smu_v11_0.c 47.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include "pp_debug.h"
#include <linux/firmware.h>
#include "amdgpu.h"
#include "amdgpu_smu.h"
27
#include "atomfirmware.h"
28
#include "amdgpu_atomfirmware.h"
29
#include "smu_v11_0.h"
30
#include "soc15_common.h"
31
#include "atom.h"
32
#include "vega20_ppt.h"
33
#include "navi10_ppt.h"
34
#include "pp_thermal.h"
35 36 37

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
38 39
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
40
#include "asic_reg/nbio/nbio_7_4_offset.h"
41 42
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
43

44
MODULE_FIRMWARE("amdgpu/vega20_smc.bin");
45
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
46

47 48
#define SMU11_THERMAL_MINIMUM_ALERT_TEMP      0
#define SMU11_THERMAL_MAXIMUM_ALERT_TEMP      255
49

50
#define SMU11_TEMPERATURE_UNITS_PER_CENTIGRADES 1000
51
#define SMU11_VOLTAGE_SCALE 4
52

53 54 55 56 57 58 59 60
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
	return 0;
}

61 62 63 64 65 66 67 68
static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
{
	struct amdgpu_device *adev = smu->adev;

	*arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82);
	return 0;
}

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t cur_value, i;

	for (i = 0; i < adev->usec_timeout; i++) {
		cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90);
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
			break;
		udelay(1);
	}

	/* timeout means wrong logic */
	if (i == adev->usec_timeout)
		return -ETIME;

85
	return RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO;
86 87 88 89 90
}

static int smu_v11_0_send_msg(struct smu_context *smu, uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
91 92 93 94 95
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
96 97 98 99 100

	smu_v11_0_wait_for_response(smu);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

101
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
102 103 104 105

	ret = smu_v11_0_wait_for_response(smu);

	if (ret)
106
		pr_err("Failed to send message 0x%x, response 0x%x\n", index,
107 108 109 110 111 112 113 114 115 116 117 118
		       ret);

	return ret;

}

static int
smu_v11_0_send_msg_with_param(struct smu_context *smu, uint16_t msg,
			      uint32_t param)
{

	struct amdgpu_device *adev = smu->adev;
119 120 121 122 123
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
124 125 126

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
127 128
		pr_err("Failed to send message 0x%x, response 0x%x, param 0x%x\n",
		       index, ret, param);
129 130 131 132 133

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param);

134
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
135 136 137

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
138 139
		pr_err("Failed to send message 0x%x, response 0x%x param 0x%x\n",
		       index, ret, param);
140 141 142 143

	return ret;
}

144 145 146
static int smu_v11_0_init_microcode(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
147 148 149 150 151 152
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
153

154 155 156 157
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		chip_name = "vega20";
		break;
158 159 160
	case CHIP_NAVI10:
		chip_name = "navi10";
		break;
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
195 196
}

197 198
static int smu_v11_0_load_microcode(struct smu_context *smu)
{
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
	struct amdgpu_device *adev = smu->adev;
	const uint32_t *src;
	const struct smc_firmware_header_v1_0 *hdr;
	uint32_t addr_start = MP1_SRAM;
	uint32_t i;
	uint32_t mp1_fw_flags;

	hdr = (const struct smc_firmware_header_v1_0 *)	adev->pm.fw->data;
	src = (const uint32_t *)(adev->pm.fw->data +
		le32_to_cpu(hdr->header.ucode_array_offset_bytes));

	for (i = 1; i < MP1_SMC_SIZE/4 - 1; i++) {
		WREG32_PCIE(addr_start, src[i]);
		addr_start += 4;
	}

	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & MP1_SMN_PUB_CTRL__RESET_MASK);
	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);

	for (i = 0; i < adev->usec_timeout; i++) {
		mp1_fw_flags = RREG32_PCIE(MP1_Public |
			(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
			MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
			break;
		udelay(1);
	}

	if (i == adev->usec_timeout)
		return -ETIME;

232 233 234
	return 0;
}

235 236
static int smu_v11_0_check_fw_status(struct smu_context *smu)
{
237 238 239
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

240 241
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
242 243 244 245

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
246

247
	return -EIO;
248 249
}

250 251
static int smu_v11_0_check_fw_version(struct smu_context *smu)
{
252 253 254
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
255 256
	int ret = 0;

257
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
258
	if (ret)
259
		return ret;
260

261 262 263 264 265 266
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

	pr_info("SMU Driver IF Version = 0x%08x, SMU FW Version = 0x%08x (%d.%d.%d)\n",
		if_version, smu_version, smu_major, smu_minor, smu_debug);
267

268 269
	if (if_version != smu->smc_if_version) {
		pr_err("SMU driver if version not matched\n");
270
		ret = -EINVAL;
271 272
	}

273 274 275
	return ret;
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t ppt_offset_bytes;
	const struct smc_firmware_header_v2_0 *v2;

	v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;

	ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
	*size = le32_to_cpu(v2->ppt_size_bytes);
	*table = (uint8_t *)v2 + ppt_offset_bytes;

	return 0;
}

static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table, uint32_t *size, uint32_t pptable_id)
{
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v2_1 *v2_1;
	struct smc_soft_pptable_entry *entries;
	uint32_t pptable_count = 0;
	int i = 0;

	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
	entries = (struct smc_soft_pptable_entry *)
		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
	pptable_count = le32_to_cpu(v2_1->pptable_count);
	for (i = 0; i < pptable_count; i++) {
		if (le32_to_cpu(entries[i].id) == pptable_id) {
			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
			*size = le32_to_cpu(entries[i].ppt_size_bytes);
			break;
		}
	}

	if (i == pptable_count)
		return -EINVAL;

	return 0;
}

static int smu_v11_0_setup_pptable(struct smu_context *smu)
318
{
319 320
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v1_0 *hdr;
321
	int ret, index;
322
	uint32_t size;
323
	uint8_t frev, crev;
324
	void *table;
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
	uint16_t version_major, version_minor;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);
	if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
		switch (version_minor) {
		case 0:
			ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
			break;
		case 1:
			ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
							 smu->smu_table.boot_values.pp_table_id);
			break;
		default:
			ret = -EINVAL;
			break;
		}
		if (ret)
			return ret;
345

346 347 348
	} else {
		index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
						    powerplayinfo);
349

350
		ret = smu_get_atom_data_table(smu, index, (uint16_t *)&size, &frev, &crev,
351 352 353 354
					      (uint8_t **)&table);
		if (ret)
			return ret;
	}
355

356 357 358 359
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
360 361 362 363

	return 0;
}

364 365 366 367 368 369 370
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

371
	return smu_alloc_dpm_context(smu);
372 373 374 375 376 377 378 379 380 381
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
382
	kfree(smu_dpm->golden_dpm_context);
383 384
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
385
	smu_dpm->dpm_context = NULL;
386
	smu_dpm->golden_dpm_context = NULL;
387
	smu_dpm->dpm_context_size = 0;
388 389
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
390 391 392 393

	return 0;
}

394 395 396 397
static int smu_v11_0_init_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
398
	int ret = 0;
399

400
	if (smu_table->tables || smu_table->table_count == 0)
401 402
		return -EINVAL;

403 404
	tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
			 GFP_KERNEL);
405 406 407 408 409
	if (!tables)
		return -ENOMEM;

	smu_table->tables = tables;

410
	smu_tables_init(smu, tables);
411

412 413 414 415
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
		return ret;

416 417 418 419 420 421
	return 0;
}

static int smu_v11_0_fini_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
422
	int ret = 0;
423 424 425 426 427 428 429 430

	if (!smu_table->tables || smu_table->table_count == 0)
		return -EINVAL;

	kfree(smu_table->tables);
	smu_table->tables = NULL;
	smu_table->table_count = 0;

431 432 433
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
434 435
	return 0;
}
436 437 438 439 440

static int smu_v11_0_init_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

441 442
	if (!smu->pm_enabled)
		return 0;
443 444 445 446 447 448 449 450 451
	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

452 453 454 455 456 457 458
	smu->metrics_time = 0;
	smu->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
	if (!smu->metrics_table) {
		kfree(smu_power->power_context);
		return -ENOMEM;
	}

459 460 461 462 463 464 465
	return 0;
}

static int smu_v11_0_fini_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

466 467
	if (!smu->pm_enabled)
		return 0;
468 469 470
	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

471
	kfree(smu->metrics_table);
472
	kfree(smu_power->power_context);
473
	smu->metrics_table = NULL;
474 475 476 477 478 479
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
		pr_err("unknown atom_firmware_info version! for smu11\n");
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

	return 0;
}

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
static int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
{
	int ret, index;
	struct amdgpu_device *adev = smu->adev;
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;

	input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_ECLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_VCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

614 615 616
	return 0;
}

617 618 619 620 621 622 623 624 625 626 627
static int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

628
	address = (uintptr_t)memory_pool->cpu_addr;
629 630 631 632
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
633
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
634 635 636 637
					  address_high);
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
638
					  SMU_MSG_SetSystemVirtualDramAddrLow,
639 640 641 642 643 644 645 646
					  address_low);
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

647
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
648 649 650
					  address_high);
	if (ret)
		return ret;
651
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
652 653 654
					  address_low);
	if (ret)
		return ret;
655
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
656 657 658 659 660 661 662
					  (uint32_t)memory_pool->size);
	if (ret)
		return ret;

	return ret;
}

663 664 665 666 667 668 669 670
static int smu_v11_0_check_pptable(struct smu_context *smu)
{
	int ret;

	ret = smu_check_powerplay_table(smu);
	return ret;
}

671 672 673 674 675
static int smu_v11_0_parse_pptable(struct smu_context *smu)
{
	int ret;

	struct smu_table_context *table_context = &smu->smu_table;
676
	struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE];
677 678 679 680

	if (table_context->driver_pptable)
		return -EINVAL;

681
	table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL);
682 683 684 685 686

	if (!table_context->driver_pptable)
		return -ENOMEM;

	ret = smu_store_powerplay_table(smu);
687 688 689 690
	if (ret)
		return -EINVAL;

	ret = smu_append_powerplay_table(smu);
691 692 693 694

	return ret;
}

695 696
static int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
{
697
	int ret;
698

699
	ret = smu_set_default_dpm_table(smu);
700

701
	return ret;
702 703
}

704 705
static int smu_v11_0_write_pptable(struct smu_context *smu)
{
706
	struct smu_table_context *table_context = &smu->smu_table;
707 708
	int ret = 0;

709 710
	ret = smu_update_table(smu, SMU_TABLE_PPTABLE,
			       table_context->driver_pptable, true);
711 712 713 714

	return ret;
}

715 716
static int smu_v11_0_write_watermarks_table(struct smu_context *smu)
{
717 718 719 720 721 722 723 724 725 726 727 728
	int ret = 0;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *table = NULL;

	table = &smu_table->tables[SMU_TABLE_WATERMARKS];
	if (!table)
		return -EINVAL;

	if (!table->cpu_addr)
		return -EINVAL;

	ret = smu_update_table(smu, SMU_TABLE_WATERMARKS, table->cpu_addr,
729
				true);
730 731

	return ret;
732 733
}

734 735 736 737 738 739 740 741 742 743 744 745
static int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetMinDeepSleepDcefclk, clk);
	if (ret)
		pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");

	return ret;
}

746 747 748 749
static int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
{
	struct smu_table_context *table_context = &smu->smu_table;

750 751
	if (!smu->pm_enabled)
		return 0;
752 753 754
	if (!table_context)
		return -EINVAL;

755
	return smu_set_deep_sleep_dcefclk(smu,
756 757 758
					  table_context->boot_values.dcefclk / 100);
}

759 760 761
static int smu_v11_0_set_tool_table_location(struct smu_context *smu)
{
	int ret = 0;
762
	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
763 764 765

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
766
				SMU_MSG_SetToolsDramAddrHigh,
767 768 769
				upper_32_bits(tool_table->mc_address));
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
770
				SMU_MSG_SetToolsDramAddrLow,
771 772 773 774 775 776
				lower_32_bits(tool_table->mc_address));
	}

	return ret;
}

777 778 779
static int smu_v11_0_init_display(struct smu_context *smu)
{
	int ret = 0;
780 781 782

	if (!smu->pm_enabled)
		return ret;
783 784 785 786
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, 0);
	return ret;
}

787 788 789 790 791
static int smu_v11_0_update_feature_enable_state(struct smu_context *smu, uint32_t feature_id, bool enabled)
{
	uint32_t feature_low = 0, feature_high = 0;
	int ret = 0;

792 793
	if (!smu->pm_enabled)
		return ret;
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
	if (feature_id >= 0 && feature_id < 31)
		feature_low = (1 << feature_id);
	else if (feature_id > 31 && feature_id < 63)
		feature_high = (1 << feature_id);
	else
		return -EINVAL;

	if (enabled) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;

	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;

	}

	return ret;
}

826 827 828 829 830 831
static int smu_v11_0_set_allowed_mask(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

832
	mutex_lock(&feature->mutex);
833
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
834
		goto failed;
835 836 837 838 839 840

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
					  feature_mask[1]);
	if (ret)
841
		goto failed;
842 843 844 845

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
					  feature_mask[0]);
	if (ret)
846
		goto failed;
847

848 849
failed:
	mutex_unlock(&feature->mutex);
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	return ret;
}

static int smu_v11_0_get_enabled_mask(struct smu_context *smu,
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_high);
	if (ret)
		return ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_low);
	if (ret)
		return ret;

	feature_mask[0] = feature_mask_low;
	feature_mask[1] = feature_mask_high;

	return ret;
}

882 883
static int smu_v11_0_system_features_control(struct smu_context *smu,
					     bool en)
884 885 886 887 888
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

889 890 891 892 893 894 895
	if (smu->pm_enabled) {
		ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
					     SMU_MSG_DisableAllSmuFeatures));
		if (ret)
			return ret;
	}

896 897 898 899 900 901 902 903 904 905 906 907
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		return ret;

	bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
		    feature->feature_num);
	bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
		    feature->feature_num);

	return ret;
}

908 909 910 911
static int smu_v11_0_notify_display_change(struct smu_context *smu)
{
	int ret = 0;

912 913
	if (!smu->pm_enabled)
		return ret;
914 915 916
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
	    smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1);
917 918 919 920

	return ret;
}

921 922
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
923
				    enum smu_clk_type clock_select)
924 925 926
{
	int ret = 0;

927 928
	if (!smu->pm_enabled)
		return ret;
929
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
930
					  smu_clk_get_index(smu, clock_select) << 16);
931 932 933 934 935 936 937 938 939 940 941 942 943 944
	if (ret) {
		pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);
	if (ret)
		return ret;

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
945
					  smu_clk_get_index(smu, clock_select) << 16);
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
	if (ret) {
		pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);

	return ret;
}

static int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
{
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
	int ret = 0;

	max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
					 GFP_KERNEL);
	smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

972
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
973 974
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
975
							  SMU_UCLK);
976 977 978 979 980 981 982
		if (ret) {
			pr_err("[%s] failed to get max UCLK from SMC!",
			       __func__);
			return ret;
		}
	}

983
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
984 985
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
986
							  SMU_SOCCLK);
987 988 989 990 991 992 993
		if (ret) {
			pr_err("[%s] failed to get max SOCCLK from SMC!",
			       __func__);
			return ret;
		}
	}

994
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
995 996
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
997
							  SMU_DCEFCLK);
998 999 1000 1001 1002 1003 1004 1005
		if (ret) {
			pr_err("[%s] failed to get max DCEFCLK from SMC!",
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
1006
							  SMU_DISPCLK);
1007 1008 1009 1010 1011 1012 1013
		if (ret) {
			pr_err("[%s] failed to get max DISPCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
1014
							  SMU_PHYCLK);
1015 1016 1017 1018 1019 1020 1021
		if (ret) {
			pr_err("[%s] failed to get max PHYCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
1022
							  SMU_PIXCLK);
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
		if (ret) {
			pr_err("[%s] failed to get max PIXCLK from SMC!",
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1036 1037 1038
static int smu_v11_0_get_power_limit(struct smu_context *smu,
				     uint32_t *limit,
				     bool get_default)
1039
{
1040
	int ret = 0;
1041

1042 1043 1044
	if (get_default) {
		mutex_lock(&smu->mutex);
		*limit = smu->default_power_limit;
1045 1046 1047 1048
		if (smu->od_enabled) {
			*limit *= (100 + smu->smu_table.TDPODLimit);
			*limit /= 100;
		}
1049 1050 1051
		mutex_unlock(&smu->mutex);
	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetPptLimit,
1052
			smu_power_get_index(smu, SMU_POWER_SOURCE_AC) << 16);
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		if (ret) {
			pr_err("[%s] get PPT limit failed!", __func__);
			return ret;
		}
		smu_read_smc_arg(smu, limit);
		smu->power_limit = *limit;
	}

	return ret;
}

static int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
{
1066
	uint32_t max_power_limit;
1067 1068
	int ret = 0;

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	if (n == 0)
		n = smu->default_power_limit;

	max_power_limit = smu->default_power_limit;

	if (smu->od_enabled) {
		max_power_limit *= (100 + smu->smu_table.TDPODLimit);
		max_power_limit /= 100;
	}

1079
	if (smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT))
1080
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n);
1081
	if (ret) {
1082
		pr_err("[%s] Set power limit Failed!", __func__);
1083 1084 1085
		return ret;
	}

1086
	return ret;
1087 1088
}

1089 1090 1091
static int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
					  enum smu_clk_type clk_id,
					  uint32_t *value)
1092 1093 1094 1095
{
	int ret = 0;
	uint32_t freq;

1096
	if (clk_id >= SMU_CLK_COUNT || !value)
1097 1098
		return -EINVAL;

1099 1100
	/* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */
	if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) == 0)
1101 1102 1103 1104 1105 1106
		ret =  smu_get_current_clk_freq_by_table(smu, clk_id, &freq);
	else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
						  (smu_clk_get_index(smu, clk_id) << 16));
		if (ret)
			return ret;
1107

1108 1109 1110 1111
		ret = smu_read_smc_arg(smu, &freq);
		if (ret)
			return ret;
	}
1112 1113 1114 1115 1116 1117 1118

	freq *= 100;
	*value = freq;

	return ret;
}

1119 1120 1121
static int smu_v11_0_get_thermal_range(struct smu_context *smu,
				struct PP_TemperatureRange *range)
{
1122
	PPTable_t *pptable = smu->smu_table.driver_pptable;
1123 1124
	memcpy(range, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	range->max = pptable->TedgeLimit *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	range->edge_emergency_max = (pptable->TedgeLimit + CTF_OFFSET_EDGE) *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	range->hotspot_crit_max = pptable->ThotspotLimit *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	range->hotspot_emergency_max = (pptable->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	range->mem_crit_max = pptable->ThbmLimit *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	range->mem_emergency_max = (pptable->ThbmLimit + CTF_OFFSET_HBM)*
1136 1137 1138 1139 1140
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;

	return 0;
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
static int smu_v11_0_set_thermal_range(struct smu_context *smu,
			struct PP_TemperatureRange *range)
{
	struct amdgpu_device *adev = smu->adev;
	int low = SMU11_THERMAL_MINIMUM_ALERT_TEMP *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	int high = SMU11_THERMAL_MAXIMUM_ALERT_TEMP *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	uint32_t val;

	if (low < range->min)
		low = range->min;
	if (high > range->max)
		high = range->max;

	if (low > high)
		return -EINVAL;

	val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES));
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low / PP_TEMPERATURE_UNITS_PER_CENTIGRADES));
	val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

	return 0;
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
static int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t val = 0;

	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

	return 0;
}

1185 1186 1187
static int smu_v11_0_start_thermal_control(struct smu_context *smu)
{
	int ret = 0;
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	struct PP_TemperatureRange range = {
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX};
1198 1199
	struct amdgpu_device *adev = smu->adev;

1200 1201
	if (!smu->pm_enabled)
		return ret;
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	smu_v11_0_get_thermal_range(smu, &range);

	if (smu->smu_table.thermal_controller_type) {
		ret = smu_v11_0_set_thermal_range(smu, &range);
		if (ret)
			return ret;

		ret = smu_v11_0_enable_thermal_alert(smu);
		if (ret)
			return ret;
1212
		ret = smu_set_thermal_fan_table(smu);
1213 1214 1215 1216 1217 1218
		if (ret)
			return ret;
	}

	adev->pm.dpm.thermal.min_temp = range.min;
	adev->pm.dpm.thermal.max_temp = range.max;
1219 1220 1221 1222 1223 1224 1225
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max;
1226 1227 1228 1229

	return ret;
}

1230 1231 1232 1233 1234 1235
static int smu_v11_0_get_metrics_table(struct smu_context *smu,
		SmuMetrics_t *metrics_table)
{
	int ret = 0;

	if (!smu->metrics_time || time_after(jiffies, smu->metrics_time + HZ / 1000)) {
1236
		ret = smu_update_table(smu, SMU_TABLE_SMU_METRICS,
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
				(void *)metrics_table, false);
		if (ret) {
			pr_info("Failed to export SMU metrics table!\n");
			return ret;
		}
		memcpy(smu->metrics_table, metrics_table, sizeof(SmuMetrics_t));
		smu->metrics_time = jiffies;
	} else
		memcpy(metrics_table, smu->metrics_table, sizeof(SmuMetrics_t));

	return ret;
}

1250 1251 1252
static int smu_v11_0_thermal_get_temperature(struct smu_context *smu,
					     enum amd_pp_sensors sensor,
					     uint32_t *value)
1253 1254
{
	struct amdgpu_device *adev = smu->adev;
1255
	SmuMetrics_t metrics;
1256
	uint32_t temp = 0;
1257
	int ret = 0;
1258 1259 1260 1261

	if (!value)
		return -EINVAL;

1262 1263 1264 1265 1266 1267 1268 1269 1270
	ret = smu_v11_0_get_metrics_table(smu, &metrics);
	if (ret)
		return ret;

	switch (sensor) {
	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
		temp = RREG32_SOC15(THM, 0, mmCG_MULT_THERMAL_STATUS);
		temp = (temp & CG_MULT_THERMAL_STATUS__CTF_TEMP_MASK) >>
				CG_MULT_THERMAL_STATUS__CTF_TEMP__SHIFT;
1271

1272 1273
		temp = temp & 0x1ff;
		temp *= SMU11_TEMPERATURE_UNITS_PER_CENTIGRADES;
1274

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
		*value = temp;
		break;
	case AMDGPU_PP_SENSOR_EDGE_TEMP:
		*value = metrics.TemperatureEdge *
			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
		break;
	case AMDGPU_PP_SENSOR_MEM_TEMP:
		*value = metrics.TemperatureHBM *
			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
		break;
	default:
		pr_err("Invalid sensor for retrieving temp\n");
		return -EINVAL;
	}
1289 1290 1291 1292

	return 0;
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1317 1318 1319 1320 1321 1322
static int smu_v11_0_read_sensor(struct smu_context *smu,
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
	int ret = 0;
	switch (sensor) {
1323
	case AMDGPU_PP_SENSOR_GFX_MCLK:
1324
		ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1325 1326 1327
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
1328
		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1329
		*size = 4;
1330
		break;
1331 1332 1333 1334
	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
	case AMDGPU_PP_SENSOR_EDGE_TEMP:
	case AMDGPU_PP_SENSOR_MEM_TEMP:
		ret = smu_v11_0_thermal_get_temperature(smu, sensor, (uint32_t *)data);
1335
		*size = 4;
1336
		break;
1337 1338 1339
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1340
		break;
1341 1342 1343 1344
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
1345
	default:
1346
		ret = smu_common_read_sensor(smu, sensor, data, size);
1347 1348 1349
		break;
	}

1350 1351 1352 1353
	/* try get sensor data by asic */
	if (ret)
		ret = smu_asic_read_sensor(smu, sensor, data, size);

1354 1355 1356 1357 1358 1359
	if (ret)
		*size = 0;

	return ret;
}

1360 1361 1362 1363 1364 1365 1366
static int
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
1367
	enum smu_clk_type clk_select = 0;
1368 1369
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;

1370 1371
	if (!smu->pm_enabled)
		return -EINVAL;
1372
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
1373 1374
		switch (clk_type) {
		case amd_pp_dcef_clock:
1375
			clk_select = SMU_DCEFCLK;
1376 1377
			break;
		case amd_pp_disp_clock:
1378
			clk_select = SMU_DISPCLK;
1379 1380
			break;
		case amd_pp_pixel_clock:
1381
			clk_select = SMU_PIXCLK;
1382 1383
			break;
		case amd_pp_phy_clock:
1384
			clk_select = SMU_PHYCLK;
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
			break;
		default:
			pr_info("[%s] Invalid Clock Type!", __func__);
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
1396
			(smu_clk_get_index(smu, clk_select) << 16) | clk_freq);
1397 1398 1399 1400 1401 1402
	}

failed:
	return ret;
}

1403 1404 1405 1406 1407 1408
static int
smu_v11_0_set_watermarks_for_clock_ranges(struct smu_context *smu, struct
					  dm_pp_wm_sets_with_clock_ranges_soc15
					  *clock_ranges)
{
	int ret = 0;
1409
	struct smu_table *watermarks = &smu->smu_table.tables[SMU_TABLE_WATERMARKS];
1410
	void *table = watermarks->cpu_addr;
1411 1412

	if (!smu->disable_watermark &&
1413 1414
	    smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
	    smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
1415
		smu_set_watermarks_table(smu, table, clock_ranges);
1416 1417 1418 1419 1420 1421 1422
		smu->watermarks_bitmap |= WATERMARKS_EXIST;
		smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
	}

	return ret;
}

1423 1424 1425
static int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
{
	int ret = 0;
1426
	struct amdgpu_device *adev = smu->adev;
1427

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		break;
	case CHIP_NAVI10:
		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
			return 0;
		mutex_lock(&smu->mutex);
		if (enable)
			ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff);
		else
			ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff);
		mutex_unlock(&smu->mutex);
		break;
	default:
		break;
	}
1444 1445 1446 1447 1448

	return ret;
}


1449 1450
static int smu_v11_0_get_clock_ranges(struct smu_context *smu,
				      uint32_t *clock,
1451
				      enum smu_clk_type clock_select,
1452 1453 1454 1455 1456 1457
				      bool max)
{
	int ret;
	*clock = 0;
	if (max) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
1458
				smu_clk_get_index(smu, clock_select) << 16);
1459 1460 1461 1462 1463 1464 1465
		if (ret) {
			pr_err("[GetClockRanges] Failed to get max clock from SMC!\n");
			return ret;
		}
		smu_read_smc_arg(smu, clock);
	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq,
1466
				smu_clk_get_index(smu, clock_select) << 16);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
		if (ret) {
			pr_err("[GetClockRanges] Failed to get min clock from SMC!\n");
			return ret;
		}
		smu_read_smc_arg(smu, clock);
	}

	return 0;
}

static uint32_t smu_v11_0_dpm_get_sclk(struct smu_context *smu, bool low)
{
	uint32_t gfx_clk;
	int ret;

1482
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) {
1483 1484 1485 1486 1487
		pr_err("[GetSclks]: gfxclk dpm not enabled!\n");
		return -EPERM;
	}

	if (low) {
1488
		ret = smu_v11_0_get_clock_ranges(smu, &gfx_clk, SMU_GFXCLK, false);
1489
		if (ret) {
1490
			pr_err("[GetSclks]: fail to get min SMU_GFXCLK\n");
1491 1492 1493
			return ret;
		}
	} else {
1494
		ret = smu_v11_0_get_clock_ranges(smu, &gfx_clk, SMU_GFXCLK, true);
1495
		if (ret) {
1496
			pr_err("[GetSclks]: fail to get max SMU_GFXCLK\n");
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
			return ret;
		}
	}

	return (gfx_clk * 100);
}

static uint32_t smu_v11_0_dpm_get_mclk(struct smu_context *smu, bool low)
{
	uint32_t mem_clk;
	int ret;

1509
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1510 1511 1512 1513 1514
		pr_err("[GetMclks]: memclk dpm not enabled!\n");
		return -EPERM;
	}

	if (low) {
1515
		ret = smu_v11_0_get_clock_ranges(smu, &mem_clk, SMU_UCLK, false);
1516
		if (ret) {
1517
			pr_err("[GetMclks]: fail to get min SMU_UCLK\n");
1518 1519 1520
			return ret;
		}
	} else {
1521
		ret = smu_v11_0_get_clock_ranges(smu, &mem_clk, SMU_GFXCLK, true);
1522
		if (ret) {
1523
			pr_err("[GetMclks]: fail to get max SMU_UCLK\n");
1524 1525 1526 1527 1528 1529 1530
			return ret;
		}
	}

	return (mem_clk * 100);
}

1531 1532
static int smu_v11_0_set_od8_default_settings(struct smu_context *smu,
					      bool initialize)
1533 1534
{
	struct smu_table_context *table_context = &smu->smu_table;
1535
	struct smu_table *table = &table_context->tables[SMU_TABLE_OVERDRIVE];
1536 1537
	int ret;

1538 1539 1540 1541 1542 1543 1544
	/**
	 * TODO: Enable overdrive for navi10, that replies on smc/pptable
	 * support.
	 */
	if (smu->adev->asic_type == CHIP_NAVI10)
		return 0;

1545 1546 1547
	if (initialize) {
		if (table_context->overdrive_table)
			return -EINVAL;
1548

1549
		table_context->overdrive_table = kzalloc(table->size, GFP_KERNEL);
1550

1551 1552
		if (!table_context->overdrive_table)
			return -ENOMEM;
1553

1554 1555
		ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE,
				       table_context->overdrive_table, false);
1556 1557 1558 1559
		if (ret) {
			pr_err("Failed to export over drive table!\n");
			return ret;
		}
1560

1561 1562
		smu_set_default_od8_settings(smu);
	}
1563

1564 1565
	ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE,
			       table_context->overdrive_table, true);
1566 1567 1568 1569 1570 1571 1572 1573
	if (ret) {
		pr_err("Failed to import over drive table!\n");
		return ret;
	}

	return 0;
}

1574 1575 1576 1577 1578 1579 1580
static int smu_v11_0_update_od8_settings(struct smu_context *smu,
					uint32_t index,
					uint32_t value)
{
	struct smu_table_context *table_context = &smu->smu_table;
	int ret;

1581
	ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE,
1582 1583 1584 1585 1586 1587 1588 1589
			       table_context->overdrive_table, false);
	if (ret) {
		pr_err("Failed to export over drive table!\n");
		return ret;
	}

	smu_update_specified_od8_value(smu, index, value);

1590
	ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE,
1591 1592 1593 1594 1595 1596 1597 1598 1599
			       table_context->overdrive_table, true);
	if (ret) {
		pr_err("Failed to import over drive table!\n");
		return ret;
	}

	return 0;
}

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
static int smu_v11_0_get_current_rpm(struct smu_context *smu,
				     uint32_t *current_rpm)
{
	int ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetCurrentRpm);

	if (ret) {
		pr_err("Attempt to get current RPM from SMC Failed!\n");
		return ret;
	}

	smu_read_smc_arg(smu, current_rpm);

	return 0;
}

1617 1618 1619
static uint32_t
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
1620
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
smu_v11_0_smc_fan_control(struct smu_context *smu, bool start)
{
	int ret = 0;

1631
	if (smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1632 1633
		return 0;

1634
	ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, start);
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	if (ret)
		pr_err("[%s]%s smc FAN CONTROL feature failed!",
		       __func__, (start ? "Start" : "Stop"));

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

static int
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t duty100;
	uint32_t duty;
	uint64_t tmp64;
	bool stop = 0;

	if (speed > 100)
		speed = 100;

	if (smu_v11_0_smc_fan_control(smu, stop))
		return -EINVAL;
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
static int
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;
	bool start = 1;
	bool stop  = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
		ret = smu_v11_0_smc_fan_control(smu, stop);
		break;
	case AMD_FAN_CTRL_AUTO:
		ret = smu_v11_0_smc_fan_control(smu, start);
		break;
	default:
		break;
	}

	if (ret) {
1710
		pr_err("[%s]Set fan control mode failed!", __func__);
1711 1712 1713 1714 1715 1716
		return -EINVAL;
	}

	return ret;
}

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
static int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;
	bool stop = 0;

	if (!speed)
		return -EINVAL;

	mutex_lock(&(smu->mutex));
	ret = smu_v11_0_smc_fan_control(smu, stop);
	if (ret)
		goto set_fan_speed_rpm_failed;

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

set_fan_speed_rpm_failed:
	mutex_unlock(&(smu->mutex));
	return ret;
}

1747 1748 1749
#define XGMI_STATE_D0 1
#define XGMI_STATE_D3 0

1750 1751 1752
static int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
				     uint32_t pstate)
{
1753 1754 1755 1756 1757 1758 1759
	int ret = 0;
	mutex_lock(&(smu->mutex));
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
					  pstate ? XGMI_STATE_D0 : XGMI_STATE_D3);
	mutex_unlock(&(smu->mutex));
	return ret;
1760 1761
}

1762 1763
static const struct smu_funcs smu_v11_0_funcs = {
	.init_microcode = smu_v11_0_init_microcode,
1764
	.load_microcode = smu_v11_0_load_microcode,
1765
	.check_fw_status = smu_v11_0_check_fw_status,
1766
	.check_fw_version = smu_v11_0_check_fw_version,
1767 1768
	.send_smc_msg = smu_v11_0_send_msg,
	.send_smc_msg_with_param = smu_v11_0_send_msg_with_param,
1769
	.read_smc_arg = smu_v11_0_read_arg,
1770
	.setup_pptable = smu_v11_0_setup_pptable,
1771 1772
	.init_smc_tables = smu_v11_0_init_smc_tables,
	.fini_smc_tables = smu_v11_0_fini_smc_tables,
1773 1774
	.init_power = smu_v11_0_init_power,
	.fini_power = smu_v11_0_fini_power,
1775
	.get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values,
1776
	.get_clk_info_from_vbios = smu_v11_0_get_clk_info_from_vbios,
1777
	.notify_memory_pool_location = smu_v11_0_notify_memory_pool_location,
1778
	.check_pptable = smu_v11_0_check_pptable,
1779
	.parse_pptable = smu_v11_0_parse_pptable,
1780
	.populate_smc_pptable = smu_v11_0_populate_smc_pptable,
1781
	.write_pptable = smu_v11_0_write_pptable,
1782
	.write_watermarks_table = smu_v11_0_write_watermarks_table,
1783
	.set_min_dcef_deep_sleep = smu_v11_0_set_min_dcef_deep_sleep,
1784
	.set_tool_table_location = smu_v11_0_set_tool_table_location,
1785
	.init_display = smu_v11_0_init_display,
1786 1787
	.set_allowed_mask = smu_v11_0_set_allowed_mask,
	.get_enabled_mask = smu_v11_0_get_enabled_mask,
1788
	.system_features_control = smu_v11_0_system_features_control,
1789
	.update_feature_enable_state = smu_v11_0_update_feature_enable_state,
1790
	.notify_display_change = smu_v11_0_notify_display_change,
1791
	.get_power_limit = smu_v11_0_get_power_limit,
1792
	.set_power_limit = smu_v11_0_set_power_limit,
1793
	.get_current_clk_freq = smu_v11_0_get_current_clk_freq,
1794
	.init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks,
1795
	.start_thermal_control = smu_v11_0_start_thermal_control,
1796
	.read_sensor = smu_v11_0_read_sensor,
1797
	.set_deep_sleep_dcefclk = smu_v11_0_set_deep_sleep_dcefclk,
1798
	.display_clock_voltage_request = smu_v11_0_display_clock_voltage_request,
1799
	.set_watermarks_for_clock_ranges = smu_v11_0_set_watermarks_for_clock_ranges,
1800 1801
	.get_sclk = smu_v11_0_dpm_get_sclk,
	.get_mclk = smu_v11_0_dpm_get_mclk,
1802
	.set_od8_default_settings = smu_v11_0_set_od8_default_settings,
1803
	.update_od8_settings = smu_v11_0_update_od8_settings,
1804
	.get_current_rpm = smu_v11_0_get_current_rpm,
1805
	.get_fan_control_mode = smu_v11_0_get_fan_control_mode,
1806
	.set_fan_control_mode = smu_v11_0_set_fan_control_mode,
1807
	.set_fan_speed_percent = smu_v11_0_set_fan_speed_percent,
1808
	.set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm,
1809
	.set_xgmi_pstate = smu_v11_0_set_xgmi_pstate,
1810
	.gfx_off_control = smu_v11_0_gfx_off_control,
1811 1812 1813 1814
};

void smu_v11_0_set_smu_funcs(struct smu_context *smu)
{
1815 1816
	struct amdgpu_device *adev = smu->adev;

1817
	smu->funcs = &smu_v11_0_funcs;
1818 1819 1820 1821
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		vega20_set_ppt_funcs(smu);
		break;
1822 1823 1824
	case CHIP_NAVI10:
		navi10_set_ppt_funcs(smu);
		break;
1825
	default:
1826
		pr_warn("Unknown asic for smu11\n");
1827
	}
1828
}