc_entry("info", journal->j_proc_entry);
	remove_proc_entry("history", journal->j_proc_entry);
942
	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
}

static void journal_init_stats(journal_t *journal)
{
	int size;

	if (!proc_jbd2_stats)
		return;

	journal->j_history_max = 100;
	size = sizeof(struct transaction_stats_s) * journal->j_history_max;
	journal->j_history = kzalloc(size, GFP_KERNEL);
	if (!journal->j_history) {
		journal->j_history_max = 0;
		return;
	}
	spin_lock_init(&journal->j_history_lock);
}

962 963 964 965 966 967 968 969 970 971 972 973 974 975
/*
 * Management for journal control blocks: functions to create and
 * destroy journal_t structures, and to initialise and read existing
 * journal blocks from disk.  */

/* First: create and setup a journal_t object in memory.  We initialise
 * very few fields yet: that has to wait until we have created the
 * journal structures from from scratch, or loaded them from disk. */

static journal_t * journal_init_common (void)
{
	journal_t *journal;
	int err;

976
	journal = kzalloc(sizeof(*journal), GFP_KERNEL|__GFP_NOFAIL);
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	if (!journal)
		goto fail;

	init_waitqueue_head(&journal->j_wait_transaction_locked);
	init_waitqueue_head(&journal->j_wait_logspace);
	init_waitqueue_head(&journal->j_wait_done_commit);
	init_waitqueue_head(&journal->j_wait_checkpoint);
	init_waitqueue_head(&journal->j_wait_commit);
	init_waitqueue_head(&journal->j_wait_updates);
	mutex_init(&journal->j_barrier);
	mutex_init(&journal->j_checkpoint_mutex);
	spin_lock_init(&journal->j_revoke_lock);
	spin_lock_init(&journal->j_list_lock);
	spin_lock_init(&journal->j_state_lock);

992
	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
993 994
	journal->j_min_batch_time = 0;
	journal->j_max_batch_time = 15000; /* 15ms */
995 996

	/* The journal is marked for error until we succeed with recovery! */
997
	journal->j_flags = JBD2_ABORT;
998 999

	/* Set up a default-sized revoke table for the new mount. */
1000
	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1001 1002 1003 1004
	if (err) {
		kfree(journal);
		goto fail;
	}
1005 1006 1007

	journal_init_stats(journal);

1008 1009 1010 1011 1012
	return journal;
fail:
	return NULL;
}

1013
/* jbd2_journal_init_dev and jbd2_journal_init_inode:
1014 1015 1016 1017 1018 1019 1020 1021 1022
 *
 * Create a journal structure assigned some fixed set of disk blocks to
 * the journal.  We don't actually touch those disk blocks yet, but we
 * need to set up all of the mapping information to tell the journaling
 * system where the journal blocks are.
 *
 */

/**
R
Randy Dunlap 已提交
1023
 *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1024 1025 1026 1027 1028
 *  @bdev: Block device on which to create the journal
 *  @fs_dev: Device which hold journalled filesystem for this journal.
 *  @start: Block nr Start of journal.
 *  @len:  Length of the journal in blocks.
 *  @blocksize: blocksize of journalling device
R
Randy Dunlap 已提交
1029 1030
 *
 *  Returns: a newly created journal_t *
1031
 *
1032
 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1033 1034 1035
 *  range of blocks on an arbitrary block device.
 *
 */
1036
journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1037
			struct block_device *fs_dev,
1038
			unsigned long long start, int len, int blocksize)
1039 1040 1041
{
	journal_t *journal = journal_init_common();
	struct buffer_head *bh;
1042
	char *p;
1043 1044 1045 1046 1047 1048 1049
	int n;

	if (!journal)
		return NULL;

	/* journal descriptor can store up to n blocks -bzzz */
	journal->j_blocksize = blocksize;
1050
	jbd2_stats_proc_init(journal);
1051 1052 1053 1054 1055
	n = journal->j_blocksize / sizeof(journal_block_tag_t);
	journal->j_wbufsize = n;
	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
	if (!journal->j_wbuf) {
		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
1056
			__func__);
1057
		goto out_err;
1058 1059 1060 1061 1062
	}
	journal->j_dev = bdev;
	journal->j_fs_dev = fs_dev;
	journal->j_blk_offset = start;
	journal->j_maxlen = len;
1063 1064 1065 1066
	bdevname(journal->j_dev, journal->j_devname);
	p = journal->j_devname;
	while ((p = strchr(p, '/')))
		*p = '!';
1067 1068

	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1069 1070 1071 1072 1073 1074
	if (!bh) {
		printk(KERN_ERR
		       "%s: Cannot get buffer for journal superblock\n",
		       __func__);
		goto out_err;
	}
1075 1076
	journal->j_sb_buffer = bh;
	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1077

1078
	return journal;
1079 1080 1081 1082
out_err:
	jbd2_stats_proc_exit(journal);
	kfree(journal);
	return NULL;
1083 1084 1085
}

/**
1086
 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1087 1088
 *  @inode: An inode to create the journal in
 *
1089
 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1090 1091 1092
 * the journal.  The inode must exist already, must support bmap() and
 * must have all data blocks preallocated.
 */
1093
journal_t * jbd2_journal_init_inode (struct inode *inode)
1094 1095 1096
{
	struct buffer_head *bh;
	journal_t *journal = journal_init_common();
1097
	char *p;
1098 1099
	int err;
	int n;
1100
	unsigned long long blocknr;
1101 1102 1103 1104 1105 1106

	if (!journal)
		return NULL;

	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
	journal->j_inode = inode;
1107 1108 1109 1110 1111 1112
	bdevname(journal->j_dev, journal->j_devname);
	p = journal->j_devname;
	while ((p = strchr(p, '/')))
		*p = '!';
	p = journal->j_devname + strlen(journal->j_devname);
	sprintf(p, ":%lu", journal->j_inode->i_ino);
1113 1114 1115 1116 1117 1118 1119 1120
	jbd_debug(1,
		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
		  journal, inode->i_sb->s_id, inode->i_ino,
		  (long long) inode->i_size,
		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);

	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
	journal->j_blocksize = inode->i_sb->s_blocksize;
1121
	jbd2_stats_proc_init(journal);
1122 1123 1124 1125 1126 1127 1128

	/* journal descriptor can store up to n blocks -bzzz */
	n = journal->j_blocksize / sizeof(journal_block_tag_t);
	journal->j_wbufsize = n;
	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
	if (!journal->j_wbuf) {
		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
1129
			__func__);
1130
		goto out_err;
1131 1132
	}

1133
	err = jbd2_journal_bmap(journal, 0, &blocknr);
1134 1135 1136
	/* If that failed, give up */
	if (err) {
		printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
1137
		       __func__);
1138
		goto out_err;
1139 1140 1141
	}

	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1142 1143 1144 1145 1146 1147
	if (!bh) {
		printk(KERN_ERR
		       "%s: Cannot get buffer for journal superblock\n",
		       __func__);
		goto out_err;
	}
1148 1149 1150 1151
	journal->j_sb_buffer = bh;
	journal->j_superblock = (journal_superblock_t *)bh->b_data;

	return journal;
1152 1153 1154 1155
out_err:
	jbd2_stats_proc_exit(journal);
	kfree(journal);
	return NULL;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
}

/*
 * If the journal init or create aborts, we need to mark the journal
 * superblock as being NULL to prevent the journal destroy from writing
 * back a bogus superblock.
 */
static void journal_fail_superblock (journal_t *journal)
{
	struct buffer_head *bh = journal->j_sb_buffer;
	brelse(bh);
	journal->j_sb_buffer = NULL;
}

/*
 * Given a journal_t structure, initialise the various fields for
 * startup of a new journaling session.  We use this both when creating
 * a journal, and after recovering an old journal to reset it for
 * subsequent use.
 */

static int journal_reset(journal_t *journal)
{
	journal_superblock_t *sb = journal->j_superblock;
1180
	unsigned long long first, last;
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

	first = be32_to_cpu(sb->s_first);
	last = be32_to_cpu(sb->s_maxlen);

	journal->j_first = first;
	journal->j_last = last;

	journal->j_head = first;
	journal->j_tail = first;
	journal->j_free = last - first;

	journal->j_tail_sequence = journal->j_transaction_sequence;
	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
	journal->j_commit_request = journal->j_commit_sequence;

	journal->j_max_transaction_buffers = journal->j_maxlen / 4;

	/* Add the dynamic fields and write it to disk. */
1199
	jbd2_journal_update_superblock(journal, 1);
1200
	return jbd2_journal_start_thread(journal);
1201 1202 1203
}

/**
1204
 * void jbd2_journal_update_superblock() - Update journal sb on disk.
1205 1206 1207 1208 1209 1210
 * @journal: The journal to update.
 * @wait: Set to '0' if you don't want to wait for IO completion.
 *
 * Update a journal's dynamic superblock fields and write it to disk,
 * optionally waiting for the IO to complete.
 */
1211
void jbd2_journal_update_superblock(journal_t *journal, int wait)
1212 1213 1214 1215 1216 1217 1218 1219
{
	journal_superblock_t *sb = journal->j_superblock;
	struct buffer_head *bh = journal->j_sb_buffer;

	/*
	 * As a special case, if the on-disk copy is already marked as needing
	 * no recovery (s_start == 0) and there are no outstanding transactions
	 * in the filesystem, then we can safely defer the superblock update
1220
	 * until the next commit by setting JBD2_FLUSHED.  This avoids
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	 * attempting a write to a potential-readonly device.
	 */
	if (sb->s_start == 0 && journal->j_tail_sequence ==
				journal->j_transaction_sequence) {
		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
			"(start %ld, seq %d, errno %d)\n",
			journal->j_tail, journal->j_tail_sequence,
			journal->j_errno);
		goto out;
	}

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	if (buffer_write_io_error(bh)) {
		/*
		 * Oh, dear.  A previous attempt to write the journal
		 * superblock failed.  This could happen because the
		 * USB device was yanked out.  Or it could happen to
		 * be a transient write error and maybe the block will
		 * be remapped.  Nothing we can do but to retry the
		 * write and hope for the best.
		 */
		printk(KERN_ERR "JBD2: previous I/O error detected "
		       "for journal superblock update for %s.\n",
		       journal->j_devname);
		clear_buffer_write_io_error(bh);
		set_buffer_uptodate(bh);
	}

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	spin_lock(&journal->j_state_lock);
	jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);

	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
	sb->s_start    = cpu_to_be32(journal->j_tail);
	sb->s_errno    = cpu_to_be32(journal->j_errno);
	spin_unlock(&journal->j_state_lock);

	BUFFER_TRACE(bh, "marking dirty");
	mark_buffer_dirty(bh);
1259
	if (wait) {
1260
		sync_dirty_buffer(bh);
1261 1262 1263 1264 1265 1266 1267 1268
		if (buffer_write_io_error(bh)) {
			printk(KERN_ERR "JBD2: I/O error detected "
			       "when updating journal superblock for %s.\n",
			       journal->j_devname);
			clear_buffer_write_io_error(bh);
			set_buffer_uptodate(bh);
		}
	} else
1269 1270 1271 1272 1273 1274 1275 1276 1277
		ll_rw_block(SWRITE, 1, &bh);

out:
	/* If we have just flushed the log (by marking s_start==0), then
	 * any future commit will have to be careful to update the
	 * superblock again to re-record the true start of the log. */

	spin_lock(&journal->j_state_lock);
	if (sb->s_start)
1278
		journal->j_flags &= ~JBD2_FLUSHED;
1279
	else
1280
		journal->j_flags |= JBD2_FLUSHED;
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	spin_unlock(&journal->j_state_lock);
}

/*
 * Read the superblock for a given journal, performing initial
 * validation of the format.
 */

static int journal_get_superblock(journal_t *journal)
{
	struct buffer_head *bh;
	journal_superblock_t *sb;
	int err = -EIO;

	bh = journal->j_sb_buffer;

	J_ASSERT(bh != NULL);
	if (!buffer_uptodate(bh)) {
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
			printk (KERN_ERR
				"JBD: IO error reading journal superblock\n");
			goto out;
		}
	}

	sb = journal->j_superblock;

	err = -EINVAL;

1312
	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1313 1314 1315 1316 1317 1318
	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
		goto out;
	}

	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1319
	case JBD2_SUPERBLOCK_V1:
1320 1321
		journal->j_format_version = 1;
		break;
1322
	case JBD2_SUPERBLOCK_V2:
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
		journal->j_format_version = 2;
		break;
	default:
		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
		goto out;
	}

	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
		printk (KERN_WARNING "JBD: journal file too short\n");
		goto out;
	}

	return 0;

out:
	journal_fail_superblock(journal);
	return err;
}

/*
 * Load the on-disk journal superblock and read the key fields into the
 * journal_t.
 */

static int load_superblock(journal_t *journal)
{
	int err;
	journal_superblock_t *sb;

	err = journal_get_superblock(journal);
	if (err)
		return err;

	sb = journal->j_superblock;

	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
	journal->j_tail = be32_to_cpu(sb->s_start);
	journal->j_first = be32_to_cpu(sb->s_first);
	journal->j_last = be32_to_cpu(sb->s_maxlen);
	journal->j_errno = be32_to_cpu(sb->s_errno);

	return 0;
}


/**
1371
 * int jbd2_journal_load() - Read journal from disk.
1372 1373 1374 1375 1376 1377
 * @journal: Journal to act on.
 *
 * Given a journal_t structure which tells us which disk blocks contain
 * a journal, read the journal from disk to initialise the in-memory
 * structures.
 */
1378
int jbd2_journal_load(journal_t *journal)
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
{
	int err;
	journal_superblock_t *sb;

	err = load_superblock(journal);
	if (err)
		return err;

	sb = journal->j_superblock;
	/* If this is a V2 superblock, then we have to check the
	 * features flags on it. */

	if (journal->j_format_version >= 2) {
		if ((sb->s_feature_ro_compat &
1393
		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1394
		    (sb->s_feature_incompat &
1395
		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1396 1397 1398 1399 1400 1401 1402 1403
			printk (KERN_WARNING
				"JBD: Unrecognised features on journal\n");
			return -EINVAL;
		}
	}

	/* Let the recovery code check whether it needs to recover any
	 * data from the journal. */
1404
	if (jbd2_journal_recover(journal))
1405 1406 1407 1408 1409 1410 1411 1412
		goto recovery_error;

	/* OK, we've finished with the dynamic journal bits:
	 * reinitialise the dynamic contents of the superblock in memory
	 * and reset them on disk. */
	if (journal_reset(journal))
		goto recovery_error;

1413 1414
	journal->j_flags &= ~JBD2_ABORT;
	journal->j_flags |= JBD2_LOADED;
1415 1416 1417 1418 1419 1420 1421 1422
	return 0;

recovery_error:
	printk (KERN_WARNING "JBD: recovery failed\n");
	return -EIO;
}

/**
1423
 * void jbd2_journal_destroy() - Release a journal_t structure.
1424 1425 1426 1427
 * @journal: Journal to act on.
 *
 * Release a journal_t structure once it is no longer in use by the
 * journaled object.
1428
 * Return <0 if we couldn't clean up the journal.
1429
 */
1430
int jbd2_journal_destroy(journal_t *journal)
1431
{
1432 1433
	int err = 0;

1434 1435 1436 1437 1438
	/* Wait for the commit thread to wake up and die. */
	journal_kill_thread(journal);

	/* Force a final log commit */
	if (journal->j_running_transaction)
1439
		jbd2_journal_commit_transaction(journal);
1440 1441 1442 1443 1444 1445 1446

	/* Force any old transactions to disk */

	/* Totally anal locking here... */
	spin_lock(&journal->j_list_lock);
	while (journal->j_checkpoint_transactions != NULL) {
		spin_unlock(&journal->j_list_lock);
1447
		mutex_lock(&journal->j_checkpoint_mutex);
1448
		jbd2_log_do_checkpoint(journal);
1449
		mutex_unlock(&journal->j_checkpoint_mutex);
1450 1451 1452 1453 1454 1455 1456 1457 1458
		spin_lock(&journal->j_list_lock);
	}

	J_ASSERT(journal->j_running_transaction == NULL);
	J_ASSERT(journal->j_committing_transaction == NULL);
	J_ASSERT(journal->j_checkpoint_transactions == NULL);
	spin_unlock(&journal->j_list_lock);

	if (journal->j_sb_buffer) {
1459 1460 1461 1462 1463 1464 1465 1466 1467
		if (!is_journal_aborted(journal)) {
			/* We can now mark the journal as empty. */
			journal->j_tail = 0;
			journal->j_tail_sequence =
				++journal->j_transaction_sequence;
			jbd2_journal_update_superblock(journal, 1);
		} else {
			err = -EIO;
		}
1468 1469 1470
		brelse(journal->j_sb_buffer);
	}

1471 1472
	if (journal->j_proc_entry)
		jbd2_stats_proc_exit(journal);
1473 1474 1475
	if (journal->j_inode)
		iput(journal->j_inode);
	if (journal->j_revoke)
1476
		jbd2_journal_destroy_revoke(journal);
1477 1478
	kfree(journal->j_wbuf);
	kfree(journal);
1479 1480

	return err;
1481 1482 1483 1484
}


/**
1485
 *int jbd2_journal_check_used_features () - Check if features specified are used.
1486 1487 1488 1489 1490 1491 1492 1493 1494
 * @journal: Journal to check.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Check whether the journal uses all of a given set of
 * features.  Return true (non-zero) if it does.
 **/

1495
int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
				 unsigned long ro, unsigned long incompat)
{
	journal_superblock_t *sb;

	if (!compat && !ro && !incompat)
		return 1;
	if (journal->j_format_version == 1)
		return 0;

	sb = journal->j_superblock;

	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
		return 1;

	return 0;
}

/**
1516
 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1517 1518 1519 1520 1521 1522 1523 1524 1525
 * @journal: Journal to check.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Check whether the journaling code supports the use of
 * all of a given set of features on this journal.  Return true
 * (non-zero) if it can. */

1526
int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
				      unsigned long ro, unsigned long incompat)
{
	journal_superblock_t *sb;

	if (!compat && !ro && !incompat)
		return 1;

	sb = journal->j_superblock;

	/* We can support any known requested features iff the
	 * superblock is in version 2.  Otherwise we fail to support any
	 * extended sb features. */

	if (journal->j_format_version != 2)
		return 0;

1543 1544 1545
	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1546 1547 1548 1549 1550 1551
		return 1;

	return 0;
}

/**
1552
 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
 * @journal: Journal to act on.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Mark a given journal feature as present on the
 * superblock.  Returns true if the requested features could be set.
 *
 */

1563
int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1564 1565 1566 1567
			  unsigned long ro, unsigned long incompat)
{
	journal_superblock_t *sb;

1568
	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1569 1570
		return 1;

1571
	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
		return 0;

	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
		  compat, ro, incompat);

	sb = journal->j_superblock;

	sb->s_feature_compat    |= cpu_to_be32(compat);
	sb->s_feature_ro_compat |= cpu_to_be32(ro);
	sb->s_feature_incompat  |= cpu_to_be32(incompat);

	return 1;
}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
/*
 * jbd2_journal_clear_features () - Clear a given journal feature in the
 * 				    superblock
 * @journal: Journal to act on.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Clear a given journal feature as present on the
 * superblock.
 */
void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
				unsigned long ro, unsigned long incompat)
{
	journal_superblock_t *sb;

	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
		  compat, ro, incompat);

	sb = journal->j_superblock;

	sb->s_feature_compat    &= ~cpu_to_be32(compat);
	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
}
EXPORT_SYMBOL(jbd2_journal_clear_features);
1612 1613

/**
1614
 * int jbd2_journal_update_format () - Update on-disk journal structure.
1615 1616 1617 1618 1619
 * @journal: Journal to act on.
 *
 * Given an initialised but unloaded journal struct, poke about in the
 * on-disk structure to update it to the most recent supported version.
 */
1620
int jbd2_journal_update_format (journal_t *journal)
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
{
	journal_superblock_t *sb;
	int err;

	err = journal_get_superblock(journal);
	if (err)
		return err;

	sb = journal->j_superblock;

	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1632
	case JBD2_SUPERBLOCK_V2:
1633
		return 0;
1634
	case JBD2_SUPERBLOCK_V1:
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
		return journal_convert_superblock_v1(journal, sb);
	default:
		break;
	}
	return -EINVAL;
}

static int journal_convert_superblock_v1(journal_t *journal,
					 journal_superblock_t *sb)
{
	int offset, blocksize;
	struct buffer_head *bh;

	printk(KERN_WARNING
		"JBD: Converting superblock from version 1 to 2.\n");

	/* Pre-initialise new fields to zero */
	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
	blocksize = be32_to_cpu(sb->s_blocksize);
	memset(&sb->s_feature_compat, 0, blocksize-offset);

	sb->s_nr_users = cpu_to_be32(1);
1657
	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	journal->j_format_version = 2;

	bh = journal->j_sb_buffer;
	BUFFER_TRACE(bh, "marking dirty");
	mark_buffer_dirty(bh);
	sync_dirty_buffer(bh);
	return 0;
}


/**
1669
 * int jbd2_journal_flush () - Flush journal
1670 1671 1672 1673 1674 1675 1676
 * @journal: Journal to act on.
 *
 * Flush all data for a given journal to disk and empty the journal.
 * Filesystems can use this when remounting readonly to ensure that
 * recovery does not need to happen on remount.
 */

1677
int jbd2_journal_flush(journal_t *journal)
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
{
	int err = 0;
	transaction_t *transaction = NULL;
	unsigned long old_tail;

	spin_lock(&journal->j_state_lock);

	/* Force everything buffered to the log... */
	if (journal->j_running_transaction) {
		transaction = journal->j_running_transaction;
1688
		__jbd2_log_start_commit(journal, transaction->t_tid);
1689 1690 1691 1692 1693 1694 1695 1696
	} else if (journal->j_committing_transaction)
		transaction = journal->j_committing_transaction;

	/* Wait for the log commit to complete... */
	if (transaction) {
		tid_t tid = transaction->t_tid;

		spin_unlock(&journal->j_state_lock);
1697
		jbd2_log_wait_commit(journal, tid);
1698 1699 1700 1701 1702 1703 1704 1705
	} else {
		spin_unlock(&journal->j_state_lock);
	}

	/* ...and flush everything in the log out to disk. */
	spin_lock(&journal->j_list_lock);
	while (!err && journal->j_checkpoint_transactions != NULL) {
		spin_unlock(&journal->j_list_lock);
1706
		mutex_lock(&journal->j_checkpoint_mutex);
1707
		err = jbd2_log_do_checkpoint(journal);
1708
		mutex_unlock(&journal->j_checkpoint_mutex);
1709 1710 1711
		spin_lock(&journal->j_list_lock);
	}
	spin_unlock(&journal->j_list_lock);
1712 1713 1714 1715

	if (is_journal_aborted(journal))
		return -EIO;

1716
	jbd2_cleanup_journal_tail(journal);
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

	/* Finally, mark the journal as really needing no recovery.
	 * This sets s_start==0 in the underlying superblock, which is
	 * the magic code for a fully-recovered superblock.  Any future
	 * commits of data to the journal will restore the current
	 * s_start value. */
	spin_lock(&journal->j_state_lock);
	old_tail = journal->j_tail;
	journal->j_tail = 0;
	spin_unlock(&journal->j_state_lock);
1727
	jbd2_journal_update_superblock(journal, 1);
1728 1729 1730 1731 1732 1733 1734 1735 1736
	spin_lock(&journal->j_state_lock);
	journal->j_tail = old_tail;

	J_ASSERT(!journal->j_running_transaction);
	J_ASSERT(!journal->j_committing_transaction);
	J_ASSERT(!journal->j_checkpoint_transactions);
	J_ASSERT(journal->j_head == journal->j_tail);
	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
	spin_unlock(&journal->j_state_lock);
1737
	return 0;
1738 1739 1740
}

/**
1741
 * int jbd2_journal_wipe() - Wipe journal contents
1742 1743 1744 1745 1746
 * @journal: Journal to act on.
 * @write: flag (see below)
 *
 * Wipe out all of the contents of a journal, safely.  This will produce
 * a warning if the journal contains any valid recovery information.
1747
 * Must be called between journal_init_*() and jbd2_journal_load().
1748 1749 1750 1751 1752
 *
 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
 * we merely suppress recovery.
 */

1753
int jbd2_journal_wipe(journal_t *journal, int write)
1754 1755 1756 1757
{
	journal_superblock_t *sb;
	int err = 0;

1758
	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771

	err = load_superblock(journal);
	if (err)
		return err;

	sb = journal->j_superblock;

	if (!journal->j_tail)
		goto no_recovery;

	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
		write ? "Clearing" : "Ignoring");

1772
	err = jbd2_journal_skip_recovery(journal);
1773
	if (write)
1774
		jbd2_journal_update_superblock(journal, 1);
1775 1776 1777 1778 1779 1780 1781 1782 1783

 no_recovery:
	return err;
}

/*
 * Journal abort has very specific semantics, which we describe
 * for journal abort.
 *
1784
 * Two internal functions, which provide abort to the jbd layer
1785 1786 1787 1788 1789 1790 1791 1792
 * itself are here.
 */

/*
 * Quick version for internal journal use (doesn't lock the journal).
 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
 * and don't attempt to make any other journal updates.
 */
1793
void __jbd2_journal_abort_hard(journal_t *journal)
1794 1795 1796
{
	transaction_t *transaction;

1797
	if (journal->j_flags & JBD2_ABORT)
1798 1799 1800
		return;

	printk(KERN_ERR "Aborting journal on device %s.\n",
1801
	       journal->j_devname);
1802 1803

	spin_lock(&journal->j_state_lock);
1804
	journal->j_flags |= JBD2_ABORT;
1805 1806
	transaction = journal->j_running_transaction;
	if (transaction)
1807
		__jbd2_log_start_commit(journal, transaction->t_tid);
1808 1809 1810 1811 1812 1813 1814
	spin_unlock(&journal->j_state_lock);
}

/* Soft abort: record the abort error status in the journal superblock,
 * but don't do any other IO. */
static void __journal_abort_soft (journal_t *journal, int errno)
{
1815
	if (journal->j_flags & JBD2_ABORT)
1816 1817 1818 1819 1820
		return;

	if (!journal->j_errno)
		journal->j_errno = errno;

1821
	__jbd2_journal_abort_hard(journal);
1822 1823

	if (errno)
1824
		jbd2_journal_update_superblock(journal, 1);
1825 1826 1827
}

/**
1828
 * void jbd2_journal_abort () - Shutdown the journal immediately.
1829 1830 1831 1832 1833 1834 1835 1836
 * @journal: the journal to shutdown.
 * @errno:   an error number to record in the journal indicating
 *           the reason for the shutdown.
 *
 * Perform a complete, immediate shutdown of the ENTIRE
 * journal (not of a single transaction).  This operation cannot be
 * undone without closing and reopening the journal.
 *
1837
 * The jbd2_journal_abort function is intended to support higher level error
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
 * recovery mechanisms such as the ext2/ext3 remount-readonly error
 * mode.
 *
 * Journal abort has very specific semantics.  Any existing dirty,
 * unjournaled buffers in the main filesystem will still be written to
 * disk by bdflush, but the journaling mechanism will be suspended
 * immediately and no further transaction commits will be honoured.
 *
 * Any dirty, journaled buffers will be written back to disk without
 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
 * filesystem, but we _do_ attempt to leave as much data as possible
 * behind for fsck to use for cleanup.
 *
 * Any attempt to get a new transaction handle on a journal which is in
 * ABORT state will just result in an -EROFS error return.  A
1853
 * jbd2_journal_stop on an existing handle will return -EIO if we have
1854 1855 1856
 * entered abort state during the update.
 *
 * Recursive transactions are not disturbed by journal abort until the
1857
 * final jbd2_journal_stop, which will receive the -EIO error.
1858
 *
1859
 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
 * which will be recorded (if possible) in the journal superblock.  This
 * allows a client to record failure conditions in the middle of a
 * transaction without having to complete the transaction to record the
 * failure to disk.  ext3_error, for example, now uses this
 * functionality.
 *
 * Errors which originate from within the journaling layer will NOT
 * supply an errno; a null errno implies that absolutely no further
 * writes are done to the journal (unless there are any already in
 * progress).
 *
 */

1873
void jbd2_journal_abort(journal_t *journal, int errno)
1874 1875 1876 1877 1878
{
	__journal_abort_soft(journal, errno);
}

/**
1879
 * int jbd2_journal_errno () - returns the journal's error state.
1880 1881
 * @journal: journal to examine.
 *
1882
 * This is the errno number set with jbd2_journal_abort(), the last
1883 1884 1885 1886 1887 1888
 * time the journal was mounted - if the journal was stopped
 * without calling abort this will be 0.
 *
 * If the journal has been aborted on this mount time -EROFS will
 * be returned.
 */
1889
int jbd2_journal_errno(journal_t *journal)
1890 1891 1892 1893
{
	int err;

	spin_lock(&journal->j_state_lock);
1894
	if (journal->j_flags & JBD2_ABORT)
1895 1896 1897 1898 1899 1900 1901 1902
		err = -EROFS;
	else
		err = journal->j_errno;
	spin_unlock(&journal->j_state_lock);
	return err;
}

/**
1903
 * int jbd2_journal_clear_err () - clears the journal's error state
1904 1905
 * @journal: journal to act on.
 *
1906
 * An error must be cleared or acked to take a FS out of readonly
1907 1908
 * mode.
 */
1909
int jbd2_journal_clear_err(journal_t *journal)
1910 1911 1912 1913
{
	int err = 0;

	spin_lock(&journal->j_state_lock);
1914
	if (journal->j_flags & JBD2_ABORT)
1915 1916 1917 1918 1919 1920 1921 1922
		err = -EROFS;
	else
		journal->j_errno = 0;
	spin_unlock(&journal->j_state_lock);
	return err;
}

/**
1923
 * void jbd2_journal_ack_err() - Ack journal err.
1924 1925
 * @journal: journal to act on.
 *
1926
 * An error must be cleared or acked to take a FS out of readonly
1927 1928
 * mode.
 */
1929
void jbd2_journal_ack_err(journal_t *journal)
1930 1931 1932
{
	spin_lock(&journal->j_state_lock);
	if (journal->j_errno)
1933
		journal->j_flags |= JBD2_ACK_ERR;
1934 1935 1936
	spin_unlock(&journal->j_state_lock);
}

1937
int jbd2_journal_blocks_per_page(struct inode *inode)
1938 1939 1940 1941
{
	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
}

Z
Zach Brown 已提交
1942 1943 1944 1945 1946 1947
/*
 * helper functions to deal with 32 or 64bit block numbers.
 */
size_t journal_tag_bytes(journal_t *journal)
{
	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1948
		return JBD2_TAG_SIZE64;
Z
Zach Brown 已提交
1949
	else
1950
		return JBD2_TAG_SIZE32;
Z
Zach Brown 已提交
1951 1952
}

1953 1954 1955
/*
 * Journal_head storage management
 */
1956
static struct kmem_cache *jbd2_journal_head_cache;
1957
#ifdef CONFIG_JBD2_DEBUG
1958 1959 1960
static atomic_t nr_journal_heads = ATOMIC_INIT(0);
#endif

1961
static int journal_init_jbd2_journal_head_cache(void)
1962 1963 1964
{
	int retval;

A
Al Viro 已提交
1965
	J_ASSERT(jbd2_journal_head_cache == NULL);
J
Johann Lombardi 已提交
1966
	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1967 1968
				sizeof(struct journal_head),
				0,		/* offset */
1969
				SLAB_TEMPORARY,	/* flags */
1970
				NULL);		/* ctor */
1971
	retval = 0;
A
Al Viro 已提交
1972
	if (!jbd2_journal_head_cache) {
1973 1974 1975 1976 1977 1978
		retval = -ENOMEM;
		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
	}
	return retval;
}

1979
static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1980
{
1981 1982 1983 1984
	if (jbd2_journal_head_cache) {
		kmem_cache_destroy(jbd2_journal_head_cache);
		jbd2_journal_head_cache = NULL;
	}
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
}

/*
 * journal_head splicing and dicing
 */
static struct journal_head *journal_alloc_journal_head(void)
{
	struct journal_head *ret;
	static unsigned long last_warning;

1995
#ifdef CONFIG_JBD2_DEBUG
1996 1997
	atomic_inc(&nr_journal_heads);
#endif
1998
	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
A
Al Viro 已提交
1999
	if (!ret) {
2000 2001 2002
		jbd_debug(1, "out of memory for journal_head\n");
		if (time_after(jiffies, last_warning + 5*HZ)) {
			printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
2003
			       __func__);
2004 2005
			last_warning = jiffies;
		}
A
Al Viro 已提交
2006
		while (!ret) {
2007
			yield();
2008
			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2009 2010 2011 2012 2013 2014 2015
		}
	}
	return ret;
}

static void journal_free_journal_head(struct journal_head *jh)
{
2016
#ifdef CONFIG_JBD2_DEBUG
2017
	atomic_dec(&nr_journal_heads);
2018
	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2019
#endif
2020
	kmem_cache_free(jbd2_journal_head_cache, jh);
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
}

/*
 * A journal_head is attached to a buffer_head whenever JBD has an
 * interest in the buffer.
 *
 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
 * is set.  This bit is tested in core kernel code where we need to take
 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
 * there.
 *
 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
 *
 * When a buffer has its BH_JBD bit set it is immune from being released by
 * core kernel code, mainly via ->b_count.
 *
 * A journal_head may be detached from its buffer_head when the journal_head's
 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
2039
 * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
2040 2041 2042 2043
 * journal_head can be dropped if needed.
 *
 * Various places in the kernel want to attach a journal_head to a buffer_head
 * _before_ attaching the journal_head to a transaction.  To protect the
2044
 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2045
 * journal_head's b_jcount refcount by one.  The caller must call
2046
 * jbd2_journal_put_journal_head() to undo this.
2047 2048 2049 2050
 *
 * So the typical usage would be:
 *
 *	(Attach a journal_head if needed.  Increments b_jcount)
2051
 *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2052 2053
 *	...
 *	jh->b_transaction = xxx;
2054
 *	jbd2_journal_put_journal_head(jh);
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
 *
 * Now, the journal_head's b_jcount is zero, but it is safe from being released
 * because it has a non-zero b_transaction.
 */

/*
 * Give a buffer_head a journal_head.
 *
 * Doesn't need the journal lock.
 * May sleep.
 */
2066
struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
{
	struct journal_head *jh;
	struct journal_head *new_jh = NULL;

repeat:
	if (!buffer_jbd(bh)) {
		new_jh = journal_alloc_journal_head();
		memset(new_jh, 0, sizeof(*new_jh));
	}

	jbd_lock_bh_journal_head(bh);
	if (buffer_jbd(bh)) {
		jh = bh2jh(bh);
	} else {
		J_ASSERT_BH(bh,
			(atomic_read(&bh->b_count) > 0) ||
			(bh->b_page && bh->b_page->mapping));

		if (!new_jh) {
			jbd_unlock_bh_journal_head(bh);
			goto repeat;
		}

		jh = new_jh;
		new_jh = NULL;		/* We consumed it */
		set_buffer_jbd(bh);
		bh->b_private = jh;
		jh->b_bh = bh;
		get_bh(bh);
		BUFFER_TRACE(bh, "added journal_head");
	}
	jh->b_jcount++;
	jbd_unlock_bh_journal_head(bh);
	if (new_jh)
		journal_free_journal_head(new_jh);
	return bh->b_private;
}

/*
 * Grab a ref against this buffer_head's journal_head.  If it ended up not
 * having a journal_head, return NULL
 */
2109
struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
{
	struct journal_head *jh = NULL;

	jbd_lock_bh_journal_head(bh);
	if (buffer_jbd(bh)) {
		jh = bh2jh(bh);
		jh->b_jcount++;
	}
	jbd_unlock_bh_journal_head(bh);
	return jh;
}

static void __journal_remove_journal_head(struct buffer_head *bh)
{
	struct journal_head *jh = bh2jh(bh);

	J_ASSERT_JH(jh, jh->b_jcount >= 0);

	get_bh(bh);
	if (jh->b_jcount == 0) {
		if (jh->b_transaction == NULL &&
				jh->b_next_transaction == NULL &&
				jh->b_cp_transaction == NULL) {
			J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
			J_ASSERT_BH(bh, buffer_jbd(bh));
			J_ASSERT_BH(bh, jh2bh(jh) == bh);
			BUFFER_TRACE(bh, "remove journal_head");
			if (jh->b_frozen_data) {
				printk(KERN_WARNING "%s: freeing "
						"b_frozen_data\n",
2140
						__func__);
M
Mingming Cao 已提交
2141
				jbd2_free(jh->b_frozen_data, bh->b_size);
2142 2143 2144 2145
			}
			if (jh->b_committed_data) {
				printk(KERN_WARNING "%s: freeing "
						"b_committed_data\n",
2146
						__func__);
M
Mingming Cao 已提交
2147
				jbd2_free(jh->b_committed_data, bh->b_size);
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
			}
			bh->b_private = NULL;
			jh->b_bh = NULL;	/* debug, really */
			clear_buffer_jbd(bh);
			__brelse(bh);
			journal_free_journal_head(jh);
		} else {
			BUFFER_TRACE(bh, "journal_head was locked");
		}
	}
}

/*
2161
 * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2162 2163 2164 2165 2166 2167 2168
 * and has a zero b_jcount then remove and release its journal_head.   If we did
 * see that the buffer is not used by any transaction we also "logically"
 * decrement ->b_count.
 *
 * We in fact take an additional increment on ->b_count as a convenience,
 * because the caller usually wants to do additional things with the bh
 * after calling here.
2169
 * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2170 2171 2172
 * time.  Once the caller has run __brelse(), the buffer is eligible for
 * reaping by try_to_free_buffers().
 */
2173
void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
{
	jbd_lock_bh_journal_head(bh);
	__journal_remove_journal_head(bh);
	jbd_unlock_bh_journal_head(bh);
}

/*
 * Drop a reference on the passed journal_head.  If it fell to zero then try to
 * release the journal_head from the buffer_head.
 */
2184
void jbd2_journal_put_journal_head(struct journal_head *jh)
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
{
	struct buffer_head *bh = jh2bh(jh);

	jbd_lock_bh_journal_head(bh);
	J_ASSERT_JH(jh, jh->b_jcount > 0);
	--jh->b_jcount;
	if (!jh->b_jcount && !jh->b_transaction) {
		__journal_remove_journal_head(bh);
		__brelse(bh);
	}
	jbd_unlock_bh_journal_head(bh);
}

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
/*
 * Initialize jbd inode head
 */
void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
{
	jinode->i_transaction = NULL;
	jinode->i_next_transaction = NULL;
	jinode->i_vfs_inode = inode;
	jinode->i_flags = 0;
	INIT_LIST_HEAD(&jinode->i_list);
}

/*
 * Function to be called before we start removing inode from memory (i.e.,
 * clear_inode() is a fine place to be called from). It removes inode from
 * transaction's lists.
 */
void jbd2_journal_release_jbd_inode(journal_t *journal,
				    struct jbd2_inode *jinode)
{
	int writeout = 0;

	if (!journal)
		return;
restart:
	spin_lock(&journal->j_list_lock);
	/* Is commit writing out inode - we have to wait */
	if (jinode->i_flags & JI_COMMIT_RUNNING) {
		wait_queue_head_t *wq;
		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
		spin_unlock(&journal->j_list_lock);
		schedule();
		finish_wait(wq, &wait.wait);
		goto restart;
	}

	/* Do we need to wait for data writeback? */
	if (journal->j_committing_transaction == jinode->i_transaction)
		writeout = 1;
	if (jinode->i_transaction) {
		list_del(&jinode->i_list);
		jinode->i_transaction = NULL;
	}
	spin_unlock(&journal->j_list_lock);
}

2246
/*
2247
 * debugfs tunables
2248
 */
J
Jose R. Santos 已提交
2249 2250
#ifdef CONFIG_JBD2_DEBUG
u8 jbd2_journal_enable_debug __read_mostly;
2251
EXPORT_SYMBOL(jbd2_journal_enable_debug);
2252

2253
#define JBD2_DEBUG_NAME "jbd2-debug"
2254

J
Jose R. Santos 已提交
2255 2256
static struct dentry *jbd2_debugfs_dir;
static struct dentry *jbd2_debug;
2257

2258 2259 2260 2261 2262 2263 2264
static void __init jbd2_create_debugfs_entry(void)
{
	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
	if (jbd2_debugfs_dir)
		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, S_IRUGO,
					       jbd2_debugfs_dir,
					       &jbd2_journal_enable_debug);
2265 2266
}

2267
static void __exit jbd2_remove_debugfs_entry(void)
2268
{
J
Jose R. Santos 已提交
2269 2270
	debugfs_remove(jbd2_debug);
	debugfs_remove(jbd2_debugfs_dir);
2271 2272
}

2273
#else
2274

2275
static void __init jbd2_create_debugfs_entry(void)
2276 2277 2278
{
}

2279
static void __exit jbd2_remove_debugfs_entry(void)
2280 2281 2282 2283 2284
{
}

#endif

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
#ifdef CONFIG_PROC_FS

#define JBD2_STATS_PROC_NAME "fs/jbd2"

static void __init jbd2_create_jbd_stats_proc_entry(void)
{
	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
}

static void __exit jbd2_remove_jbd_stats_proc_entry(void)
{
	if (proc_jbd2_stats)
		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
}

#else

#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)

#endif

2307
struct kmem_cache *jbd2_handle_cache;
2308 2309 2310

static int __init journal_init_handle_cache(void)
{
J
Johann Lombardi 已提交
2311
	jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2312 2313
				sizeof(handle_t),
				0,		/* offset */
2314
				SLAB_TEMPORARY,	/* flags */
2315
				NULL);		/* ctor */
2316
	if (jbd2_handle_cache == NULL) {
2317 2318 2319 2320 2321 2322
		printk(KERN_EMERG "JBD: failed to create handle cache\n");
		return -ENOMEM;
	}
	return 0;
}

2323
static void jbd2_journal_destroy_handle_cache(void)
2324
{
2325 2326
	if (jbd2_handle_cache)
		kmem_cache_destroy(jbd2_handle_cache);
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
}

/*
 * Module startup and shutdown
 */

static int __init journal_init_caches(void)
{
	int ret;

2337
	ret = jbd2_journal_init_revoke_caches();
2338
	if (ret == 0)
2339
		ret = journal_init_jbd2_journal_head_cache();
2340 2341 2342 2343 2344
	if (ret == 0)
		ret = journal_init_handle_cache();
	return ret;
}

2345
static void jbd2_journal_destroy_caches(void)
2346
{
2347 2348 2349
	jbd2_journal_destroy_revoke_caches();
	jbd2_journal_destroy_jbd2_journal_head_cache();
	jbd2_journal_destroy_handle_cache();
2350 2351 2352 2353 2354 2355 2356 2357 2358
}

static int __init journal_init(void)
{
	int ret;

	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);

	ret = journal_init_caches();
2359 2360 2361 2362
	if (ret == 0) {
		jbd2_create_debugfs_entry();
		jbd2_create_jbd_stats_proc_entry();
	} else {
2363
		jbd2_journal_destroy_caches();
2364
	}
2365 2366 2367 2368 2369
	return ret;
}

static void __exit journal_exit(void)
{
2370
#ifdef CONFIG_JBD2_DEBUG
2371 2372 2373 2374
	int n = atomic_read(&nr_journal_heads);
	if (n)
		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
#endif
2375
	jbd2_remove_debugfs_entry();
2376
	jbd2_remove_jbd_stats_proc_entry();
2377
	jbd2_journal_destroy_caches();
2378 2379 2380 2381 2382 2383
}

MODULE_LICENSE("GPL");
module_init(journal_init);
module_exit(journal_exit);