falcon.c 91.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
 * Copyright 2006-2008 Solarflare Communications Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/seq_file.h>
16
#include <linux/i2c.h>
B
Ben Hutchings 已提交
17
#include <linux/mii.h>
18 19 20 21 22 23
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "mac.h"
#include "spi.h"
#include "falcon.h"
24
#include "regs.h"
25
#include "io.h"
26 27 28 29
#include "mdio_10g.h"
#include "phy.h"
#include "workarounds.h"

B
Ben Hutchings 已提交
30
/* Hardware control for SFC4000 (aka Falcon). */
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

/**************************************************************************
 *
 * Configurable values
 *
 **************************************************************************
 */

/* This is set to 16 for a good reason.  In summary, if larger than
 * 16, the descriptor cache holds more than a default socket
 * buffer's worth of packets (for UDP we can only have at most one
 * socket buffer's worth outstanding).  This combined with the fact
 * that we only get 1 TX event per descriptor cache means the NIC
 * goes idle.
 */
#define TX_DC_ENTRIES 16
B
Ben Hutchings 已提交
47
#define TX_DC_ENTRIES_ORDER 1
48 49 50
#define TX_DC_BASE 0x130000

#define RX_DC_ENTRIES 64
B
Ben Hutchings 已提交
51
#define RX_DC_ENTRIES_ORDER 3
52 53
#define RX_DC_BASE 0x100000

54 55 56 57 58 59 60 61 62 63 64 65 66 67
static const unsigned int
/* "Large" EEPROM device: Atmel AT25640 or similar
 * 8 KB, 16-bit address, 32 B write block */
large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
/* Default flash device: Atmel AT25F1024
 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/* RX FIFO XOFF watermark
 *
 * When the amount of the RX FIFO increases used increases past this
 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
 * This also has an effect on RX/TX arbitration
 */
static int rx_xoff_thresh_bytes = -1;
module_param(rx_xoff_thresh_bytes, int, 0644);
MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");

/* RX FIFO XON watermark
 *
 * When the amount of the RX FIFO used decreases below this
 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
 * This also has an effect on RX/TX arbitration
 */
static int rx_xon_thresh_bytes = -1;
module_param(rx_xon_thresh_bytes, int, 0644);
MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");

88 89 90 91 92 93
/* If FALCON_MAX_INT_ERRORS internal errors occur within
 * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
 * disable it.
 */
#define FALCON_INT_ERROR_EXPIRE 3600
#define FALCON_MAX_INT_ERRORS 5
94

95 96 97 98
/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
 */
#define FALCON_FLUSH_INTERVAL 10
#define FALCON_FLUSH_POLL_COUNT 100
99 100 101 102 103 104 105 106 107 108 109

/**************************************************************************
 *
 * Falcon constants
 *
 **************************************************************************
 */

/* Size and alignment of special buffers (4KB) */
#define FALCON_BUF_SIZE 4096

B
Ben Hutchings 已提交
110 111 112
/* Depth of RX flush request fifo */
#define FALCON_RX_FLUSH_COUNT 4

113
#define FALCON_IS_DUAL_FUNC(efx)		\
114
	(falcon_rev(efx) < FALCON_REV_B0)
115 116 117 118 119 120 121

/**************************************************************************
 *
 * Falcon hardware access
 *
 **************************************************************************/

122 123 124 125 126 127 128
static inline void falcon_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
					unsigned int index)
{
	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
			value, index);
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/* Read the current event from the event queue */
static inline efx_qword_t *falcon_event(struct efx_channel *channel,
					unsigned int index)
{
	return (((efx_qword_t *) (channel->eventq.addr)) + index);
}

/* See if an event is present
 *
 * We check both the high and low dword of the event for all ones.  We
 * wrote all ones when we cleared the event, and no valid event can
 * have all ones in either its high or low dwords.  This approach is
 * robust against reordering.
 *
 * Note that using a single 64-bit comparison is incorrect; even
 * though the CPU read will be atomic, the DMA write may not be.
 */
static inline int falcon_event_present(efx_qword_t *event)
{
	return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
		  EFX_DWORD_IS_ALL_ONES(event->dword[1])));
}

/**************************************************************************
 *
 * I2C bus - this is a bit-bashing interface using GPIO pins
 * Note that it uses the output enables to tristate the outputs
 * SDA is the data pin and SCL is the clock
 *
 **************************************************************************
 */
160
static void falcon_setsda(void *data, int state)
161
{
162
	struct efx_nic *efx = (struct efx_nic *)data;
163 164
	efx_oword_t reg;

165
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
166
	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
167
	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
168 169
}

170
static void falcon_setscl(void *data, int state)
171
{
172
	struct efx_nic *efx = (struct efx_nic *)data;
173 174
	efx_oword_t reg;

175
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
176
	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
177
	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
178 179 180 181 182 183 184
}

static int falcon_getsda(void *data)
{
	struct efx_nic *efx = (struct efx_nic *)data;
	efx_oword_t reg;

185
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
186
	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
187 188
}

189
static int falcon_getscl(void *data)
190
{
191
	struct efx_nic *efx = (struct efx_nic *)data;
192 193
	efx_oword_t reg;

194
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
195
	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
196 197
}

198 199 200
static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
	.setsda		= falcon_setsda,
	.setscl		= falcon_setscl,
201 202
	.getsda		= falcon_getsda,
	.getscl		= falcon_getscl,
203
	.udelay		= 5,
204 205
	/* Wait up to 50 ms for slave to let us pull SCL high */
	.timeout	= DIV_ROUND_UP(HZ, 20),
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
};

/**************************************************************************
 *
 * Falcon special buffer handling
 * Special buffers are used for event queues and the TX and RX
 * descriptor rings.
 *
 *************************************************************************/

/*
 * Initialise a Falcon special buffer
 *
 * This will define a buffer (previously allocated via
 * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
 * it to be used for event queues, descriptor rings etc.
 */
223
static void
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
falcon_init_special_buffer(struct efx_nic *efx,
			   struct efx_special_buffer *buffer)
{
	efx_qword_t buf_desc;
	int index;
	dma_addr_t dma_addr;
	int i;

	EFX_BUG_ON_PARANOID(!buffer->addr);

	/* Write buffer descriptors to NIC */
	for (i = 0; i < buffer->entries; i++) {
		index = buffer->index + i;
		dma_addr = buffer->dma_addr + (i * 4096);
		EFX_LOG(efx, "mapping special buffer %d at %llx\n",
			index, (unsigned long long)dma_addr);
240 241 242 243
		EFX_POPULATE_QWORD_3(buf_desc,
				     FRF_AZ_BUF_ADR_REGION, 0,
				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
244
		falcon_write_buf_tbl(efx, &buf_desc, index);
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
	}
}

/* Unmaps a buffer from Falcon and clears the buffer table entries */
static void
falcon_fini_special_buffer(struct efx_nic *efx,
			   struct efx_special_buffer *buffer)
{
	efx_oword_t buf_tbl_upd;
	unsigned int start = buffer->index;
	unsigned int end = (buffer->index + buffer->entries - 1);

	if (!buffer->entries)
		return;

	EFX_LOG(efx, "unmapping special buffers %d-%d\n",
		buffer->index, buffer->index + buffer->entries - 1);

	EFX_POPULATE_OWORD_4(buf_tbl_upd,
264 265 266 267
			     FRF_AZ_BUF_UPD_CMD, 0,
			     FRF_AZ_BUF_CLR_CMD, 1,
			     FRF_AZ_BUF_CLR_END_ID, end,
			     FRF_AZ_BUF_CLR_START_ID, start);
268
	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
}

/*
 * Allocate a new Falcon special buffer
 *
 * This allocates memory for a new buffer, clears it and allocates a
 * new buffer ID range.  It does not write into Falcon's buffer table.
 *
 * This call will allocate 4KB buffers, since Falcon can't use 8KB
 * buffers for event queues and descriptor rings.
 */
static int falcon_alloc_special_buffer(struct efx_nic *efx,
				       struct efx_special_buffer *buffer,
				       unsigned int len)
{
	len = ALIGN(len, FALCON_BUF_SIZE);

	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
					    &buffer->dma_addr);
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
	buffer->entries = len / FALCON_BUF_SIZE;
	BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));

	/* All zeros is a potentially valid event so memset to 0xff */
	memset(buffer->addr, 0xff, len);

	/* Select new buffer ID */
298 299
	buffer->index = efx->next_buffer_table;
	efx->next_buffer_table += buffer->entries;
300 301

	EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
302
		"(virt %p phys %llx)\n", buffer->index,
303
		buffer->index + buffer->entries - 1,
304 305
		(u64)buffer->dma_addr, len,
		buffer->addr, (u64)virt_to_phys(buffer->addr));
306 307 308 309 310 311 312 313 314 315 316

	return 0;
}

static void falcon_free_special_buffer(struct efx_nic *efx,
				       struct efx_special_buffer *buffer)
{
	if (!buffer->addr)
		return;

	EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
317
		"(virt %p phys %llx)\n", buffer->index,
318
		buffer->index + buffer->entries - 1,
319 320
		(u64)buffer->dma_addr, buffer->len,
		buffer->addr, (u64)virt_to_phys(buffer->addr));
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376

	pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
			    buffer->dma_addr);
	buffer->addr = NULL;
	buffer->entries = 0;
}

/**************************************************************************
 *
 * Falcon generic buffer handling
 * These buffers are used for interrupt status and MAC stats
 *
 **************************************************************************/

static int falcon_alloc_buffer(struct efx_nic *efx,
			       struct efx_buffer *buffer, unsigned int len)
{
	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
					    &buffer->dma_addr);
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
	memset(buffer->addr, 0, len);
	return 0;
}

static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
{
	if (buffer->addr) {
		pci_free_consistent(efx->pci_dev, buffer->len,
				    buffer->addr, buffer->dma_addr);
		buffer->addr = NULL;
	}
}

/**************************************************************************
 *
 * Falcon TX path
 *
 **************************************************************************/

/* Returns a pointer to the specified transmit descriptor in the TX
 * descriptor queue belonging to the specified channel.
 */
static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
					       unsigned int index)
{
	return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
}

/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
	unsigned write_ptr;
	efx_dword_t reg;

377
	write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
378
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
379 380
	efx_writed_page(tx_queue->efx, &reg,
			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
}


/* For each entry inserted into the software descriptor ring, create a
 * descriptor in the hardware TX descriptor ring (in host memory), and
 * write a doorbell.
 */
void falcon_push_buffers(struct efx_tx_queue *tx_queue)
{

	struct efx_tx_buffer *buffer;
	efx_qword_t *txd;
	unsigned write_ptr;

	BUG_ON(tx_queue->write_count == tx_queue->insert_count);

	do {
398
		write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
399 400 401 402 403
		buffer = &tx_queue->buffer[write_ptr];
		txd = falcon_tx_desc(tx_queue, write_ptr);
		++tx_queue->write_count;

		/* Create TX descriptor ring entry */
404 405 406 407 408
		EFX_POPULATE_QWORD_4(*txd,
				     FSF_AZ_TX_KER_CONT, buffer->continuation,
				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
				     FSF_AZ_TX_KER_BUF_REGION, 0,
				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
409 410 411 412 413 414 415 416 417 418
	} while (tx_queue->write_count != tx_queue->insert_count);

	wmb(); /* Ensure descriptors are written before they are fetched */
	falcon_notify_tx_desc(tx_queue);
}

/* Allocate hardware resources for a TX queue */
int falcon_probe_tx(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
419 420
	BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
		     EFX_TXQ_SIZE & EFX_TXQ_MASK);
421
	return falcon_alloc_special_buffer(efx, &tx_queue->txd,
422
					   EFX_TXQ_SIZE * sizeof(efx_qword_t));
423 424
}

425
void falcon_init_tx(struct efx_tx_queue *tx_queue)
426 427 428 429
{
	efx_oword_t tx_desc_ptr;
	struct efx_nic *efx = tx_queue->efx;

B
Ben Hutchings 已提交
430
	tx_queue->flushed = FLUSH_NONE;
431

432
	/* Pin TX descriptor ring */
433
	falcon_init_special_buffer(efx, &tx_queue->txd);
434 435 436

	/* Push TX descriptor ring to card */
	EFX_POPULATE_OWORD_10(tx_desc_ptr,
437 438 439 440 441 442 443 444
			      FRF_AZ_TX_DESCQ_EN, 1,
			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
			      FRF_AZ_TX_DESCQ_EVQ_ID,
			      tx_queue->channel->channel,
			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
445 446
			      FRF_AZ_TX_DESCQ_SIZE,
			      __ffs(tx_queue->txd.entries),
447 448
			      FRF_AZ_TX_DESCQ_TYPE, 0,
			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
449

450
	if (falcon_rev(efx) >= FALCON_REV_B0) {
451
		int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
452 453 454
		EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
		EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
				    !csum);
455 456
	}

457 458
	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
			 tx_queue->queue);
459

460
	if (falcon_rev(efx) < FALCON_REV_B0) {
461 462
		efx_oword_t reg;

463 464
		/* Only 128 bits in this register */
		BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
465

466
		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
467
		if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
468 469 470
			clear_bit_le(tx_queue->queue, (void *)&reg);
		else
			set_bit_le(tx_queue->queue, (void *)&reg);
471
		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
472 473 474
	}
}

475
static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
476 477 478 479
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_flush_descq;

B
Ben Hutchings 已提交
480 481
	tx_queue->flushed = FLUSH_PENDING;

482 483
	/* Post a flush command */
	EFX_POPULATE_OWORD_2(tx_flush_descq,
484 485
			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
486
	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
487 488 489 490 491 492 493
}

void falcon_fini_tx(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_desc_ptr;

494
	/* The queue should have been flushed */
B
Ben Hutchings 已提交
495
	WARN_ON(tx_queue->flushed != FLUSH_DONE);
496 497 498

	/* Remove TX descriptor ring from card */
	EFX_ZERO_OWORD(tx_desc_ptr);
499 500
	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
			 tx_queue->queue);
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534

	/* Unpin TX descriptor ring */
	falcon_fini_special_buffer(efx, &tx_queue->txd);
}

/* Free buffers backing TX queue */
void falcon_remove_tx(struct efx_tx_queue *tx_queue)
{
	falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
}

/**************************************************************************
 *
 * Falcon RX path
 *
 **************************************************************************/

/* Returns a pointer to the specified descriptor in the RX descriptor queue */
static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
					       unsigned int index)
{
	return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
}

/* This creates an entry in the RX descriptor queue */
static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
					unsigned index)
{
	struct efx_rx_buffer *rx_buf;
	efx_qword_t *rxd;

	rxd = falcon_rx_desc(rx_queue, index);
	rx_buf = efx_rx_buffer(rx_queue, index);
	EFX_POPULATE_QWORD_3(*rxd,
535
			     FSF_AZ_RX_KER_BUF_SIZE,
536 537
			     rx_buf->len -
			     rx_queue->efx->type->rx_buffer_padding,
538 539
			     FSF_AZ_RX_KER_BUF_REGION, 0,
			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
540 541 542 543 544 545 546 547 548 549 550 551 552
}

/* This writes to the RX_DESC_WPTR register for the specified receive
 * descriptor ring.
 */
void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
{
	efx_dword_t reg;
	unsigned write_ptr;

	while (rx_queue->notified_count != rx_queue->added_count) {
		falcon_build_rx_desc(rx_queue,
				     rx_queue->notified_count &
553
				     EFX_RXQ_MASK);
554 555 556 557
		++rx_queue->notified_count;
	}

	wmb();
558
	write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
559
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
560 561
	efx_writed_page(rx_queue->efx, &reg,
			FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
562 563 564 565 566
}

int falcon_probe_rx(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
567 568
	BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
		     EFX_RXQ_SIZE & EFX_RXQ_MASK);
569
	return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
570
					   EFX_RXQ_SIZE * sizeof(efx_qword_t));
571 572
}

573
void falcon_init_rx(struct efx_rx_queue *rx_queue)
574 575 576
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;
577 578
	bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
	bool iscsi_digest_en = is_b0;
579 580 581 582 583

	EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
		rx_queue->queue, rx_queue->rxd.index,
		rx_queue->rxd.index + rx_queue->rxd.entries - 1);

B
Ben Hutchings 已提交
584
	rx_queue->flushed = FLUSH_NONE;
585

586
	/* Pin RX descriptor ring */
587
	falcon_init_special_buffer(efx, &rx_queue->rxd);
588 589 590

	/* Push RX descriptor ring to card */
	EFX_POPULATE_OWORD_10(rx_desc_ptr,
591 592 593 594 595 596 597
			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
			      FRF_AZ_RX_DESCQ_EVQ_ID,
			      rx_queue->channel->channel,
			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
598 599
			      FRF_AZ_RX_DESCQ_SIZE,
			      __ffs(rx_queue->rxd.entries),
600
			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
601
			      /* For >=B0 this is scatter so disable */
602 603
			      FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
			      FRF_AZ_RX_DESCQ_EN, 1);
604 605
	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
			 rx_queue->queue);
606 607
}

608
static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
609 610 611 612
{
	struct efx_nic *efx = rx_queue->efx;
	efx_oword_t rx_flush_descq;

B
Ben Hutchings 已提交
613 614
	rx_queue->flushed = FLUSH_PENDING;

615 616
	/* Post a flush command */
	EFX_POPULATE_OWORD_2(rx_flush_descq,
617 618
			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
619
	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
620 621 622 623 624 625 626
}

void falcon_fini_rx(struct efx_rx_queue *rx_queue)
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;

627
	/* The queue should already have been flushed */
B
Ben Hutchings 已提交
628
	WARN_ON(rx_queue->flushed != FLUSH_DONE);
629 630 631

	/* Remove RX descriptor ring from card */
	EFX_ZERO_OWORD(rx_desc_ptr);
632 633
	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
			 rx_queue->queue);
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665

	/* Unpin RX descriptor ring */
	falcon_fini_special_buffer(efx, &rx_queue->rxd);
}

/* Free buffers backing RX queue */
void falcon_remove_rx(struct efx_rx_queue *rx_queue)
{
	falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
}

/**************************************************************************
 *
 * Falcon event queue processing
 * Event queues are processed by per-channel tasklets.
 *
 **************************************************************************/

/* Update a channel's event queue's read pointer (RPTR) register
 *
 * This writes the EVQ_RPTR_REG register for the specified channel's
 * event queue.
 *
 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
 * whereas channel->eventq_read_ptr contains the index of the "next to
 * read" event.
 */
void falcon_eventq_read_ack(struct efx_channel *channel)
{
	efx_dword_t reg;
	struct efx_nic *efx = channel->efx;

666
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
667
	efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
668
			    channel->channel);
669 670 671 672 673 674 675
}

/* Use HW to insert a SW defined event */
void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
{
	efx_oword_t drv_ev_reg;

676 677 678 679 680 681 682
	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
	drv_ev_reg.u32[0] = event->u32[0];
	drv_ev_reg.u32[1] = event->u32[1];
	drv_ev_reg.u32[2] = 0;
	drv_ev_reg.u32[3] = 0;
	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
683
	efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
684 685 686 687 688 689 690
}

/* Handle a transmit completion event
 *
 * Falcon batches TX completion events; the message we receive is of
 * the form "complete all TX events up to this index".
 */
691 692
static void falcon_handle_tx_event(struct efx_channel *channel,
				   efx_qword_t *event)
693 694 695 696 697 698
{
	unsigned int tx_ev_desc_ptr;
	unsigned int tx_ev_q_label;
	struct efx_tx_queue *tx_queue;
	struct efx_nic *efx = channel->efx;

699
	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
700
		/* Transmit completion */
701 702
		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
703
		tx_queue = &efx->tx_queue[tx_ev_q_label];
704 705
		channel->irq_mod_score +=
			(tx_ev_desc_ptr - tx_queue->read_count) &
706
			EFX_TXQ_MASK;
707
		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
708
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
709
		/* Rewrite the FIFO write pointer */
710
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
711 712
		tx_queue = &efx->tx_queue[tx_ev_q_label];

713
		if (efx_dev_registered(efx))
714 715
			netif_tx_lock(efx->net_dev);
		falcon_notify_tx_desc(tx_queue);
716
		if (efx_dev_registered(efx))
717
			netif_tx_unlock(efx->net_dev);
718
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
719 720 721 722 723 724 725 726 727 728 729 730
		   EFX_WORKAROUND_10727(efx)) {
		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
	} else {
		EFX_ERR(efx, "channel %d unexpected TX event "
			EFX_QWORD_FMT"\n", channel->channel,
			EFX_QWORD_VAL(*event));
	}
}

/* Detect errors included in the rx_evt_pkt_ok bit. */
static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
				    const efx_qword_t *event,
731 732
				    bool *rx_ev_pkt_ok,
				    bool *discard)
733 734
{
	struct efx_nic *efx = rx_queue->efx;
735 736 737 738 739 740
	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
	bool rx_ev_other_err, rx_ev_pause_frm;
	bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
	unsigned rx_ev_pkt_type;
741

742 743 744 745
	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
746
	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
747 748
						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
	rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_IP_FRAG_ERR);
749
	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
750
						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
751
	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
752 753 754
						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
755
	rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
756 757
			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
758 759 760 761 762 763

	/* Every error apart from tobe_disc and pause_frm */
	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);

764 765
	/* Count errors that are not in MAC stats.  Ignore expected
	 * checksum errors during self-test. */
766 767 768 769
	if (rx_ev_frm_trunc)
		++rx_queue->channel->n_rx_frm_trunc;
	else if (rx_ev_tobe_disc)
		++rx_queue->channel->n_rx_tobe_disc;
770 771 772 773 774 775
	else if (!efx->loopback_selftest) {
		if (rx_ev_ip_hdr_chksum_err)
			++rx_queue->channel->n_rx_ip_hdr_chksum_err;
		else if (rx_ev_tcp_udp_chksum_err)
			++rx_queue->channel->n_rx_tcp_udp_chksum_err;
	}
776 777 778 779 780 781 782 783 784 785 786 787 788 789
	if (rx_ev_ip_frag_err)
		++rx_queue->channel->n_rx_ip_frag_err;

	/* The frame must be discarded if any of these are true. */
	*discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
		    rx_ev_tobe_disc | rx_ev_pause_frm);

	/* TOBE_DISC is expected on unicast mismatches; don't print out an
	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
	 * to a FIFO overflow.
	 */
#ifdef EFX_ENABLE_DEBUG
	if (rx_ev_other_err) {
		EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
790
			    EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
791 792 793 794 795 796 797 798 799 800
			    rx_queue->queue, EFX_QWORD_VAL(*event),
			    rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
			    rx_ev_ip_hdr_chksum_err ?
			    " [IP_HDR_CHKSUM_ERR]" : "",
			    rx_ev_tcp_udp_chksum_err ?
			    " [TCP_UDP_CHKSUM_ERR]" : "",
			    rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
			    rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
			    rx_ev_drib_nib ? " [DRIB_NIB]" : "",
			    rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
801
			    rx_ev_pause_frm ? " [PAUSE]" : "");
802 803 804 805 806 807 808 809 810 811 812
	}
#endif
}

/* Handle receive events that are not in-order. */
static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
				       unsigned index)
{
	struct efx_nic *efx = rx_queue->efx;
	unsigned expected, dropped;

813 814
	expected = rx_queue->removed_count & EFX_RXQ_MASK;
	dropped = (index - expected) & EFX_RXQ_MASK;
815 816 817 818 819 820 821 822 823 824 825 826 827 828
	EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
		dropped, index, expected);

	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
}

/* Handle a packet received event
 *
 * Falcon silicon gives a "discard" flag if it's a unicast packet with the
 * wrong destination address
 * Also "is multicast" and "matches multicast filter" flags can be used to
 * discard non-matching multicast packets.
 */
B
Ben Hutchings 已提交
829 830
static void falcon_handle_rx_event(struct efx_channel *channel,
				   const efx_qword_t *event)
831
{
B
Ben Hutchings 已提交
832
	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
833
	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
834
	unsigned expected_ptr;
835
	bool rx_ev_pkt_ok, discard = false, checksummed;
836 837 838 839
	struct efx_rx_queue *rx_queue;
	struct efx_nic *efx = channel->efx;

	/* Basic packet information */
840 841 842 843 844 845 846
	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
		channel->channel);
847

B
Ben Hutchings 已提交
848
	rx_queue = &efx->rx_queue[channel->channel];
849

850
	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
851
	expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
B
Ben Hutchings 已提交
852
	if (unlikely(rx_ev_desc_ptr != expected_ptr))
853 854 855 856 857 858
		falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);

	if (likely(rx_ev_pkt_ok)) {
		/* If packet is marked as OK and packet type is TCP/IPv4 or
		 * UDP/IPv4, then we can rely on the hardware checksum.
		 */
859
		checksummed =
860 861 862
			efx->rx_checksum_enabled &&
			(rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP ||
			 rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP);
863 864
	} else {
		falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
865
					&discard);
866
		checksummed = false;
867 868 869
	}

	/* Detect multicast packets that didn't match the filter */
870
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
871 872
	if (rx_ev_mcast_pkt) {
		unsigned int rx_ev_mcast_hash_match =
873
			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
874 875

		if (unlikely(!rx_ev_mcast_hash_match))
876
			discard = true;
877 878
	}

879 880
	channel->irq_mod_score += 2;

881 882 883 884 885 886 887 888 889 890
	/* Handle received packet */
	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
		      checksummed, discard);
}

/* Global events are basically PHY events */
static void falcon_handle_global_event(struct efx_channel *channel,
				       efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
891
	bool handled = false;
892

893 894 895
	if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
896 897 898 899
		efx->phy_op->clear_interrupt(efx);
		queue_work(efx->workqueue, &efx->phy_work);
		handled = true;
	}
900

901
	if ((falcon_rev(efx) >= FALCON_REV_B0) &&
902
	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
903
		queue_work(efx->workqueue, &efx->mac_work);
904
		handled = true;
905 906
	}

907
	if (falcon_rev(efx) <= FALCON_REV_A1 ?
908 909
	    EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
910 911 912 913 914 915
		EFX_ERR(efx, "channel %d seen global RX_RESET "
			"event. Resetting.\n", channel->channel);

		atomic_inc(&efx->rx_reset);
		efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
916
		handled = true;
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
	}

	if (!handled)
		EFX_ERR(efx, "channel %d unknown global event "
			EFX_QWORD_FMT "\n", channel->channel,
			EFX_QWORD_VAL(*event));
}

static void falcon_handle_driver_event(struct efx_channel *channel,
				       efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	unsigned int ev_sub_code;
	unsigned int ev_sub_data;

932 933
	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
934 935

	switch (ev_sub_code) {
936
	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
937 938 939
		EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
			  channel->channel, ev_sub_data);
		break;
940
	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
941 942 943
		EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
			  channel->channel, ev_sub_data);
		break;
944
	case FSE_AZ_EVQ_INIT_DONE_EV:
945 946 947
		EFX_LOG(efx, "channel %d EVQ %d initialised\n",
			channel->channel, ev_sub_data);
		break;
948
	case FSE_AZ_SRM_UPD_DONE_EV:
949 950 951
		EFX_TRACE(efx, "channel %d SRAM update done\n",
			  channel->channel);
		break;
952
	case FSE_AZ_WAKE_UP_EV:
953 954 955
		EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
			  channel->channel, ev_sub_data);
		break;
956
	case FSE_AZ_TIMER_EV:
957 958 959
		EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
			  channel->channel, ev_sub_data);
		break;
960
	case FSE_AA_RX_RECOVER_EV:
961 962
		EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
			"Resetting.\n", channel->channel);
963
		atomic_inc(&efx->rx_reset);
964 965 966 967 968
		efx_schedule_reset(efx,
				   EFX_WORKAROUND_6555(efx) ?
				   RESET_TYPE_RX_RECOVERY :
				   RESET_TYPE_DISABLE);
		break;
969
	case FSE_BZ_RX_DSC_ERROR_EV:
970 971 972 973
		EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
			" RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
		efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
		break;
974
	case FSE_BZ_TX_DSC_ERROR_EV:
975 976 977 978 979 980 981 982 983 984 985 986
		EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
			" TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
		break;
	default:
		EFX_TRACE(efx, "channel %d unknown driver event code %d "
			  "data %04x\n", channel->channel, ev_sub_code,
			  ev_sub_data);
		break;
	}
}

B
Ben Hutchings 已提交
987
int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
988 989 990 991
{
	unsigned int read_ptr;
	efx_qword_t event, *p_event;
	int ev_code;
B
Ben Hutchings 已提交
992
	int rx_packets = 0;
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

	read_ptr = channel->eventq_read_ptr;

	do {
		p_event = falcon_event(channel, read_ptr);
		event = *p_event;

		if (!falcon_event_present(&event))
			/* End of events */
			break;

		EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
			  channel->channel, EFX_QWORD_VAL(event));

		/* Clear this event by marking it all ones */
		EFX_SET_QWORD(*p_event);

1010
		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1011 1012

		switch (ev_code) {
1013
		case FSE_AZ_EV_CODE_RX_EV:
B
Ben Hutchings 已提交
1014 1015
			falcon_handle_rx_event(channel, &event);
			++rx_packets;
1016
			break;
1017
		case FSE_AZ_EV_CODE_TX_EV:
1018 1019
			falcon_handle_tx_event(channel, &event);
			break;
1020 1021 1022
		case FSE_AZ_EV_CODE_DRV_GEN_EV:
			channel->eventq_magic = EFX_QWORD_FIELD(
				event, FSF_AZ_DRV_GEN_EV_MAGIC);
1023 1024 1025 1026
			EFX_LOG(channel->efx, "channel %d received generated "
				"event "EFX_QWORD_FMT"\n", channel->channel,
				EFX_QWORD_VAL(event));
			break;
1027
		case FSE_AZ_EV_CODE_GLOBAL_EV:
1028 1029
			falcon_handle_global_event(channel, &event);
			break;
1030
		case FSE_AZ_EV_CODE_DRIVER_EV:
1031 1032 1033 1034 1035 1036 1037 1038 1039
			falcon_handle_driver_event(channel, &event);
			break;
		default:
			EFX_ERR(channel->efx, "channel %d unknown event type %d"
				" (data " EFX_QWORD_FMT ")\n", channel->channel,
				ev_code, EFX_QWORD_VAL(event));
		}

		/* Increment read pointer */
1040
		read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1041

B
Ben Hutchings 已提交
1042
	} while (rx_packets < rx_quota);
1043 1044

	channel->eventq_read_ptr = read_ptr;
B
Ben Hutchings 已提交
1045
	return rx_packets;
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
}

void falcon_set_int_moderation(struct efx_channel *channel)
{
	efx_dword_t timer_cmd;
	struct efx_nic *efx = channel->efx;

	/* Set timer register */
	if (channel->irq_moderation) {
		EFX_POPULATE_DWORD_2(timer_cmd,
1056 1057 1058
				     FRF_AB_TC_TIMER_MODE,
				     FFE_BB_TIMER_MODE_INT_HLDOFF,
				     FRF_AB_TC_TIMER_VAL,
1059
				     channel->irq_moderation - 1);
1060 1061
	} else {
		EFX_POPULATE_DWORD_2(timer_cmd,
1062 1063 1064
				     FRF_AB_TC_TIMER_MODE,
				     FFE_BB_TIMER_MODE_DIS,
				     FRF_AB_TC_TIMER_VAL, 0);
1065
	}
1066
	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
1067 1068
	efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
			       channel->channel);
1069 1070 1071 1072 1073 1074 1075

}

/* Allocate buffer table entries for event queue */
int falcon_probe_eventq(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;
1076 1077 1078 1079
	BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
		     EFX_EVQ_SIZE & EFX_EVQ_MASK);
	return falcon_alloc_special_buffer(efx, &channel->eventq,
					   EFX_EVQ_SIZE * sizeof(efx_qword_t));
1080 1081
}

1082
void falcon_init_eventq(struct efx_channel *channel)
1083 1084 1085 1086 1087 1088 1089 1090 1091
{
	efx_oword_t evq_ptr;
	struct efx_nic *efx = channel->efx;

	EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
		channel->channel, channel->eventq.index,
		channel->eventq.index + channel->eventq.entries - 1);

	/* Pin event queue buffer */
1092
	falcon_init_special_buffer(efx, &channel->eventq);
1093 1094 1095 1096 1097 1098

	/* Fill event queue with all ones (i.e. empty events) */
	memset(channel->eventq.addr, 0xff, channel->eventq.len);

	/* Push event queue to card */
	EFX_POPULATE_OWORD_3(evq_ptr,
1099
			     FRF_AZ_EVQ_EN, 1,
1100
			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1101
			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1102 1103
	efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
			 channel->channel);
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

	falcon_set_int_moderation(channel);
}

void falcon_fini_eventq(struct efx_channel *channel)
{
	efx_oword_t eventq_ptr;
	struct efx_nic *efx = channel->efx;

	/* Remove event queue from card */
	EFX_ZERO_OWORD(eventq_ptr);
1115 1116
	efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
			 channel->channel);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

	/* Unpin event queue */
	falcon_fini_special_buffer(efx, &channel->eventq);
}

/* Free buffers backing event queue */
void falcon_remove_eventq(struct efx_channel *channel)
{
	falcon_free_special_buffer(channel->efx, &channel->eventq);
}


/* Generates a test event on the event queue.  A subsequent call to
 * process_eventq() should pick up the event and place the value of
 * "magic" into channel->eventq_magic;
 */
void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
{
	efx_qword_t test_event;

1137 1138 1139
	EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
			     FSE_AZ_EV_CODE_DRV_GEN_EV,
			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1140 1141 1142
	falcon_generate_event(channel, &test_event);
}

1143 1144 1145 1146
void falcon_sim_phy_event(struct efx_nic *efx)
{
	efx_qword_t phy_event;

1147 1148
	EFX_POPULATE_QWORD_1(phy_event, FSF_AZ_EV_CODE,
			     FSE_AZ_EV_CODE_GLOBAL_EV);
1149
	if (EFX_IS10G(efx))
1150
		EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_XG_PHY0_INTR, 1);
1151
	else
1152
		EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_G_PHY0_INTR, 1);
1153 1154 1155 1156

	falcon_generate_event(&efx->channel[0], &phy_event);
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
/**************************************************************************
 *
 * Flush handling
 *
 **************************************************************************/


static void falcon_poll_flush_events(struct efx_nic *efx)
{
	struct efx_channel *channel = &efx->channel[0];
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
1169
	unsigned int read_ptr = channel->eventq_read_ptr;
1170
	unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
1171

1172
	do {
1173 1174 1175
		efx_qword_t *event = falcon_event(channel, read_ptr);
		int ev_code, ev_sub_code, ev_queue;
		bool ev_failed;
1176

1177 1178 1179
		if (!falcon_event_present(event))
			break;

1180 1181 1182 1183 1184
		ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
		ev_sub_code = EFX_QWORD_FIELD(*event,
					      FSF_AZ_DRIVER_EV_SUBCODE);
		if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
		    ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1185
			ev_queue = EFX_QWORD_FIELD(*event,
1186
						   FSF_AZ_DRIVER_EV_SUBDATA);
1187 1188
			if (ev_queue < EFX_TX_QUEUE_COUNT) {
				tx_queue = efx->tx_queue + ev_queue;
B
Ben Hutchings 已提交
1189
				tx_queue->flushed = FLUSH_DONE;
1190
			}
1191 1192 1193 1194 1195 1196
		} else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
			   ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
			ev_queue = EFX_QWORD_FIELD(
				*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
			ev_failed = EFX_QWORD_FIELD(
				*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1197 1198
			if (ev_queue < efx->n_rx_queues) {
				rx_queue = efx->rx_queue + ev_queue;
B
Ben Hutchings 已提交
1199 1200
				rx_queue->flushed =
					ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1201 1202 1203
			}
		}

B
Ben Hutchings 已提交
1204 1205 1206 1207
		/* We're about to destroy the queue anyway, so
		 * it's ok to throw away every non-flush event */
		EFX_SET_QWORD(*event);

1208
		read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1209
	} while (read_ptr != end_ptr);
B
Ben Hutchings 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

	channel->eventq_read_ptr = read_ptr;
}

static void falcon_prepare_flush(struct efx_nic *efx)
{
	falcon_deconfigure_mac_wrapper(efx);

	/* Wait for the tx and rx fifo's to get to the next packet boundary
	 * (~1ms without back-pressure), then to drain the remainder of the
	 * fifo's at data path speeds (negligible), with a healthy margin. */
	msleep(10);
1222 1223 1224 1225 1226 1227 1228 1229 1230
}

/* Handle tx and rx flushes at the same time, since they run in
 * parallel in the hardware and there's no reason for us to
 * serialise them */
int falcon_flush_queues(struct efx_nic *efx)
{
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
B
Ben Hutchings 已提交
1231
	int i, tx_pending, rx_pending;
1232

B
Ben Hutchings 已提交
1233 1234 1235 1236
	falcon_prepare_flush(efx);

	/* Flush all tx queues in parallel */
	efx_for_each_tx_queue(tx_queue, efx)
1237 1238
		falcon_flush_tx_queue(tx_queue);

B
Ben Hutchings 已提交
1239 1240
	/* The hardware supports four concurrent rx flushes, each of which may
	 * need to be retried if there is an outstanding descriptor fetch */
1241
	for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
B
Ben Hutchings 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
		rx_pending = tx_pending = 0;
		efx_for_each_rx_queue(rx_queue, efx) {
			if (rx_queue->flushed == FLUSH_PENDING)
				++rx_pending;
		}
		efx_for_each_rx_queue(rx_queue, efx) {
			if (rx_pending == FALCON_RX_FLUSH_COUNT)
				break;
			if (rx_queue->flushed == FLUSH_FAILED ||
			    rx_queue->flushed == FLUSH_NONE) {
				falcon_flush_rx_queue(rx_queue);
				++rx_pending;
			}
		}
		efx_for_each_tx_queue(tx_queue, efx) {
			if (tx_queue->flushed != FLUSH_DONE)
				++tx_pending;
		}
1260

B
Ben Hutchings 已提交
1261
		if (rx_pending == 0 && tx_pending == 0)
1262
			return 0;
B
Ben Hutchings 已提交
1263 1264 1265

		msleep(FALCON_FLUSH_INTERVAL);
		falcon_poll_flush_events(efx);
1266 1267 1268
	}

	/* Mark the queues as all flushed. We're going to return failure
B
Ben Hutchings 已提交
1269
	 * leading to a reset, or fake up success anyway */
1270
	efx_for_each_tx_queue(tx_queue, efx) {
B
Ben Hutchings 已提交
1271
		if (tx_queue->flushed != FLUSH_DONE)
1272 1273
			EFX_ERR(efx, "tx queue %d flush command timed out\n",
				tx_queue->queue);
B
Ben Hutchings 已提交
1274
		tx_queue->flushed = FLUSH_DONE;
1275 1276
	}
	efx_for_each_rx_queue(rx_queue, efx) {
B
Ben Hutchings 已提交
1277
		if (rx_queue->flushed != FLUSH_DONE)
1278 1279
			EFX_ERR(efx, "rx queue %d flush command timed out\n",
				rx_queue->queue);
B
Ben Hutchings 已提交
1280
		rx_queue->flushed = FLUSH_DONE;
1281 1282 1283 1284 1285 1286 1287
	}

	if (EFX_WORKAROUND_7803(efx))
		return 0;

	return -ETIMEDOUT;
}
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

/**************************************************************************
 *
 * Falcon hardware interrupts
 * The hardware interrupt handler does very little work; all the event
 * queue processing is carried out by per-channel tasklets.
 *
 **************************************************************************/

/* Enable/disable/generate Falcon interrupts */
static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
				     int force)
{
	efx_oword_t int_en_reg_ker;

	EFX_POPULATE_OWORD_2(int_en_reg_ker,
1304 1305
			     FRF_AZ_KER_INT_KER, force,
			     FRF_AZ_DRV_INT_EN_KER, enabled);
1306
	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
}

void falcon_enable_interrupts(struct efx_nic *efx)
{
	efx_oword_t int_adr_reg_ker;
	struct efx_channel *channel;

	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */

	/* Program address */
	EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1319 1320 1321
			     FRF_AZ_NORM_INT_VEC_DIS_KER,
			     EFX_INT_MODE_USE_MSI(efx),
			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1322
	efx_writeo(efx, &int_adr_reg_ker, FR_AZ_INT_ADR_KER);
1323 1324 1325 1326 1327 1328

	/* Enable interrupts */
	falcon_interrupts(efx, 1, 0);

	/* Force processing of all the channels to get the EVQ RPTRs up to
	   date */
1329
	efx_for_each_channel(channel, efx)
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
		efx_schedule_channel(channel);
}

void falcon_disable_interrupts(struct efx_nic *efx)
{
	/* Disable interrupts */
	falcon_interrupts(efx, 0, 0);
}

/* Generate a Falcon test interrupt
 * Interrupt must already have been enabled, otherwise nasty things
 * may happen.
 */
void falcon_generate_interrupt(struct efx_nic *efx)
{
	falcon_interrupts(efx, 1, 1);
}

/* Acknowledge a legacy interrupt from Falcon
 *
 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
 *
 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
 * BIU. Interrupt acknowledge is read sensitive so must write instead
 * (then read to ensure the BIU collector is flushed)
 *
 * NB most hardware supports MSI interrupts
 */
static inline void falcon_irq_ack_a1(struct efx_nic *efx)
{
	efx_dword_t reg;

1362
	EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
1363 1364
	efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
	efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
1365 1366 1367 1368 1369 1370 1371 1372
}

/* Process a fatal interrupt
 * Disable bus mastering ASAP and schedule a reset
 */
static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
1373
	efx_oword_t *int_ker = efx->irq_status.addr;
1374 1375 1376
	efx_oword_t fatal_intr;
	int error, mem_perr;

1377
	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1378
	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1379 1380 1381 1382 1383 1384 1385 1386 1387

	EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
		EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
		EFX_OWORD_VAL(fatal_intr),
		error ? "disabling bus mastering" : "no recognised error");
	if (error == 0)
		goto out;

	/* If this is a memory parity error dump which blocks are offending */
1388
	mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
1389 1390
	if (mem_perr) {
		efx_oword_t reg;
1391
		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1392 1393 1394 1395
		EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
			EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
	}

1396
	/* Disable both devices */
1397
	pci_clear_master(efx->pci_dev);
1398
	if (FALCON_IS_DUAL_FUNC(efx))
1399
		pci_clear_master(nic_data->pci_dev2);
1400
	falcon_disable_interrupts(efx);
1401

1402
	/* Count errors and reset or disable the NIC accordingly */
1403 1404 1405 1406
	if (efx->int_error_count == 0 ||
	    time_after(jiffies, efx->int_error_expire)) {
		efx->int_error_count = 0;
		efx->int_error_expire =
1407 1408
			jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
	}
1409
	if (++efx->int_error_count < FALCON_MAX_INT_ERRORS) {
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
		EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
	} else {
		EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
			"NIC will be disabled\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	}
out:
	return IRQ_HANDLED;
}

/* Handle a legacy interrupt from Falcon
 * Acknowledges the interrupt and schedule event queue processing.
 */
static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
{
1426 1427
	struct efx_nic *efx = dev_id;
	efx_oword_t *int_ker = efx->irq_status.addr;
1428
	irqreturn_t result = IRQ_NONE;
1429 1430 1431 1432 1433 1434
	struct efx_channel *channel;
	efx_dword_t reg;
	u32 queues;
	int syserr;

	/* Read the ISR which also ACKs the interrupts */
1435
	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1436 1437 1438
	queues = EFX_EXTRACT_DWORD(reg, 0, 31);

	/* Check to see if we have a serious error condition */
1439
	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1440 1441 1442 1443
	if (unlikely(syserr))
		return falcon_fatal_interrupt(efx);

	/* Schedule processing of any interrupting queues */
1444 1445 1446 1447
	efx_for_each_channel(channel, efx) {
		if ((queues & 1) ||
		    falcon_event_present(
			    falcon_event(channel, channel->eventq_read_ptr))) {
1448
			efx_schedule_channel(channel);
1449 1450
			result = IRQ_HANDLED;
		}
1451 1452 1453
		queues >>= 1;
	}

1454 1455 1456 1457 1458 1459 1460
	if (result == IRQ_HANDLED) {
		efx->last_irq_cpu = raw_smp_processor_id();
		EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
			  irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
	}

	return result;
1461 1462 1463 1464 1465
}


static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
{
1466 1467
	struct efx_nic *efx = dev_id;
	efx_oword_t *int_ker = efx->irq_status.addr;
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	struct efx_channel *channel;
	int syserr;
	int queues;

	/* Check to see if this is our interrupt.  If it isn't, we
	 * exit without having touched the hardware.
	 */
	if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
		EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
			  raw_smp_processor_id());
		return IRQ_NONE;
	}
	efx->last_irq_cpu = raw_smp_processor_id();
	EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
		  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));

	/* Check to see if we have a serious error condition */
1485
	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	if (unlikely(syserr))
		return falcon_fatal_interrupt(efx);

	/* Determine interrupting queues, clear interrupt status
	 * register and acknowledge the device interrupt.
	 */
	BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
	queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
	EFX_ZERO_OWORD(*int_ker);
	wmb(); /* Ensure the vector is cleared before interrupt ack */
	falcon_irq_ack_a1(efx);

	/* Schedule processing of any interrupting queues */
	channel = &efx->channel[0];
	while (queues) {
		if (queues & 0x01)
			efx_schedule_channel(channel);
		channel++;
		queues >>= 1;
	}

	return IRQ_HANDLED;
}

/* Handle an MSI interrupt from Falcon
 *
 * Handle an MSI hardware interrupt.  This routine schedules event
 * queue processing.  No interrupt acknowledgement cycle is necessary.
 * Also, we never need to check that the interrupt is for us, since
 * MSI interrupts cannot be shared.
 */
static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
{
1519
	struct efx_channel *channel = dev_id;
1520
	struct efx_nic *efx = channel->efx;
1521
	efx_oword_t *int_ker = efx->irq_status.addr;
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	int syserr;

	efx->last_irq_cpu = raw_smp_processor_id();
	EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
		  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));

	/* Check to see if we have a serious error condition */
	syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
	if (unlikely(syserr))
		return falcon_fatal_interrupt(efx);

	/* Schedule processing of the channel */
	efx_schedule_channel(channel);

	return IRQ_HANDLED;
}


/* Setup RSS indirection table.
 * This maps from the hash value of the packet to RXQ
 */
static void falcon_setup_rss_indir_table(struct efx_nic *efx)
{
	int i = 0;
	unsigned long offset;
	efx_dword_t dword;

1549
	if (falcon_rev(efx) < FALCON_REV_B0)
1550 1551
		return;

1552 1553
	for (offset = FR_BZ_RX_INDIRECTION_TBL;
	     offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
1554
	     offset += 0x10) {
1555
		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1556
				     i % efx->n_rx_queues);
1557
		efx_writed(efx, &dword, offset);
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
		i++;
	}
}

/* Hook interrupt handler(s)
 * Try MSI and then legacy interrupts.
 */
int falcon_init_interrupt(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	if (!EFX_INT_MODE_USE_MSI(efx)) {
		irq_handler_t handler;
1572
		if (falcon_rev(efx) >= FALCON_REV_B0)
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
			handler = falcon_legacy_interrupt_b0;
		else
			handler = falcon_legacy_interrupt_a1;

		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
				 efx->name, efx);
		if (rc) {
			EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
				efx->pci_dev->irq);
			goto fail1;
		}
		return 0;
	}

	/* Hook MSI or MSI-X interrupt */
1588
	efx_for_each_channel(channel, efx) {
1589 1590
		rc = request_irq(channel->irq, falcon_msi_interrupt,
				 IRQF_PROBE_SHARED, /* Not shared */
1591
				 channel->name, channel);
1592 1593 1594 1595 1596 1597 1598 1599 1600
		if (rc) {
			EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
			goto fail2;
		}
	}

	return 0;

 fail2:
1601
	efx_for_each_channel(channel, efx)
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
		free_irq(channel->irq, channel);
 fail1:
	return rc;
}

void falcon_fini_interrupt(struct efx_nic *efx)
{
	struct efx_channel *channel;
	efx_oword_t reg;

	/* Disable MSI/MSI-X interrupts */
1613
	efx_for_each_channel(channel, efx) {
1614 1615
		if (channel->irq)
			free_irq(channel->irq, channel);
1616
	}
1617 1618

	/* ACK legacy interrupt */
1619
	if (falcon_rev(efx) >= FALCON_REV_B0)
1620
		efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	else
		falcon_irq_ack_a1(efx);

	/* Disable legacy interrupt */
	if (efx->legacy_irq)
		free_irq(efx->legacy_irq, efx);
}

/**************************************************************************
 *
 * EEPROM/flash
 *
 **************************************************************************
 */

1636
#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1637

1638 1639 1640
static int falcon_spi_poll(struct efx_nic *efx)
{
	efx_oword_t reg;
1641
	efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
1642
	return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1643 1644
}

1645 1646 1647
/* Wait for SPI command completion */
static int falcon_spi_wait(struct efx_nic *efx)
{
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
	/* Most commands will finish quickly, so we start polling at
	 * very short intervals.  Sometimes the command may have to
	 * wait for VPD or expansion ROM access outside of our
	 * control, so we allow up to 100 ms. */
	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
	int i;

	for (i = 0; i < 10; i++) {
		if (!falcon_spi_poll(efx))
			return 0;
		udelay(10);
	}
1660

1661
	for (;;) {
1662
		if (!falcon_spi_poll(efx))
1663
			return 0;
1664 1665 1666 1667
		if (time_after_eq(jiffies, timeout)) {
			EFX_ERR(efx, "timed out waiting for SPI\n");
			return -ETIMEDOUT;
		}
1668
		schedule_timeout_uninterruptible(1);
1669
	}
1670 1671
}

1672 1673
int falcon_spi_cmd(const struct efx_spi_device *spi,
		   unsigned int command, int address,
1674
		   const void *in, void *out, size_t len)
1675
{
1676 1677 1678
	struct efx_nic *efx = spi->efx;
	bool addressed = (address >= 0);
	bool reading = (out != NULL);
1679 1680 1681
	efx_oword_t reg;
	int rc;

1682 1683 1684
	/* Input validation */
	if (len > FALCON_SPI_MAX_LEN)
		return -EINVAL;
1685
	BUG_ON(!mutex_is_locked(&efx->spi_lock));
1686

1687 1688
	/* Check that previous command is not still running */
	rc = falcon_spi_poll(efx);
1689 1690 1691
	if (rc)
		return rc;

1692 1693
	/* Program address register, if we have an address */
	if (addressed) {
1694
		EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
1695
		efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
1696 1697 1698 1699 1700
	}

	/* Program data register, if we have data */
	if (in != NULL) {
		memcpy(&reg, in, len);
1701
		efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
1702
	}
1703

1704
	/* Issue read/write command */
1705
	EFX_POPULATE_OWORD_7(reg,
1706 1707 1708 1709 1710 1711
			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
			     FRF_AB_EE_SPI_HCMD_READ, reading,
			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
			     FRF_AB_EE_SPI_HCMD_ADBCNT,
1712
			     (addressed ? spi->addr_len : 0),
1713
			     FRF_AB_EE_SPI_HCMD_ENC, command);
1714
	efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
1715

1716
	/* Wait for read/write to complete */
1717 1718 1719 1720 1721
	rc = falcon_spi_wait(efx);
	if (rc)
		return rc;

	/* Read data */
1722
	if (out != NULL) {
1723
		efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
1724 1725 1726
		memcpy(out, &reg, len);
	}

1727 1728 1729
	return 0;
}

1730 1731
static size_t
falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
{
	return min(FALCON_SPI_MAX_LEN,
		   (spi->block_size - (start & (spi->block_size - 1))));
}

static inline u8
efx_spi_munge_command(const struct efx_spi_device *spi,
		      const u8 command, const unsigned int address)
{
	return command | (((address >> 8) & spi->munge_address) << 3);
}

1744 1745
/* Wait up to 10 ms for buffered write completion */
int falcon_spi_wait_write(const struct efx_spi_device *spi)
1746
{
1747 1748
	struct efx_nic *efx = spi->efx;
	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1749
	u8 status;
1750
	int rc;
1751

1752
	for (;;) {
1753 1754 1755 1756 1757 1758
		rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
				    &status, sizeof(status));
		if (rc)
			return rc;
		if (!(status & SPI_STATUS_NRDY))
			return 0;
1759 1760 1761 1762 1763 1764 1765
		if (time_after_eq(jiffies, timeout)) {
			EFX_ERR(efx, "SPI write timeout on device %d"
				" last status=0x%02x\n",
				spi->device_id, status);
			return -ETIMEDOUT;
		}
		schedule_timeout_uninterruptible(1);
1766 1767 1768 1769 1770 1771
	}
}

int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
		    size_t len, size_t *retlen, u8 *buffer)
{
1772 1773
	size_t block_len, pos = 0;
	unsigned int command;
1774 1775 1776
	int rc = 0;

	while (pos < len) {
1777
		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802

		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
		rc = falcon_spi_cmd(spi, command, start + pos, NULL,
				    buffer + pos, block_len);
		if (rc)
			break;
		pos += block_len;

		/* Avoid locking up the system */
		cond_resched();
		if (signal_pending(current)) {
			rc = -EINTR;
			break;
		}
	}

	if (retlen)
		*retlen = pos;
	return rc;
}

int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
		     size_t len, size_t *retlen, const u8 *buffer)
{
	u8 verify_buffer[FALCON_SPI_MAX_LEN];
1803 1804
	size_t block_len, pos = 0;
	unsigned int command;
1805 1806 1807 1808 1809 1810 1811
	int rc = 0;

	while (pos < len) {
		rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
		if (rc)
			break;

1812
		block_len = min(len - pos,
1813 1814 1815 1816 1817 1818 1819
				falcon_spi_write_limit(spi, start + pos));
		command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
		rc = falcon_spi_cmd(spi, command, start + pos,
				    buffer + pos, NULL, block_len);
		if (rc)
			break;

1820
		rc = falcon_spi_wait_write(spi);
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
		if (rc)
			break;

		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
		rc = falcon_spi_cmd(spi, command, start + pos,
				    NULL, verify_buffer, block_len);
		if (memcmp(verify_buffer, buffer + pos, block_len)) {
			rc = -EIO;
			break;
		}

		pos += block_len;

		/* Avoid locking up the system */
		cond_resched();
		if (signal_pending(current)) {
			rc = -EINTR;
			break;
		}
	}

	if (retlen)
		*retlen = pos;
	return rc;
}

1847 1848 1849 1850 1851 1852
/**************************************************************************
 *
 * MAC wrapper
 *
 **************************************************************************
 */
1853 1854

static int falcon_reset_macs(struct efx_nic *efx)
1855
{
1856
	efx_oword_t reg;
1857 1858
	int count;

1859 1860 1861 1862 1863
	if (falcon_rev(efx) < FALCON_REV_B0) {
		/* It's not safe to use GLB_CTL_REG to reset the
		 * macs, so instead use the internal MAC resets
		 */
		if (!EFX_IS10G(efx)) {
1864
			EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
1865
			efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1866 1867
			udelay(1000);

1868
			EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
1869
			efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1870 1871 1872
			udelay(1000);
			return 0;
		} else {
1873
			EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1874
			efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1875 1876

			for (count = 0; count < 10000; count++) {
1877
				efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1878 1879
				if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
				    0)
1880 1881 1882
					return 0;
				udelay(10);
			}
1883

1884 1885 1886 1887
			EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
			return -ETIMEDOUT;
		}
	}
1888 1889 1890

	/* MAC stats will fail whilst the TX fifo is draining. Serialise
	 * the drain sequence with the statistics fetch */
1891
	falcon_stop_nic_stats(efx);
1892

1893
	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1894
	EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, 1);
1895
	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1896

1897
	efx_reado(efx, &reg, FR_AB_GLB_CTL);
1898 1899 1900
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1901
	efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1902 1903 1904

	count = 0;
	while (1) {
1905
		efx_reado(efx, &reg, FR_AB_GLB_CTL);
1906 1907 1908
		if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
			EFX_LOG(efx, "Completed MAC reset after %d loops\n",
				count);
			break;
		}
		if (count > 20) {
			EFX_ERR(efx, "MAC reset failed\n");
			break;
		}
		count++;
		udelay(10);
	}

	/* If we've reset the EM block and the link is up, then
	 * we'll have to kick the XAUI link so the PHY can recover */
1923
	if (efx->link_state.up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1924
		falcon_reset_xaui(efx);
1925

1926 1927
	falcon_start_nic_stats(efx);

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	return 0;
}

void falcon_drain_tx_fifo(struct efx_nic *efx)
{
	efx_oword_t reg;

	if ((falcon_rev(efx) < FALCON_REV_B0) ||
	    (efx->loopback_mode != LOOPBACK_NONE))
		return;

1939
	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1940
	/* There is no point in draining more than once */
1941
	if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1942 1943 1944
		return;

	falcon_reset_macs(efx);
1945 1946 1947 1948
}

void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
{
1949
	efx_oword_t reg;
1950

1951
	if (falcon_rev(efx) < FALCON_REV_B0)
1952 1953 1954
		return;

	/* Isolate the MAC -> RX */
1955
	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1956
	EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1957
	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1958

1959
	if (!efx->link_state.up)
1960 1961 1962 1963 1964
		falcon_drain_tx_fifo(efx);
}

void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
{
1965
	struct efx_link_state *link_state = &efx->link_state;
1966 1967
	efx_oword_t reg;
	int link_speed;
1968
	bool tx_fc;
1969

1970
	switch (link_state->speed) {
B
Ben Hutchings 已提交
1971 1972 1973 1974 1975
	case 10000: link_speed = 3; break;
	case 1000:  link_speed = 2; break;
	case 100:   link_speed = 1; break;
	default:    link_speed = 0; break;
	}
1976 1977 1978 1979 1980
	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
	 * as advertised.  Disable to ensure packets are not
	 * indefinitely held and TX queue can be flushed at any point
	 * while the link is down. */
	EFX_POPULATE_OWORD_5(reg,
1981 1982 1983 1984 1985
			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
			     FRF_AB_MAC_BCAD_ACPT, 1,
			     FRF_AB_MAC_UC_PROM, efx->promiscuous,
			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
			     FRF_AB_MAC_SPEED, link_speed);
1986 1987
	/* On B0, MAC backpressure can be disabled and packets get
	 * discarded. */
1988
	if (falcon_rev(efx) >= FALCON_REV_B0) {
1989
		EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1990
				    !link_state->up);
1991 1992
	}

1993
	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1994 1995 1996 1997 1998 1999 2000

	/* Restore the multicast hash registers. */
	falcon_set_multicast_hash(efx);

	/* Transmission of pause frames when RX crosses the threshold is
	 * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
	 * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
2001
	tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
2002
	efx_reado(efx, &reg, FR_AZ_RX_CFG);
2003
	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, tx_fc);
2004 2005

	/* Unisolate the MAC -> RX */
2006
	if (falcon_rev(efx) >= FALCON_REV_B0)
2007
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2008
	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2009 2010
}

2011
static void falcon_stats_request(struct efx_nic *efx)
2012
{
2013
	struct falcon_nic_data *nic_data = efx->nic_data;
2014 2015
	efx_oword_t reg;

2016 2017
	WARN_ON(nic_data->stats_pending);
	WARN_ON(nic_data->stats_disable_count);
2018

2019 2020
	if (nic_data->stats_dma_done == NULL)
		return;	/* no mac selected */
2021

2022 2023
	*nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
	nic_data->stats_pending = true;
2024 2025 2026 2027
	wmb(); /* ensure done flag is clear */

	/* Initiate DMA transfer of stats */
	EFX_POPULATE_OWORD_2(reg,
2028 2029
			     FRF_AB_MAC_STAT_DMA_CMD, 1,
			     FRF_AB_MAC_STAT_DMA_ADR,
2030
			     efx->stats_buffer.dma_addr);
2031
	efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
2032

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
	mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
}

static void falcon_stats_complete(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;

	if (!nic_data->stats_pending)
		return;

	nic_data->stats_pending = 0;
	if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
		rmb(); /* read the done flag before the stats */
		efx->mac_op->update_stats(efx);
	} else {
		EFX_ERR(efx, "timed out waiting for statistics\n");
2049
	}
2050
}
2051

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
static void falcon_stats_timer_func(unsigned long context)
{
	struct efx_nic *efx = (struct efx_nic *)context;
	struct falcon_nic_data *nic_data = efx->nic_data;

	spin_lock(&efx->stats_lock);

	falcon_stats_complete(efx);
	if (nic_data->stats_disable_count == 0)
		falcon_stats_request(efx);

	spin_unlock(&efx->stats_lock);
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
}

/**************************************************************************
 *
 * PHY access via GMII
 *
 **************************************************************************
 */

/* Wait for GMII access to complete */
static int falcon_gmii_wait(struct efx_nic *efx)
{
2076
	efx_oword_t md_stat;
2077 2078
	int count;

2079 2080
	/* wait upto 50ms - taken max from datasheet */
	for (count = 0; count < 5000; count++) {
2081 2082 2083 2084
		efx_reado(efx, &md_stat, FR_AB_MD_STAT);
		if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
			if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
			    EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
2085
				EFX_ERR(efx, "error from GMII access "
2086 2087
					EFX_OWORD_FMT"\n",
					EFX_OWORD_VAL(md_stat));
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
				return -EIO;
			}
			return 0;
		}
		udelay(10);
	}
	EFX_ERR(efx, "timed out waiting for GMII\n");
	return -ETIMEDOUT;
}

2098 2099 2100
/* Write an MDIO register of a PHY connected to Falcon. */
static int falcon_mdio_write(struct net_device *net_dev,
			     int prtad, int devad, u16 addr, u16 value)
2101
{
2102
	struct efx_nic *efx = netdev_priv(net_dev);
2103
	efx_oword_t reg;
2104
	int rc;
2105

2106 2107
	EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
		    prtad, devad, addr, value);
2108 2109 2110

	spin_lock_bh(&efx->phy_lock);

2111 2112 2113
	/* Check MDIO not currently being accessed */
	rc = falcon_gmii_wait(efx);
	if (rc)
2114 2115 2116
		goto out;

	/* Write the address/ID register */
2117
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2118
	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2119

2120 2121
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
			     FRF_AB_MD_DEV_ADR, devad);
2122
	efx_writeo(efx, &reg, FR_AB_MD_ID);
2123 2124

	/* Write data */
2125
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
2126
	efx_writeo(efx, &reg, FR_AB_MD_TXD);
2127 2128

	EFX_POPULATE_OWORD_2(reg,
2129 2130
			     FRF_AB_MD_WRC, 1,
			     FRF_AB_MD_GC, 0);
2131
	efx_writeo(efx, &reg, FR_AB_MD_CS);
2132 2133

	/* Wait for data to be written */
2134 2135
	rc = falcon_gmii_wait(efx);
	if (rc) {
2136 2137
		/* Abort the write operation */
		EFX_POPULATE_OWORD_2(reg,
2138 2139
				     FRF_AB_MD_WRC, 0,
				     FRF_AB_MD_GC, 1);
2140
		efx_writeo(efx, &reg, FR_AB_MD_CS);
2141 2142 2143 2144 2145
		udelay(10);
	}

 out:
	spin_unlock_bh(&efx->phy_lock);
2146
	return rc;
2147 2148
}

2149 2150 2151
/* Read an MDIO register of a PHY connected to Falcon. */
static int falcon_mdio_read(struct net_device *net_dev,
			    int prtad, int devad, u16 addr)
2152
{
2153
	struct efx_nic *efx = netdev_priv(net_dev);
2154
	efx_oword_t reg;
2155
	int rc;
2156 2157 2158

	spin_lock_bh(&efx->phy_lock);

2159 2160 2161
	/* Check MDIO not currently being accessed */
	rc = falcon_gmii_wait(efx);
	if (rc)
2162 2163
		goto out;

2164
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2165
	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2166

2167 2168
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
			     FRF_AB_MD_DEV_ADR, devad);
2169
	efx_writeo(efx, &reg, FR_AB_MD_ID);
2170 2171

	/* Request data to be read */
2172
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
2173
	efx_writeo(efx, &reg, FR_AB_MD_CS);
2174 2175

	/* Wait for data to become available */
2176 2177
	rc = falcon_gmii_wait(efx);
	if (rc == 0) {
2178
		efx_reado(efx, &reg, FR_AB_MD_RXD);
2179
		rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
2180 2181
		EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
			    prtad, devad, addr, rc);
2182 2183 2184
	} else {
		/* Abort the read operation */
		EFX_POPULATE_OWORD_2(reg,
2185 2186
				     FRF_AB_MD_RIC, 0,
				     FRF_AB_MD_GC, 1);
2187
		efx_writeo(efx, &reg, FR_AB_MD_CS);
2188

2189 2190
		EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
			prtad, devad, addr, rc);
2191 2192 2193 2194
	}

 out:
	spin_unlock_bh(&efx->phy_lock);
2195
	return rc;
2196 2197
}

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
static void falcon_clock_mac(struct efx_nic *efx)
{
	unsigned strap_val;
	efx_oword_t nic_stat;

	/* Configure the NIC generated MAC clock correctly */
	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
	strap_val = EFX_IS10G(efx) ? 5 : 3;
	if (falcon_rev(efx) >= FALCON_REV_B0) {
		EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
		EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
		efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
	} else {
		/* Falcon A1 does not support 1G/10G speed switching
		 * and must not be used with a PHY that does. */
		BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
		       strap_val);
	}
}

2218 2219 2220
int falcon_switch_mac(struct efx_nic *efx)
{
	struct efx_mac_operations *old_mac_op = efx->mac_op;
2221 2222
	struct falcon_nic_data *nic_data = efx->nic_data;
	unsigned int stats_done_offset;
2223 2224 2225
	int rc = 0;

	/* Don't try to fetch MAC stats while we're switching MACs */
2226
	falcon_stop_nic_stats(efx);
2227 2228 2229

	/* Internal loopbacks override the phy speed setting */
	if (efx->loopback_mode == LOOPBACK_GMAC) {
2230 2231
		efx->link_state.speed = 1000;
		efx->link_state.fd = true;
2232
	} else if (LOOPBACK_INTERNAL(efx)) {
2233 2234
		efx->link_state.speed = 10000;
		efx->link_state.fd = true;
2235 2236
	}

2237
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
2238 2239 2240
	efx->mac_op = (EFX_IS10G(efx) ?
		       &falcon_xmac_operations : &falcon_gmac_operations);

2241 2242 2243 2244 2245 2246
	if (EFX_IS10G(efx))
		stats_done_offset = XgDmaDone_offset;
	else
		stats_done_offset = GDmaDone_offset;
	nic_data->stats_dma_done = efx->stats_buffer.addr + stats_done_offset;

2247
	if (old_mac_op == efx->mac_op)
2248
		goto out;
2249

2250 2251
	falcon_clock_mac(efx);

2252
	EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2253 2254 2255
	/* Not all macs support a mac-level link state */
	efx->mac_up = true;

2256 2257
	rc = falcon_reset_macs(efx);
out:
2258
	falcon_start_nic_stats(efx);
2259
	return rc;
2260 2261
}

2262 2263 2264 2265 2266
/* This call is responsible for hooking in the MAC and PHY operations */
int falcon_probe_port(struct efx_nic *efx)
{
	int rc;

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	switch (efx->phy_type) {
	case PHY_TYPE_SFX7101:
		efx->phy_op = &falcon_sfx7101_phy_ops;
		break;
	case PHY_TYPE_SFT9001A:
	case PHY_TYPE_SFT9001B:
		efx->phy_op = &falcon_sft9001_phy_ops;
		break;
	case PHY_TYPE_QT2022C2:
	case PHY_TYPE_QT2025C:
2277
		efx->phy_op = &falcon_qt202x_phy_ops;
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
		break;
	default:
		EFX_ERR(efx, "Unknown PHY type %d\n",
			efx->phy_type);
		return -ENODEV;
	}

	if (efx->phy_op->macs & EFX_XMAC)
		efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
					(1 << LOOPBACK_XGXS) |
					(1 << LOOPBACK_XAUI));
	if (efx->phy_op->macs & EFX_GMAC)
		efx->loopback_modes |= (1 << LOOPBACK_GMAC);
	efx->loopback_modes |= efx->phy_op->loopbacks;
2292

2293 2294 2295 2296 2297
	/* Set up MDIO structure for PHY */
	efx->mdio.mmds = efx->phy_op->mmds;
	efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
	efx->mdio.mdio_read = falcon_mdio_read;
	efx->mdio.mdio_write = falcon_mdio_write;
2298 2299

	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2300
	if (falcon_rev(efx) >= FALCON_REV_B0)
B
Ben Hutchings 已提交
2301
		efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2302
	else
B
Ben Hutchings 已提交
2303
		efx->wanted_fc = EFX_FC_RX;
2304 2305 2306 2307 2308 2309

	/* Allocate buffer for stats */
	rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
				 FALCON_MAC_STATS_SIZE);
	if (rc)
		return rc;
2310 2311
	EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
		(u64)efx->stats_buffer.dma_addr,
2312
		efx->stats_buffer.addr,
2313
		(u64)virt_to_phys(efx->stats_buffer.addr));
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339

	return 0;
}

void falcon_remove_port(struct efx_nic *efx)
{
	falcon_free_buffer(efx, &efx->stats_buffer);
}

/**************************************************************************
 *
 * Multicast filtering
 *
 **************************************************************************
 */

void falcon_set_multicast_hash(struct efx_nic *efx)
{
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;

	/* Broadcast packets go through the multicast hash filter.
	 * ether_crc_le() of the broadcast address is 0xbe2612ff
	 * so we always add bit 0xff to the mask.
	 */
	set_bit_le(0xff, mc_hash->byte);

2340 2341
	efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
	efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
2342 2343
}

B
Ben Hutchings 已提交
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359

/**************************************************************************
 *
 * Falcon test code
 *
 **************************************************************************/

int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
{
	struct falcon_nvconfig *nvconfig;
	struct efx_spi_device *spi;
	void *region;
	int rc, magic_num, struct_ver;
	__le16 *word, *limit;
	u32 csum;

2360 2361 2362 2363
	spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
	if (!spi)
		return -EINVAL;

2364
	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
B
Ben Hutchings 已提交
2365 2366
	if (!region)
		return -ENOMEM;
2367
	nvconfig = region + FALCON_NVCONFIG_OFFSET;
B
Ben Hutchings 已提交
2368

2369
	mutex_lock(&efx->spi_lock);
2370
	rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2371
	mutex_unlock(&efx->spi_lock);
B
Ben Hutchings 已提交
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	if (rc) {
		EFX_ERR(efx, "Failed to read %s\n",
			efx->spi_flash ? "flash" : "EEPROM");
		rc = -EIO;
		goto out;
	}

	magic_num = le16_to_cpu(nvconfig->board_magic_num);
	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);

	rc = -EINVAL;
2383
	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
B
Ben Hutchings 已提交
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
		EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
		goto out;
	}
	if (struct_ver < 2) {
		EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
		goto out;
	} else if (struct_ver < 4) {
		word = &nvconfig->board_magic_num;
		limit = (__le16 *) (nvconfig + 1);
	} else {
		word = region;
2395
		limit = region + FALCON_NVCONFIG_END;
B
Ben Hutchings 已提交
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	}
	for (csum = 0; word < limit; ++word)
		csum += le16_to_cpu(*word);

	if (~csum & 0xffff) {
		EFX_ERR(efx, "NVRAM has incorrect checksum\n");
		goto out;
	}

	rc = 0;
	if (nvconfig_out)
		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));

 out:
	kfree(region);
	return rc;
}

/* Registers tested in the falcon register test */
static struct {
	unsigned address;
	efx_oword_t mask;
} efx_test_registers[] = {
2419
	{ FR_AZ_ADR_REGION,
B
Ben Hutchings 已提交
2420
	  EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2421
	{ FR_AZ_RX_CFG,
B
Ben Hutchings 已提交
2422
	  EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2423
	{ FR_AZ_TX_CFG,
B
Ben Hutchings 已提交
2424
	  EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2425
	{ FR_AZ_TX_RESERVED,
B
Ben Hutchings 已提交
2426
	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2427
	{ FR_AB_MAC_CTRL,
B
Ben Hutchings 已提交
2428
	  EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2429
	{ FR_AZ_SRM_TX_DC_CFG,
B
Ben Hutchings 已提交
2430
	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2431
	{ FR_AZ_RX_DC_CFG,
B
Ben Hutchings 已提交
2432
	  EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2433
	{ FR_AZ_RX_DC_PF_WM,
B
Ben Hutchings 已提交
2434
	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2435
	{ FR_BZ_DP_CTRL,
B
Ben Hutchings 已提交
2436
	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2437
	{ FR_AB_GM_CFG2,
2438
	  EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2439
	{ FR_AB_GMF_CFG0,
2440
	  EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2441
	{ FR_AB_XM_GLB_CFG,
B
Ben Hutchings 已提交
2442
	  EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2443
	{ FR_AB_XM_TX_CFG,
B
Ben Hutchings 已提交
2444
	  EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2445
	{ FR_AB_XM_RX_CFG,
B
Ben Hutchings 已提交
2446
	  EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2447
	{ FR_AB_XM_RX_PARAM,
B
Ben Hutchings 已提交
2448
	  EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2449
	{ FR_AB_XM_FC,
B
Ben Hutchings 已提交
2450
	  EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2451
	{ FR_AB_XM_ADR_LO,
B
Ben Hutchings 已提交
2452
	  EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2453
	{ FR_AB_XX_SD_CTL,
B
Ben Hutchings 已提交
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
	  EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
};

static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
				     const efx_oword_t *mask)
{
	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
}

int falcon_test_registers(struct efx_nic *efx)
{
	unsigned address = 0, i, j;
	efx_oword_t mask, imask, original, reg, buf;

	/* Falcon should be in loopback to isolate the XMAC from the PHY */
	WARN_ON(!LOOPBACK_INTERNAL(efx));

	for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
		address = efx_test_registers[i].address;
		mask = imask = efx_test_registers[i].mask;
		EFX_INVERT_OWORD(imask);

2477
		efx_reado(efx, &original, address);
B
Ben Hutchings 已提交
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

		/* bit sweep on and off */
		for (j = 0; j < 128; j++) {
			if (!EFX_EXTRACT_OWORD32(mask, j, j))
				continue;

			/* Test this testable bit can be set in isolation */
			EFX_AND_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 1);

2488 2489
			efx_writeo(efx, &reg, address);
			efx_reado(efx, &buf, address);
B
Ben Hutchings 已提交
2490 2491 2492 2493 2494 2495 2496 2497

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;

			/* Test this testable bit can be cleared in isolation */
			EFX_OR_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 0);

2498 2499
			efx_writeo(efx, &reg, address);
			efx_reado(efx, &buf, address);
B
Ben Hutchings 已提交
2500 2501 2502 2503 2504

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;
		}

2505
		efx_writeo(efx, &original, address);
B
Ben Hutchings 已提交
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
	}

	return 0;

fail:
	EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
		" at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
		EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
	return -EIO;
}

2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
/**************************************************************************
 *
 * Device reset
 *
 **************************************************************************
 */

/* Resets NIC to known state.  This routine must be called in process
 * context and is allowed to sleep. */
int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
	efx_oword_t glb_ctl_reg_ker;
	int rc;

2532
	EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method));
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552

	/* Initiate device reset */
	if (method == RESET_TYPE_WORLD) {
		rc = pci_save_state(efx->pci_dev);
		if (rc) {
			EFX_ERR(efx, "failed to backup PCI state of primary "
				"function prior to hardware reset\n");
			goto fail1;
		}
		if (FALCON_IS_DUAL_FUNC(efx)) {
			rc = pci_save_state(nic_data->pci_dev2);
			if (rc) {
				EFX_ERR(efx, "failed to backup PCI state of "
					"secondary function prior to "
					"hardware reset\n");
				goto fail2;
			}
		}

		EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2553 2554 2555
				     FRF_AB_EXT_PHY_RST_DUR,
				     FFE_AB_EXT_PHY_RST_DUR_10240US,
				     FRF_AB_SWRST, 1);
2556 2557
	} else {
		EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
				     /* exclude PHY from "invisible" reset */
				     FRF_AB_EXT_PHY_RST_CTL,
				     method == RESET_TYPE_INVISIBLE,
				     /* exclude EEPROM/flash and PCIe */
				     FRF_AB_PCIE_CORE_RST_CTL, 1,
				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
				     FRF_AB_PCIE_SD_RST_CTL, 1,
				     FRF_AB_EE_RST_CTL, 1,
				     FRF_AB_EXT_PHY_RST_DUR,
				     FFE_AB_EXT_PHY_RST_DUR_10240US,
				     FRF_AB_SWRST, 1);
	}
2570
	efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594

	EFX_LOG(efx, "waiting for hardware reset\n");
	schedule_timeout_uninterruptible(HZ / 20);

	/* Restore PCI configuration if needed */
	if (method == RESET_TYPE_WORLD) {
		if (FALCON_IS_DUAL_FUNC(efx)) {
			rc = pci_restore_state(nic_data->pci_dev2);
			if (rc) {
				EFX_ERR(efx, "failed to restore PCI config for "
					"the secondary function\n");
				goto fail3;
			}
		}
		rc = pci_restore_state(efx->pci_dev);
		if (rc) {
			EFX_ERR(efx, "failed to restore PCI config for the "
				"primary function\n");
			goto fail4;
		}
		EFX_LOG(efx, "successfully restored PCI config\n");
	}

	/* Assert that reset complete */
2595
	efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2596
	if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
		rc = -ETIMEDOUT;
		EFX_ERR(efx, "timed out waiting for hardware reset\n");
		goto fail5;
	}
	EFX_LOG(efx, "hardware reset complete\n");

	return 0;

	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
fail2:
fail3:
	pci_restore_state(efx->pci_dev);
fail1:
fail4:
fail5:
	return rc;
}

/* Zeroes out the SRAM contents.  This routine must be called in
 * process context and is allowed to sleep.
 */
static int falcon_reset_sram(struct efx_nic *efx)
{
	efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
	int count;

	/* Set the SRAM wake/sleep GPIO appropriately. */
2624
	efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2625 2626
	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2627
	efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2628 2629 2630

	/* Initiate SRAM reset */
	EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2631 2632
			     FRF_AZ_SRM_INIT_EN, 1,
			     FRF_AZ_SRM_NB_SZ, 0);
2633
	efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643

	/* Wait for SRAM reset to complete */
	count = 0;
	do {
		EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);

		/* SRAM reset is slow; expect around 16ms */
		schedule_timeout_uninterruptible(HZ / 50);

		/* Check for reset complete */
2644
		efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2645
		if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
			EFX_LOG(efx, "SRAM reset complete\n");

			return 0;
		}
	} while (++count < 20);	/* wait upto 0.4 sec */

	EFX_ERR(efx, "timed out waiting for SRAM reset\n");
	return -ETIMEDOUT;
}

2656 2657 2658 2659 2660 2661 2662
static int falcon_spi_device_init(struct efx_nic *efx,
				  struct efx_spi_device **spi_device_ret,
				  unsigned int device_id, u32 device_type)
{
	struct efx_spi_device *spi_device;

	if (device_type != 0) {
2663
		spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2664 2665 2666 2667 2668 2669 2670 2671 2672
		if (!spi_device)
			return -ENOMEM;
		spi_device->device_id = device_id;
		spi_device->size =
			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
		spi_device->addr_len =
			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
		spi_device->munge_address = (spi_device->size == 1 << 9 &&
					     spi_device->addr_len == 1);
2673 2674 2675 2676 2677
		spi_device->erase_command =
			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
		spi_device->erase_size =
			1 << SPI_DEV_TYPE_FIELD(device_type,
						SPI_DEV_TYPE_ERASE_SIZE);
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
		spi_device->block_size =
			1 << SPI_DEV_TYPE_FIELD(device_type,
						SPI_DEV_TYPE_BLOCK_SIZE);

		spi_device->efx = efx;
	} else {
		spi_device = NULL;
	}

	kfree(*spi_device_ret);
	*spi_device_ret = spi_device;
	return 0;
}


static void falcon_remove_spi_devices(struct efx_nic *efx)
{
	kfree(efx->spi_eeprom);
	efx->spi_eeprom = NULL;
	kfree(efx->spi_flash);
	efx->spi_flash = NULL;
}

2701 2702 2703 2704
/* Extract non-volatile configuration */
static int falcon_probe_nvconfig(struct efx_nic *efx)
{
	struct falcon_nvconfig *nvconfig;
B
Ben Hutchings 已提交
2705
	int board_rev;
2706 2707 2708
	int rc;

	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2709 2710
	if (!nvconfig)
		return -ENOMEM;
2711

B
Ben Hutchings 已提交
2712 2713 2714
	rc = falcon_read_nvram(efx, nvconfig);
	if (rc == -EINVAL) {
		EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2715
		efx->phy_type = PHY_TYPE_NONE;
2716
		efx->mdio.prtad = MDIO_PRTAD_NONE;
2717
		board_rev = 0;
B
Ben Hutchings 已提交
2718 2719 2720
		rc = 0;
	} else if (rc) {
		goto fail1;
2721 2722
	} else {
		struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2723
		struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2724 2725

		efx->phy_type = v2->port0_phy_type;
2726
		efx->mdio.prtad = v2->port0_phy_addr;
2727
		board_rev = le16_to_cpu(v2->board_revision);
2728

B
Ben Hutchings 已提交
2729
		if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2730 2731 2732 2733
			rc = falcon_spi_device_init(
				efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
				le32_to_cpu(v3->spi_device_type
					    [FFE_AB_SPI_DEVICE_FLASH]));
2734 2735
			if (rc)
				goto fail2;
2736 2737 2738 2739
			rc = falcon_spi_device_init(
				efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
				le32_to_cpu(v3->spi_device_type
					    [FFE_AB_SPI_DEVICE_EEPROM]));
2740 2741 2742
			if (rc)
				goto fail2;
		}
2743 2744
	}

B
Ben Hutchings 已提交
2745 2746 2747
	/* Read the MAC addresses */
	memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);

2748
	EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
2749

2750
	falcon_probe_board(efx, board_rev);
2751

2752 2753 2754 2755 2756 2757
	kfree(nvconfig);
	return 0;

 fail2:
	falcon_remove_spi_devices(efx);
 fail1:
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
	kfree(nvconfig);
	return rc;
}

/* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
 * count, port speed).  Set workaround and feature flags accordingly.
 */
static int falcon_probe_nic_variant(struct efx_nic *efx)
{
	efx_oword_t altera_build;
2768
	efx_oword_t nic_stat;
2769

2770
	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
2771
	if (EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER)) {
2772 2773 2774 2775
		EFX_ERR(efx, "Falcon FPGA not supported\n");
		return -ENODEV;
	}

2776
	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2777

2778
	switch (falcon_rev(efx)) {
2779 2780 2781 2782 2783
	case FALCON_REV_A0:
	case 0xff:
		EFX_ERR(efx, "Falcon rev A0 not supported\n");
		return -ENODEV;

2784
	case FALCON_REV_A1:
2785
		if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2786 2787 2788 2789 2790 2791 2792 2793 2794
			EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
			return -ENODEV;
		}
		break;

	case FALCON_REV_B0:
		break;

	default:
2795
		EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2796 2797 2798
		return -ENODEV;
	}

2799
	/* Initial assumed speed */
2800
	efx->link_state.speed = EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) ? 10000 : 1000;
2801

2802 2803 2804
	return 0;
}

2805 2806 2807 2808
/* Probe all SPI devices on the NIC */
static void falcon_probe_spi_devices(struct efx_nic *efx)
{
	efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2809
	int boot_dev;
2810

2811 2812 2813
	efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
	efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2814

2815 2816 2817
	if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
		boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2818
		EFX_LOG(efx, "Booted from %s\n",
2819
			boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
2820 2821 2822 2823 2824 2825
	} else {
		/* Disable VPD and set clock dividers to safe
		 * values for initial programming. */
		boot_dev = -1;
		EFX_LOG(efx, "Booted from internal ASIC settings;"
			" setting SPI config\n");
2826
		EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2827
				     /* 125 MHz / 7 ~= 20 MHz */
2828
				     FRF_AB_EE_SF_CLOCK_DIV, 7,
2829
				     /* 125 MHz / 63 ~= 2 MHz */
2830
				     FRF_AB_EE_EE_CLOCK_DIV, 63);
2831
		efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2832 2833
	}

2834 2835 2836
	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
		falcon_spi_device_init(efx, &efx->spi_flash,
				       FFE_AB_SPI_DEVICE_FLASH,
2837
				       default_flash_type);
2838 2839 2840
	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
		falcon_spi_device_init(efx, &efx->spi_eeprom,
				       FFE_AB_SPI_DEVICE_EEPROM,
2841
				       large_eeprom_type);
2842 2843
}

2844 2845 2846
int falcon_probe_nic(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data;
2847
	struct falcon_board *board;
2848 2849 2850 2851
	int rc;

	/* Allocate storage for hardware specific data */
	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2852 2853
	if (!nic_data)
		return -ENOMEM;
2854
	efx->nic_data = nic_data;
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892

	/* Determine number of ports etc. */
	rc = falcon_probe_nic_variant(efx);
	if (rc)
		goto fail1;

	/* Probe secondary function if expected */
	if (FALCON_IS_DUAL_FUNC(efx)) {
		struct pci_dev *dev = pci_dev_get(efx->pci_dev);

		while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
					     dev))) {
			if (dev->bus == efx->pci_dev->bus &&
			    dev->devfn == efx->pci_dev->devfn + 1) {
				nic_data->pci_dev2 = dev;
				break;
			}
		}
		if (!nic_data->pci_dev2) {
			EFX_ERR(efx, "failed to find secondary function\n");
			rc = -ENODEV;
			goto fail2;
		}
	}

	/* Now we can reset the NIC */
	rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
	if (rc) {
		EFX_ERR(efx, "failed to reset NIC\n");
		goto fail3;
	}

	/* Allocate memory for INT_KER */
	rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
	if (rc)
		goto fail4;
	BUG_ON(efx->irq_status.dma_addr & 0x0f);

2893 2894 2895
	EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
		(u64)efx->irq_status.dma_addr,
		efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
2896

2897 2898
	falcon_probe_spi_devices(efx);

2899 2900 2901 2902 2903
	/* Read in the non-volatile configuration */
	rc = falcon_probe_nvconfig(efx);
	if (rc)
		goto fail5;

2904
	/* Initialise I2C adapter */
2905 2906 2907 2908 2909 2910 2911 2912 2913
	board = falcon_board(efx);
	board->i2c_adap.owner = THIS_MODULE;
	board->i2c_data = falcon_i2c_bit_operations;
	board->i2c_data.data = efx;
	board->i2c_adap.algo_data = &board->i2c_data;
	board->i2c_adap.dev.parent = &efx->pci_dev->dev;
	strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
		sizeof(board->i2c_adap.name));
	rc = i2c_bit_add_bus(&board->i2c_adap);
2914 2915 2916
	if (rc)
		goto fail5;

2917
	rc = falcon_board(efx)->type->init(efx);
2918 2919 2920 2921 2922
	if (rc) {
		EFX_ERR(efx, "failed to initialise board\n");
		goto fail6;
	}

2923 2924 2925 2926
	nic_data->stats_disable_count = 1;
	setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
		    (unsigned long)efx);

2927 2928
	return 0;

2929
 fail6:
2930 2931
	BUG_ON(i2c_del_adapter(&board->i2c_adap));
	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2932
 fail5:
2933
	falcon_remove_spi_devices(efx);
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
	falcon_free_buffer(efx, &efx->irq_status);
 fail4:
 fail3:
	if (nic_data->pci_dev2) {
		pci_dev_put(nic_data->pci_dev2);
		nic_data->pci_dev2 = NULL;
	}
 fail2:
 fail1:
	kfree(efx->nic_data);
	return rc;
}

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
static void falcon_init_rx_cfg(struct efx_nic *efx)
{
	/* Prior to Siena the RX DMA engine will split each frame at
	 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
	 * be so large that that never happens. */
	const unsigned huge_buf_size = (3 * 4096) >> 5;
	/* RX control FIFO thresholds (32 entries) */
	const unsigned ctrl_xon_thr = 20;
	const unsigned ctrl_xoff_thr = 25;
	/* RX data FIFO thresholds (256-byte units; size varies) */
2957 2958
	int data_xon_thr = rx_xon_thresh_bytes >> 8;
	int data_xoff_thr = rx_xoff_thresh_bytes >> 8;
2959 2960
	efx_oword_t reg;

2961
	efx_reado(efx, &reg, FR_AZ_RX_CFG);
2962
	if (falcon_rev(efx) <= FALCON_REV_A1) {
2963 2964 2965 2966 2967
		/* Data FIFO size is 5.5K */
		if (data_xon_thr < 0)
			data_xon_thr = 512 >> 8;
		if (data_xoff_thr < 0)
			data_xoff_thr = 2048 >> 8;
2968 2969 2970 2971 2972 2973 2974
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
				    huge_buf_size);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2975
	} else {
2976 2977 2978 2979 2980
		/* Data FIFO size is 80K; register fields moved */
		if (data_xon_thr < 0)
			data_xon_thr = 27648 >> 8; /* ~3*max MTU */
		if (data_xoff_thr < 0)
			data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
2981 2982 2983 2984 2985 2986 2987 2988
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
				    huge_buf_size);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2989
	}
2990
	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2991 2992
}

2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
/* This call performs hardware-specific global initialisation, such as
 * defining the descriptor cache sizes and number of RSS channels.
 * It does not set up any buffers, descriptor rings or event queues.
 */
int falcon_init_nic(struct efx_nic *efx)
{
	efx_oword_t temp;
	int rc;

	/* Use on-chip SRAM */
3003
	efx_reado(efx, &temp, FR_AB_NIC_STAT);
3004
	EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
3005
	efx_writeo(efx, &temp, FR_AB_NIC_STAT);
3006

B
Ben Hutchings 已提交
3007 3008
	/* Set the source of the GMAC clock */
	if (falcon_rev(efx) == FALCON_REV_B0) {
3009
		efx_reado(efx, &temp, FR_AB_GPIO_CTL);
3010
		EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
3011
		efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
B
Ben Hutchings 已提交
3012 3013
	}

3014 3015 3016
	/* Select the correct MAC */
	falcon_clock_mac(efx);

3017 3018 3019 3020 3021
	rc = falcon_reset_sram(efx);
	if (rc)
		return rc;

	/* Set positions of descriptor caches in SRAM. */
3022
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
3023
	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
3024
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
3025
	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
3026 3027

	/* Set TX descriptor cache size. */
B
Ben Hutchings 已提交
3028
	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
3029
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
3030
	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
3031 3032 3033 3034

	/* Set RX descriptor cache size.  Set low watermark to size-8, as
	 * this allows most efficient prefetching.
	 */
B
Ben Hutchings 已提交
3035
	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
3036
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
3037
	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
3038
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
3039
	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
3040 3041 3042 3043 3044

	/* Clear the parity enables on the TX data fifos as
	 * they produce false parity errors because of timing issues
	 */
	if (EFX_WORKAROUND_5129(efx)) {
3045
		efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
3046
		EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
3047
		efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
3048 3049 3050 3051 3052 3053 3054 3055 3056
	}

	/* Enable all the genuinely fatal interrupts.  (They are still
	 * masked by the overall interrupt mask, controlled by
	 * falcon_interrupts()).
	 *
	 * Note: All other fatal interrupts are enabled
	 */
	EFX_POPULATE_OWORD_3(temp,
3057 3058 3059
			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
3060
	EFX_INVERT_OWORD(temp);
3061
	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
3062 3063

	if (EFX_WORKAROUND_7244(efx)) {
3064
		efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
3065 3066 3067 3068
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
3069
		efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
3070 3071 3072 3073
	}

	falcon_setup_rss_indir_table(efx);

3074
	/* XXX This is documented only for Falcon A0/A1 */
3075 3076 3077
	/* Setup RX.  Wait for descriptor is broken and must
	 * be disabled.  RXDP recovery shouldn't be needed, but is.
	 */
3078
	efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
3079 3080
	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
3081
	if (EFX_WORKAROUND_5583(efx))
3082
		EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
3083
	efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
3084 3085 3086 3087

	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
	 */
3088
	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
3089 3090 3091 3092 3093
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
3094
	/* Enable SW_EV to inherit in char driver - assume harmless here */
3095
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
3096
	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
3097
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
3098
	/* Squash TX of packets of 16 bytes or less */
3099
	if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3100
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
3101
	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
3102 3103 3104 3105

	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
	 * descriptors (which is bad).
	 */
3106
	efx_reado(efx, &temp, FR_AZ_TX_CFG);
3107
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
3108
	efx_writeo(efx, &temp, FR_AZ_TX_CFG);
3109

3110
	falcon_init_rx_cfg(efx);
3111 3112

	/* Set destination of both TX and RX Flush events */
3113
	if (falcon_rev(efx) >= FALCON_REV_B0) {
3114
		EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
3115
		efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
3116 3117 3118 3119 3120 3121 3122 3123
	}

	return 0;
}

void falcon_remove_nic(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
3124
	struct falcon_board *board = falcon_board(efx);
3125 3126
	int rc;

3127
	board->type->fini(efx);
3128

3129
	/* Remove I2C adapter and clear it in preparation for a retry */
3130
	rc = i2c_del_adapter(&board->i2c_adap);
3131
	BUG_ON(rc);
3132
	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
3133

3134
	falcon_remove_spi_devices(efx);
3135 3136
	falcon_free_buffer(efx, &efx->irq_status);

B
Ben Hutchings 已提交
3137
	falcon_reset_hw(efx, RESET_TYPE_ALL);
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151

	/* Release the second function after the reset */
	if (nic_data->pci_dev2) {
		pci_dev_put(nic_data->pci_dev2);
		nic_data->pci_dev2 = NULL;
	}

	/* Tear down the private nic state */
	kfree(efx->nic_data);
	efx->nic_data = NULL;
}

void falcon_update_nic_stats(struct efx_nic *efx)
{
3152
	struct falcon_nic_data *nic_data = efx->nic_data;
3153 3154
	efx_oword_t cnt;

3155 3156 3157
	if (nic_data->stats_disable_count)
		return;

3158
	efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
3159 3160
	efx->n_rx_nodesc_drop_cnt +=
		EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203

	if (nic_data->stats_pending &&
	    *nic_data->stats_dma_done == FALCON_STATS_DONE) {
		nic_data->stats_pending = false;
		rmb(); /* read the done flag before the stats */
		efx->mac_op->update_stats(efx);
	}
}

void falcon_start_nic_stats(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;

	spin_lock_bh(&efx->stats_lock);
	if (--nic_data->stats_disable_count == 0)
		falcon_stats_request(efx);
	spin_unlock_bh(&efx->stats_lock);
}

void falcon_stop_nic_stats(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
	int i;

	might_sleep();

	spin_lock_bh(&efx->stats_lock);
	++nic_data->stats_disable_count;
	spin_unlock_bh(&efx->stats_lock);

	del_timer_sync(&nic_data->stats_timer);

	/* Wait enough time for the most recent transfer to
	 * complete. */
	for (i = 0; i < 4 && nic_data->stats_pending; i++) {
		if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
			break;
		msleep(1);
	}

	spin_lock_bh(&efx->stats_lock);
	falcon_stats_complete(efx);
	spin_unlock_bh(&efx->stats_lock);
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
}

/**************************************************************************
 *
 * Revision-dependent attributes used by efx.c
 *
 **************************************************************************
 */

struct efx_nic_type falcon_a_nic_type = {
	.mem_map_size = 0x20000,
3215 3216 3217 3218 3219
	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
3220
	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3221 3222 3223 3224 3225 3226 3227 3228 3229
	.rx_buffer_padding = 0x24,
	.max_interrupt_mode = EFX_INT_MODE_MSI,
	.phys_addr_channels = 4,
};

struct efx_nic_type falcon_b_nic_type = {
	/* Map everything up to and including the RSS indirection
	 * table.  Don't map MSI-X table, MSI-X PBA since Linux
	 * requires that they not be mapped.  */
3230 3231 3232 3233 3234 3235 3236 3237
	.mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
			 FR_BZ_RX_INDIRECTION_TBL_STEP *
			 FR_BZ_RX_INDIRECTION_TBL_ROWS),
	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
3238
	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3239 3240 3241 3242 3243 3244 3245
	.rx_buffer_padding = 0,
	.max_interrupt_mode = EFX_INT_MODE_MSIX,
	.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
				   * interrupt handler only supports 32
				   * channels */
};