intel_pm.c 218.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34

B
Ben Widawsky 已提交
35
/**
36 37
 * DOC: RC6
 *
B
Ben Widawsky 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

58
static void gen9_init_clock_gating(struct drm_device *dev)
59
{
60 61
	struct drm_i915_private *dev_priv = dev->dev_private;

62
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63 64 65
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

66 67
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68 69 70 71

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72 73 74 75 76 77 78 79
}

static void bxt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	gen9_init_clock_gating(dev);

80 81 82 83
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

84 85
	/*
	 * FIXME:
86
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
87 88
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
89
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
90 91 92 93 94 95 96 97

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
98 99
}

100 101
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
102
	struct drm_i915_private *dev_priv = dev->dev_private;
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
141
	struct drm_i915_private *dev_priv = dev->dev_private;
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

167
	dev_priv->ips.r_t = dev_priv->mem_freq;
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
199
		dev_priv->ips.c_m = 0;
200
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
201
		dev_priv->ips.c_m = 1;
202
	} else {
203
		dev_priv->ips.c_m = 2;
204 205 206
	}
}

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

245
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

307 308 309
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

310
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
311
{
312 313
	struct drm_device *dev = dev_priv->dev;
	u32 val;
314

315
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
316
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
317
		POSTING_READ(FW_BLC_SELF_VLV);
318
		dev_priv->wm.vlv.cxsr = enable;
319 320
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
321
		POSTING_READ(FW_BLC_SELF);
322 323 324 325
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
326
		POSTING_READ(DSPFW3);
327 328 329 330
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
331
		POSTING_READ(FW_BLC_SELF);
332 333 334 335
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
336
		POSTING_READ(INSTPM);
337 338 339
	} else {
		return;
	}
340

341 342
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
343 344
}

345

346 347 348 349 350 351 352 353 354 355 356 357 358 359
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
360
static const int pessimal_latency_ns = 5000;
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

417
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

433
static int i830_get_fifo_size(struct drm_device *dev, int plane)
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

450
static int i845_get_fifo_size(struct drm_device *dev, int plane)
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
468 469 470 471 472
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
473 474
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
475 476 477 478 479
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
480 481
};
static const struct intel_watermark_params pineview_cursor_wm = {
482 483 484 485 486
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
487 488
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
489 490 491 492 493
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
494 495
};
static const struct intel_watermark_params g4x_wm_info = {
496 497 498 499 500
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
501 502
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
503 504 505 506 507
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
508 509
};
static const struct intel_watermark_params i965_cursor_wm_info = {
510 511 512 513 514
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
515 516
};
static const struct intel_watermark_params i945_wm_info = {
517 518 519 520 521
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
522 523
};
static const struct intel_watermark_params i915_wm_info = {
524 525 526 527 528
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
529
};
530
static const struct intel_watermark_params i830_a_wm_info = {
531 532 533 534 535
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
536
};
537 538 539 540 541 542 543
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
544
static const struct intel_watermark_params i845_wm_info = {
545 546 547 548 549
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
550 551 552 553 554 555
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
556
 * @cpp: bytes per pixel
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
572
					int fifo_size, int cpp,
573 574 575 576 577 578 579 580 581 582
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
583
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
584 585 586 587 588 589 590 591 592 593 594 595 596 597
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
598 599 600 601 602 603 604 605 606 607 608

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

609 610 611 612 613 614 615
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

616
	for_each_crtc(dev, crtc) {
617
		if (intel_crtc_active(crtc)) {
618 619 620 621 622 623 624 625 626
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

627
static void pineview_update_wm(struct drm_crtc *unused_crtc)
628
{
629
	struct drm_device *dev = unused_crtc->dev;
630 631 632 633 634 635 636 637 638 639
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
640
		intel_set_memory_cxsr(dev_priv, false);
641 642 643 644 645
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
646
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
647
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
648
		int clock = adjusted_mode->crtc_clock;
649 650 651 652

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
653
					cpp, latency->display_sr);
654 655
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
656
		reg |= FW_WM(wm, SR);
657 658 659 660 661 662
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
663
					cpp, latency->cursor_sr);
664 665
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
666
		reg |= FW_WM(wm, CURSOR_SR);
667 668 669 670 671
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
672
					cpp, latency->display_hpll_disable);
673 674
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
675
		reg |= FW_WM(wm, HPLL_SR);
676 677 678 679 680
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
681
					cpp, latency->cursor_hpll_disable);
682 683
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
684
		reg |= FW_WM(wm, HPLL_CURSOR);
685 686 687
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

688
		intel_set_memory_cxsr(dev_priv, true);
689
	} else {
690
		intel_set_memory_cxsr(dev_priv, false);
691 692 693 694 695 696 697 698 699 700 701 702 703
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
704
	const struct drm_display_mode *adjusted_mode;
705
	int htotal, hdisplay, clock, cpp;
706 707 708 709
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
710
	if (!intel_crtc_active(crtc)) {
711 712 713 714 715
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

716
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
717
	clock = adjusted_mode->crtc_clock;
718
	htotal = adjusted_mode->crtc_htotal;
719
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
720
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
721 722

	/* Use the small buffer method to calculate plane watermark */
723
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
724 725 726 727 728 729 730 731 732
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
733
	line_time_us = max(htotal * 1000 / clock, 1);
734
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
735
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
790
	const struct drm_display_mode *adjusted_mode;
791
	int hdisplay, htotal, cpp, clock;
792 793 794 795 796 797 798 799 800 801 802
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
803
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
804
	clock = adjusted_mode->crtc_clock;
805
	htotal = adjusted_mode->crtc_htotal;
806
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
807
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
808

809
	line_time_us = max(htotal * 1000 / clock, 1);
810
	line_count = (latency_ns / line_time_us + 1000) / 1000;
811
	line_size = hdisplay * cpp;
812 813

	/* Use the minimum of the small and large buffer method for primary */
814
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
815 816 817 818 819 820
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
821
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
822 823 824 825 826 827 828 829
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

830 831 832
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

833 834 835 836 837 838 839 840 841 842 843 844
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

845
	I915_WRITE(DSPFW1,
846 847 848 849
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
850
	I915_WRITE(DSPFW2,
851 852 853
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
854
	I915_WRITE(DSPFW3,
855
		   FW_WM(wm->sr.cursor, CURSOR_SR));
856 857 858

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
859 860
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
861
		I915_WRITE(DSPFW8_CHV,
862 863
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
864
		I915_WRITE(DSPFW9_CHV,
865 866
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
867
		I915_WRITE(DSPHOWM,
868 869 870 871 872 873 874 875 876 877
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
878 879
	} else {
		I915_WRITE(DSPFW7,
880 881
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
882
		I915_WRITE(DSPHOWM,
883 884 885 886 887 888 889
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
890 891
	}

892 893 894 895 896 897
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

898
	POSTING_READ(DSPFW1);
899 900
}

901 902
#undef FW_WM_VLV

903 904 905 906 907 908
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

909 910 911 912
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
913
				   unsigned int cpp,
914 915 916 917 918
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
919
	ret = (ret + 1) * horiz_pixels * cpp;
920 921 922 923 924 925 926 927 928 929 930 931
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

932 933
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

934 935 936
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
937 938

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
939 940 941 942 943 944 945 946 947
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
948
	int clock, htotal, cpp, width, wm;
949 950 951 952 953 954 955

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

956
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
972
		wm = vlv_wm_method2(clock, htotal, width, cpp,
973 974 975 976 977 978
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1080
static void vlv_compute_wm(struct intel_crtc *crtc)
1081 1082 1083 1084 1085 1086 1087 1088 1089
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1090
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1091
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1092 1093 1094

	wm_state->num_active_planes = 0;

1095
	vlv_compute_fifo(crtc);
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1152
					wm_state->wm[level].cursor;
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1171
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1172 1173 1174 1175 1176 1177 1178
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1269 1270 1271 1272 1273 1274
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1275
	wm->level = to_i915(dev)->wm.max_level;
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1294 1295 1296
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1323
	vlv_compute_wm(intel_crtc);
1324 1325
	vlv_merge_wm(dev, &wm);

1326 1327 1328
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1329
		return;
1330
	}
1331 1332 1333 1334 1335 1336 1337 1338 1339

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1340
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1341 1342
		intel_set_memory_cxsr(dev_priv, false);

1343 1344 1345
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1346 1347 1348 1349 1350 1351 1352 1353
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1354
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1366 1367
}

1368 1369
#define single_plane_enabled(mask) is_power_of_2(mask)

1370
static void g4x_update_wm(struct drm_crtc *crtc)
1371
{
1372
	struct drm_device *dev = crtc->dev;
1373 1374 1375 1376 1377
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1378
	bool cxsr_enabled;
1379

1380
	if (g4x_compute_wm0(dev, PIPE_A,
1381 1382
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1383
			    &planea_wm, &cursora_wm))
1384
		enabled |= 1 << PIPE_A;
1385

1386
	if (g4x_compute_wm0(dev, PIPE_B,
1387 1388
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1389
			    &planeb_wm, &cursorb_wm))
1390
		enabled |= 1 << PIPE_B;
1391 1392 1393 1394 1395 1396

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1397
			     &plane_sr, &cursor_sr)) {
1398
		cxsr_enabled = true;
1399
	} else {
1400
		cxsr_enabled = false;
1401
		intel_set_memory_cxsr(dev_priv, false);
1402 1403
		plane_sr = cursor_sr = 0;
	}
1404

1405 1406
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1407 1408 1409 1410 1411
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1412 1413 1414 1415
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1416
	I915_WRITE(DSPFW2,
1417
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1418
		   FW_WM(cursora_wm, CURSORA));
1419 1420
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1421
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1422
		   FW_WM(cursor_sr, CURSOR_SR));
1423 1424 1425

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1426 1427
}

1428
static void i965_update_wm(struct drm_crtc *unused_crtc)
1429
{
1430
	struct drm_device *dev = unused_crtc->dev;
1431 1432 1433 1434
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1435
	bool cxsr_enabled;
1436 1437 1438 1439 1440 1441

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1442
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1443
		int clock = adjusted_mode->crtc_clock;
1444
		int htotal = adjusted_mode->crtc_htotal;
1445
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1446
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1447 1448 1449
		unsigned long line_time_us;
		int entries;

1450
		line_time_us = max(htotal * 1000 / clock, 1);
1451 1452 1453

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1454
			cpp * hdisplay;
1455 1456 1457 1458 1459 1460 1461 1462 1463
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1464
			cpp * crtc->cursor->state->crtc_w;
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1476
		cxsr_enabled = true;
1477
	} else {
1478
		cxsr_enabled = false;
1479
		/* Turn off self refresh if both pipes are enabled */
1480
		intel_set_memory_cxsr(dev_priv, false);
1481 1482 1483 1484 1485 1486
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1487 1488 1489 1490 1491 1492
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1493
	/* update cursor SR watermark */
1494
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1495 1496 1497

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1498 1499
}

1500 1501
#undef FW_WM

1502
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1503
{
1504
	struct drm_device *dev = unused_crtc->dev;
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1519
		wm_info = &i830_a_wm_info;
1520 1521 1522

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1523
	if (intel_crtc_active(crtc)) {
1524
		const struct drm_display_mode *adjusted_mode;
1525
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1526 1527 1528
		if (IS_GEN2(dev))
			cpp = 4;

1529
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1530
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1531
					       wm_info, fifo_size, cpp,
1532
					       pessimal_latency_ns);
1533
		enabled = crtc;
1534
	} else {
1535
		planea_wm = fifo_size - wm_info->guard_size;
1536 1537 1538 1539 1540 1541
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1542 1543 1544

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1545
	if (intel_crtc_active(crtc)) {
1546
		const struct drm_display_mode *adjusted_mode;
1547
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1548 1549 1550
		if (IS_GEN2(dev))
			cpp = 4;

1551
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1552
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1553
					       wm_info, fifo_size, cpp,
1554
					       pessimal_latency_ns);
1555 1556 1557 1558
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1559
	} else {
1560
		planeb_wm = fifo_size - wm_info->guard_size;
1561 1562 1563
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1564 1565 1566

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1567
	if (IS_I915GM(dev) && enabled) {
1568
		struct drm_i915_gem_object *obj;
1569

1570
		obj = intel_fb_obj(enabled->primary->state->fb);
1571 1572

		/* self-refresh seems busted with untiled */
1573
		if (obj->tiling_mode == I915_TILING_NONE)
1574 1575 1576
			enabled = NULL;
	}

1577 1578 1579 1580 1581 1582
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1583
	intel_set_memory_cxsr(dev_priv, false);
1584 1585 1586 1587 1588

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1589
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1590
		int clock = adjusted_mode->crtc_clock;
1591
		int htotal = adjusted_mode->crtc_htotal;
1592
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1593
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1594 1595 1596
		unsigned long line_time_us;
		int entries;

1597
		line_time_us = max(htotal * 1000 / clock, 1);
1598 1599 1600

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1601
			cpp * hdisplay;
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1628 1629
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1630 1631
}

1632
static void i845_update_wm(struct drm_crtc *unused_crtc)
1633
{
1634
	struct drm_device *dev = unused_crtc->dev;
1635 1636
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1637
	const struct drm_display_mode *adjusted_mode;
1638 1639 1640 1641 1642 1643 1644
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1645
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1646
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1647
				       &i845_wm_info,
1648
				       dev_priv->display.get_fifo_size(dev, 0),
1649
				       4, pessimal_latency_ns);
1650 1651 1652 1653 1654 1655 1656 1657
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1658
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1659
{
1660
	uint32_t pixel_rate;
1661

1662
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1663 1664 1665 1666

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1667
	if (pipe_config->pch_pfit.enabled) {
1668
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1669 1670 1671 1672
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1673 1674 1675 1676 1677 1678 1679 1680

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1681 1682 1683
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1684 1685 1686 1687 1688 1689 1690
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1691
/* latency must be in 0.1us units. */
1692
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1693 1694 1695
{
	uint64_t ret;

1696 1697 1698
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1699
	ret = (uint64_t) pixel_rate * cpp * latency;
1700 1701 1702 1703 1704
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1705
/* latency must be in 0.1us units. */
1706
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1707
			       uint32_t horiz_pixels, uint8_t cpp,
1708 1709 1710 1711
			       uint32_t latency)
{
	uint32_t ret;

1712 1713
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1714 1715
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1716

1717
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1718
	ret = (ret + 1) * horiz_pixels * cpp;
1719 1720 1721 1722
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1723
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1724
			   uint8_t cpp)
1725
{
1726 1727 1728 1729 1730 1731
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1732
	if (WARN_ON(!cpp))
1733 1734 1735 1736
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1737
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1738 1739
}

1740
struct ilk_wm_maximums {
1741 1742 1743 1744 1745 1746
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1747 1748 1749 1750
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1751
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1752
				   const struct intel_plane_state *pstate,
1753 1754
				   uint32_t mem_value,
				   bool is_lp)
1755
{
1756 1757
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1758 1759
	uint32_t method1, method2;

1760
	if (!cstate->base.active || !pstate->visible)
1761 1762
		return 0;

1763
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1764 1765 1766 1767

	if (!is_lp)
		return method1;

1768 1769
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1770
				 drm_rect_width(&pstate->dst),
1771
				 cpp, mem_value);
1772 1773

	return min(method1, method2);
1774 1775
}

1776 1777 1778 1779
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1780
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1781
				   const struct intel_plane_state *pstate,
1782 1783
				   uint32_t mem_value)
{
1784 1785
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1786 1787
	uint32_t method1, method2;

1788
	if (!cstate->base.active || !pstate->visible)
1789 1790
		return 0;

1791
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1792 1793
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1794
				 drm_rect_width(&pstate->dst),
1795
				 cpp, mem_value);
1796 1797 1798
	return min(method1, method2);
}

1799 1800 1801 1802
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1803
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1804
				   const struct intel_plane_state *pstate,
1805 1806
				   uint32_t mem_value)
{
1807 1808 1809 1810 1811 1812 1813
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
	int width = pstate->visible ? pstate->base.crtc_w : 64;
1814

1815
	if (!cstate->base.active)
1816 1817
		return 0;

1818 1819
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1820
			      width, cpp, mem_value);
1821 1822
}

1823
/* Only for WM_LP. */
1824
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1825
				   const struct intel_plane_state *pstate,
1826
				   uint32_t pri_val)
1827
{
1828 1829
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1830

1831
	if (!cstate->base.active || !pstate->visible)
1832 1833
		return 0;

1834
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1835 1836
}

1837 1838
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1839 1840 1841
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1842 1843 1844 1845 1846
		return 768;
	else
		return 512;
}

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1881 1882 1883
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1884
				     const struct intel_wm_config *config,
1885 1886 1887 1888 1889 1890
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1891
	if (is_sprite && !config->sprites_enabled)
1892 1893 1894
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1895
	if (level == 0 || config->num_pipes_active > 1) {
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1907
	if (config->sprites_enabled) {
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1919
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1920 1921 1922 1923
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1924 1925
				      int level,
				      const struct intel_wm_config *config)
1926 1927
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1928
	if (level > 0 && config->num_pipes_active > 1)
1929 1930 1931
		return 64;

	/* otherwise just report max that registers can hold */
1932
	return ilk_cursor_wm_reg_max(dev, level);
1933 1934
}

1935
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1936 1937 1938
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1939
				    struct ilk_wm_maximums *max)
1940
{
1941 1942 1943
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1944
	max->fbc = ilk_fbc_wm_reg_max(dev);
1945 1946
}

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1957
static bool ilk_validate_wm_level(int level,
1958
				  const struct ilk_wm_maximums *max,
1959
				  struct intel_wm_level *result)
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1998
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1999
				 const struct intel_crtc *intel_crtc,
2000
				 int level,
2001
				 struct intel_crtc_state *cstate,
2002 2003 2004
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2005
				 struct intel_wm_level *result)
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2030 2031 2032
	result->enable = true;
}

2033
static uint32_t
2034
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2035
{
2036 2037
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2038 2039
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2040
	u32 linetime, ips_linetime;
2041

2042 2043 2044 2045
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2046
	if (WARN_ON(intel_state->cdclk == 0))
2047
		return 0;
2048

2049 2050 2051
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2052 2053 2054
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2055
					 intel_state->cdclk);
2056

2057 2058
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2059 2060
}

2061
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2062 2063 2064
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2065 2066
	if (IS_GEN9(dev)) {
		uint32_t val;
2067
		int ret, i;
2068
		int level, max_level = ilk_wm_max_level(dev);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2111
		/*
2112 2113
		 * WaWmMemoryReadLatency:skl
		 *
2114 2115 2116 2117 2118 2119 2120 2121
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2122 2123 2124 2125 2126
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2127 2128 2129 2130 2131
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2132 2133 2134
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2135

2136 2137
				break;
			}
2138
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2139 2140 2141 2142 2143
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2144 2145 2146 2147
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2148 2149 2150 2151 2152 2153 2154
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2155 2156 2157 2158 2159 2160 2161
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2162 2163 2164
	}
}

2165 2166 2167
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
2168
	if (IS_GEN5(dev))
2169 2170 2171 2172 2173 2174
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
2175
	if (IS_GEN5(dev))
2176 2177 2178 2179 2180 2181 2182
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2183
int ilk_wm_max_level(const struct drm_device *dev)
2184 2185
{
	/* how many WM levels are we expecting */
2186
	if (INTEL_INFO(dev)->gen >= 9)
2187 2188
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2189
		return 4;
2190
	else if (INTEL_INFO(dev)->gen >= 6)
2191
		return 3;
2192
	else
2193 2194
		return 2;
}
2195

2196 2197
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2198
				   const uint16_t wm[8])
2199 2200
{
	int level, max_level = ilk_wm_max_level(dev);
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2211 2212 2213 2214 2215 2216 2217
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2218 2219 2220 2221 2222 2223 2224 2225
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2263
static void ilk_setup_wm_latency(struct drm_device *dev)
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2276 2277 2278 2279

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2280 2281 2282

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2283 2284
}

2285 2286 2287 2288 2289 2290 2291 2292
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2316
/* Compute new watermarks for the pipe */
2317
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2318
{
2319 2320
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2321
	struct intel_pipe_wm *pipe_wm;
2322
	struct drm_device *dev = state->dev;
2323
	const struct drm_i915_private *dev_priv = dev->dev_private;
2324
	struct intel_plane *intel_plane;
2325
	struct intel_plane_state *pristate = NULL;
2326
	struct intel_plane_state *sprstate = NULL;
2327
	struct intel_plane_state *curstate = NULL;
2328
	int level, max_level = ilk_wm_max_level(dev), usable_level;
2329
	struct ilk_wm_maximums max;
2330

2331
	pipe_wm = &cstate->wm.ilk.optimal;
2332

2333
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2334 2335 2336 2337 2338 2339
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2340 2341

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2342
			pristate = ps;
2343
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2344
			sprstate = ps;
2345
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2346
			curstate = ps;
2347 2348
	}

2349
	pipe_wm->pipe_enabled = cstate->base.active;
2350 2351 2352 2353 2354 2355 2356
	if (sprstate) {
		pipe_wm->sprites_enabled = sprstate->visible;
		pipe_wm->sprites_scaled = sprstate->visible &&
			(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
			 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
	}

2357 2358
	usable_level = max_level;

2359
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2360
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2361
		usable_level = 1;
2362 2363

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2364
	if (pipe_wm->sprites_scaled)
2365
		usable_level = 0;
2366

2367
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2368 2369 2370 2371
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2372

2373
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2374
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2375

2376
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2377
		return -EINVAL;
2378 2379 2380 2381

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2382
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2383

2384
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2385
				     pristate, sprstate, curstate, wm);
2386 2387 2388 2389 2390 2391

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2392 2393 2394 2395 2396 2397
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2398
			usable_level = level;
2399 2400
	}

2401
	return 0;
2402 2403
}

2404 2405 2406 2407 2408 2409 2410 2411 2412
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2413
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2414 2415 2416 2417 2418 2419 2420 2421
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
	int level, max_level = ilk_wm_max_level(dev);

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2422
	*a = newstate->wm.ilk.optimal;
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2451
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2452 2453 2454 2455 2456
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2457 2458 2459 2460 2461 2462 2463 2464 2465
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2466 2467
	ret_wm->enable = true;

2468
	for_each_intel_crtc(dev, intel_crtc) {
2469
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2470 2471 2472 2473
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2474

2475 2476 2477 2478 2479
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2480
		if (!wm->enable)
2481
			ret_wm->enable = false;
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2494
			 const struct intel_wm_config *config,
2495
			 const struct ilk_wm_maximums *max,
2496 2497
			 struct intel_pipe_wm *merged)
{
2498
	struct drm_i915_private *dev_priv = dev->dev_private;
2499
	int level, max_level = ilk_wm_max_level(dev);
2500
	int last_enabled_level = max_level;
2501

2502 2503 2504
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
2505
		last_enabled_level = 0;
2506

2507 2508
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2509 2510 2511 2512 2513 2514 2515

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2516 2517 2518 2519 2520
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2521 2522 2523 2524 2525 2526

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2527 2528
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2529 2530 2531
			wm->fbc_val = 0;
		}
	}
2532 2533 2534 2535 2536 2537 2538

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2539
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2540
	    intel_fbc_is_active(dev_priv)) {
2541 2542 2543 2544 2545 2546
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2547 2548
}

2549 2550 2551 2552 2553 2554
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2555 2556 2557 2558 2559
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2560
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2561 2562 2563 2564 2565
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2566
static void ilk_compute_wm_results(struct drm_device *dev,
2567
				   const struct intel_pipe_wm *merged,
2568
				   enum intel_ddb_partitioning partitioning,
2569
				   struct ilk_wm_values *results)
2570
{
2571 2572
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2573

2574
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2575
	results->partitioning = partitioning;
2576

2577
	/* LP1+ register values */
2578
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2579
		const struct intel_wm_level *r;
2580

2581
		level = ilk_wm_lp_to_level(wm_lp, merged);
2582

2583
		r = &merged->wm[level];
2584

2585 2586 2587 2588 2589
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2590
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2591 2592 2593
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2594 2595 2596
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2597 2598 2599 2600 2601 2602 2603
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2604 2605 2606 2607
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2608 2609 2610 2611 2612
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2613
	}
2614

2615
	/* LP0 register values */
2616
	for_each_intel_crtc(dev, intel_crtc) {
2617
		enum pipe pipe = intel_crtc->pipe;
2618 2619
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2620 2621 2622 2623

		if (WARN_ON(!r->enable))
			continue;

2624
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2625

2626 2627 2628 2629
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2630 2631 2632
	}
}

2633 2634
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2635
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2636 2637
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2638
{
2639 2640
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2641

2642 2643 2644 2645 2646
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2647 2648
	}

2649 2650
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2651 2652 2653
			return r2;
		else
			return r1;
2654
	} else if (level1 > level2) {
2655 2656 2657 2658 2659 2660
		return r1;
	} else {
		return r2;
	}
}

2661 2662 2663 2664 2665 2666 2667 2668
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2669
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2670 2671
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2672 2673 2674 2675 2676
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2677
	for_each_pipe(dev_priv, pipe) {
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2721 2722
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2723
{
2724
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2725
	bool changed = false;
2726

2727 2728 2729
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2730
		changed = true;
2731 2732 2733 2734
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2735
		changed = true;
2736 2737 2738 2739
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2740
		changed = true;
2741
	}
2742

2743 2744 2745 2746
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2747

2748 2749 2750 2751 2752 2753 2754
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2755 2756
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2757 2758
{
	struct drm_device *dev = dev_priv->dev;
2759
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2760 2761 2762
	unsigned int dirty;
	uint32_t val;

2763
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2764 2765 2766 2767 2768
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2769
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2770
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2771
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2772
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2773
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2774 2775
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2776
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2777
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2778
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2779
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2780
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2781 2782
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2783
	if (dirty & WM_DIRTY_DDB) {
2784
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2799 2800
	}

2801
	if (dirty & WM_DIRTY_FBC) {
2802 2803 2804 2805 2806 2807 2808 2809
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2810 2811 2812 2813 2814
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2815 2816 2817 2818 2819
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2820

2821
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2822
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2823
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2824
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2825
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2826
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2827 2828

	dev_priv->wm.hw = *results;
2829 2830
}

2831
bool ilk_disable_lp_wm(struct drm_device *dev)
2832 2833 2834 2835 2836 2837
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2838 2839 2840 2841 2842 2843
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2844
#define BXT_DDB_SIZE		512
2845

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2868 2869
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2870
				   const struct intel_crtc_state *cstate,
2871 2872
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
2873
{
2874 2875 2876
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
2877
	struct drm_crtc *for_crtc = cstate->base.crtc;
2878 2879
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
2880 2881
	int pipe = to_intel_crtc(for_crtc)->pipe;

2882
	if (WARN_ON(!state) || !cstate->base.active) {
2883 2884
		alloc->start = 0;
		alloc->end = 0;
2885
		*num_active = hweight32(dev_priv->active_crtcs);
2886 2887 2888
		return;
	}

2889 2890 2891 2892 2893
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

2894 2895 2896 2897
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2898 2899 2900

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

2901
	/*
2902 2903 2904 2905 2906 2907
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
2908
	 */
2909 2910 2911
	if (!intel_state->active_pipe_changes) {
		*alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
		return;
2912
	}
2913 2914 2915 2916 2917 2918

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
2919 2920
}

2921
static unsigned int skl_cursor_allocation(int num_active)
2922
{
2923
	if (num_active == 1)
2924 2925 2926 2927 2928
		return 32;

	return 8;
}

2929 2930 2931 2932
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2933 2934
	if (entry->end)
		entry->end += 1;
2935 2936
}

2937 2938
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2939 2940 2941 2942 2943
{
	enum pipe pipe;
	int plane;
	u32 val;

2944 2945
	memset(ddb, 0, sizeof(*ddb));

2946
	for_each_pipe(dev_priv, pipe) {
2947 2948 2949 2950
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2951 2952
			continue;

2953
		for_each_plane(dev_priv, pipe, plane) {
2954 2955 2956 2957 2958 2959
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2960 2961
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2962 2963

		intel_display_power_put(dev_priv, power_domain);
2964 2965 2966
	}
}

2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

	if (WARN_ON(!pstate->visible))
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
	src_w = drm_rect_width(&pstate->src);
	src_h = drm_rect_height(&pstate->src);
	dst_w = drm_rect_width(&pstate->dst);
	dst_h = drm_rect_height(&pstate->dst);
	if (intel_rotation_90_or_270(pstate->base.rotation))
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3007
static unsigned int
3008 3009 3010
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3011
{
3012
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3013
	struct drm_framebuffer *fb = pstate->fb;
3014
	uint32_t down_scale_amount, data_rate;
3015
	uint32_t width = 0, height = 0;
3016 3017 3018 3019 3020 3021 3022 3023
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

	if (!intel_pstate->visible)
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3024 3025 3026 3027 3028 3029

	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(width, height);
3030 3031

	/* for planar format */
3032
	if (format == DRM_FORMAT_NV12) {
3033
		if (y)  /* y-plane data rate */
3034
			data_rate = width * height *
3035
				drm_format_plane_cpp(format, 0);
3036
		else    /* uv-plane data rate */
3037
			data_rate = (width / 2) * (height / 2) *
3038
				drm_format_plane_cpp(format, 1);
3039 3040 3041
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3042 3043
	}

3044 3045 3046
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3047 3048 3049 3050 3051 3052 3053 3054
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3055
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3056
{
3057 3058 3059 3060 3061
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_crtc *crtc = cstate->crtc;
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3062
	const struct drm_plane *plane;
3063
	const struct intel_plane *intel_plane;
3064
	struct drm_plane_state *pstate;
3065
	unsigned int rate, total_data_rate = 0;
3066
	int id;
3067 3068 3069 3070
	int i;

	if (WARN_ON(!state))
		return 0;
3071

3072
	/* Calculate and cache data rate for each plane */
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
	for_each_plane_in_state(state, plane, pstate, i) {
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		if (intel_plane->pipe != intel_crtc->pipe)
			continue;

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
		intel_cstate->wm.skl.plane_data_rate[id] = rate;

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
		intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3089
	}
3090

3091 3092 3093
	/* Calculate CRTC's total data rate from cached values */
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int id = skl_wm_plane_id(intel_plane);
3094

3095
		/* packed/uv */
3096 3097
		total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
		total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3098 3099
	}

3100 3101
	WARN_ON(cstate->plane_mask && total_data_rate == 0);

3102 3103 3104
	return total_data_rate;
}

3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

	src_w = drm_rect_width(&intel_pstate->src) >> 16;
	src_h = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

	if (intel_rotation_90_or_270(pstate->rotation)) {
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3168
static int
3169
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3170 3171
		      struct skl_ddb_allocation *ddb /* out */)
{
3172
	struct drm_atomic_state *state = cstate->base.state;
3173
	struct drm_crtc *crtc = cstate->base.crtc;
3174 3175
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3176
	struct intel_plane *intel_plane;
3177 3178
	struct drm_plane *plane;
	struct drm_plane_state *pstate;
3179
	enum pipe pipe = intel_crtc->pipe;
3180
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3181
	uint16_t alloc_size, start, cursor_blocks;
3182 3183
	uint16_t *minimum = cstate->wm.skl.minimum_blocks;
	uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3184
	unsigned int total_data_rate;
3185 3186
	int num_active;
	int id, i;
3187

3188 3189 3190
	if (WARN_ON(!state))
		return 0;

3191 3192 3193 3194 3195 3196 3197
	if (!cstate->base.active) {
		ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
		return 0;
	}

3198
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3199
	alloc_size = skl_ddb_entry_size(alloc);
3200 3201
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3202
		return 0;
3203 3204
	}

3205
	cursor_blocks = skl_cursor_allocation(num_active);
3206 3207
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3208 3209 3210

	alloc_size -= cursor_blocks;

3211
	/* 1. Allocate the mininum required blocks for each active plane */
3212 3213 3214
	for_each_plane_in_state(state, plane, pstate, i) {
		intel_plane = to_intel_plane(plane);
		id = skl_wm_plane_id(intel_plane);
3215

3216 3217
		if (intel_plane->pipe != pipe)
			continue;
3218

3219 3220 3221 3222 3223 3224 3225 3226 3227
		if (!to_intel_plane_state(pstate)->visible) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
		}
		if (plane->type == DRM_PLANE_TYPE_CURSOR) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
3228
		}
3229

3230 3231
		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3232
	}
3233

3234 3235 3236
	for (i = 0; i < PLANE_CURSOR; i++) {
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3237 3238
	}

3239
	/*
3240 3241
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3242 3243 3244
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3245
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3246
	if (total_data_rate == 0)
3247
		return 0;
3248

3249
	start = alloc->start;
3250
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3251 3252
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3253
		int id = skl_wm_plane_id(intel_plane);
3254

3255
		data_rate = cstate->wm.skl.plane_data_rate[id];
3256 3257

		/*
3258
		 * allocation for (packed formats) or (uv-plane part of planar format):
3259 3260 3261
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3262
		plane_blocks = minimum[id];
3263 3264
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3265

3266 3267 3268 3269 3270
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3271 3272

		start += plane_blocks;
3273 3274 3275 3276

		/*
		 * allocation for y_plane part of planar format:
		 */
3277 3278 3279 3280 3281
		y_data_rate = cstate->wm.skl.plane_y_data_rate[id];

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3282

3283 3284 3285 3286
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3287 3288

		start += y_plane_blocks;
3289 3290
	}

3291
	return 0;
3292 3293
}

3294
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3295 3296
{
	/* TODO: Take into account the scalers once we support them */
3297
	return config->base.adjusted_mode.crtc_clock;
3298 3299 3300 3301
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3302
 * for the read latency) and cpp should always be <= 8, so that
3303 3304 3305
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3306
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3307 3308 3309 3310 3311 3312
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3313
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3314 3315 3316 3317 3318 3319
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3320
			       uint32_t horiz_pixels, uint8_t cpp,
3321
			       uint64_t tiling, uint32_t latency)
3322
{
3323 3324 3325
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3326 3327 3328 3329

	if (latency == 0)
		return UINT_MAX;

3330
	plane_bytes_per_line = horiz_pixels * cpp;
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3341 3342
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3343
				plane_blocks_per_line;
3344 3345 3346 3347

	return ret;
}

3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
	if (WARN_ON(!pstate->visible))
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
	adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3372 3373 3374 3375 3376 3377 3378 3379
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3380
{
3381 3382
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3383 3384 3385 3386 3387
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3388
	uint8_t cpp;
3389
	uint32_t width = 0, height = 0;
3390
	uint32_t plane_pixel_rate;
3391

3392 3393 3394 3395
	if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
		*enabled = false;
		return 0;
	}
3396

3397 3398 3399
	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

3400
	if (intel_rotation_90_or_270(pstate->rotation))
3401 3402
		swap(width, height);

3403
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3404 3405 3406 3407
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3408
				 cstate->base.adjusted_mode.crtc_htotal,
3409 3410 3411
				 width,
				 cpp,
				 fb->modifier[0],
3412
				 latency);
3413

3414
	plane_bytes_per_line = width * cpp;
3415
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3416

3417 3418
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3419 3420
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3421
		if (intel_rotation_90_or_270(pstate->rotation)) {
3422
			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3423 3424 3425
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

3426
			switch (cpp) {
3427 3428 3429 3430 3431 3432 3433 3434
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3435
			}
3436 3437
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3438 3439 3440 3441 3442 3443 3444
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3445

3446 3447
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3448

3449
	if (level >= 1 && level <= 7) {
3450 3451
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3452 3453 3454 3455
			res_lines += 4;
		else
			res_blocks++;
	}
3456

3457 3458
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3475
	}
3476 3477 3478

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3479
	*enabled = true;
3480

3481
	return 0;
3482 3483
}

3484 3485 3486 3487 3488 3489
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
		     int level,
		     struct skl_wm_level *result)
3490
{
3491
	struct drm_device *dev = dev_priv->dev;
3492
	struct drm_atomic_state *state = cstate->base.state;
3493
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3494
	struct drm_plane *plane;
3495
	struct intel_plane *intel_plane;
3496
	struct intel_plane_state *intel_pstate;
3497
	uint16_t ddb_blocks;
3498
	enum pipe pipe = intel_crtc->pipe;
3499
	int ret;
3500

3501 3502 3503 3504 3505 3506 3507
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(result, 0, sizeof(*result));

	for_each_intel_plane_mask(dev, intel_plane, cstate->base.plane_mask) {
3508
		int i = skl_wm_plane_id(intel_plane);
3509

3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
		plane = &intel_plane->base;
		intel_pstate = NULL;
		if (state)
			intel_pstate =
				intel_atomic_get_existing_plane_state(state,
								      intel_plane);

		/*
		 * Note: If we start supporting multiple pending atomic commits
		 * against the same planes/CRTC's in the future, plane->state
		 * will no longer be the correct pre-state to use for the
		 * calculations here and we'll need to change where we get the
		 * 'unchanged' plane data from.
		 *
		 * For now this is fine because we only allow one queued commit
		 * against a CRTC.  Even if the plane isn't modified by this
		 * transaction and we don't have a plane lock, we still have
		 * the CRTC's lock, so we know that no other transactions are
		 * racing with us to update it.
		 */
		if (!intel_pstate)
			intel_pstate = to_intel_plane_state(plane->state);

		WARN_ON(!intel_pstate->base.fb);

3535 3536
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
					   ddb_blocks,
					   level,
					   &result->plane_res_b[i],
					   &result->plane_res_l[i],
					   &result->plane_en[i]);
		if (ret)
			return ret;
3547
	}
3548 3549

	return 0;
3550 3551
}

3552
static uint32_t
3553
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3554
{
3555
	if (!cstate->base.active)
3556 3557
		return 0;

3558
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3559
		return 0;
3560

3561 3562
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3563 3564
}

3565
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3566
				      struct skl_wm_level *trans_wm /* out */)
3567
{
3568
	struct drm_crtc *crtc = cstate->base.crtc;
3569
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3570
	struct intel_plane *intel_plane;
3571

3572
	if (!cstate->base.active)
3573
		return;
3574 3575

	/* Until we know more, just disable transition WMs */
3576 3577 3578
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3579
		trans_wm->plane_en[i] = false;
3580
	}
3581 3582
}

3583 3584 3585
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3586
{
3587
	struct drm_device *dev = cstate->base.crtc->dev;
3588 3589
	const struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);
3590
	int ret;
3591 3592

	for (level = 0; level <= max_level; level++) {
3593 3594 3595 3596
		ret = skl_compute_wm_level(dev_priv, ddb, cstate,
					   level, &pipe_wm->wm[level]);
		if (ret)
			return ret;
3597
	}
3598
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3599

3600
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3601 3602

	return 0;
3603 3604 3605 3606 3607 3608 3609 3610 3611
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3612 3613
	uint32_t temp;
	int i;
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3630 3631
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3632

3633
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3634 3635
			temp |= PLANE_WM_EN;

3636
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3637 3638 3639

	}

3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3652 3653 3654
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3655 3656
		temp |= PLANE_WM_EN;

3657
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3658

3659 3660 3661
	r->wm_linetime[pipe] = p_wm->linetime;
}

3662 3663
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3664 3665 3666 3667 3668 3669 3670 3671
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3672 3673 3674 3675 3676 3677
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

3678
	for_each_intel_crtc(dev, crtc) {
3679 3680 3681
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3682
		if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3683
			continue;
3684 3685
		if (!crtc->active)
			continue;
3686

3687
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3688

3689 3690 3691 3692 3693
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3694
				   new->plane[pipe][PLANE_CURSOR][level]);
3695
		}
3696 3697 3698
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3699 3700
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3701

3702
		for (i = 0; i < intel_num_planes(crtc); i++) {
3703 3704 3705
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3706 3707 3708 3709
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3710 3711

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3712
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3713 3714 3715
	}
}

3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3740 3741
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3742 3743 3744
{
	int plane;

3745 3746
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3747
	for_each_plane(dev_priv, pipe, plane) {
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3774
	bool reallocated[I915_MAX_PIPES] = {};
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3797
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3822
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3823
			intel_wait_for_vblank(dev, pipe);
3824
			reallocated[pipe] = true;
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3847
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3848 3849 3850
	}
}

3851 3852 3853 3854
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
			      struct skl_ddb_allocation *ddb, /* out */
			      struct skl_pipe_wm *pipe_wm, /* out */
			      bool *changed /* out */)
3855
{
3856 3857
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3858
	int ret;
3859

3860 3861 3862
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3863

3864
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3865 3866 3867
		*changed = false;
	else
		*changed = true;
3868

3869
	return 0;
3870 3871
}

3872 3873 3874 3875 3876 3877 3878
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
3879
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
	unsigned realloc_pipes = dev_priv->active_crtcs;
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm)
		intel_state->active_pipe_changes = ~0;

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
3905
	if (intel_state->active_pipe_changes) {
3906
		realloc_pipes = ~0;
3907 3908
		intel_state->wm_results.dirty_pipes = ~0;
	}
3909 3910 3911 3912 3913 3914 3915 3916

	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

3917
		ret = skl_allocate_pipe_ddb(cstate, ddb);
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
		if (ret)
			return ret;
	}

	return 0;
}

static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
3930 3931 3932
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
3933
	bool changed = false;
3934
	int ret, i;
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

3949 3950 3951
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

3952 3953 3954 3955
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);

		pipe_wm = &intel_cstate->wm.skl.optimal;
		ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
					 &changed);
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
		skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
	}

3988 3989 3990
	return 0;
}

3991 3992 3993 3994 3995 3996
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3997
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3998
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
3999

4000
	if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4001 4002
		return;

4003 4004 4005
	intel_crtc->wm.active.skl = *pipe_wm;

	mutex_lock(&dev_priv->wm.wm_mutex);
4006 4007

	skl_write_wm_values(dev_priv, results);
4008
	skl_flush_wm_values(dev_priv, results);
4009 4010 4011

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
4012 4013

	mutex_unlock(&dev_priv->wm.wm_mutex);
4014 4015
}

4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4034
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4035
{
4036
	struct drm_device *dev = dev_priv->dev;
4037
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4038
	struct ilk_wm_maximums max;
4039
	struct intel_wm_config config = {};
4040
	struct ilk_wm_values results = {};
4041
	enum intel_ddb_partitioning partitioning;
4042

4043 4044 4045 4046
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4047 4048

	/* 5/6 split only in single pipe config on IVB+ */
4049
	if (INTEL_INFO(dev)->gen >= 7 &&
4050 4051 4052
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4053

4054
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4055
	} else {
4056
		best_lp_wm = &lp_wm_1_2;
4057 4058
	}

4059
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4060
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4061

4062
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4063

4064
	ilk_write_wm_values(dev_priv, &results);
4065 4066
}

4067
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4068
{
4069 4070
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4071

4072
	mutex_lock(&dev_priv->wm.wm_mutex);
4073
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4074 4075 4076
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4077

4078 4079 4080 4081
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4082

4083 4084
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4085
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4086 4087 4088
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4089 4090
}

4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4109 4110
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
4111
					val & PLANE_WM_BLOCKS_MASK;
4112
			active->wm[level].plane_res_l[PLANE_CURSOR] =
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4125 4126
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
4127
					val & PLANE_WM_BLOCKS_MASK;
4128
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4141
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4142
	struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
4155
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4156 4157 4158 4159
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4160
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4161

4162
	if (!intel_crtc->active)
4163 4164
		return;

4165
	hw->dirty_pipes |= drm_crtc_mask(crtc);
4166 4167 4168 4169 4170 4171 4172 4173 4174

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
4175
		temp = hw->plane[pipe][PLANE_CURSOR][level];
4176 4177 4178 4179 4180 4181 4182 4183
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

4184
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
4185
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4186 4187

	intel_crtc->wm.active.skl = *active;
4188 4189 4190 4191
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4192 4193
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4194 4195
	struct drm_crtc *crtc;

4196
	skl_ddb_get_hw_state(dev_priv, ddb);
4197 4198
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
4199

4200 4201 4202 4203 4204 4205 4206
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4207 4208
}

4209 4210 4211 4212
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
4213
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4214
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4215
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4216
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4217
	enum pipe pipe = intel_crtc->pipe;
4218
	static const i915_reg_t wm0_pipe_reg[] = {
4219 4220 4221 4222 4223 4224
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4225
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4226
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4227

4228 4229
	memset(active, 0, sizeof(*active));

4230
	active->pipe_enabled = intel_crtc->active;
4231 4232

	if (active->pipe_enabled) {
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4257 4258

	intel_crtc->wm.active.ilk = *active;
4259 4260
}

4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4378 4379 4380 4381 4382 4383 4384 4385 4386
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4387
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4414 4415 4416
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4417
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4418 4419
	struct drm_crtc *crtc;

4420
	for_each_crtc(dev, crtc)
4421 4422 4423 4424 4425 4426 4427
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4428 4429 4430 4431
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4432

4433
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4434 4435 4436 4437 4438
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4439 4440 4441 4442 4443

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4476
void intel_update_watermarks(struct drm_crtc *crtc)
4477
{
4478
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4479 4480

	if (dev_priv->display.update_wm)
4481
		dev_priv->display.update_wm(crtc);
4482 4483
}

4484
/*
4485 4486 4487 4488 4489 4490 4491 4492
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4493
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4494 4495 4496
{
	u16 rgvswctl;

4497 4498
	assert_spin_locked(&mchdev_lock);

4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4516
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4517
{
4518
	u32 rgvmodectl;
4519 4520
	u8 fmax, fmin, fstart, vstart;

4521 4522
	spin_lock_irq(&mchdev_lock);

4523 4524
	rgvmodectl = I915_READ(MEMMODECTL);

4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4545
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4546 4547
		PXVFREQ_PX_SHIFT;

4548 4549
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4550

4551 4552 4553
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4570
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4571
		DRM_ERROR("stuck trying to change perf mode\n");
4572
	mdelay(1);
4573

4574
	ironlake_set_drps(dev_priv, fstart);
4575

4576 4577
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4578
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4579
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4580
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4581 4582

	spin_unlock_irq(&mchdev_lock);
4583 4584
}

4585
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4586
{
4587 4588 4589 4590 4591
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4592 4593 4594 4595 4596 4597 4598 4599 4600

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4601
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4602
	mdelay(1);
4603 4604
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4605
	mdelay(1);
4606

4607
	spin_unlock_irq(&mchdev_lock);
4608 4609
}

4610 4611 4612 4613 4614
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4615
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4616
{
4617
	u32 limits;
4618

4619 4620 4621 4622 4623 4624
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4625
	if (IS_GEN9(dev_priv)) {
4626 4627 4628 4629 4630 4631 4632 4633
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4634 4635 4636 4637

	return limits;
}

4638 4639 4640
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4641 4642
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4643 4644 4645 4646

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4647
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4648 4649 4650 4651
			new_power = BETWEEN;
		break;

	case BETWEEN:
4652
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4653
			new_power = LOW_POWER;
4654
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4655 4656 4657 4658
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4659
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4660 4661 4662 4663
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4664
	if (val <= dev_priv->rps.min_freq_softlimit)
4665
		new_power = LOW_POWER;
4666
	if (val >= dev_priv->rps.max_freq_softlimit)
4667 4668 4669 4670 4671 4672 4673 4674
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4675 4676
		ei_up = 16000;
		threshold_up = 95;
4677 4678

		/* Downclock if less than 85% busy over 32ms */
4679 4680
		ei_down = 32000;
		threshold_down = 85;
4681 4682 4683 4684
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4685 4686
		ei_up = 13000;
		threshold_up = 90;
4687 4688

		/* Downclock if less than 75% busy over 32ms */
4689 4690
		ei_down = 32000;
		threshold_down = 75;
4691 4692 4693 4694
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4695 4696
		ei_up = 10000;
		threshold_up = 85;
4697 4698

		/* Downclock if less than 60% busy over 32ms */
4699 4700
		ei_down = 32000;
		threshold_down = 60;
4701 4702 4703
		break;
	}

4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

4722
	dev_priv->rps.power = new_power;
4723 4724
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4725 4726 4727
	dev_priv->rps.last_adj = 0;
}

4728 4729 4730 4731 4732
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4733
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4734
	if (val < dev_priv->rps.max_freq_softlimit)
4735
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4736

4737 4738
	mask &= dev_priv->pm_rps_events;

4739
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4740 4741
}

4742 4743 4744
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4745
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4746
{
4747
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4748
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4749 4750
		return;

4751
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4752 4753
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4754

C
Chris Wilson 已提交
4755 4756 4757 4758 4759
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4760

4761
		if (IS_GEN9(dev_priv))
4762 4763
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4764
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4765 4766 4767 4768 4769 4770 4771
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4772
	}
4773 4774 4775 4776

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4777
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4778
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4779

4780 4781
	POSTING_READ(GEN6_RPNSWREQ);

4782
	dev_priv->rps.cur_freq = val;
4783
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4784 4785
}

4786
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4787 4788
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4789 4790
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4791

4792
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4793 4794 4795
		      "Odd GPU freq value\n"))
		val &= ~1;

4796 4797
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4798
	if (val != dev_priv->rps.cur_freq) {
4799
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4800 4801 4802
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4803 4804 4805 4806 4807

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4808
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4809 4810
 *
 * * If Gfx is Idle, then
4811 4812 4813
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4814 4815 4816
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4817
	u32 val = dev_priv->rps.idle_freq;
4818

4819
	if (dev_priv->rps.cur_freq <= val)
4820 4821
		return;

4822 4823 4824
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4825
	valleyview_set_rps(dev_priv, val);
4826
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4827 4828
}

4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4841 4842 4843
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
4844
	if (dev_priv->rps.enabled) {
4845
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4846
			vlv_set_rps_idle(dev_priv);
4847
		else
4848
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4849
		dev_priv->rps.last_adj = 0;
4850
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4851
	}
4852
	mutex_unlock(&dev_priv->rps.hw_lock);
4853

4854
	spin_lock(&dev_priv->rps.client_lock);
4855 4856
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4857
	spin_unlock(&dev_priv->rps.client_lock);
4858 4859
}

4860
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4861 4862
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4863
{
4864 4865 4866 4867 4868 4869 4870
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
	if (!(dev_priv->mm.busy &&
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4871

4872 4873 4874
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4875
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4876 4877
		rps = NULL;

4878 4879 4880 4881 4882 4883 4884 4885
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4886

4887 4888 4889
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4890 4891
		} else
			dev_priv->rps.boosts++;
4892
	}
4893
	spin_unlock(&dev_priv->rps.client_lock);
4894 4895
}

4896
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4897
{
4898 4899
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
4900
	else
4901
		gen6_set_rps(dev_priv, val);
4902 4903
}

4904
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
4905 4906
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
4907
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4908 4909
}

4910
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4911 4912 4913 4914
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

4915
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4916 4917
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
4918
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4919
	I915_WRITE(GEN6_RP_CONTROL, 0);
4920 4921
}

4922
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4923 4924 4925 4926
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4927
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4928
{
4929 4930
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4931
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4932

4933
	I915_WRITE(GEN6_RC_CONTROL, 0);
4934

4935
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4936 4937
}

4938
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
4939
{
4940
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4941 4942 4943 4944 4945
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4946
	if (HAS_RC6p(dev_priv))
4947
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4948 4949 4950
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4951 4952 4953

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4954
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
4955 4956
}

4957
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
4958
{
4959
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
		DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4973 4974 4975
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
		DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
		DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
		enable_rc6 = false;
	}

	if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
					    GEN6_RC_CTL_HW_ENABLE)) &&
	    ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
	     !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
		DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
		enable_rc6 = false;
	}

	return enable_rc6;
}

4999
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5000
{
5001
	/* No RC6 before Ironlake and code is gone for ilk. */
5002
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5003 5004
		return 0;

5005 5006 5007
	if (!enable_rc6)
		return 0;

5008
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5009 5010 5011 5012
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5013
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5014 5015 5016
	if (enable_rc6 >= 0) {
		int mask;

5017
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5018 5019 5020 5021 5022 5023
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5024 5025
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5026 5027 5028

		return enable_rc6 & mask;
	}
5029

5030
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5031
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5032 5033

	return INTEL_RC6_ENABLE;
5034 5035
}

5036
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5037
{
5038 5039 5040 5041
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

5042 5043
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
5044
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5045
	if (IS_BROXTON(dev_priv)) {
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

5057 5058 5059
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

5060
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5061 5062
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5063 5064 5065 5066 5067
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
5068 5069 5070 5071
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5072 5073
	}

5074
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5075 5076 5077 5078 5079 5080 5081 5082 5083
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

5084 5085
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5086 5087 5088 5089
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

5090
	if (dev_priv->rps.min_freq_softlimit == 0) {
5091
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5092
			dev_priv->rps.min_freq_softlimit =
5093 5094
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
5095 5096 5097 5098
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
5099 5100
}

J
Jesse Barnes 已提交
5101
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5102
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5103 5104 5105
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5106
	gen6_init_rps_frequencies(dev_priv);
5107

5108
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5109
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5110 5111 5112 5113 5114 5115 5116 5117 5118
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5119
		gen9_disable_rps(dev_priv);
5120 5121 5122 5123
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5124 5125 5126 5127 5128 5129 5130 5131
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5132 5133
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5134 5135 5136 5137
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5138
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
J
Jesse Barnes 已提交
5139 5140 5141 5142

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5143
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5144
{
5145
	struct intel_engine_cs *engine;
Z
Zhe Wang 已提交
5146 5147 5148 5149 5150 5151 5152
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5153
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5154 5155 5156 5157 5158

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5159 5160

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5161
	if (IS_SKYLAKE(dev_priv))
5162 5163 5164
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5165 5166
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5167
	for_each_engine(engine, dev_priv)
5168
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5169

5170
	if (HAS_GUC(dev_priv))
5171 5172
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5173 5174
	I915_WRITE(GEN6_RC_SLEEP, 0);

5175 5176 5177 5178
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5179
	/* 3a: Enable RC6 */
5180
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5181
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5182
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5183
	/* WaRsUseTimeoutMode */
5184 5185
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5186
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5187 5188 5189
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5190 5191
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5192 5193 5194
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5195
	}
Z
Zhe Wang 已提交
5196

5197 5198
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5199
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5200
	 */
5201
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5202 5203 5204 5205
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5206

5207
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5208 5209
}

5210
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5211
{
5212
	struct intel_engine_cs *engine;
5213
	uint32_t rc6_mask = 0;
5214 5215 5216 5217 5218 5219

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5220
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5221 5222 5223 5224

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5225
	/* Initialize rps frequencies */
5226
	gen6_init_rps_frequencies(dev_priv);
5227 5228 5229 5230 5231

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5232
	for_each_engine(engine, dev_priv)
5233
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5234
	I915_WRITE(GEN6_RC_SLEEP, 0);
5235
	if (IS_BROADWELL(dev_priv))
5236 5237 5238
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5239 5240

	/* 3: Enable RC6 */
5241
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5242
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5243 5244
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5245 5246 5247 5248 5249 5250 5251
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5252 5253

	/* 4 Program defaults and thresholds for RPS*/
5254 5255 5256 5257
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5272 5273

	/* 5: Enable RPS */
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5284
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5285
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5286

5287
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5288 5289
}

5290
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5291
{
5292
	struct intel_engine_cs *engine;
5293
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5294 5295
	u32 gtfifodbg;
	int rc6_mode;
5296
	int ret;
5297

5298
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5299

5300 5301 5302 5303 5304 5305 5306 5307 5308
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5309 5310
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5311 5312 5313 5314
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5315
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5316

5317
	/* Initialize rps frequencies */
5318
	gen6_init_rps_frequencies(dev_priv);
J
Jeff McGee 已提交
5319

5320 5321 5322 5323 5324 5325 5326 5327 5328
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5329
	for_each_engine(engine, dev_priv)
5330
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5331 5332 5333

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5334
	if (IS_IVYBRIDGE(dev_priv))
5335 5336 5337
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5338
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5339 5340
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5341
	/* Check if we are enabling RC6 */
5342
	rc6_mode = intel_enable_rc6();
5343 5344 5345
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5346
	/* We don't use those on Haswell */
5347
	if (!IS_HASWELL(dev_priv)) {
5348 5349
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5350

5351 5352 5353
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5354

5355
	intel_print_rc6_info(dev_priv, rc6_mask);
5356 5357 5358 5359 5360 5361

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5362 5363
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5364 5365
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
5366
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5367
	if (ret)
B
Ben Widawsky 已提交
5368
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5369 5370 5371 5372

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5373
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5374
				 (pcu_mbox & 0xff) * 50);
5375
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5376 5377
	}

5378
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5379
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5380

5381 5382
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5383
	if (IS_GEN6(dev_priv) && ret) {
5384
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5385
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5386 5387 5388 5389 5390 5391 5392 5393 5394
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5395
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5396 5397
}

5398
static void __gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5399 5400
{
	int min_freq = 15;
5401 5402
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5403
	unsigned int max_gpu_freq, min_gpu_freq;
5404
	int scaling_factor = 180;
5405
	struct cpufreq_policy *policy;
5406

5407
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5408

5409 5410 5411 5412 5413 5414 5415 5416 5417
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5418
		max_ia_freq = tsc_khz;
5419
	}
5420 5421 5422 5423

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5424
	min_ring_freq = I915_READ(DCLK) & 0xf;
5425 5426
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5427

5428
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5429 5430 5431 5432 5433 5434 5435 5436
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5437 5438 5439 5440 5441
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5442 5443
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5444 5445
		unsigned int ia_freq = 0, ring_freq = 0;

5446
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5447 5448 5449 5450 5451
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5452
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5453 5454
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5455
		} else if (IS_HASWELL(dev_priv)) {
5456
			ring_freq = mult_frac(gpu_freq, 5, 4);
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5473

B
Ben Widawsky 已提交
5474 5475
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5476 5477 5478
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5479 5480 5481
	}
}

5482
void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5483
{
5484
	if (!HAS_CORE_RING_FREQ(dev_priv))
5485 5486 5487
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
5488
	__gen6_update_ring_freq(dev_priv);
5489 5490 5491
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5492
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5493 5494 5495
{
	u32 val, rp0;

5496
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5497

5498
	switch (INTEL_INFO(dev_priv)->eu_total) {
5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5513
	}
5514 5515 5516

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5530 5531 5532 5533
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5534 5535 5536
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5537 5538 5539
	return rp1;
}

5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5551
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5552 5553 5554
{
	u32 val, rp0;

5555
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5568
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5569
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5570
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5571 5572 5573 5574 5575
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5576
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5577
{
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5589 5590
}

5591 5592 5593 5594 5595 5596 5597 5598 5599
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5600 5601 5602 5603 5604 5605 5606 5607 5608

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5609
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5610
{
5611
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5612
	unsigned long pctx_paddr, paddr;
5613 5614 5615 5616 5617
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5618
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5619
		paddr = (dev_priv->mm.stolen_base +
5620
			 (ggtt->stolen_size - pctx_size));
5621 5622 5623 5624

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5625 5626

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5627 5628
}

5629
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5630 5631 5632 5633 5634 5635
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5636
	mutex_lock(&dev_priv->dev->struct_mutex);
5637

5638 5639 5640 5641 5642 5643 5644 5645
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5646
								      I915_GTT_OFFSET_NONE,
5647 5648 5649 5650
								      pctx_size);
		goto out;
	}

5651 5652
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5653 5654 5655 5656 5657 5658 5659 5660
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5661
	pctx = i915_gem_object_create_stolen(dev_priv->dev, pctx_size);
5662 5663
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5664
		goto out;
5665 5666 5667 5668 5669 5670
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5671
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5672
	dev_priv->vlv_pctx = pctx;
5673
	mutex_unlock(&dev_priv->dev->struct_mutex);
5674 5675
}

5676
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5677 5678 5679 5680
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

5681
	drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5682 5683 5684
	dev_priv->vlv_pctx = NULL;
}

5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5696
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5697
{
5698
	u32 val;
5699

5700
	valleyview_setup_pctx(dev_priv);
5701

5702 5703
	vlv_init_gpll_ref_freq(dev_priv);

5704 5705
	mutex_lock(&dev_priv->rps.hw_lock);

5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5719
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5720

5721 5722 5723
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5724
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5725 5726 5727 5728
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5729
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5730 5731
			 dev_priv->rps.efficient_freq);

5732 5733
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5734
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5735 5736
			 dev_priv->rps.rp1_freq);

5737 5738
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5739
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5740 5741
			 dev_priv->rps.min_freq);

5742 5743
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5754
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5755
{
5756
	u32 val;
5757

5758
	cherryview_setup_pctx(dev_priv);
5759

5760 5761
	vlv_init_gpll_ref_freq(dev_priv);

5762 5763
	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5764
	mutex_lock(&dev_priv->sb_lock);
5765
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5766
	mutex_unlock(&dev_priv->sb_lock);
5767

5768 5769 5770 5771
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5772
	default:
5773 5774 5775
		dev_priv->mem_freq = 1600;
		break;
	}
5776
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5777

5778 5779 5780
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5781
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5782 5783 5784 5785
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5786
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5787 5788
			 dev_priv->rps.efficient_freq);

5789 5790
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5791
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5792 5793
			 dev_priv->rps.rp1_freq);

5794 5795
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5796
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5797
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5798 5799
			 dev_priv->rps.min_freq);

5800 5801 5802 5803 5804 5805
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5806 5807
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5808 5809 5810 5811 5812 5813 5814 5815
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5816 5817
}

5818
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5819
{
5820
	valleyview_cleanup_pctx(dev_priv);
5821 5822
}

5823
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5824
{
5825
	struct intel_engine_cs *engine;
5826
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5827 5828 5829

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5830 5831
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5842
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5843

5844 5845 5846
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5847 5848 5849 5850 5851
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

5852
	for_each_engine(engine, dev_priv)
5853
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5854 5855
	I915_WRITE(GEN6_RC_SLEEP, 0);

5856 5857
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
5869 5870
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
5871
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5872 5873 5874

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5875
	/* 4 Program defaults and thresholds for RPS*/
5876
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5877 5878 5879 5880 5881 5882 5883 5884 5885 5886
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5887
		   GEN6_RP_MEDIA_IS_GFX |
5888 5889 5890 5891
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5892 5893 5894 5895 5896 5897
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5898 5899
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5900 5901 5902
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5903
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5904 5905 5906 5907
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5908
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5909 5910 5911
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5912 5913
			 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
			 dev_priv->rps.idle_freq);
5914

5915
	valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5916

5917
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5918 5919
}

5920
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5921
{
5922
	struct intel_engine_cs *engine;
5923
	u32 gtfifodbg, val, rc6_mode = 0;
5924 5925 5926

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5927 5928
	valleyview_check_pctx(dev_priv);

5929 5930
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5931 5932
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5933 5934 5935
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5936
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5937
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5938

5939 5940 5941
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5942
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5962
	for_each_engine(engine, dev_priv)
5963
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5964

5965
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5966 5967

	/* allows RC6 residency counter to work */
5968
	I915_WRITE(VLV_COUNTER_CONTROL,
5969 5970
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5971 5972
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5973

5974
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5975
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5976

5977
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
5978

5979
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5980

D
Deepak S 已提交
5981 5982 5983 5984 5985 5986
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5987
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5988

5989 5990 5991
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5992
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5993 5994
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5995
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5996
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5997
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5998
			 dev_priv->rps.cur_freq);
5999

6000
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6001 6002
			 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
			 dev_priv->rps.idle_freq);
6003

6004
	valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
6005

6006
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6007 6008
}

6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6038
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6039 6040 6041 6042 6043 6044
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6045 6046
	assert_spin_locked(&mchdev_lock);

6047
	diff1 = now - dev_priv->ips.last_time1;
6048 6049 6050 6051 6052 6053 6054

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6055
		return dev_priv->ips.chipset_power;
6056 6057 6058 6059 6060 6061 6062 6063

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6064 6065
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6066 6067
		diff += total_count;
	} else {
6068
		diff = total_count - dev_priv->ips.last_count1;
6069 6070 6071
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6072 6073
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6084 6085
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6086

6087
	dev_priv->ips.chipset_power = ret;
6088 6089 6090 6091

	return ret;
}

6092 6093 6094 6095
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6096
	if (INTEL_INFO(dev_priv)->gen != 5)
6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6135
{
6136 6137 6138
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6139
	if (INTEL_INFO(dev_priv)->is_mobile)
6140 6141 6142
		return vm > 0 ? vm : 0;

	return vd;
6143 6144
}

6145
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6146
{
6147
	u64 now, diff, diffms;
6148 6149
	u32 count;

6150
	assert_spin_locked(&mchdev_lock);
6151

6152 6153 6154
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6155 6156 6157 6158 6159 6160 6161

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6162 6163
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6164 6165
		diff += count;
	} else {
6166
		diff = count - dev_priv->ips.last_count2;
6167 6168
	}

6169 6170
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6171 6172 6173 6174

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6175
	dev_priv->ips.gfx_power = diff;
6176 6177
}

6178 6179
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6180
	if (INTEL_INFO(dev_priv)->gen != 5)
6181 6182
		return;

6183
	spin_lock_irq(&mchdev_lock);
6184 6185 6186

	__i915_update_gfx_val(dev_priv);

6187
	spin_unlock_irq(&mchdev_lock);
6188 6189
}

6190
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6191 6192 6193 6194
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6195 6196
	assert_spin_locked(&mchdev_lock);

6197
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6217
	corr2 = (corr * dev_priv->ips.corr);
6218 6219 6220 6221

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6222
	__i915_update_gfx_val(dev_priv);
6223

6224
	return dev_priv->ips.gfx_power + state2;
6225 6226
}

6227 6228 6229 6230
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6231
	if (INTEL_INFO(dev_priv)->gen != 5)
6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6254
	spin_lock_irq(&mchdev_lock);
6255 6256 6257 6258
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6259 6260
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6261 6262 6263 6264

	ret = chipset_val + graphics_val;

out_unlock:
6265
	spin_unlock_irq(&mchdev_lock);
6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6281
	spin_lock_irq(&mchdev_lock);
6282 6283 6284 6285 6286 6287
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6288 6289
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6290 6291

out_unlock:
6292
	spin_unlock_irq(&mchdev_lock);
6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6309
	spin_lock_irq(&mchdev_lock);
6310 6311 6312 6313 6314 6315
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6316 6317
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6318 6319

out_unlock:
6320
	spin_unlock_irq(&mchdev_lock);
6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
6334
	struct intel_engine_cs *engine;
6335 6336
	bool ret = false;

6337
	spin_lock_irq(&mchdev_lock);
6338 6339 6340 6341
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6342
	for_each_engine(engine, dev_priv)
6343
		ret |= !list_empty(&engine->request_list);
6344 6345

out_unlock:
6346
	spin_unlock_irq(&mchdev_lock);
6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6363
	spin_lock_irq(&mchdev_lock);
6364 6365 6366 6367 6368 6369
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6370
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6371

6372
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6373 6374 6375
		ret = false;

out_unlock:
6376
	spin_unlock_irq(&mchdev_lock);
6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6404 6405
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6406
	spin_lock_irq(&mchdev_lock);
6407
	i915_mch_dev = dev_priv;
6408
	spin_unlock_irq(&mchdev_lock);
6409 6410 6411 6412 6413 6414

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6415
	spin_lock_irq(&mchdev_lock);
6416
	i915_mch_dev = NULL;
6417
	spin_unlock_irq(&mchdev_lock);
6418
}
6419

6420
static void intel_init_emon(struct drm_i915_private *dev_priv)
6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6437
		I915_WRITE(PEW(i), 0);
6438
	for (i = 0; i < 3; i++)
6439
		I915_WRITE(DEW(i), 0);
6440 6441 6442

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6443
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6464
		I915_WRITE(PXW(i), val);
6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6480
		I915_WRITE(PXWL(i), 0);
6481 6482 6483 6484 6485 6486

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6487
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6488 6489
}

6490
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6491
{
6492 6493 6494 6495 6496 6497 6498 6499
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6500

6501 6502 6503 6504
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6505 6506
}

6507
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6508
{
6509
	if (IS_CHERRYVIEW(dev_priv))
6510
		return;
6511 6512
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_cleanup_gt_powersave(dev_priv);
6513 6514 6515

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6516 6517
}

6518
static void gen6_suspend_rps(struct drm_i915_private *dev_priv)
6519 6520 6521
{
	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6522
	gen6_disable_rps_interrupts(dev_priv);
6523 6524
}

6525 6526
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
6527
 * @dev_priv: i915 device
6528 6529 6530 6531 6532
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
6533
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6534
{
6535
	if (INTEL_GEN(dev_priv) < 6)
I
Imre Deak 已提交
6536 6537
		return;

6538
	gen6_suspend_rps(dev_priv);
6539 6540 6541

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6542 6543
}

6544
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6545
{
6546
	if (IS_IRONLAKE_M(dev_priv)) {
6547
		ironlake_disable_drps(dev_priv);
6548 6549
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		intel_suspend_gt_powersave(dev_priv);
6550

6551
		mutex_lock(&dev_priv->rps.hw_lock);
6552 6553 6554 6555 6556 6557 6558
		if (INTEL_INFO(dev_priv)->gen >= 9) {
			gen9_disable_rc6(dev_priv);
			gen9_disable_rps(dev_priv);
		} else if (IS_CHERRYVIEW(dev_priv))
			cherryview_disable_rps(dev_priv);
		else if (IS_VALLEYVIEW(dev_priv))
			valleyview_disable_rps(dev_priv);
6559
		else
6560
			gen6_disable_rps(dev_priv);
6561

6562
		dev_priv->rps.enabled = false;
6563
		mutex_unlock(&dev_priv->rps.hw_lock);
6564
	}
6565 6566
}

6567 6568 6569 6570 6571 6572
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);

6573
	mutex_lock(&dev_priv->rps.hw_lock);
6574

6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588
	gen6_reset_rps_interrupts(dev_priv);

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 9) {
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
			__gen6_update_ring_freq(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
		__gen6_update_ring_freq(dev_priv);
6589
	} else {
6590 6591
		gen6_enable_rps(dev_priv);
		__gen6_update_ring_freq(dev_priv);
6592
	}
6593 6594 6595 6596 6597 6598 6599

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6600
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6601

6602
	gen6_enable_rps_interrupts(dev_priv);
I
Imre Deak 已提交
6603

6604
	mutex_unlock(&dev_priv->rps.hw_lock);
6605 6606

	intel_runtime_pm_put(dev_priv);
6607 6608
}

6609
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6610
{
6611
	/* Powersaving is controlled by the host when inside a VM */
6612
	if (intel_vgpu_active(dev_priv))
6613 6614
		return;

6615
	if (IS_IRONLAKE_M(dev_priv)) {
6616
		ironlake_enable_drps(dev_priv);
6617 6618 6619 6620
		mutex_lock(&dev_priv->dev->struct_mutex);
		intel_init_emon(dev_priv);
		mutex_unlock(&dev_priv->dev->struct_mutex);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
6621 6622 6623 6624
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6625 6626 6627 6628 6629 6630 6631
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6632
		 */
6633 6634 6635
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6636 6637 6638
	}
}

6639
void intel_reset_gt_powersave(struct drm_i915_private *dev_priv)
6640
{
6641
	if (INTEL_INFO(dev_priv)->gen < 6)
6642 6643
		return;

6644
	gen6_suspend_rps(dev_priv);
6645 6646 6647
	dev_priv->rps.enabled = false;
}

6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6660 6661 6662
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6663
	enum pipe pipe;
6664

6665
	for_each_pipe(dev_priv, pipe) {
6666 6667 6668
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6669 6670 6671

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6672 6673 6674
	}
}

6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6689
static void ironlake_init_clock_gating(struct drm_device *dev)
6690 6691
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6692
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6693

6694 6695 6696 6697
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6698 6699 6700
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6718
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6719 6720 6721
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6722 6723

	ilk_init_lp_watermarks(dev);
6724 6725 6726 6727 6728 6729 6730 6731 6732

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6733
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6734 6735 6736 6737 6738 6739 6740 6741
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6742 6743
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6744 6745 6746 6747 6748 6749
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6750

6751
	/* WaDisableRenderCachePipelinedFlush:ilk */
6752 6753
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6754

6755 6756 6757
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6758
	g4x_disable_trickle_feed(dev);
6759

6760 6761 6762 6763 6764 6765 6766
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6767
	uint32_t val;
6768 6769 6770 6771 6772 6773

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6774 6775 6776
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6777 6778
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6779 6780 6781
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6782
	for_each_pipe(dev_priv, pipe) {
6783 6784 6785
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6786
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6787
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6788 6789 6790
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6791 6792
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6793
	/* WADP0ClockGatingDisable */
6794
	for_each_pipe(dev_priv, pipe) {
6795 6796 6797
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6798 6799
}

6800 6801 6802 6803 6804 6805
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6806 6807 6808
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6809 6810
}

6811
static void gen6_init_clock_gating(struct drm_device *dev)
6812 6813
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6814
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6815

6816
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6817 6818 6819 6820 6821

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6822
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6823 6824 6825
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6826 6827 6828
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6829 6830 6831
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6832 6833 6834 6835
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6836 6837
	 */
	I915_WRITE(GEN6_GT_MODE,
6838
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6839

6840
	ilk_init_lp_watermarks(dev);
6841 6842

	I915_WRITE(CACHE_MODE_0,
6843
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6859
	 *
6860 6861
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6862 6863 6864 6865 6866
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6867
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6868 6869
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6870

6871 6872 6873 6874 6875 6876 6877 6878
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6879 6880 6881 6882 6883 6884 6885 6886
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6887 6888
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6889 6890 6891 6892 6893 6894 6895
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6896 6897 6898 6899
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6900

6901
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6902

6903
	cpt_init_clock_gating(dev);
6904 6905

	gen6_check_mch_setup(dev);
6906 6907 6908 6909 6910 6911
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6912
	/*
6913
	 * WaVSThreadDispatchOverride:ivb,vlv
6914 6915 6916 6917
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6918 6919 6920 6921 6922 6923 6924 6925
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6926 6927 6928 6929 6930 6931 6932 6933
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6934
	if (HAS_PCH_LPT_LP(dev))
6935 6936 6937
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6938 6939

	/* WADPOClockGatingDisable:hsw */
6940 6941
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6942
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6943 6944
}

6945 6946 6947 6948
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6949
	if (HAS_PCH_LPT_LP(dev)) {
6950 6951 6952 6953 6954 6955 6956
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

6980 6981 6982 6983
static void kabylake_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6984
	gen9_init_clock_gating(dev);
6985 6986 6987 6988 6989

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6990 6991 6992 6993 6994

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
6995 6996
}

6997 6998
static void skylake_init_clock_gating(struct drm_device *dev)
{
6999 7000
	struct drm_i915_private *dev_priv = dev->dev_private;

7001
	gen9_init_clock_gating(dev);
7002 7003 7004 7005

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7006 7007
}

7008
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
7009 7010
{
	struct drm_i915_private *dev_priv = dev->dev_private;
7011
	enum pipe pipe;
B
Ben Widawsky 已提交
7012

7013
	ilk_init_lp_watermarks(dev);
7014

7015
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7016
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7017

7018
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7019 7020 7021
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7022
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7023
	for_each_pipe(dev_priv, pipe) {
7024
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7025
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7026
			   BDW_DPRS_MASK_VBLANK_SRD);
7027
	}
7028

7029 7030 7031 7032 7033
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7034

7035 7036
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7037 7038 7039 7040

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7041

7042 7043
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7044

7045 7046 7047 7048 7049 7050 7051
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7052 7053 7054 7055
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7056
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
7057 7058
}

7059 7060 7061 7062
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7063
	ilk_init_lp_watermarks(dev);
7064

7065 7066 7067 7068 7069
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7070
	/* This is required by WaCatErrorRejectionIssue:hsw */
7071 7072 7073 7074
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7075 7076 7077
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7078

7079 7080 7081
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7082 7083 7084 7085
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7086
	/* WaDisable4x2SubspanOptimization:hsw */
7087 7088
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7089

7090 7091 7092
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7093 7094 7095 7096
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7097 7098
	 */
	I915_WRITE(GEN7_GT_MODE,
7099
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7100

7101 7102 7103 7104
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7105
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7106 7107
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7108 7109 7110
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7111

7112
	lpt_init_clock_gating(dev);
7113 7114
}

7115
static void ivybridge_init_clock_gating(struct drm_device *dev)
7116 7117
{
	struct drm_i915_private *dev_priv = dev->dev_private;
7118
	uint32_t snpcr;
7119

7120
	ilk_init_lp_watermarks(dev);
7121

7122
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7123

7124
	/* WaDisableEarlyCull:ivb */
7125 7126 7127
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7128
	/* WaDisableBackToBackFlipFix:ivb */
7129 7130 7131 7132
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7133
	/* WaDisablePSDDualDispatchEnable:ivb */
7134 7135 7136 7137
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7138 7139 7140
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7141
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7142 7143 7144
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7145
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7146 7147 7148
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7149 7150 7151 7152
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7153 7154 7155 7156
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7157 7158
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7159
	}
7160

7161
	/* WaForceL3Serialization:ivb */
7162 7163 7164
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7165
	/*
7166
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7167
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7168 7169
	 */
	I915_WRITE(GEN6_UCGCTL2,
7170
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7171

7172
	/* This is required by WaCatErrorRejectionIssue:ivb */
7173 7174 7175 7176
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7177
	g4x_disable_trickle_feed(dev);
7178 7179

	gen7_setup_fixed_func_scheduler(dev_priv);
7180

7181 7182 7183 7184 7185
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7186

7187
	/* WaDisable4x2SubspanOptimization:ivb */
7188 7189
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7190

7191 7192 7193
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7194 7195 7196 7197
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7198 7199
	 */
	I915_WRITE(GEN7_GT_MODE,
7200
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7201

7202 7203 7204 7205
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7206

7207 7208
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
7209 7210

	gen6_check_mch_setup(dev);
7211 7212
}

7213
static void valleyview_init_clock_gating(struct drm_device *dev)
7214 7215 7216
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7217
	/* WaDisableEarlyCull:vlv */
7218 7219 7220
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7221
	/* WaDisableBackToBackFlipFix:vlv */
7222 7223 7224 7225
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7226
	/* WaPsdDispatchEnable:vlv */
7227
	/* WaDisablePSDDualDispatchEnable:vlv */
7228
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7229 7230
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7231

7232 7233 7234
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7235
	/* WaForceL3Serialization:vlv */
7236 7237 7238
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7239
	/* WaDisableDopClockGating:vlv */
7240 7241 7242
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7243
	/* This is required by WaCatErrorRejectionIssue:vlv */
7244 7245 7246 7247
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7248 7249
	gen7_setup_fixed_func_scheduler(dev_priv);

7250
	/*
7251
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7252
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7253 7254
	 */
	I915_WRITE(GEN6_UCGCTL2,
7255
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7256

7257 7258 7259 7260 7261
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7262

7263 7264 7265 7266
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7267 7268
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7269

7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7281 7282 7283 7284 7285 7286
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7287
	/*
7288
	 * WaDisableVLVClockGating_VBIIssue:vlv
7289 7290 7291
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7292
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7293 7294
}

7295 7296 7297 7298
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7299 7300 7301 7302 7303
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7304 7305 7306 7307

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7308 7309 7310 7311

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7312 7313 7314 7315

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7316

7317 7318 7319 7320 7321 7322 7323
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7324 7325 7326 7327 7328
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7329 7330
}

7331
static void g4x_init_clock_gating(struct drm_device *dev)
7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7347 7348 7349 7350

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7351

7352 7353 7354
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7355
	g4x_disable_trickle_feed(dev);
7356 7357
}

7358
static void crestline_init_clock_gating(struct drm_device *dev)
7359 7360 7361 7362 7363 7364 7365 7366
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7367 7368
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7369 7370 7371

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7372 7373
}

7374
static void broadwater_init_clock_gating(struct drm_device *dev)
7375 7376 7377 7378 7379 7380 7381 7382 7383
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7384 7385
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7386 7387 7388

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7389 7390
}

7391
static void gen3_init_clock_gating(struct drm_device *dev)
7392 7393 7394 7395 7396 7397 7398
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7399 7400 7401

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7402 7403 7404

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7405 7406

	/* interrupts should cause a wake up from C3 */
7407
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7408 7409 7410

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7411 7412 7413

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7414 7415
}

7416
static void i85x_init_clock_gating(struct drm_device *dev)
7417 7418 7419 7420
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7421 7422 7423 7424

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7425 7426 7427

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7428 7429
}

7430
static void i830_init_clock_gating(struct drm_device *dev)
7431 7432 7433 7434
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7435 7436 7437 7438

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7439 7440 7441 7442 7443 7444
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7445
	dev_priv->display.init_clock_gating(dev);
7446 7447
}

7448 7449 7450 7451 7452 7453
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7471
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7472
	else if (IS_KABYLAKE(dev_priv))
7473
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7508 7509 7510 7511 7512
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7513
	intel_fbc_init(dev_priv);
7514

7515 7516 7517 7518 7519 7520
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7521
	/* For FIFO watermark updates */
7522
	if (INTEL_INFO(dev)->gen >= 9) {
7523
		skl_setup_wm_latency(dev);
7524
		dev_priv->display.update_wm = skl_update_wm;
7525
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7526
	} else if (HAS_PCH_SPLIT(dev)) {
7527
		ilk_setup_wm_latency(dev);
7528

7529 7530 7531 7532
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7533
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7534 7535 7536 7537 7538 7539
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7540 7541 7542 7543
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7544
	} else if (IS_CHERRYVIEW(dev)) {
7545 7546
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7547
	} else if (IS_VALLEYVIEW(dev)) {
7548 7549
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7561
			intel_set_memory_cxsr(dev_priv, false);
7562 7563 7564 7565 7566 7567 7568 7569 7570 7571
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7572 7573 7574
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7575
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7576 7577
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7578
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7579 7580 7581
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7582 7583 7584
	}
}

7585
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7586
{
7587
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7588 7589 7590 7591 7592 7593 7594

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7595
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

7610
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
7611
{
7612
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7632

7633 7634
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7635 7636 7637 7638 7639
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7640 7641
}

7642
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7643
{
7644
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7645 7646
}

7647
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7648
{
7649 7650 7651 7652 7653
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7654 7655
}

7656
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7657
{
7658
	/* CHV needs even values */
7659
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7660 7661
}

7662
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7663
{
7664
	if (IS_GEN9(dev_priv))
7665 7666
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7667
	else if (IS_CHERRYVIEW(dev_priv))
7668
		return chv_gpu_freq(dev_priv, val);
7669
	else if (IS_VALLEYVIEW(dev_priv))
7670 7671 7672
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7673 7674
}

7675 7676
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7677
	if (IS_GEN9(dev_priv))
7678 7679
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7680
	else if (IS_CHERRYVIEW(dev_priv))
7681
		return chv_freq_opcode(dev_priv, val);
7682
	else if (IS_VALLEYVIEW(dev_priv))
7683 7684
		return byt_freq_opcode(dev_priv, val);
	else
7685
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7686
}
7687

7688 7689
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7690
	struct drm_i915_gem_request *req;
7691 7692 7693 7694 7695
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7696
	struct drm_i915_gem_request *req = boost->req;
7697

7698
	if (!i915_gem_request_completed(req, true))
7699
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7700

7701
	i915_gem_request_unreference(req);
7702 7703 7704
	kfree(boost);
}

7705
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7706 7707 7708
{
	struct request_boost *boost;

7709
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7710 7711
		return;

7712 7713 7714
	if (i915_gem_request_completed(req, true))
		return;

7715 7716 7717 7718
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7719 7720
	i915_gem_request_reference(req);
	boost->req = req;
7721 7722

	INIT_WORK(&boost->work, __intel_rps_boost_work);
7723
	queue_work(req->i915->wq, &boost->work);
7724 7725
}

D
Daniel Vetter 已提交
7726
void intel_pm_setup(struct drm_device *dev)
7727 7728 7729
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7730
	mutex_init(&dev_priv->rps.hw_lock);
7731
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7732

7733 7734
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7735
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7736 7737
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7738

7739
	dev_priv->pm.suspended = false;
7740
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7741
	atomic_set(&dev_priv->pm.atomic_seq, 0);
7742
}