efi.c 25.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * efi.c - EFI subsystem
 *
 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
 *
 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
 * allowing the efivarfs to be mounted or the efivars module to be loaded.
 * The existance of /sys/firmware/efi may also be used by userspace to
 * determine that the system supports EFI.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

17 18 19
#include <linux/kobject.h>
#include <linux/module.h>
#include <linux/init.h>
20
#include <linux/debugfs.h>
21 22
#include <linux/device.h>
#include <linux/efi.h>
23
#include <linux/of.h>
24
#include <linux/io.h>
25
#include <linux/kexec.h>
L
Lee, Chun-Yi 已提交
26
#include <linux/platform_device.h>
27 28
#include <linux/random.h>
#include <linux/reboot.h>
29 30 31
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/ucs2_string.h>
32
#include <linux/memblock.h>
33
#include <linux/security.h>
34

35
#include <asm/early_ioremap.h>
36

37
struct efi __read_mostly efi = {
38
	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
39 40 41 42 43
	.acpi			= EFI_INVALID_TABLE_ADDR,
	.acpi20			= EFI_INVALID_TABLE_ADDR,
	.smbios			= EFI_INVALID_TABLE_ADDR,
	.smbios3		= EFI_INVALID_TABLE_ADDR,
	.esrt			= EFI_INVALID_TABLE_ADDR,
44
	.tpm_log		= EFI_INVALID_TABLE_ADDR,
45
	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
46 47 48
#ifdef CONFIG_LOAD_UEFI_KEYS
	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
#endif
49 50
};
EXPORT_SYMBOL(efi);
51

52
unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
53
static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
54
static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
55

56 57 58 59
struct mm_struct efi_mm = {
	.mm_rb			= RB_ROOT,
	.mm_users		= ATOMIC_INIT(2),
	.mm_count		= ATOMIC_INIT(1),
60
	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
61
	MMAP_LOCK_INITIALIZER(efi_mm)
62 63
	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
64
	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
65 66
};

67 68
struct workqueue_struct *efi_rts_wq;

69 70 71 72 73 74 75 76 77 78 79 80 81
static bool disable_runtime;
static int __init setup_noefi(char *arg)
{
	disable_runtime = true;
	return 0;
}
early_param("noefi", setup_noefi);

bool efi_runtime_disabled(void)
{
	return disable_runtime;
}

82 83 84 85 86
bool __pure __efi_soft_reserve_enabled(void)
{
	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
}

D
Dave Young 已提交
87 88
static int __init parse_efi_cmdline(char *str)
{
89 90 91 92 93
	if (!str) {
		pr_warn("need at least one option\n");
		return -EINVAL;
	}

94 95 96
	if (parse_option_str(str, "debug"))
		set_bit(EFI_DBG, &efi.flags);

D
Dave Young 已提交
97 98 99
	if (parse_option_str(str, "noruntime"))
		disable_runtime = true;

100 101
	if (parse_option_str(str, "nosoftreserve"))
		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
D
Dave Young 已提交
102 103 104 105 106

	return 0;
}
early_param("efi", parse_efi_cmdline);

P
Peter Jones 已提交
107
struct kobject *efi_kobj;
108 109 110 111

/*
 * Let's not leave out systab information that snuck into
 * the efivars driver
112 113
 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 * one value per file rule!
114 115 116 117 118 119 120 121 122 123 124 125 126
 */
static ssize_t systab_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
	char *str = buf;

	if (!kobj || !buf)
		return -EINVAL;

	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
127 128 129 130 131
	/*
	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
	 * SMBIOS3 entry point shall be preferred, so we list it first to
	 * let applications stop parsing after the first match.
	 */
132 133
	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
134 135
	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
136

137
	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
138 139
		str = efi_systab_show_arch(str);

140 141 142
	return str - buf;
}

143
static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
144

145 146 147 148 149 150
static ssize_t fw_platform_size_show(struct kobject *kobj,
				     struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
}

151 152 153
extern __weak struct kobj_attribute efi_attr_fw_vendor;
extern __weak struct kobj_attribute efi_attr_runtime;
extern __weak struct kobj_attribute efi_attr_config_table;
154 155
static struct kobj_attribute efi_attr_fw_platform_size =
	__ATTR_RO(fw_platform_size);
156

157 158
static struct attribute *efi_subsys_attrs[] = {
	&efi_attr_systab.attr,
159
	&efi_attr_fw_platform_size.attr,
160 161 162 163
	&efi_attr_fw_vendor.attr,
	&efi_attr_runtime.attr,
	&efi_attr_config_table.attr,
	NULL,
164 165
};

166 167
umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
				   int n)
168
{
D
Daniel Kiper 已提交
169
	return attr->mode;
170 171
}

172
static const struct attribute_group efi_subsys_attr_group = {
173
	.attrs = efi_subsys_attrs,
174
	.is_visible = efi_attr_is_visible,
175 176 177 178 179 180 181 182 183
};

static struct efivars generic_efivars;
static struct efivar_operations generic_ops;

static int generic_ops_register(void)
{
	generic_ops.get_variable = efi.get_variable;
	generic_ops.get_next_variable = efi.get_next_variable;
184
	generic_ops.query_variable_store = efi_query_variable_store;
185

186 187 188 189
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
		generic_ops.set_variable = efi.set_variable;
		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
	}
190 191 192 193 194 195 196 197
	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
}

static void generic_ops_unregister(void)
{
	efivars_unregister(&generic_efivars);
}

198
#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
199 200 201 202
#define EFIVAR_SSDT_NAME_MAX	16
static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
static int __init efivar_ssdt_setup(char *str)
{
203 204 205 206 207
	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);

	if (ret)
		return ret;

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
	if (strlen(str) < sizeof(efivar_ssdt))
		memcpy(efivar_ssdt, str, strlen(str));
	else
		pr_warn("efivar_ssdt: name too long: %s\n", str);
	return 0;
}
__setup("efivar_ssdt=", efivar_ssdt_setup);

static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
				   unsigned long name_size, void *data)
{
	struct efivar_entry *entry;
	struct list_head *list = data;
	char utf8_name[EFIVAR_SSDT_NAME_MAX];
	int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);

	ucs2_as_utf8(utf8_name, name, limit - 1);
	if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
		return 0;

	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
	if (!entry)
		return 0;

	memcpy(entry->var.VariableName, name, name_size);
	memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));

	efivar_entry_add(entry, list);

	return 0;
}

static __init int efivar_ssdt_load(void)
{
	LIST_HEAD(entries);
	struct efivar_entry *entry, *aux;
	unsigned long size;
	void *data;
	int ret;

248 249 250
	if (!efivar_ssdt[0])
		return 0;

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);

	list_for_each_entry_safe(entry, aux, &entries, list) {
		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
			&entry->var.VendorGuid);

		list_del(&entry->list);

		ret = efivar_entry_size(entry, &size);
		if (ret) {
			pr_err("failed to get var size\n");
			goto free_entry;
		}

		data = kmalloc(size, GFP_KERNEL);
266 267
		if (!data) {
			ret = -ENOMEM;
268
			goto free_entry;
269
		}
270 271 272 273 274 275 276

		ret = efivar_entry_get(entry, NULL, &size, data);
		if (ret) {
			pr_err("failed to get var data\n");
			goto free_data;
		}

277
		ret = acpi_load_table(data, NULL);
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
		if (ret) {
			pr_err("failed to load table: %d\n", ret);
			goto free_data;
		}

		goto free_entry;

free_data:
		kfree(data);

free_entry:
		kfree(entry);
	}

	return ret;
}
#else
static inline int efivar_ssdt_load(void) { return 0; }
#endif

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
#ifdef CONFIG_DEBUG_FS

#define EFI_DEBUGFS_MAX_BLOBS 32

static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];

static void __init efi_debugfs_init(void)
{
	struct dentry *efi_debugfs;
	efi_memory_desc_t *md;
	char name[32];
	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
	int i = 0;

	efi_debugfs = debugfs_create_dir("efi", NULL);
	if (IS_ERR_OR_NULL(efi_debugfs))
		return;

	for_each_efi_memory_desc(md) {
		switch (md->type) {
		case EFI_BOOT_SERVICES_CODE:
			snprintf(name, sizeof(name), "boot_services_code%d",
				 type_count[md->type]++);
			break;
		case EFI_BOOT_SERVICES_DATA:
			snprintf(name, sizeof(name), "boot_services_data%d",
				 type_count[md->type]++);
			break;
		default:
			continue;
		}

		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
			break;
		}

		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
		debugfs_blob[i].data = memremap(md->phys_addr,
						debugfs_blob[i].size,
						MEMREMAP_WB);
		if (!debugfs_blob[i].data)
			continue;

		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
		i++;
	}
}
#else
static inline void efi_debugfs_init(void) {}
#endif

351 352 353 354 355 356 357 358 359
/*
 * We register the efi subsystem with the firmware subsystem and the
 * efivars subsystem with the efi subsystem, if the system was booted with
 * EFI.
 */
static int __init efisubsys_init(void)
{
	int error;

360 361 362
	if (!efi_enabled(EFI_RUNTIME_SERVICES))
		efi.runtime_supported_mask = 0;

363 364 365
	if (!efi_enabled(EFI_BOOT))
		return 0;

366 367 368 369 370 371 372 373 374 375 376 377 378
	if (efi.runtime_supported_mask) {
		/*
		 * Since we process only one efi_runtime_service() at a time, an
		 * ordered workqueue (which creates only one execution context)
		 * should suffice for all our needs.
		 */
		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
		if (!efi_rts_wq) {
			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
			efi.runtime_supported_mask = 0;
			return 0;
		}
379 380
	}

381 382 383
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
		platform_device_register_simple("rtc-efi", 0, NULL, 0);

384 385 386 387
	/* We register the efi directory at /sys/firmware/efi */
	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
	if (!efi_kobj) {
		pr_err("efi: Firmware registration failed.\n");
388
		destroy_workqueue(efi_rts_wq);
389 390 391
		return -ENOMEM;
	}

392 393
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
394 395 396
		error = generic_ops_register();
		if (error)
			goto err_put;
397
		efivar_ssdt_load();
398 399
		platform_device_register_simple("efivars", 0, NULL, 0);
	}
400

401 402 403 404 405 406 407
	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
	if (error) {
		pr_err("efi: Sysfs attribute export failed with error %d.\n",
		       error);
		goto err_unregister;
	}

408 409 410 411
	error = efi_runtime_map_init(efi_kobj);
	if (error)
		goto err_remove_group;

412
	/* and the standard mountpoint for efivarfs */
413 414
	error = sysfs_create_mount_point(efi_kobj, "efivars");
	if (error) {
415 416 417 418
		pr_err("efivars: Subsystem registration failed.\n");
		goto err_remove_group;
	}

419 420 421
	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
		efi_debugfs_init();

422 423 424 425 426
	return 0;

err_remove_group:
	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
err_unregister:
427 428
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
429
		generic_ops_unregister();
430 431
err_put:
	kobject_put(efi_kobj);
432
	destroy_workqueue(efi_rts_wq);
433 434 435 436
	return error;
}

subsys_initcall(efisubsys_init);
437

P
Peter Jones 已提交
438 439
/*
 * Find the efi memory descriptor for a given physical address.  Given a
440
 * physical address, determine if it exists within an EFI Memory Map entry,
P
Peter Jones 已提交
441 442 443
 * and if so, populate the supplied memory descriptor with the appropriate
 * data.
 */
444
int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
P
Peter Jones 已提交
445
{
446
	efi_memory_desc_t *md;
P
Peter Jones 已提交
447 448 449 450 451 452 453 454 455 456 457

	if (!efi_enabled(EFI_MEMMAP)) {
		pr_err_once("EFI_MEMMAP is not enabled.\n");
		return -EINVAL;
	}

	if (!out_md) {
		pr_err_once("out_md is null.\n");
		return -EINVAL;
        }

458
	for_each_efi_memory_desc(md) {
P
Peter Jones 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
		u64 size;
		u64 end;

		size = md->num_pages << EFI_PAGE_SHIFT;
		end = md->phys_addr + size;
		if (phys_addr >= md->phys_addr && phys_addr < end) {
			memcpy(out_md, md, sizeof(*out_md));
			return 0;
		}
	}
	return -ENOENT;
}

/*
 * Calculate the highest address of an efi memory descriptor.
 */
u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
{
	u64 size = md->num_pages << EFI_PAGE_SHIFT;
	u64 end = md->phys_addr + size;
	return end;
}
481

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}

/**
 * efi_mem_reserve - Reserve an EFI memory region
 * @addr: Physical address to reserve
 * @size: Size of reservation
 *
 * Mark a region as reserved from general kernel allocation and
 * prevent it being released by efi_free_boot_services().
 *
 * This function should be called drivers once they've parsed EFI
 * configuration tables to figure out where their data lives, e.g.
 * efi_esrt_init().
 */
void __init efi_mem_reserve(phys_addr_t addr, u64 size)
{
	if (!memblock_is_region_reserved(addr, size))
		memblock_reserve(addr, size);

	/*
	 * Some architectures (x86) reserve all boot services ranges
	 * until efi_free_boot_services() because of buggy firmware
	 * implementations. This means the above memblock_reserve() is
	 * superfluous on x86 and instead what it needs to do is
	 * ensure the @start, @size is not freed.
	 */
	efi_arch_mem_reserve(addr, size);
}

511
static const efi_config_table_type_t common_tables[] __initconst = {
512 513 514 515 516 517 518 519 520 521 522
	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
523
#ifdef CONFIG_EFI_RCI2_TABLE
524
	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
525 526 527
#endif
#ifdef CONFIG_LOAD_UEFI_KEYS
	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
528
#endif
529
	{},
530 531
};

532
static __init int match_config_table(const efi_guid_t *guid,
533
				     unsigned long table,
534
				     const efi_config_table_type_t *table_types)
535 536 537
{
	int i;

538 539 540 541 542 543 544
	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
		if (!efi_guidcmp(*guid, table_types[i].guid)) {
			*(table_types[i].ptr) = table;
			if (table_types[i].name[0])
				pr_cont("%s=0x%lx ",
					table_types[i].name, table);
			return 1;
545 546 547 548 549 550
		}
	}

	return 0;
}

551 552 553
int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
				   int count,
				   const efi_config_table_type_t *arch_tables)
554
{
555 556 557 558
	const efi_config_table_64_t *tbl64 = (void *)config_tables;
	const efi_config_table_32_t *tbl32 = (void *)config_tables;
	const efi_guid_t *guid;
	unsigned long table;
559
	int i;
560 561

	pr_info("");
562
	for (i = 0; i < count; i++) {
563 564 565 566 567 568 569 570 571
		if (!IS_ENABLED(CONFIG_X86)) {
			guid = &config_tables[i].guid;
			table = (unsigned long)config_tables[i].table;
		} else if (efi_enabled(EFI_64BIT)) {
			guid = &tbl64[i].guid;
			table = tbl64[i].table;

			if (IS_ENABLED(CONFIG_X86_32) &&
			    tbl64[i].table > U32_MAX) {
572 573 574 575 576
				pr_cont("\n");
				pr_err("Table located above 4GB, disabling EFI.\n");
				return -EINVAL;
			}
		} else {
577 578
			guid = &tbl32[i].guid;
			table = tbl32[i].table;
579 580
		}

581
		if (!match_config_table(guid, table, common_tables) && arch_tables)
582
			match_config_table(guid, table, arch_tables);
583 584
	}
	pr_cont("\n");
585
	set_bit(EFI_CONFIG_TABLES, &efi.flags);
586

587
	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
588 589 590
		struct linux_efi_random_seed *seed;
		u32 size = 0;

591
		seed = early_memremap(efi_rng_seed, sizeof(*seed));
592
		if (seed != NULL) {
593
			size = READ_ONCE(seed->size);
594 595 596 597 598
			early_memunmap(seed, sizeof(*seed));
		} else {
			pr_err("Could not map UEFI random seed!\n");
		}
		if (size > 0) {
599 600
			seed = early_memremap(efi_rng_seed,
					      sizeof(*seed) + size);
601
			if (seed != NULL) {
602
				pr_notice("seeding entropy pool\n");
603
				add_bootloader_randomness(seed->bits, size);
604 605 606 607 608 609 610
				early_memunmap(seed, sizeof(*seed) + size);
			} else {
				pr_err("Could not map UEFI random seed!\n");
			}
		}
	}

611
	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
612
		efi_memattr_init();
613

614 615
	efi_tpm_eventlog_init();

616 617
	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
		unsigned long prsv = mem_reserve;
618 619 620

		while (prsv) {
			struct linux_efi_memreserve *rsv;
621 622 623 624 625 626 627 628 629 630
			u8 *p;

			/*
			 * Just map a full page: that is what we will get
			 * anyway, and it permits us to map the entire entry
			 * before knowing its size.
			 */
			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
					   PAGE_SIZE);
			if (p == NULL) {
631 632 633 634
				pr_err("Could not map UEFI memreserve entry!\n");
				return -ENOMEM;
			}

635 636 637
			rsv = (void *)(p + prsv % PAGE_SIZE);

			/* reserve the entry itself */
638 639
			memblock_reserve(prsv,
					 struct_size(rsv, entry, rsv->size));
640 641 642 643 644

			for (i = 0; i < atomic_read(&rsv->count); i++) {
				memblock_reserve(rsv->entry[i].base,
						 rsv->entry[i].size);
			}
645 646

			prsv = rsv->next;
647
			early_memunmap(p, PAGE_SIZE);
648 649 650
		}
	}

651 652 653 654 655 656 657 658 659 660
	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
		efi_rt_properties_table_t *tbl;

		tbl = early_memremap(rt_prop, sizeof(*tbl));
		if (tbl) {
			efi.runtime_supported_mask &= tbl->runtime_services_supported;
			early_memunmap(tbl, sizeof(*tbl));
		}
	}

661 662
	return 0;
}
663

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
				   int min_major_version)
{
	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
		pr_err("System table signature incorrect!\n");
		return -EINVAL;
	}

	if ((systab_hdr->revision >> 16) < min_major_version)
		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
		       systab_hdr->revision >> 16,
		       systab_hdr->revision & 0xffff,
		       min_major_version);

	return 0;
}

#ifndef CONFIG_IA64
static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
						size_t size)
{
	const efi_char16_t *ret;

	ret = early_memremap_ro(fw_vendor, size);
	if (!ret)
		pr_err("Could not map the firmware vendor!\n");
	return ret;
}

static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
{
	early_memunmap((void *)fw_vendor, size);
}
#else
#define map_fw_vendor(p, s)	__va(p)
#define unmap_fw_vendor(v, s)
#endif

void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
				     unsigned long fw_vendor)
{
	char vendor[100] = "unknown";
	const efi_char16_t *c16;
	size_t i;

	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
	if (c16) {
		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
			vendor[i] = c16[i];
		vendor[i] = '\0';

		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
	}

	pr_info("EFI v%u.%.02u by %s\n",
		systab_hdr->revision >> 16,
		systab_hdr->revision & 0xffff,
		vendor);
}

724
static __initdata char memory_type_name[][13] = {
725 726 727 728 729 730 731
	"Reserved",
	"Loader Code",
	"Loader Data",
	"Boot Code",
	"Boot Data",
	"Runtime Code",
	"Runtime Data",
732 733 734 735 736 737
	"Conventional",
	"Unusable",
	"ACPI Reclaim",
	"ACPI Mem NVS",
	"MMIO",
	"MMIO Port",
738
	"PAL Code",
739
	"Persistent",
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
};

char * __init efi_md_typeattr_format(char *buf, size_t size,
				     const efi_memory_desc_t *md)
{
	char *pos;
	int type_len;
	u64 attr;

	pos = buf;
	if (md->type >= ARRAY_SIZE(memory_type_name))
		type_len = snprintf(pos, size, "[type=%u", md->type);
	else
		type_len = snprintf(pos, size, "[%-*s",
				    (int)(sizeof(memory_type_name[0]) - 1),
				    memory_type_name[md->type]);
	if (type_len >= size)
		return buf;

	pos += type_len;
	size -= type_len;

	attr = md->attribute;
	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
764 765
		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
766
		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
767
		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
768 769 770
		snprintf(pos, size, "|attr=0x%016llx]",
			 (unsigned long long)attr);
	else
R
Robert Elliott 已提交
771
		snprintf(pos, size,
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
			 attr & EFI_MEMORY_SP			? "SP"  : "",
			 attr & EFI_MEMORY_NV			? "NV"  : "",
			 attr & EFI_MEMORY_XP			? "XP"  : "",
			 attr & EFI_MEMORY_RP			? "RP"  : "",
			 attr & EFI_MEMORY_WP			? "WP"  : "",
			 attr & EFI_MEMORY_RO			? "RO"  : "",
			 attr & EFI_MEMORY_UCE			? "UCE" : "",
			 attr & EFI_MEMORY_WB			? "WB"  : "",
			 attr & EFI_MEMORY_WT			? "WT"  : "",
			 attr & EFI_MEMORY_WC			? "WC"  : "",
			 attr & EFI_MEMORY_UC			? "UC"  : "");
787 788
	return buf;
}
789

790 791 792 793 794
/*
 * IA64 has a funky EFI memory map that doesn't work the same way as
 * other architectures.
 */
#ifndef CONFIG_IA64
795 796 797 798 799 800 801 802
/*
 * efi_mem_attributes - lookup memmap attributes for physical address
 * @phys_addr: the physical address to lookup
 *
 * Search in the EFI memory map for the region covering
 * @phys_addr. Returns the EFI memory attributes if the region
 * was found in the memory map, 0 otherwise.
 */
803
u64 efi_mem_attributes(unsigned long phys_addr)
804 805 806 807 808 809
{
	efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP))
		return 0;

810
	for_each_efi_memory_desc(md) {
811 812 813 814 815 816 817
		if ((md->phys_addr <= phys_addr) &&
		    (phys_addr < (md->phys_addr +
		    (md->num_pages << EFI_PAGE_SHIFT))))
			return md->attribute;
	}
	return 0;
}
818

819 820 821 822 823 824
/*
 * efi_mem_type - lookup memmap type for physical address
 * @phys_addr: the physical address to lookup
 *
 * Search in the EFI memory map for the region covering @phys_addr.
 * Returns the EFI memory type if the region was found in the memory
825
 * map, -EINVAL otherwise.
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
 */
int efi_mem_type(unsigned long phys_addr)
{
	const efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP))
		return -ENOTSUPP;

	for_each_efi_memory_desc(md) {
		if ((md->phys_addr <= phys_addr) &&
		    (phys_addr < (md->phys_addr +
				  (md->num_pages << EFI_PAGE_SHIFT))))
			return md->type;
	}
	return -EINVAL;
}
#endif

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
int efi_status_to_err(efi_status_t status)
{
	int err;

	switch (status) {
	case EFI_SUCCESS:
		err = 0;
		break;
	case EFI_INVALID_PARAMETER:
		err = -EINVAL;
		break;
	case EFI_OUT_OF_RESOURCES:
		err = -ENOSPC;
		break;
	case EFI_DEVICE_ERROR:
		err = -EIO;
		break;
	case EFI_WRITE_PROTECTED:
		err = -EROFS;
		break;
	case EFI_SECURITY_VIOLATION:
		err = -EACCES;
		break;
	case EFI_NOT_FOUND:
		err = -ENOENT;
		break;
870 871 872
	case EFI_ABORTED:
		err = -EINTR;
		break;
873 874 875 876 877
	default:
		err = -EINVAL;
	}

	return err;
878 879
}

880
static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
881
static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
882

883 884
static int __init efi_memreserve_map_root(void)
{
885
	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
886 887
		return -ENODEV;

888
	efi_memreserve_root = memremap(mem_reserve,
889 890 891 892 893 894 895
				       sizeof(*efi_memreserve_root),
				       MEMREMAP_WB);
	if (WARN_ON_ONCE(!efi_memreserve_root))
		return -ENOMEM;
	return 0;
}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
{
	struct resource *res, *parent;

	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
	if (!res)
		return -ENOMEM;

	res->name	= "reserved";
	res->flags	= IORESOURCE_MEM;
	res->start	= addr;
	res->end	= addr + size - 1;

	/* we expect a conflict with a 'System RAM' region */
	parent = request_resource_conflict(&iomem_resource, res);
	return parent ? request_resource(parent, res) : 0;
}

914
int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
915
{
916
	struct linux_efi_memreserve *rsv;
917 918
	unsigned long prsv;
	int rc, index;
919

920
	if (efi_memreserve_root == (void *)ULONG_MAX)
921 922
		return -ENODEV;

923 924 925 926 927 928
	if (!efi_memreserve_root) {
		rc = efi_memreserve_map_root();
		if (rc)
			return rc;
	}

929 930
	/* first try to find a slot in an existing linked list entry */
	for (prsv = efi_memreserve_root->next; prsv; prsv = rsv->next) {
931
		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
932 933 934 935 936
		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
		if (index < rsv->size) {
			rsv->entry[index].base = addr;
			rsv->entry[index].size = size;

937
			memunmap(rsv);
938
			return efi_mem_reserve_iomem(addr, size);
939
		}
940
		memunmap(rsv);
941 942 943 944
	}

	/* no slot found - allocate a new linked list entry */
	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
945 946 947
	if (!rsv)
		return -ENOMEM;

948 949 950 951 952 953
	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
	if (rc) {
		free_page((unsigned long)rsv);
		return rc;
	}

954 955 956 957 958 959 960
	/*
	 * The memremap() call above assumes that a linux_efi_memreserve entry
	 * never crosses a page boundary, so let's ensure that this remains true
	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
	 * using SZ_4K explicitly in the size calculation below.
	 */
	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
961 962 963
	atomic_set(&rsv->count, 1);
	rsv->entry[0].base = addr;
	rsv->entry[0].size = size;
964 965

	spin_lock(&efi_mem_reserve_persistent_lock);
966 967
	rsv->next = efi_memreserve_root->next;
	efi_memreserve_root->next = __pa(rsv);
968 969
	spin_unlock(&efi_mem_reserve_persistent_lock);

970
	return efi_mem_reserve_iomem(addr, size);
971
}
972

973 974
static int __init efi_memreserve_root_init(void)
{
975 976 977 978
	if (efi_memreserve_root)
		return 0;
	if (efi_memreserve_map_root())
		efi_memreserve_root = (void *)ULONG_MAX;
979 980
	return 0;
}
981
early_initcall(efi_memreserve_root_init);
982

983 984 985 986 987 988 989 990 991 992
#ifdef CONFIG_KEXEC
static int update_efi_random_seed(struct notifier_block *nb,
				  unsigned long code, void *unused)
{
	struct linux_efi_random_seed *seed;
	u32 size = 0;

	if (!kexec_in_progress)
		return NOTIFY_DONE;

993
	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
994
	if (seed != NULL) {
995
		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
996 997 998 999 1000
		memunmap(seed);
	} else {
		pr_err("Could not map UEFI random seed!\n");
	}
	if (size > 0) {
1001 1002
		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
				MEMREMAP_WB);
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
		if (seed != NULL) {
			seed->size = size;
			get_random_bytes(seed->bits, seed->size);
			memunmap(seed);
		} else {
			pr_err("Could not map UEFI random seed!\n");
		}
	}
	return NOTIFY_DONE;
}

static struct notifier_block efi_random_seed_nb = {
	.notifier_call = update_efi_random_seed,
};

1018
static int __init register_update_efi_random_seed(void)
1019
{
1020
	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1021 1022 1023 1024 1025
		return 0;
	return register_reboot_notifier(&efi_random_seed_nb);
}
late_initcall(register_update_efi_random_seed);
#endif