journal.c 65.9 KB
Newer Older
1
/*
2
 * linux/fs/jbd2/journal.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
 *
 * Copyright 1998 Red Hat corp --- All Rights Reserved
 *
 * This file is part of the Linux kernel and is made available under
 * the terms of the GNU General Public License, version 2, or at your
 * option, any later version, incorporated herein by reference.
 *
 * Generic filesystem journal-writing code; part of the ext2fs
 * journaling system.
 *
 * This file manages journals: areas of disk reserved for logging
 * transactional updates.  This includes the kernel journaling thread
 * which is responsible for scheduling updates to the log.
 *
 * We do not actually manage the physical storage of the journal in this
 * file: that is left to a per-journal policy function, which allows us
 * to store the journal within a filesystem-specified area for ext2
 * journaling (ext2 can use a reserved inode for storing the log).
 */

#include <linux/module.h>
#include <linux/time.h>
#include <linux/fs.h>
28
#include <linux/jbd2.h>
29 30 31 32
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/mm.h>
33
#include <linux/freezer.h>
34 35 36 37
#include <linux/pagemap.h>
#include <linux/kthread.h>
#include <linux/poison.h>
#include <linux/proc_fs.h>
38
#include <linux/debugfs.h>
39
#include <linux/seq_file.h>
40
#include <linux/math64.h>
41
#include <linux/hash.h>
42 43
#include <linux/log2.h>
#include <linux/vmalloc.h>
44
#include <linux/backing-dev.h>
45
#include <linux/bitops.h>
46
#include <linux/ratelimit.h>
47 48 49

#define CREATE_TRACE_POINTS
#include <trace/events/jbd2.h>
50 51 52

#include <asm/uaccess.h>
#include <asm/page.h>
53
#include <asm/system.h>
54

55 56 57 58 59 60 61
EXPORT_SYMBOL(jbd2_journal_extend);
EXPORT_SYMBOL(jbd2_journal_stop);
EXPORT_SYMBOL(jbd2_journal_lock_updates);
EXPORT_SYMBOL(jbd2_journal_unlock_updates);
EXPORT_SYMBOL(jbd2_journal_get_write_access);
EXPORT_SYMBOL(jbd2_journal_get_create_access);
EXPORT_SYMBOL(jbd2_journal_get_undo_access);
J
Joel Becker 已提交
62
EXPORT_SYMBOL(jbd2_journal_set_triggers);
63 64 65
EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
EXPORT_SYMBOL(jbd2_journal_release_buffer);
EXPORT_SYMBOL(jbd2_journal_forget);
66 67 68
#if 0
EXPORT_SYMBOL(journal_sync_buffer);
#endif
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
EXPORT_SYMBOL(jbd2_journal_flush);
EXPORT_SYMBOL(jbd2_journal_revoke);

EXPORT_SYMBOL(jbd2_journal_init_dev);
EXPORT_SYMBOL(jbd2_journal_init_inode);
EXPORT_SYMBOL(jbd2_journal_update_format);
EXPORT_SYMBOL(jbd2_journal_check_used_features);
EXPORT_SYMBOL(jbd2_journal_check_available_features);
EXPORT_SYMBOL(jbd2_journal_set_features);
EXPORT_SYMBOL(jbd2_journal_load);
EXPORT_SYMBOL(jbd2_journal_destroy);
EXPORT_SYMBOL(jbd2_journal_abort);
EXPORT_SYMBOL(jbd2_journal_errno);
EXPORT_SYMBOL(jbd2_journal_ack_err);
EXPORT_SYMBOL(jbd2_journal_clear_err);
EXPORT_SYMBOL(jbd2_log_wait_commit);
85
EXPORT_SYMBOL(jbd2_log_start_commit);
86 87 88 89 90 91 92
EXPORT_SYMBOL(jbd2_journal_start_commit);
EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
EXPORT_SYMBOL(jbd2_journal_wipe);
EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
EXPORT_SYMBOL(jbd2_journal_invalidatepage);
EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
EXPORT_SYMBOL(jbd2_journal_force_commit);
93 94 95 96
EXPORT_SYMBOL(jbd2_journal_file_inode);
EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 98 99

static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
static void __journal_abort_soft (journal_t *journal, int errno);
100
static int jbd2_journal_create_slab(size_t slab_size);
101 102 103 104 105 106 107 108 109 110 111 112 113

/*
 * Helper function used to manage commit timeouts
 */

static void commit_timeout(unsigned long __data)
{
	struct task_struct * p = (struct task_struct *) __data;

	wake_up_process(p);
}

/*
114
 * kjournald2: The main thread function used to manage a logging device
115 116 117 118 119 120 121 122 123 124 125 126 127 128
 * journal.
 *
 * This kernel thread is responsible for two things:
 *
 * 1) COMMIT:  Every so often we need to commit the current state of the
 *    filesystem to disk.  The journal thread is responsible for writing
 *    all of the metadata buffers to disk.
 *
 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
 *    of the data in that part of the log has been rewritten elsewhere on
 *    the disk.  Flushing these old buffers to reclaim space in the log is
 *    known as checkpointing, and this thread is responsible for that job.
 */

129
static int kjournald2(void *arg)
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
{
	journal_t *journal = arg;
	transaction_t *transaction;

	/*
	 * Set up an interval timer which can be used to trigger a commit wakeup
	 * after the commit interval expires
	 */
	setup_timer(&journal->j_commit_timer, commit_timeout,
			(unsigned long)current);

	/* Record that the journal thread is running */
	journal->j_task = current;
	wake_up(&journal->j_wait_done_commit);

	/*
	 * And now, wait forever for commit wakeup events.
	 */
148
	write_lock(&journal->j_state_lock);
149 150

loop:
151
	if (journal->j_flags & JBD2_UNMOUNT)
152 153 154 155 156 157 158
		goto end_loop;

	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
		journal->j_commit_sequence, journal->j_commit_request);

	if (journal->j_commit_sequence != journal->j_commit_request) {
		jbd_debug(1, "OK, requests differ\n");
159
		write_unlock(&journal->j_state_lock);
160
		del_timer_sync(&journal->j_commit_timer);
161
		jbd2_journal_commit_transaction(journal);
162
		write_lock(&journal->j_state_lock);
163 164 165 166 167 168 169 170 171 172
		goto loop;
	}

	wake_up(&journal->j_wait_done_commit);
	if (freezing(current)) {
		/*
		 * The simpler the better. Flushing journal isn't a
		 * good idea, because that depends on threads that may
		 * be already stopped.
		 */
173
		jbd_debug(1, "Now suspending kjournald2\n");
174
		write_unlock(&journal->j_state_lock);
175
		refrigerator();
176
		write_lock(&journal->j_state_lock);
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
	} else {
		/*
		 * We assume on resume that commits are already there,
		 * so we don't sleep
		 */
		DEFINE_WAIT(wait);
		int should_sleep = 1;

		prepare_to_wait(&journal->j_wait_commit, &wait,
				TASK_INTERRUPTIBLE);
		if (journal->j_commit_sequence != journal->j_commit_request)
			should_sleep = 0;
		transaction = journal->j_running_transaction;
		if (transaction && time_after_eq(jiffies,
						transaction->t_expires))
			should_sleep = 0;
193
		if (journal->j_flags & JBD2_UNMOUNT)
194 195
			should_sleep = 0;
		if (should_sleep) {
196
			write_unlock(&journal->j_state_lock);
197
			schedule();
198
			write_lock(&journal->j_state_lock);
199 200 201 202
		}
		finish_wait(&journal->j_wait_commit, &wait);
	}

203
	jbd_debug(1, "kjournald2 wakes\n");
204 205 206 207 208 209 210 211 212 213 214 215

	/*
	 * Were we woken up by a commit wakeup event?
	 */
	transaction = journal->j_running_transaction;
	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
		journal->j_commit_request = transaction->t_tid;
		jbd_debug(1, "woke because of timeout\n");
	}
	goto loop;

end_loop:
216
	write_unlock(&journal->j_state_lock);
217 218 219 220 221 222 223
	del_timer_sync(&journal->j_commit_timer);
	journal->j_task = NULL;
	wake_up(&journal->j_wait_done_commit);
	jbd_debug(1, "Journal thread exiting.\n");
	return 0;
}

224
static int jbd2_journal_start_thread(journal_t *journal)
225
{
226 227
	struct task_struct *t;

228 229
	t = kthread_run(kjournald2, journal, "jbd2/%s",
			journal->j_devname);
230 231 232
	if (IS_ERR(t))
		return PTR_ERR(t);

A
Al Viro 已提交
233
	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
234
	return 0;
235 236 237 238
}

static void journal_kill_thread(journal_t *journal)
{
239
	write_lock(&journal->j_state_lock);
240
	journal->j_flags |= JBD2_UNMOUNT;
241 242 243

	while (journal->j_task) {
		wake_up(&journal->j_wait_commit);
244
		write_unlock(&journal->j_state_lock);
A
Al Viro 已提交
245
		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
246
		write_lock(&journal->j_state_lock);
247
	}
248
	write_unlock(&journal->j_state_lock);
249 250 251
}

/*
252
 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
253 254 255 256 257 258 259
 *
 * Writes a metadata buffer to a given disk block.  The actual IO is not
 * performed but a new buffer_head is constructed which labels the data
 * to be written with the correct destination disk block.
 *
 * Any magic-number escaping which needs to be done will cause a
 * copy-out here.  If the buffer happens to start with the
260
 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
 * magic number is only written to the log for descripter blocks.  In
 * this case, we copy the data and replace the first word with 0, and we
 * return a result code which indicates that this buffer needs to be
 * marked as an escaped buffer in the corresponding log descriptor
 * block.  The missing word can then be restored when the block is read
 * during recovery.
 *
 * If the source buffer has already been modified by a new transaction
 * since we took the last commit snapshot, we use the frozen copy of
 * that data for IO.  If we end up using the existing buffer_head's data
 * for the write, then we *have* to lock the buffer to prevent anyone
 * else from using and possibly modifying it while the IO is in
 * progress.
 *
 * The function returns a pointer to the buffer_heads to be used for IO.
 *
 * We assume that the journal has already been locked in this function.
 *
 * Return value:
 *  <0: Error
 * >=0: Finished OK
 *
 * On success:
 * Bit 0 set == escape performed on the data
 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
 */

288
int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
289 290
				  struct journal_head  *jh_in,
				  struct journal_head **jh_out,
291
				  unsigned long long blocknr)
292 293 294 295 296 297 298 299 300 301
{
	int need_copy_out = 0;
	int done_copy_out = 0;
	int do_escape = 0;
	char *mapped_data;
	struct buffer_head *new_bh;
	struct journal_head *new_jh;
	struct page *new_page;
	unsigned int new_offset;
	struct buffer_head *bh_in = jh2bh(jh_in);
302
	journal_t *journal = transaction->t_journal;
303 304 305 306 307 308 309 310 311 312 313 314

	/*
	 * The buffer really shouldn't be locked: only the current committing
	 * transaction is allowed to write it, so nobody else is allowed
	 * to do any IO.
	 *
	 * akpm: except if we're journalling data, and write() output is
	 * also part of a shared mapping, and another thread has
	 * decided to launch a writepage() against this buffer.
	 */
	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));

315 316 317 318 319 320 321 322 323 324 325
retry_alloc:
	new_bh = alloc_buffer_head(GFP_NOFS);
	if (!new_bh) {
		/*
		 * Failure is not an option, but __GFP_NOFAIL is going
		 * away; so we retry ourselves here.
		 */
		congestion_wait(BLK_RW_ASYNC, HZ/50);
		goto retry_alloc;
	}

326 327 328 329 330
	/* keep subsequent assertions sane */
	new_bh->b_state = 0;
	init_buffer(new_bh, NULL, NULL);
	atomic_set(&new_bh->b_count, 1);
	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

	/*
	 * If a new transaction has already done a buffer copy-out, then
	 * we use that version of the data for the commit.
	 */
	jbd_lock_bh_state(bh_in);
repeat:
	if (jh_in->b_frozen_data) {
		done_copy_out = 1;
		new_page = virt_to_page(jh_in->b_frozen_data);
		new_offset = offset_in_page(jh_in->b_frozen_data);
	} else {
		new_page = jh2bh(jh_in)->b_page;
		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
	}

	mapped_data = kmap_atomic(new_page, KM_USER0);
J
Joel Becker 已提交
348
	/*
349 350 351 352
	 * Fire data frozen trigger if data already wasn't frozen.  Do this
	 * before checking for escaping, as the trigger may modify the magic
	 * offset.  If a copy-out happens afterwards, it will have the correct
	 * data in the buffer.
J
Joel Becker 已提交
353
	 */
354 355 356
	if (!done_copy_out)
		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
					   jh_in->b_triggers);
J
Joel Becker 已提交
357

358 359 360 361
	/*
	 * Check for escaping
	 */
	if (*((__be32 *)(mapped_data + new_offset)) ==
362
				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
363 364 365 366 367 368 369 370 371 372 373 374
		need_copy_out = 1;
		do_escape = 1;
	}
	kunmap_atomic(mapped_data, KM_USER0);

	/*
	 * Do we need to do a data copy?
	 */
	if (need_copy_out && !done_copy_out) {
		char *tmp;

		jbd_unlock_bh_state(bh_in);
M
Mingming Cao 已提交
375
		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
376 377 378 379
		if (!tmp) {
			jbd2_journal_put_journal_head(new_jh);
			return -ENOMEM;
		}
380 381
		jbd_lock_bh_state(bh_in);
		if (jh_in->b_frozen_data) {
M
Mingming Cao 已提交
382
			jbd2_free(tmp, bh_in->b_size);
383 384 385 386 387 388 389 390 391 392 393
			goto repeat;
		}

		jh_in->b_frozen_data = tmp;
		mapped_data = kmap_atomic(new_page, KM_USER0);
		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
		kunmap_atomic(mapped_data, KM_USER0);

		new_page = virt_to_page(tmp);
		new_offset = offset_in_page(tmp);
		done_copy_out = 1;
J
Joel Becker 已提交
394 395 396 397 398 399 400

		/*
		 * This isn't strictly necessary, as we're using frozen
		 * data for the escaping, but it keeps consistency with
		 * b_frozen_data usage.
		 */
		jh_in->b_frozen_triggers = jh_in->b_triggers;
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	}

	/*
	 * Did we need to do an escaping?  Now we've done all the
	 * copying, we can finally do so.
	 */
	if (do_escape) {
		mapped_data = kmap_atomic(new_page, KM_USER0);
		*((unsigned int *)(mapped_data + new_offset)) = 0;
		kunmap_atomic(mapped_data, KM_USER0);
	}

	set_bh_page(new_bh, new_page, new_offset);
	new_jh->b_transaction = NULL;
	new_bh->b_size = jh2bh(jh_in)->b_size;
	new_bh->b_bdev = transaction->t_journal->j_dev;
	new_bh->b_blocknr = blocknr;
	set_buffer_mapped(new_bh);
	set_buffer_dirty(new_bh);

	*jh_out = new_jh;

	/*
	 * The to-be-written buffer needs to get moved to the io queue,
	 * and the original buffer whose contents we are shadowing or
	 * copying is moved to the transaction's shadow queue.
	 */
	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
429 430 431 432 433
	spin_lock(&journal->j_list_lock);
	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
	spin_unlock(&journal->j_list_lock);
	jbd_unlock_bh_state(bh_in);

434
	JBUFFER_TRACE(new_jh, "file as BJ_IO");
435
	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
436 437 438 439 440 441 442 443 444 445

	return do_escape | (done_copy_out << 1);
}

/*
 * Allocation code for the journal file.  Manage the space left in the
 * journal, so that we can begin checkpointing when appropriate.
 */

/*
446
 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
447 448 449 450 451 452
 *
 * Called with the journal already locked.
 *
 * Called under j_state_lock
 */

453
int __jbd2_log_space_left(journal_t *journal)
454 455 456
{
	int left = journal->j_free;

457
	/* assert_spin_locked(&journal->j_state_lock); */
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474

	/*
	 * Be pessimistic here about the number of those free blocks which
	 * might be required for log descriptor control blocks.
	 */

#define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */

	left -= MIN_LOG_RESERVED_BLOCKS;

	if (left <= 0)
		return 0;
	left -= (left >> 3);
	return left;
}

/*
475
 * Called under j_state_lock.  Returns true if a transaction commit was started.
476
 */
477
int __jbd2_log_start_commit(journal_t *journal, tid_t target)
478 479 480 481 482 483
{
	/*
	 * Are we already doing a recent enough commit?
	 */
	if (!tid_geq(journal->j_commit_request, target)) {
		/*
A
Andrea Gelmini 已提交
484
		 * We want a new commit: OK, mark the request and wakeup the
485 486 487 488 489 490 491 492 493 494 495 496 497
		 * commit thread.  We do _not_ do the commit ourselves.
		 */

		journal->j_commit_request = target;
		jbd_debug(1, "JBD: requesting commit %d/%d\n",
			  journal->j_commit_request,
			  journal->j_commit_sequence);
		wake_up(&journal->j_wait_commit);
		return 1;
	}
	return 0;
}

498
int jbd2_log_start_commit(journal_t *journal, tid_t tid)
499 500 501
{
	int ret;

502
	write_lock(&journal->j_state_lock);
503
	ret = __jbd2_log_start_commit(journal, tid);
504
	write_unlock(&journal->j_state_lock);
505 506 507 508 509 510 511 512 513 514 515 516 517
	return ret;
}

/*
 * Force and wait upon a commit if the calling process is not within
 * transaction.  This is used for forcing out undo-protected data which contains
 * bitmaps, when the fs is running out of space.
 *
 * We can only force the running transaction if we don't have an active handle;
 * otherwise, we will deadlock.
 *
 * Returns true if a transaction was started.
 */
518
int jbd2_journal_force_commit_nested(journal_t *journal)
519 520 521 522
{
	transaction_t *transaction = NULL;
	tid_t tid;

523
	read_lock(&journal->j_state_lock);
524 525
	if (journal->j_running_transaction && !current->journal_info) {
		transaction = journal->j_running_transaction;
526
		__jbd2_log_start_commit(journal, transaction->t_tid);
527 528 529 530
	} else if (journal->j_committing_transaction)
		transaction = journal->j_committing_transaction;

	if (!transaction) {
531
		read_unlock(&journal->j_state_lock);
532 533 534 535
		return 0;	/* Nothing to retry */
	}

	tid = transaction->t_tid;
536
	read_unlock(&journal->j_state_lock);
537
	jbd2_log_wait_commit(journal, tid);
538 539 540 541 542
	return 1;
}

/*
 * Start a commit of the current running transaction (if any).  Returns true
543 544
 * if a transaction is going to be committed (or is currently already
 * committing), and fills its tid in at *ptid
545
 */
546
int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
547 548 549
{
	int ret = 0;

550
	write_lock(&journal->j_state_lock);
551 552 553
	if (journal->j_running_transaction) {
		tid_t tid = journal->j_running_transaction->t_tid;

554 555 556 557
		__jbd2_log_start_commit(journal, tid);
		/* There's a running transaction and we've just made sure
		 * it's commit has been scheduled. */
		if (ptid)
558
			*ptid = tid;
559 560
		ret = 1;
	} else if (journal->j_committing_transaction) {
561 562 563 564
		/*
		 * If ext3_write_super() recently started a commit, then we
		 * have to wait for completion of that transaction
		 */
565 566
		if (ptid)
			*ptid = journal->j_committing_transaction->t_tid;
567 568
		ret = 1;
	}
569
	write_unlock(&journal->j_state_lock);
570 571 572 573 574 575 576
	return ret;
}

/*
 * Wait for a specified commit to complete.
 * The caller may not hold the journal lock.
 */
577
int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
578 579 580
{
	int err = 0;

581
	read_lock(&journal->j_state_lock);
582
#ifdef CONFIG_JBD2_DEBUG
583 584 585
	if (!tid_geq(journal->j_commit_request, tid)) {
		printk(KERN_EMERG
		       "%s: error: j_commit_request=%d, tid=%d\n",
586
		       __func__, journal->j_commit_request, tid);
587 588 589 590 591 592
	}
#endif
	while (tid_gt(tid, journal->j_commit_sequence)) {
		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
				  tid, journal->j_commit_sequence);
		wake_up(&journal->j_wait_commit);
593
		read_unlock(&journal->j_state_lock);
594 595
		wait_event(journal->j_wait_done_commit,
				!tid_gt(tid, journal->j_commit_sequence));
596
		read_lock(&journal->j_state_lock);
597
	}
598
	read_unlock(&journal->j_state_lock);
599 600 601 602 603 604 605 606 607 608 609 610

	if (unlikely(is_journal_aborted(journal))) {
		printk(KERN_EMERG "journal commit I/O error\n");
		err = -EIO;
	}
	return err;
}

/*
 * Log buffer allocation routines:
 */

611
int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
612 613 614
{
	unsigned long blocknr;

615
	write_lock(&journal->j_state_lock);
616 617 618 619 620 621 622
	J_ASSERT(journal->j_free > 1);

	blocknr = journal->j_head;
	journal->j_head++;
	journal->j_free--;
	if (journal->j_head == journal->j_last)
		journal->j_head = journal->j_first;
623
	write_unlock(&journal->j_state_lock);
624
	return jbd2_journal_bmap(journal, blocknr, retp);
625 626 627 628 629 630 631 632 633
}

/*
 * Conversion of logical to physical block numbers for the journal
 *
 * On external journals the journal blocks are identity-mapped, so
 * this is a no-op.  If needed, we can use j_blk_offset - everything is
 * ready.
 */
634
int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
635
		 unsigned long long *retp)
636 637
{
	int err = 0;
638
	unsigned long long ret;
639 640 641 642 643 644 645 646

	if (journal->j_inode) {
		ret = bmap(journal->j_inode, blocknr);
		if (ret)
			*retp = ret;
		else {
			printk(KERN_ALERT "%s: journal block not found "
					"at offset %lu on %s\n",
647
			       __func__, blocknr, journal->j_devname);
648 649 650 651 652 653 654 655 656 657 658 659 660 661
			err = -EIO;
			__journal_abort_soft(journal, err);
		}
	} else {
		*retp = blocknr; /* +journal->j_blk_offset */
	}
	return err;
}

/*
 * We play buffer_head aliasing tricks to write data/metadata blocks to
 * the journal without copying their contents, but for journal
 * descriptor blocks we do need to generate bona fide buffers.
 *
662
 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
663 664 665 666
 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
 * But we don't bother doing that, so there will be coherency problems with
 * mmaps of blockdevs which hold live JBD-controlled filesystems.
 */
667
struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
668 669
{
	struct buffer_head *bh;
670
	unsigned long long blocknr;
671 672
	int err;

673
	err = jbd2_journal_next_log_block(journal, &blocknr);
674 675 676 677 678

	if (err)
		return NULL;

	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
679 680
	if (!bh)
		return NULL;
681 682 683 684 685
	lock_buffer(bh);
	memset(bh->b_data, 0, journal->j_blocksize);
	set_buffer_uptodate(bh);
	unlock_buffer(bh);
	BUFFER_TRACE(bh, "return this buffer");
686
	return jbd2_journal_add_journal_head(bh);
687 688
}

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
struct jbd2_stats_proc_session {
	journal_t *journal;
	struct transaction_stats_s *stats;
	int start;
	int max;
};

static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
{
	return *pos ? NULL : SEQ_START_TOKEN;
}

static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
{
	return NULL;
}

static int jbd2_seq_info_show(struct seq_file *seq, void *v)
{
	struct jbd2_stats_proc_session *s = seq->private;

	if (v != SEQ_START_TOKEN)
		return 0;
712
	seq_printf(seq, "%lu transaction, each up to %u blocks\n",
713 714 715 716 717
			s->stats->ts_tid,
			s->journal->j_max_transaction_buffers);
	if (s->stats->ts_tid == 0)
		return 0;
	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
718
	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
719
	seq_printf(seq, "  %ums running transaction\n",
720
	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
721
	seq_printf(seq, "  %ums transaction was being locked\n",
722
	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
723
	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
724
	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
725
	seq_printf(seq, "  %ums logging transaction\n",
726
	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
727 728
	seq_printf(seq, "  %lluus average transaction commit time\n",
		   div_u64(s->journal->j_average_commit_time, 1000));
729
	seq_printf(seq, "  %lu handles per transaction\n",
730
	    s->stats->run.rs_handle_count / s->stats->ts_tid);
731
	seq_printf(seq, "  %lu blocks per transaction\n",
732
	    s->stats->run.rs_blocks / s->stats->ts_tid);
733
	seq_printf(seq, "  %lu logged blocks per transaction\n",
734
	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
735 736 737 738 739 740 741
	return 0;
}

static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
{
}

J
James Morris 已提交
742
static const struct seq_operations jbd2_seq_info_ops = {
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
	.start  = jbd2_seq_info_start,
	.next   = jbd2_seq_info_next,
	.stop   = jbd2_seq_info_stop,
	.show   = jbd2_seq_info_show,
};

static int jbd2_seq_info_open(struct inode *inode, struct file *file)
{
	journal_t *journal = PDE(inode)->data;
	struct jbd2_stats_proc_session *s;
	int rc, size;

	s = kmalloc(sizeof(*s), GFP_KERNEL);
	if (s == NULL)
		return -ENOMEM;
	size = sizeof(struct transaction_stats_s);
	s->stats = kmalloc(size, GFP_KERNEL);
	if (s->stats == NULL) {
		kfree(s);
		return -ENOMEM;
	}
	spin_lock(&journal->j_history_lock);
	memcpy(s->stats, &journal->j_stats, size);
	s->journal = journal;
	spin_unlock(&journal->j_history_lock);

	rc = seq_open(file, &jbd2_seq_info_ops);
	if (rc == 0) {
		struct seq_file *m = file->private_data;
		m->private = s;
	} else {
		kfree(s->stats);
		kfree(s);
	}
	return rc;

}

static int jbd2_seq_info_release(struct inode *inode, struct file *file)
{
	struct seq_file *seq = file->private_data;
	struct jbd2_stats_proc_session *s = seq->private;
	kfree(s->stats);
	kfree(s);
	return seq_release(inode, file);
}

790
static const struct file_operations jbd2_seq_info_fops = {
791 792 793 794 795 796 797 798 799 800 801
	.owner		= THIS_MODULE,
	.open           = jbd2_seq_info_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = jbd2_seq_info_release,
};

static struct proc_dir_entry *proc_jbd2_stats;

static void jbd2_stats_proc_init(journal_t *journal)
{
802
	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
803
	if (journal->j_proc_entry) {
804 805
		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
				 &jbd2_seq_info_fops, journal);
806 807 808 809 810 811
	}
}

static void jbd2_stats_proc_exit(journal_t *journal)
{
	remove_proc_entry("info", journal->j_proc_entry);
812
	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
813 814
}

815 816 817 818 819 820 821 822 823 824 825 826 827 828
/*
 * Management for journal control blocks: functions to create and
 * destroy journal_t structures, and to initialise and read existing
 * journal blocks from disk.  */

/* First: create and setup a journal_t object in memory.  We initialise
 * very few fields yet: that has to wait until we have created the
 * journal structures from from scratch, or loaded them from disk. */

static journal_t * journal_init_common (void)
{
	journal_t *journal;
	int err;

829
	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
830 831 832 833 834 835 836 837 838 839 840 841 842
	if (!journal)
		goto fail;

	init_waitqueue_head(&journal->j_wait_transaction_locked);
	init_waitqueue_head(&journal->j_wait_logspace);
	init_waitqueue_head(&journal->j_wait_done_commit);
	init_waitqueue_head(&journal->j_wait_checkpoint);
	init_waitqueue_head(&journal->j_wait_commit);
	init_waitqueue_head(&journal->j_wait_updates);
	mutex_init(&journal->j_barrier);
	mutex_init(&journal->j_checkpoint_mutex);
	spin_lock_init(&journal->j_revoke_lock);
	spin_lock_init(&journal->j_list_lock);
843
	rwlock_init(&journal->j_state_lock);
844

845
	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
846 847
	journal->j_min_batch_time = 0;
	journal->j_max_batch_time = 15000; /* 15ms */
848 849

	/* The journal is marked for error until we succeed with recovery! */
850
	journal->j_flags = JBD2_ABORT;
851 852

	/* Set up a default-sized revoke table for the new mount. */
853
	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
854 855 856 857
	if (err) {
		kfree(journal);
		goto fail;
	}
858

859
	spin_lock_init(&journal->j_history_lock);
860

861 862 863 864 865
	return journal;
fail:
	return NULL;
}

866
/* jbd2_journal_init_dev and jbd2_journal_init_inode:
867 868 869 870 871 872 873 874 875
 *
 * Create a journal structure assigned some fixed set of disk blocks to
 * the journal.  We don't actually touch those disk blocks yet, but we
 * need to set up all of the mapping information to tell the journaling
 * system where the journal blocks are.
 *
 */

/**
R
Randy Dunlap 已提交
876
 *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
877 878 879 880 881
 *  @bdev: Block device on which to create the journal
 *  @fs_dev: Device which hold journalled filesystem for this journal.
 *  @start: Block nr Start of journal.
 *  @len:  Length of the journal in blocks.
 *  @blocksize: blocksize of journalling device
R
Randy Dunlap 已提交
882 883
 *
 *  Returns: a newly created journal_t *
884
 *
885
 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
886 887 888
 *  range of blocks on an arbitrary block device.
 *
 */
889
journal_t * jbd2_journal_init_dev(struct block_device *bdev,
890
			struct block_device *fs_dev,
891
			unsigned long long start, int len, int blocksize)
892 893 894
{
	journal_t *journal = journal_init_common();
	struct buffer_head *bh;
895
	char *p;
896 897 898 899 900 901 902
	int n;

	if (!journal)
		return NULL;

	/* journal descriptor can store up to n blocks -bzzz */
	journal->j_blocksize = blocksize;
903 904 905 906 907 908 909 910
	journal->j_dev = bdev;
	journal->j_fs_dev = fs_dev;
	journal->j_blk_offset = start;
	journal->j_maxlen = len;
	bdevname(journal->j_dev, journal->j_devname);
	p = journal->j_devname;
	while ((p = strchr(p, '/')))
		*p = '!';
911
	jbd2_stats_proc_init(journal);
912 913 914 915 916
	n = journal->j_blocksize / sizeof(journal_block_tag_t);
	journal->j_wbufsize = n;
	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
	if (!journal->j_wbuf) {
		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
917
			__func__);
918
		goto out_err;
919 920 921
	}

	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
922 923 924 925 926 927
	if (!bh) {
		printk(KERN_ERR
		       "%s: Cannot get buffer for journal superblock\n",
		       __func__);
		goto out_err;
	}
928 929
	journal->j_sb_buffer = bh;
	journal->j_superblock = (journal_superblock_t *)bh->b_data;
930

931
	return journal;
932
out_err:
933
	kfree(journal->j_wbuf);
934 935 936
	jbd2_stats_proc_exit(journal);
	kfree(journal);
	return NULL;
937 938 939
}

/**
940
 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
941 942
 *  @inode: An inode to create the journal in
 *
943
 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
944 945 946
 * the journal.  The inode must exist already, must support bmap() and
 * must have all data blocks preallocated.
 */
947
journal_t * jbd2_journal_init_inode (struct inode *inode)
948 949 950
{
	struct buffer_head *bh;
	journal_t *journal = journal_init_common();
951
	char *p;
952 953
	int err;
	int n;
954
	unsigned long long blocknr;
955 956 957 958 959 960

	if (!journal)
		return NULL;

	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
	journal->j_inode = inode;
961 962 963 964 965
	bdevname(journal->j_dev, journal->j_devname);
	p = journal->j_devname;
	while ((p = strchr(p, '/')))
		*p = '!';
	p = journal->j_devname + strlen(journal->j_devname);
966
	sprintf(p, "-%lu", journal->j_inode->i_ino);
967 968 969 970 971 972 973 974
	jbd_debug(1,
		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
		  journal, inode->i_sb->s_id, inode->i_ino,
		  (long long) inode->i_size,
		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);

	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
	journal->j_blocksize = inode->i_sb->s_blocksize;
975
	jbd2_stats_proc_init(journal);
976 977 978 979 980 981 982

	/* journal descriptor can store up to n blocks -bzzz */
	n = journal->j_blocksize / sizeof(journal_block_tag_t);
	journal->j_wbufsize = n;
	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
	if (!journal->j_wbuf) {
		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
983
			__func__);
984
		goto out_err;
985 986
	}

987
	err = jbd2_journal_bmap(journal, 0, &blocknr);
988 989 990
	/* If that failed, give up */
	if (err) {
		printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
991
		       __func__);
992
		goto out_err;
993 994 995
	}

	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
996 997 998 999 1000 1001
	if (!bh) {
		printk(KERN_ERR
		       "%s: Cannot get buffer for journal superblock\n",
		       __func__);
		goto out_err;
	}
1002 1003 1004 1005
	journal->j_sb_buffer = bh;
	journal->j_superblock = (journal_superblock_t *)bh->b_data;

	return journal;
1006
out_err:
1007
	kfree(journal->j_wbuf);
1008 1009 1010
	jbd2_stats_proc_exit(journal);
	kfree(journal);
	return NULL;
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
}

/*
 * If the journal init or create aborts, we need to mark the journal
 * superblock as being NULL to prevent the journal destroy from writing
 * back a bogus superblock.
 */
static void journal_fail_superblock (journal_t *journal)
{
	struct buffer_head *bh = journal->j_sb_buffer;
	brelse(bh);
	journal->j_sb_buffer = NULL;
}

/*
 * Given a journal_t structure, initialise the various fields for
 * startup of a new journaling session.  We use this both when creating
 * a journal, and after recovering an old journal to reset it for
 * subsequent use.
 */

static int journal_reset(journal_t *journal)
{
	journal_superblock_t *sb = journal->j_superblock;
1035
	unsigned long long first, last;
1036 1037 1038

	first = be32_to_cpu(sb->s_first);
	last = be32_to_cpu(sb->s_maxlen);
1039 1040 1041 1042 1043 1044
	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
		printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
		       first, last);
		journal_fail_superblock(journal);
		return -EINVAL;
	}
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

	journal->j_first = first;
	journal->j_last = last;

	journal->j_head = first;
	journal->j_tail = first;
	journal->j_free = last - first;

	journal->j_tail_sequence = journal->j_transaction_sequence;
	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
	journal->j_commit_request = journal->j_commit_sequence;

	journal->j_max_transaction_buffers = journal->j_maxlen / 4;

	/* Add the dynamic fields and write it to disk. */
1060
	jbd2_journal_update_superblock(journal, 1);
1061
	return jbd2_journal_start_thread(journal);
1062 1063 1064
}

/**
1065
 * void jbd2_journal_update_superblock() - Update journal sb on disk.
1066 1067 1068 1069 1070 1071
 * @journal: The journal to update.
 * @wait: Set to '0' if you don't want to wait for IO completion.
 *
 * Update a journal's dynamic superblock fields and write it to disk,
 * optionally waiting for the IO to complete.
 */
1072
void jbd2_journal_update_superblock(journal_t *journal, int wait)
1073 1074 1075 1076 1077 1078 1079 1080
{
	journal_superblock_t *sb = journal->j_superblock;
	struct buffer_head *bh = journal->j_sb_buffer;

	/*
	 * As a special case, if the on-disk copy is already marked as needing
	 * no recovery (s_start == 0) and there are no outstanding transactions
	 * in the filesystem, then we can safely defer the superblock update
1081
	 * until the next commit by setting JBD2_FLUSHED.  This avoids
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	 * attempting a write to a potential-readonly device.
	 */
	if (sb->s_start == 0 && journal->j_tail_sequence ==
				journal->j_transaction_sequence) {
		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
			"(start %ld, seq %d, errno %d)\n",
			journal->j_tail, journal->j_tail_sequence,
			journal->j_errno);
		goto out;
	}

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	if (buffer_write_io_error(bh)) {
		/*
		 * Oh, dear.  A previous attempt to write the journal
		 * superblock failed.  This could happen because the
		 * USB device was yanked out.  Or it could happen to
		 * be a transient write error and maybe the block will
		 * be remapped.  Nothing we can do but to retry the
		 * write and hope for the best.
		 */
		printk(KERN_ERR "JBD2: previous I/O error detected "
		       "for journal superblock update for %s.\n",
		       journal->j_devname);
		clear_buffer_write_io_error(bh);
		set_buffer_uptodate(bh);
	}

1109
	read_lock(&journal->j_state_lock);
1110 1111 1112 1113 1114 1115
	jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);

	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
	sb->s_start    = cpu_to_be32(journal->j_tail);
	sb->s_errno    = cpu_to_be32(journal->j_errno);
1116
	read_unlock(&journal->j_state_lock);
1117 1118 1119

	BUFFER_TRACE(bh, "marking dirty");
	mark_buffer_dirty(bh);
1120
	if (wait) {
1121
		sync_dirty_buffer(bh);
1122 1123 1124 1125 1126 1127 1128 1129
		if (buffer_write_io_error(bh)) {
			printk(KERN_ERR "JBD2: I/O error detected "
			       "when updating journal superblock for %s.\n",
			       journal->j_devname);
			clear_buffer_write_io_error(bh);
			set_buffer_uptodate(bh);
		}
	} else
C
Christoph Hellwig 已提交
1130
		write_dirty_buffer(bh, WRITE);
1131 1132 1133 1134 1135 1136

out:
	/* If we have just flushed the log (by marking s_start==0), then
	 * any future commit will have to be careful to update the
	 * superblock again to re-record the true start of the log. */

1137
	write_lock(&journal->j_state_lock);
1138
	if (sb->s_start)
1139
		journal->j_flags &= ~JBD2_FLUSHED;
1140
	else
1141
		journal->j_flags |= JBD2_FLUSHED;
1142
	write_unlock(&journal->j_state_lock);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
}

/*
 * Read the superblock for a given journal, performing initial
 * validation of the format.
 */

static int journal_get_superblock(journal_t *journal)
{
	struct buffer_head *bh;
	journal_superblock_t *sb;
	int err = -EIO;

	bh = journal->j_sb_buffer;

	J_ASSERT(bh != NULL);
	if (!buffer_uptodate(bh)) {
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
			printk (KERN_ERR
				"JBD: IO error reading journal superblock\n");
			goto out;
		}
	}

	sb = journal->j_superblock;

	err = -EINVAL;

1173
	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1174 1175 1176 1177 1178 1179
	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
		goto out;
	}

	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1180
	case JBD2_SUPERBLOCK_V1:
1181 1182
		journal->j_format_version = 1;
		break;
1183
	case JBD2_SUPERBLOCK_V2:
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
		journal->j_format_version = 2;
		break;
	default:
		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
		goto out;
	}

	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
		printk (KERN_WARNING "JBD: journal file too short\n");
		goto out;
	}

	return 0;

out:
	journal_fail_superblock(journal);
	return err;
}

/*
 * Load the on-disk journal superblock and read the key fields into the
 * journal_t.
 */

static int load_superblock(journal_t *journal)
{
	int err;
	journal_superblock_t *sb;

	err = journal_get_superblock(journal);
	if (err)
		return err;

	sb = journal->j_superblock;

	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
	journal->j_tail = be32_to_cpu(sb->s_start);
	journal->j_first = be32_to_cpu(sb->s_first);
	journal->j_last = be32_to_cpu(sb->s_maxlen);
	journal->j_errno = be32_to_cpu(sb->s_errno);

	return 0;
}


/**
1232
 * int jbd2_journal_load() - Read journal from disk.
1233 1234 1235 1236 1237 1238
 * @journal: Journal to act on.
 *
 * Given a journal_t structure which tells us which disk blocks contain
 * a journal, read the journal from disk to initialise the in-memory
 * structures.
 */
1239
int jbd2_journal_load(journal_t *journal)
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
{
	int err;
	journal_superblock_t *sb;

	err = load_superblock(journal);
	if (err)
		return err;

	sb = journal->j_superblock;
	/* If this is a V2 superblock, then we have to check the
	 * features flags on it. */

	if (journal->j_format_version >= 2) {
		if ((sb->s_feature_ro_compat &
1254
		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1255
		    (sb->s_feature_incompat &
1256
		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1257 1258 1259 1260 1261 1262
			printk (KERN_WARNING
				"JBD: Unrecognised features on journal\n");
			return -EINVAL;
		}
	}

1263 1264 1265 1266 1267 1268 1269
	/*
	 * Create a slab for this blocksize
	 */
	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
	if (err)
		return err;

1270 1271
	/* Let the recovery code check whether it needs to recover any
	 * data from the journal. */
1272
	if (jbd2_journal_recover(journal))
1273 1274
		goto recovery_error;

1275 1276 1277 1278 1279 1280 1281
	if (journal->j_failed_commit) {
		printk(KERN_ERR "JBD2: journal transaction %u on %s "
		       "is corrupt.\n", journal->j_failed_commit,
		       journal->j_devname);
		return -EIO;
	}

1282 1283 1284 1285 1286 1287
	/* OK, we've finished with the dynamic journal bits:
	 * reinitialise the dynamic contents of the superblock in memory
	 * and reset them on disk. */
	if (journal_reset(journal))
		goto recovery_error;

1288 1289
	journal->j_flags &= ~JBD2_ABORT;
	journal->j_flags |= JBD2_LOADED;
1290 1291 1292 1293 1294 1295 1296 1297
	return 0;

recovery_error:
	printk (KERN_WARNING "JBD: recovery failed\n");
	return -EIO;
}

/**
1298
 * void jbd2_journal_destroy() - Release a journal_t structure.
1299 1300 1301 1302
 * @journal: Journal to act on.
 *
 * Release a journal_t structure once it is no longer in use by the
 * journaled object.
1303
 * Return <0 if we couldn't clean up the journal.
1304
 */
1305
int jbd2_journal_destroy(journal_t *journal)
1306
{
1307 1308
	int err = 0;

1309 1310 1311 1312 1313
	/* Wait for the commit thread to wake up and die. */
	journal_kill_thread(journal);

	/* Force a final log commit */
	if (journal->j_running_transaction)
1314
		jbd2_journal_commit_transaction(journal);
1315 1316 1317 1318 1319 1320 1321

	/* Force any old transactions to disk */

	/* Totally anal locking here... */
	spin_lock(&journal->j_list_lock);
	while (journal->j_checkpoint_transactions != NULL) {
		spin_unlock(&journal->j_list_lock);
1322
		mutex_lock(&journal->j_checkpoint_mutex);
1323
		jbd2_log_do_checkpoint(journal);
1324
		mutex_unlock(&journal->j_checkpoint_mutex);
1325 1326 1327 1328 1329 1330 1331 1332 1333
		spin_lock(&journal->j_list_lock);
	}

	J_ASSERT(journal->j_running_transaction == NULL);
	J_ASSERT(journal->j_committing_transaction == NULL);
	J_ASSERT(journal->j_checkpoint_transactions == NULL);
	spin_unlock(&journal->j_list_lock);

	if (journal->j_sb_buffer) {
1334 1335 1336 1337 1338 1339 1340 1341 1342
		if (!is_journal_aborted(journal)) {
			/* We can now mark the journal as empty. */
			journal->j_tail = 0;
			journal->j_tail_sequence =
				++journal->j_transaction_sequence;
			jbd2_journal_update_superblock(journal, 1);
		} else {
			err = -EIO;
		}
1343 1344 1345
		brelse(journal->j_sb_buffer);
	}

1346 1347
	if (journal->j_proc_entry)
		jbd2_stats_proc_exit(journal);
1348 1349 1350
	if (journal->j_inode)
		iput(journal->j_inode);
	if (journal->j_revoke)
1351
		jbd2_journal_destroy_revoke(journal);
1352 1353
	kfree(journal->j_wbuf);
	kfree(journal);
1354 1355

	return err;
1356 1357 1358 1359
}


/**
1360
 *int jbd2_journal_check_used_features () - Check if features specified are used.
1361 1362 1363 1364 1365 1366 1367 1368 1369
 * @journal: Journal to check.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Check whether the journal uses all of a given set of
 * features.  Return true (non-zero) if it does.
 **/

1370
int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1371 1372 1373 1374 1375 1376
				 unsigned long ro, unsigned long incompat)
{
	journal_superblock_t *sb;

	if (!compat && !ro && !incompat)
		return 1;
1377 1378 1379 1380
	/* Load journal superblock if it is not loaded yet. */
	if (journal->j_format_version == 0 &&
	    journal_get_superblock(journal) != 0)
		return 0;
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	if (journal->j_format_version == 1)
		return 0;

	sb = journal->j_superblock;

	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
		return 1;

	return 0;
}

/**
1395
 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1396 1397 1398 1399 1400 1401 1402 1403 1404
 * @journal: Journal to check.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Check whether the journaling code supports the use of
 * all of a given set of features on this journal.  Return true
 * (non-zero) if it can. */

1405
int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
				      unsigned long ro, unsigned long incompat)
{
	if (!compat && !ro && !incompat)
		return 1;

	/* We can support any known requested features iff the
	 * superblock is in version 2.  Otherwise we fail to support any
	 * extended sb features. */

	if (journal->j_format_version != 2)
		return 0;

1418 1419 1420
	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1421 1422 1423 1424 1425 1426
		return 1;

	return 0;
}

/**
1427
 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
 * @journal: Journal to act on.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Mark a given journal feature as present on the
 * superblock.  Returns true if the requested features could be set.
 *
 */

1438
int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1439 1440 1441 1442
			  unsigned long ro, unsigned long incompat)
{
	journal_superblock_t *sb;

1443
	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1444 1445
		return 1;

1446
	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
		return 0;

	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
		  compat, ro, incompat);

	sb = journal->j_superblock;

	sb->s_feature_compat    |= cpu_to_be32(compat);
	sb->s_feature_ro_compat |= cpu_to_be32(ro);
	sb->s_feature_incompat  |= cpu_to_be32(incompat);

	return 1;
}

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
/*
 * jbd2_journal_clear_features () - Clear a given journal feature in the
 * 				    superblock
 * @journal: Journal to act on.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Clear a given journal feature as present on the
 * superblock.
 */
void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
				unsigned long ro, unsigned long incompat)
{
	journal_superblock_t *sb;

	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
		  compat, ro, incompat);

	sb = journal->j_superblock;

	sb->s_feature_compat    &= ~cpu_to_be32(compat);
	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
}
EXPORT_SYMBOL(jbd2_journal_clear_features);
1487 1488

/**
1489
 * int jbd2_journal_update_format () - Update on-disk journal structure.
1490 1491 1492 1493 1494
 * @journal: Journal to act on.
 *
 * Given an initialised but unloaded journal struct, poke about in the
 * on-disk structure to update it to the most recent supported version.
 */
1495
int jbd2_journal_update_format (journal_t *journal)
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
{
	journal_superblock_t *sb;
	int err;

	err = journal_get_superblock(journal);
	if (err)
		return err;

	sb = journal->j_superblock;

	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1507
	case JBD2_SUPERBLOCK_V2:
1508
		return 0;
1509
	case JBD2_SUPERBLOCK_V1:
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
		return journal_convert_superblock_v1(journal, sb);
	default:
		break;
	}
	return -EINVAL;
}

static int journal_convert_superblock_v1(journal_t *journal,
					 journal_superblock_t *sb)
{
	int offset, blocksize;
	struct buffer_head *bh;

	printk(KERN_WARNING
		"JBD: Converting superblock from version 1 to 2.\n");

	/* Pre-initialise new fields to zero */
	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
	blocksize = be32_to_cpu(sb->s_blocksize);
	memset(&sb->s_feature_compat, 0, blocksize-offset);

	sb->s_nr_users = cpu_to_be32(1);
1532
	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	journal->j_format_version = 2;

	bh = journal->j_sb_buffer;
	BUFFER_TRACE(bh, "marking dirty");
	mark_buffer_dirty(bh);
	sync_dirty_buffer(bh);
	return 0;
}


/**
1544
 * int jbd2_journal_flush () - Flush journal
1545 1546 1547 1548 1549 1550 1551
 * @journal: Journal to act on.
 *
 * Flush all data for a given journal to disk and empty the journal.
 * Filesystems can use this when remounting readonly to ensure that
 * recovery does not need to happen on remount.
 */

1552
int jbd2_journal_flush(journal_t *journal)
1553 1554 1555 1556 1557
{
	int err = 0;
	transaction_t *transaction = NULL;
	unsigned long old_tail;

1558
	write_lock(&journal->j_state_lock);
1559 1560 1561 1562

	/* Force everything buffered to the log... */
	if (journal->j_running_transaction) {
		transaction = journal->j_running_transaction;
1563
		__jbd2_log_start_commit(journal, transaction->t_tid);
1564 1565 1566 1567 1568 1569 1570
	} else if (journal->j_committing_transaction)
		transaction = journal->j_committing_transaction;

	/* Wait for the log commit to complete... */
	if (transaction) {
		tid_t tid = transaction->t_tid;

1571
		write_unlock(&journal->j_state_lock);
1572
		jbd2_log_wait_commit(journal, tid);
1573
	} else {
1574
		write_unlock(&journal->j_state_lock);
1575 1576 1577 1578 1579 1580
	}

	/* ...and flush everything in the log out to disk. */
	spin_lock(&journal->j_list_lock);
	while (!err && journal->j_checkpoint_transactions != NULL) {
		spin_unlock(&journal->j_list_lock);
1581
		mutex_lock(&journal->j_checkpoint_mutex);
1582
		err = jbd2_log_do_checkpoint(journal);
1583
		mutex_unlock(&journal->j_checkpoint_mutex);
1584 1585 1586
		spin_lock(&journal->j_list_lock);
	}
	spin_unlock(&journal->j_list_lock);
1587 1588 1589 1590

	if (is_journal_aborted(journal))
		return -EIO;

1591
	jbd2_cleanup_journal_tail(journal);
1592 1593 1594 1595 1596 1597

	/* Finally, mark the journal as really needing no recovery.
	 * This sets s_start==0 in the underlying superblock, which is
	 * the magic code for a fully-recovered superblock.  Any future
	 * commits of data to the journal will restore the current
	 * s_start value. */
1598
	write_lock(&journal->j_state_lock);
1599 1600
	old_tail = journal->j_tail;
	journal->j_tail = 0;
1601
	write_unlock(&journal->j_state_lock);
1602
	jbd2_journal_update_superblock(journal, 1);
1603
	write_lock(&journal->j_state_lock);
1604 1605 1606 1607 1608 1609 1610
	journal->j_tail = old_tail;

	J_ASSERT(!journal->j_running_transaction);
	J_ASSERT(!journal->j_committing_transaction);
	J_ASSERT(!journal->j_checkpoint_transactions);
	J_ASSERT(journal->j_head == journal->j_tail);
	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1611
	write_unlock(&journal->j_state_lock);
1612
	return 0;
1613 1614 1615
}

/**
1616
 * int jbd2_journal_wipe() - Wipe journal contents
1617 1618 1619 1620 1621
 * @journal: Journal to act on.
 * @write: flag (see below)
 *
 * Wipe out all of the contents of a journal, safely.  This will produce
 * a warning if the journal contains any valid recovery information.
1622
 * Must be called between journal_init_*() and jbd2_journal_load().
1623 1624 1625 1626 1627
 *
 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
 * we merely suppress recovery.
 */

1628
int jbd2_journal_wipe(journal_t *journal, int write)
1629 1630 1631
{
	int err = 0;

1632
	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643

	err = load_superblock(journal);
	if (err)
		return err;

	if (!journal->j_tail)
		goto no_recovery;

	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
		write ? "Clearing" : "Ignoring");

1644
	err = jbd2_journal_skip_recovery(journal);
1645
	if (write)
1646
		jbd2_journal_update_superblock(journal, 1);
1647 1648 1649 1650 1651 1652 1653 1654 1655

 no_recovery:
	return err;
}

/*
 * Journal abort has very specific semantics, which we describe
 * for journal abort.
 *
1656
 * Two internal functions, which provide abort to the jbd layer
1657 1658 1659 1660 1661 1662 1663 1664
 * itself are here.
 */

/*
 * Quick version for internal journal use (doesn't lock the journal).
 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
 * and don't attempt to make any other journal updates.
 */
1665
void __jbd2_journal_abort_hard(journal_t *journal)
1666 1667 1668
{
	transaction_t *transaction;

1669
	if (journal->j_flags & JBD2_ABORT)
1670 1671 1672
		return;

	printk(KERN_ERR "Aborting journal on device %s.\n",
1673
	       journal->j_devname);
1674

1675
	write_lock(&journal->j_state_lock);
1676
	journal->j_flags |= JBD2_ABORT;
1677 1678
	transaction = journal->j_running_transaction;
	if (transaction)
1679
		__jbd2_log_start_commit(journal, transaction->t_tid);
1680
	write_unlock(&journal->j_state_lock);
1681 1682 1683 1684 1685 1686
}

/* Soft abort: record the abort error status in the journal superblock,
 * but don't do any other IO. */
static void __journal_abort_soft (journal_t *journal, int errno)
{
1687
	if (journal->j_flags & JBD2_ABORT)
1688 1689 1690 1691 1692
		return;

	if (!journal->j_errno)
		journal->j_errno = errno;

1693
	__jbd2_journal_abort_hard(journal);
1694 1695

	if (errno)
1696
		jbd2_journal_update_superblock(journal, 1);
1697 1698 1699
}

/**
1700
 * void jbd2_journal_abort () - Shutdown the journal immediately.
1701 1702 1703 1704 1705 1706 1707 1708
 * @journal: the journal to shutdown.
 * @errno:   an error number to record in the journal indicating
 *           the reason for the shutdown.
 *
 * Perform a complete, immediate shutdown of the ENTIRE
 * journal (not of a single transaction).  This operation cannot be
 * undone without closing and reopening the journal.
 *
1709
 * The jbd2_journal_abort function is intended to support higher level error
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
 * recovery mechanisms such as the ext2/ext3 remount-readonly error
 * mode.
 *
 * Journal abort has very specific semantics.  Any existing dirty,
 * unjournaled buffers in the main filesystem will still be written to
 * disk by bdflush, but the journaling mechanism will be suspended
 * immediately and no further transaction commits will be honoured.
 *
 * Any dirty, journaled buffers will be written back to disk without
 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
 * filesystem, but we _do_ attempt to leave as much data as possible
 * behind for fsck to use for cleanup.
 *
 * Any attempt to get a new transaction handle on a journal which is in
 * ABORT state will just result in an -EROFS error return.  A
1725
 * jbd2_journal_stop on an existing handle will return -EIO if we have
1726 1727 1728
 * entered abort state during the update.
 *
 * Recursive transactions are not disturbed by journal abort until the
1729
 * final jbd2_journal_stop, which will receive the -EIO error.
1730
 *
1731
 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
 * which will be recorded (if possible) in the journal superblock.  This
 * allows a client to record failure conditions in the middle of a
 * transaction without having to complete the transaction to record the
 * failure to disk.  ext3_error, for example, now uses this
 * functionality.
 *
 * Errors which originate from within the journaling layer will NOT
 * supply an errno; a null errno implies that absolutely no further
 * writes are done to the journal (unless there are any already in
 * progress).
 *
 */

1745
void jbd2_journal_abort(journal_t *journal, int errno)
1746 1747 1748 1749 1750
{
	__journal_abort_soft(journal, errno);
}

/**
1751
 * int jbd2_journal_errno () - returns the journal's error state.
1752 1753
 * @journal: journal to examine.
 *
1754
 * This is the errno number set with jbd2_journal_abort(), the last
1755 1756 1757 1758 1759 1760
 * time the journal was mounted - if the journal was stopped
 * without calling abort this will be 0.
 *
 * If the journal has been aborted on this mount time -EROFS will
 * be returned.
 */
1761
int jbd2_journal_errno(journal_t *journal)
1762 1763 1764
{
	int err;

1765
	read_lock(&journal->j_state_lock);
1766
	if (journal->j_flags & JBD2_ABORT)
1767 1768 1769
		err = -EROFS;
	else
		err = journal->j_errno;
1770
	read_unlock(&journal->j_state_lock);
1771 1772 1773 1774
	return err;
}

/**
1775
 * int jbd2_journal_clear_err () - clears the journal's error state
1776 1777
 * @journal: journal to act on.
 *
1778
 * An error must be cleared or acked to take a FS out of readonly
1779 1780
 * mode.
 */
1781
int jbd2_journal_clear_err(journal_t *journal)
1782 1783 1784
{
	int err = 0;

1785
	write_lock(&journal->j_state_lock);
1786
	if (journal->j_flags & JBD2_ABORT)
1787 1788 1789
		err = -EROFS;
	else
		journal->j_errno = 0;
1790
	write_unlock(&journal->j_state_lock);
1791 1792 1793 1794
	return err;
}

/**
1795
 * void jbd2_journal_ack_err() - Ack journal err.
1796 1797
 * @journal: journal to act on.
 *
1798
 * An error must be cleared or acked to take a FS out of readonly
1799 1800
 * mode.
 */
1801
void jbd2_journal_ack_err(journal_t *journal)
1802
{
1803
	write_lock(&journal->j_state_lock);
1804
	if (journal->j_errno)
1805
		journal->j_flags |= JBD2_ACK_ERR;
1806
	write_unlock(&journal->j_state_lock);
1807 1808
}

1809
int jbd2_journal_blocks_per_page(struct inode *inode)
1810 1811 1812 1813
{
	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
}

Z
Zach Brown 已提交
1814 1815 1816 1817 1818 1819
/*
 * helper functions to deal with 32 or 64bit block numbers.
 */
size_t journal_tag_bytes(journal_t *journal)
{
	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1820
		return JBD2_TAG_SIZE64;
Z
Zach Brown 已提交
1821
	else
1822
		return JBD2_TAG_SIZE32;
Z
Zach Brown 已提交
1823 1824
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
/*
 * JBD memory management
 *
 * These functions are used to allocate block-sized chunks of memory
 * used for making copies of buffer_head data.  Very often it will be
 * page-sized chunks of data, but sometimes it will be in
 * sub-page-size chunks.  (For example, 16k pages on Power systems
 * with a 4k block file system.)  For blocks smaller than a page, we
 * use a SLAB allocator.  There are slab caches for each block size,
 * which are allocated at mount time, if necessary, and we only free
 * (all of) the slab caches when/if the jbd2 module is unloaded.  For
 * this reason we don't need to a mutex to protect access to
 * jbd2_slab[] allocating or releasing memory; only in
 * jbd2_journal_create_slab().
 */
#define JBD2_MAX_SLABS 8
static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];

static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
};


static void jbd2_journal_destroy_slabs(void)
{
	int i;

	for (i = 0; i < JBD2_MAX_SLABS; i++) {
		if (jbd2_slab[i])
			kmem_cache_destroy(jbd2_slab[i]);
		jbd2_slab[i] = NULL;
	}
}

static int jbd2_journal_create_slab(size_t size)
{
1862
	static DEFINE_MUTEX(jbd2_slab_create_mutex);
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
	int i = order_base_2(size) - 10;
	size_t slab_size;

	if (size == PAGE_SIZE)
		return 0;

	if (i >= JBD2_MAX_SLABS)
		return -EINVAL;

	if (unlikely(i < 0))
		i = 0;
1874
	mutex_lock(&jbd2_slab_create_mutex);
1875
	if (jbd2_slab[i]) {
1876
		mutex_unlock(&jbd2_slab_create_mutex);
1877 1878 1879 1880 1881 1882
		return 0;	/* Already created */
	}

	slab_size = 1 << (i+10);
	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
					 slab_size, 0, NULL);
1883
	mutex_unlock(&jbd2_slab_create_mutex);
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	if (!jbd2_slab[i]) {
		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
		return -ENOMEM;
	}
	return 0;
}

static struct kmem_cache *get_slab(size_t size)
{
	int i = order_base_2(size) - 10;

	BUG_ON(i >= JBD2_MAX_SLABS);
	if (unlikely(i < 0))
		i = 0;
1898
	BUG_ON(jbd2_slab[i] == NULL);
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	return jbd2_slab[i];
}

void *jbd2_alloc(size_t size, gfp_t flags)
{
	void *ptr;

	BUG_ON(size & (size-1)); /* Must be a power of 2 */

	flags |= __GFP_REPEAT;
	if (size == PAGE_SIZE)
		ptr = (void *)__get_free_pages(flags, 0);
	else if (size > PAGE_SIZE) {
		int order = get_order(size);

		if (order < 3)
			ptr = (void *)__get_free_pages(flags, order);
		else
			ptr = vmalloc(size);
	} else
		ptr = kmem_cache_alloc(get_slab(size), flags);

	/* Check alignment; SLUB has gotten this wrong in the past,
	 * and this can lead to user data corruption! */
	BUG_ON(((unsigned long) ptr) & (size-1));

	return ptr;
}

void jbd2_free(void *ptr, size_t size)
{
	if (size == PAGE_SIZE) {
		free_pages((unsigned long)ptr, 0);
		return;
	}
	if (size > PAGE_SIZE) {
		int order = get_order(size);

		if (order < 3)
			free_pages((unsigned long)ptr, order);
		else
			vfree(ptr);
		return;
	}
	kmem_cache_free(get_slab(size), ptr);
};

1946 1947 1948
/*
 * Journal_head storage management
 */
1949
static struct kmem_cache *jbd2_journal_head_cache;
1950
#ifdef CONFIG_JBD2_DEBUG
1951 1952 1953
static atomic_t nr_journal_heads = ATOMIC_INIT(0);
#endif

1954
static int journal_init_jbd2_journal_head_cache(void)
1955 1956 1957
{
	int retval;

A
Al Viro 已提交
1958
	J_ASSERT(jbd2_journal_head_cache == NULL);
J
Johann Lombardi 已提交
1959
	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1960 1961
				sizeof(struct journal_head),
				0,		/* offset */
1962
				SLAB_TEMPORARY,	/* flags */
1963
				NULL);		/* ctor */
1964
	retval = 0;
A
Al Viro 已提交
1965
	if (!jbd2_journal_head_cache) {
1966 1967 1968 1969 1970 1971
		retval = -ENOMEM;
		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
	}
	return retval;
}

1972
static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1973
{
1974 1975 1976 1977
	if (jbd2_journal_head_cache) {
		kmem_cache_destroy(jbd2_journal_head_cache);
		jbd2_journal_head_cache = NULL;
	}
1978 1979 1980 1981 1982 1983 1984 1985 1986
}

/*
 * journal_head splicing and dicing
 */
static struct journal_head *journal_alloc_journal_head(void)
{
	struct journal_head *ret;

1987
#ifdef CONFIG_JBD2_DEBUG
1988 1989
	atomic_inc(&nr_journal_heads);
#endif
1990
	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
A
Al Viro 已提交
1991
	if (!ret) {
1992
		jbd_debug(1, "out of memory for journal_head\n");
1993
		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
A
Al Viro 已提交
1994
		while (!ret) {
1995
			yield();
1996
			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1997 1998 1999 2000 2001 2002 2003
		}
	}
	return ret;
}

static void journal_free_journal_head(struct journal_head *jh)
{
2004
#ifdef CONFIG_JBD2_DEBUG
2005
	atomic_dec(&nr_journal_heads);
2006
	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2007
#endif
2008
	kmem_cache_free(jbd2_journal_head_cache, jh);
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
}

/*
 * A journal_head is attached to a buffer_head whenever JBD has an
 * interest in the buffer.
 *
 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
 * is set.  This bit is tested in core kernel code where we need to take
 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
 * there.
 *
 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
 *
 * When a buffer has its BH_JBD bit set it is immune from being released by
 * core kernel code, mainly via ->b_count.
 *
 * A journal_head may be detached from its buffer_head when the journal_head's
 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
2027
 * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
2028 2029 2030 2031
 * journal_head can be dropped if needed.
 *
 * Various places in the kernel want to attach a journal_head to a buffer_head
 * _before_ attaching the journal_head to a transaction.  To protect the
2032
 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2033
 * journal_head's b_jcount refcount by one.  The caller must call
2034
 * jbd2_journal_put_journal_head() to undo this.
2035 2036 2037 2038
 *
 * So the typical usage would be:
 *
 *	(Attach a journal_head if needed.  Increments b_jcount)
2039
 *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2040 2041
 *	...
 *	jh->b_transaction = xxx;
2042
 *	jbd2_journal_put_journal_head(jh);
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
 *
 * Now, the journal_head's b_jcount is zero, but it is safe from being released
 * because it has a non-zero b_transaction.
 */

/*
 * Give a buffer_head a journal_head.
 *
 * Doesn't need the journal lock.
 * May sleep.
 */
2054
struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
{
	struct journal_head *jh;
	struct journal_head *new_jh = NULL;

repeat:
	if (!buffer_jbd(bh)) {
		new_jh = journal_alloc_journal_head();
		memset(new_jh, 0, sizeof(*new_jh));
	}

	jbd_lock_bh_journal_head(bh);
	if (buffer_jbd(bh)) {
		jh = bh2jh(bh);
	} else {
		J_ASSERT_BH(bh,
			(atomic_read(&bh->b_count) > 0) ||
			(bh->b_page && bh->b_page->mapping));

		if (!new_jh) {
			jbd_unlock_bh_journal_head(bh);
			goto repeat;
		}

		jh = new_jh;
		new_jh = NULL;		/* We consumed it */
		set_buffer_jbd(bh);
		bh->b_private = jh;
		jh->b_bh = bh;
		get_bh(bh);
		BUFFER_TRACE(bh, "added journal_head");
	}
	jh->b_jcount++;
	jbd_unlock_bh_journal_head(bh);
	if (new_jh)
		journal_free_journal_head(new_jh);
	return bh->b_private;
}

/*
 * Grab a ref against this buffer_head's journal_head.  If it ended up not
 * having a journal_head, return NULL
 */
2097
struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
{
	struct journal_head *jh = NULL;

	jbd_lock_bh_journal_head(bh);
	if (buffer_jbd(bh)) {
		jh = bh2jh(bh);
		jh->b_jcount++;
	}
	jbd_unlock_bh_journal_head(bh);
	return jh;
}

static void __journal_remove_journal_head(struct buffer_head *bh)
{
	struct journal_head *jh = bh2jh(bh);

	J_ASSERT_JH(jh, jh->b_jcount >= 0);

	get_bh(bh);
	if (jh->b_jcount == 0) {
		if (jh->b_transaction == NULL &&
				jh->b_next_transaction == NULL &&
				jh->b_cp_transaction == NULL) {
			J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
			J_ASSERT_BH(bh, buffer_jbd(bh));
			J_ASSERT_BH(bh, jh2bh(jh) == bh);
			BUFFER_TRACE(bh, "remove journal_head");
			if (jh->b_frozen_data) {
				printk(KERN_WARNING "%s: freeing "
						"b_frozen_data\n",
2128
						__func__);
M
Mingming Cao 已提交
2129
				jbd2_free(jh->b_frozen_data, bh->b_size);
2130 2131 2132 2133
			}
			if (jh->b_committed_data) {
				printk(KERN_WARNING "%s: freeing "
						"b_committed_data\n",
2134
						__func__);
M
Mingming Cao 已提交
2135
				jbd2_free(jh->b_committed_data, bh->b_size);
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
			}
			bh->b_private = NULL;
			jh->b_bh = NULL;	/* debug, really */
			clear_buffer_jbd(bh);
			__brelse(bh);
			journal_free_journal_head(jh);
		} else {
			BUFFER_TRACE(bh, "journal_head was locked");
		}
	}
}

/*
2149
 * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2150 2151 2152 2153 2154 2155 2156
 * and has a zero b_jcount then remove and release its journal_head.   If we did
 * see that the buffer is not used by any transaction we also "logically"
 * decrement ->b_count.
 *
 * We in fact take an additional increment on ->b_count as a convenience,
 * because the caller usually wants to do additional things with the bh
 * after calling here.
2157
 * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2158 2159 2160
 * time.  Once the caller has run __brelse(), the buffer is eligible for
 * reaping by try_to_free_buffers().
 */
2161
void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
{
	jbd_lock_bh_journal_head(bh);
	__journal_remove_journal_head(bh);
	jbd_unlock_bh_journal_head(bh);
}

/*
 * Drop a reference on the passed journal_head.  If it fell to zero then try to
 * release the journal_head from the buffer_head.
 */
2172
void jbd2_journal_put_journal_head(struct journal_head *jh)
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
{
	struct buffer_head *bh = jh2bh(jh);

	jbd_lock_bh_journal_head(bh);
	J_ASSERT_JH(jh, jh->b_jcount > 0);
	--jh->b_jcount;
	if (!jh->b_jcount && !jh->b_transaction) {
		__journal_remove_journal_head(bh);
		__brelse(bh);
	}
	jbd_unlock_bh_journal_head(bh);
}

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
/*
 * Initialize jbd inode head
 */
void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
{
	jinode->i_transaction = NULL;
	jinode->i_next_transaction = NULL;
	jinode->i_vfs_inode = inode;
	jinode->i_flags = 0;
	INIT_LIST_HEAD(&jinode->i_list);
}

/*
 * Function to be called before we start removing inode from memory (i.e.,
 * clear_inode() is a fine place to be called from). It removes inode from
 * transaction's lists.
 */
void jbd2_journal_release_jbd_inode(journal_t *journal,
				    struct jbd2_inode *jinode)
{
	if (!journal)
		return;
restart:
	spin_lock(&journal->j_list_lock);
	/* Is commit writing out inode - we have to wait */
2211
	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
		wait_queue_head_t *wq;
		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
		spin_unlock(&journal->j_list_lock);
		schedule();
		finish_wait(wq, &wait.wait);
		goto restart;
	}

	if (jinode->i_transaction) {
		list_del(&jinode->i_list);
		jinode->i_transaction = NULL;
	}
	spin_unlock(&journal->j_list_lock);
}

2229
/*
2230
 * debugfs tunables
2231
 */
J
Jose R. Santos 已提交
2232 2233
#ifdef CONFIG_JBD2_DEBUG
u8 jbd2_journal_enable_debug __read_mostly;
2234
EXPORT_SYMBOL(jbd2_journal_enable_debug);
2235

2236
#define JBD2_DEBUG_NAME "jbd2-debug"
2237

J
Jose R. Santos 已提交
2238 2239
static struct dentry *jbd2_debugfs_dir;
static struct dentry *jbd2_debug;
2240

2241 2242 2243 2244
static void __init jbd2_create_debugfs_entry(void)
{
	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
	if (jbd2_debugfs_dir)
2245 2246
		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
					       S_IRUGO | S_IWUSR,
2247 2248
					       jbd2_debugfs_dir,
					       &jbd2_journal_enable_debug);
2249 2250
}

2251
static void __exit jbd2_remove_debugfs_entry(void)
2252
{
J
Jose R. Santos 已提交
2253 2254
	debugfs_remove(jbd2_debug);
	debugfs_remove(jbd2_debugfs_dir);
2255 2256
}

2257
#else
2258

2259
static void __init jbd2_create_debugfs_entry(void)
2260 2261 2262
{
}

2263
static void __exit jbd2_remove_debugfs_entry(void)
2264 2265 2266 2267 2268
{
}

#endif

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
#ifdef CONFIG_PROC_FS

#define JBD2_STATS_PROC_NAME "fs/jbd2"

static void __init jbd2_create_jbd_stats_proc_entry(void)
{
	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
}

static void __exit jbd2_remove_jbd_stats_proc_entry(void)
{
	if (proc_jbd2_stats)
		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
}

#else

#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)

#endif

2291
struct kmem_cache *jbd2_handle_cache;
2292 2293 2294

static int __init journal_init_handle_cache(void)
{
J
Johann Lombardi 已提交
2295
	jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2296 2297
				sizeof(handle_t),
				0,		/* offset */
2298
				SLAB_TEMPORARY,	/* flags */
2299
				NULL);		/* ctor */
2300
	if (jbd2_handle_cache == NULL) {
2301 2302 2303 2304 2305 2306
		printk(KERN_EMERG "JBD: failed to create handle cache\n");
		return -ENOMEM;
	}
	return 0;
}

2307
static void jbd2_journal_destroy_handle_cache(void)
2308
{
2309 2310
	if (jbd2_handle_cache)
		kmem_cache_destroy(jbd2_handle_cache);
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
}

/*
 * Module startup and shutdown
 */

static int __init journal_init_caches(void)
{
	int ret;

2321
	ret = jbd2_journal_init_revoke_caches();
2322
	if (ret == 0)
2323
		ret = journal_init_jbd2_journal_head_cache();
2324 2325 2326 2327 2328
	if (ret == 0)
		ret = journal_init_handle_cache();
	return ret;
}

2329
static void jbd2_journal_destroy_caches(void)
2330
{
2331 2332 2333
	jbd2_journal_destroy_revoke_caches();
	jbd2_journal_destroy_jbd2_journal_head_cache();
	jbd2_journal_destroy_handle_cache();
2334
	jbd2_journal_destroy_slabs();
2335 2336 2337 2338 2339 2340 2341 2342 2343
}

static int __init journal_init(void)
{
	int ret;

	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);

	ret = journal_init_caches();
2344 2345 2346 2347
	if (ret == 0) {
		jbd2_create_debugfs_entry();
		jbd2_create_jbd_stats_proc_entry();
	} else {
2348
		jbd2_journal_destroy_caches();
2349
	}
2350 2351 2352 2353 2354
	return ret;
}

static void __exit journal_exit(void)
{
2355
#ifdef CONFIG_JBD2_DEBUG
2356 2357 2358 2359
	int n = atomic_read(&nr_journal_heads);
	if (n)
		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
#endif
2360
	jbd2_remove_debugfs_entry();
2361
	jbd2_remove_jbd_stats_proc_entry();
2362
	jbd2_journal_destroy_caches();
2363 2364
}

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
/* 
 * jbd2_dev_to_name is a utility function used by the jbd2 and ext4 
 * tracing infrastructure to map a dev_t to a device name.
 *
 * The caller should use rcu_read_lock() in order to make sure the
 * device name stays valid until its done with it.  We use
 * rcu_read_lock() as well to make sure we're safe in case the caller
 * gets sloppy, and because rcu_read_lock() is cheap and can be safely
 * nested.
 */
struct devname_cache {
	struct rcu_head	rcu;
	dev_t		device;
	char		devname[BDEVNAME_SIZE];
};
#define CACHE_SIZE_BITS 6
static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
static DEFINE_SPINLOCK(devname_cache_lock);

static void free_devcache(struct rcu_head *rcu)
{
	kfree(rcu);
}

const char *jbd2_dev_to_name(dev_t device)
{
	int	i = hash_32(device, CACHE_SIZE_BITS);
	char	*ret;
	struct block_device *bd;
2394
	static struct devname_cache *new_dev;
2395 2396 2397 2398 2399 2400 2401 2402 2403

	rcu_read_lock();
	if (devcache[i] && devcache[i]->device == device) {
		ret = devcache[i]->devname;
		rcu_read_unlock();
		return ret;
	}
	rcu_read_unlock();

2404 2405 2406
	new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
	if (!new_dev)
		return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2407 2408 2409
	spin_lock(&devname_cache_lock);
	if (devcache[i]) {
		if (devcache[i]->device == device) {
2410
			kfree(new_dev);
2411 2412 2413 2414 2415 2416
			ret = devcache[i]->devname;
			spin_unlock(&devname_cache_lock);
			return ret;
		}
		call_rcu(&devcache[i]->rcu, free_devcache);
	}
2417
	devcache[i] = new_dev;
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	devcache[i]->device = device;
	bd = bdget(device);
	if (bd) {
		bdevname(bd, devcache[i]->devname);
		bdput(bd);
	} else
		__bdevname(device, devcache[i]->devname);
	ret = devcache[i]->devname;
	spin_unlock(&devname_cache_lock);
	return ret;
}
EXPORT_SYMBOL(jbd2_dev_to_name);

2431 2432 2433 2434
MODULE_LICENSE("GPL");
module_init(journal_init);
module_exit(journal_exit);