falcon.c 89.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
 * Copyright 2006-2008 Solarflare Communications Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/seq_file.h>
16
#include <linux/i2c.h>
B
Ben Hutchings 已提交
17
#include <linux/mii.h>
18 19 20 21 22 23
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "mac.h"
#include "spi.h"
#include "falcon.h"
24
#include "regs.h"
25
#include "io.h"
26 27 28 29
#include "mdio_10g.h"
#include "phy.h"
#include "workarounds.h"

B
Ben Hutchings 已提交
30
/* Hardware control for SFC4000 (aka Falcon). */
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

/**************************************************************************
 *
 * Configurable values
 *
 **************************************************************************
 */

static int disable_dma_stats;

/* This is set to 16 for a good reason.  In summary, if larger than
 * 16, the descriptor cache holds more than a default socket
 * buffer's worth of packets (for UDP we can only have at most one
 * socket buffer's worth outstanding).  This combined with the fact
 * that we only get 1 TX event per descriptor cache means the NIC
 * goes idle.
 */
#define TX_DC_ENTRIES 16
B
Ben Hutchings 已提交
49
#define TX_DC_ENTRIES_ORDER 1
50 51 52
#define TX_DC_BASE 0x130000

#define RX_DC_ENTRIES 64
B
Ben Hutchings 已提交
53
#define RX_DC_ENTRIES_ORDER 3
54 55
#define RX_DC_BASE 0x100000

56 57 58 59 60 61 62 63 64 65 66 67 68 69
static const unsigned int
/* "Large" EEPROM device: Atmel AT25640 or similar
 * 8 KB, 16-bit address, 32 B write block */
large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
/* Default flash device: Atmel AT25F1024
 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/* RX FIFO XOFF watermark
 *
 * When the amount of the RX FIFO increases used increases past this
 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
 * This also has an effect on RX/TX arbitration
 */
static int rx_xoff_thresh_bytes = -1;
module_param(rx_xoff_thresh_bytes, int, 0644);
MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");

/* RX FIFO XON watermark
 *
 * When the amount of the RX FIFO used decreases below this
 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
 * This also has an effect on RX/TX arbitration
 */
static int rx_xon_thresh_bytes = -1;
module_param(rx_xon_thresh_bytes, int, 0644);
MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");

90 91 92 93 94 95
/* If FALCON_MAX_INT_ERRORS internal errors occur within
 * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
 * disable it.
 */
#define FALCON_INT_ERROR_EXPIRE 3600
#define FALCON_MAX_INT_ERRORS 5
96

97 98 99 100
/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
 */
#define FALCON_FLUSH_INTERVAL 10
#define FALCON_FLUSH_POLL_COUNT 100
101 102 103 104 105 106 107 108 109 110 111 112

/**************************************************************************
 *
 * Falcon constants
 *
 **************************************************************************
 */

/* Size and alignment of special buffers (4KB) */
#define FALCON_BUF_SIZE 4096

#define FALCON_IS_DUAL_FUNC(efx)		\
113
	(falcon_rev(efx) < FALCON_REV_B0)
114 115 116 117 118 119 120

/**************************************************************************
 *
 * Falcon hardware access
 *
 **************************************************************************/

121 122 123 124 125 126 127
static inline void falcon_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
					unsigned int index)
{
	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
			value, index);
}

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
/* Read the current event from the event queue */
static inline efx_qword_t *falcon_event(struct efx_channel *channel,
					unsigned int index)
{
	return (((efx_qword_t *) (channel->eventq.addr)) + index);
}

/* See if an event is present
 *
 * We check both the high and low dword of the event for all ones.  We
 * wrote all ones when we cleared the event, and no valid event can
 * have all ones in either its high or low dwords.  This approach is
 * robust against reordering.
 *
 * Note that using a single 64-bit comparison is incorrect; even
 * though the CPU read will be atomic, the DMA write may not be.
 */
static inline int falcon_event_present(efx_qword_t *event)
{
	return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
		  EFX_DWORD_IS_ALL_ONES(event->dword[1])));
}

/**************************************************************************
 *
 * I2C bus - this is a bit-bashing interface using GPIO pins
 * Note that it uses the output enables to tristate the outputs
 * SDA is the data pin and SCL is the clock
 *
 **************************************************************************
 */
159
static void falcon_setsda(void *data, int state)
160
{
161
	struct efx_nic *efx = (struct efx_nic *)data;
162 163
	efx_oword_t reg;

164
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
165
	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
166
	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
167 168
}

169
static void falcon_setscl(void *data, int state)
170
{
171
	struct efx_nic *efx = (struct efx_nic *)data;
172 173
	efx_oword_t reg;

174
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
175
	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
176
	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
177 178 179 180 181 182 183
}

static int falcon_getsda(void *data)
{
	struct efx_nic *efx = (struct efx_nic *)data;
	efx_oword_t reg;

184
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
185
	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
186 187
}

188
static int falcon_getscl(void *data)
189
{
190
	struct efx_nic *efx = (struct efx_nic *)data;
191 192
	efx_oword_t reg;

193
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
194
	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
195 196
}

197 198 199
static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
	.setsda		= falcon_setsda,
	.setscl		= falcon_setscl,
200 201
	.getsda		= falcon_getsda,
	.getscl		= falcon_getscl,
202
	.udelay		= 5,
203 204
	/* Wait up to 50 ms for slave to let us pull SCL high */
	.timeout	= DIV_ROUND_UP(HZ, 20),
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
};

/**************************************************************************
 *
 * Falcon special buffer handling
 * Special buffers are used for event queues and the TX and RX
 * descriptor rings.
 *
 *************************************************************************/

/*
 * Initialise a Falcon special buffer
 *
 * This will define a buffer (previously allocated via
 * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
 * it to be used for event queues, descriptor rings etc.
 */
222
static void
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
falcon_init_special_buffer(struct efx_nic *efx,
			   struct efx_special_buffer *buffer)
{
	efx_qword_t buf_desc;
	int index;
	dma_addr_t dma_addr;
	int i;

	EFX_BUG_ON_PARANOID(!buffer->addr);

	/* Write buffer descriptors to NIC */
	for (i = 0; i < buffer->entries; i++) {
		index = buffer->index + i;
		dma_addr = buffer->dma_addr + (i * 4096);
		EFX_LOG(efx, "mapping special buffer %d at %llx\n",
			index, (unsigned long long)dma_addr);
239 240 241 242
		EFX_POPULATE_QWORD_3(buf_desc,
				     FRF_AZ_BUF_ADR_REGION, 0,
				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
243
		falcon_write_buf_tbl(efx, &buf_desc, index);
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
	}
}

/* Unmaps a buffer from Falcon and clears the buffer table entries */
static void
falcon_fini_special_buffer(struct efx_nic *efx,
			   struct efx_special_buffer *buffer)
{
	efx_oword_t buf_tbl_upd;
	unsigned int start = buffer->index;
	unsigned int end = (buffer->index + buffer->entries - 1);

	if (!buffer->entries)
		return;

	EFX_LOG(efx, "unmapping special buffers %d-%d\n",
		buffer->index, buffer->index + buffer->entries - 1);

	EFX_POPULATE_OWORD_4(buf_tbl_upd,
263 264 265 266
			     FRF_AZ_BUF_UPD_CMD, 0,
			     FRF_AZ_BUF_CLR_CMD, 1,
			     FRF_AZ_BUF_CLR_END_ID, end,
			     FRF_AZ_BUF_CLR_START_ID, start);
267
	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
}

/*
 * Allocate a new Falcon special buffer
 *
 * This allocates memory for a new buffer, clears it and allocates a
 * new buffer ID range.  It does not write into Falcon's buffer table.
 *
 * This call will allocate 4KB buffers, since Falcon can't use 8KB
 * buffers for event queues and descriptor rings.
 */
static int falcon_alloc_special_buffer(struct efx_nic *efx,
				       struct efx_special_buffer *buffer,
				       unsigned int len)
{
	len = ALIGN(len, FALCON_BUF_SIZE);

	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
					    &buffer->dma_addr);
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
	buffer->entries = len / FALCON_BUF_SIZE;
	BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));

	/* All zeros is a potentially valid event so memset to 0xff */
	memset(buffer->addr, 0xff, len);

	/* Select new buffer ID */
297 298
	buffer->index = efx->next_buffer_table;
	efx->next_buffer_table += buffer->entries;
299 300

	EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
301
		"(virt %p phys %llx)\n", buffer->index,
302
		buffer->index + buffer->entries - 1,
303 304
		(u64)buffer->dma_addr, len,
		buffer->addr, (u64)virt_to_phys(buffer->addr));
305 306 307 308 309 310 311 312 313 314 315

	return 0;
}

static void falcon_free_special_buffer(struct efx_nic *efx,
				       struct efx_special_buffer *buffer)
{
	if (!buffer->addr)
		return;

	EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
316
		"(virt %p phys %llx)\n", buffer->index,
317
		buffer->index + buffer->entries - 1,
318 319
		(u64)buffer->dma_addr, buffer->len,
		buffer->addr, (u64)virt_to_phys(buffer->addr));
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

	pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
			    buffer->dma_addr);
	buffer->addr = NULL;
	buffer->entries = 0;
}

/**************************************************************************
 *
 * Falcon generic buffer handling
 * These buffers are used for interrupt status and MAC stats
 *
 **************************************************************************/

static int falcon_alloc_buffer(struct efx_nic *efx,
			       struct efx_buffer *buffer, unsigned int len)
{
	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
					    &buffer->dma_addr);
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
	memset(buffer->addr, 0, len);
	return 0;
}

static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
{
	if (buffer->addr) {
		pci_free_consistent(efx->pci_dev, buffer->len,
				    buffer->addr, buffer->dma_addr);
		buffer->addr = NULL;
	}
}

/**************************************************************************
 *
 * Falcon TX path
 *
 **************************************************************************/

/* Returns a pointer to the specified transmit descriptor in the TX
 * descriptor queue belonging to the specified channel.
 */
static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
					       unsigned int index)
{
	return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
}

/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
	unsigned write_ptr;
	efx_dword_t reg;

376
	write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
377
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
378 379
	efx_writed_page(tx_queue->efx, &reg,
			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
}


/* For each entry inserted into the software descriptor ring, create a
 * descriptor in the hardware TX descriptor ring (in host memory), and
 * write a doorbell.
 */
void falcon_push_buffers(struct efx_tx_queue *tx_queue)
{

	struct efx_tx_buffer *buffer;
	efx_qword_t *txd;
	unsigned write_ptr;

	BUG_ON(tx_queue->write_count == tx_queue->insert_count);

	do {
397
		write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
398 399 400 401 402
		buffer = &tx_queue->buffer[write_ptr];
		txd = falcon_tx_desc(tx_queue, write_ptr);
		++tx_queue->write_count;

		/* Create TX descriptor ring entry */
403 404 405 406 407
		EFX_POPULATE_QWORD_4(*txd,
				     FSF_AZ_TX_KER_CONT, buffer->continuation,
				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
				     FSF_AZ_TX_KER_BUF_REGION, 0,
				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
408 409 410 411 412 413 414 415 416 417
	} while (tx_queue->write_count != tx_queue->insert_count);

	wmb(); /* Ensure descriptors are written before they are fetched */
	falcon_notify_tx_desc(tx_queue);
}

/* Allocate hardware resources for a TX queue */
int falcon_probe_tx(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
418 419
	BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
		     EFX_TXQ_SIZE & EFX_TXQ_MASK);
420
	return falcon_alloc_special_buffer(efx, &tx_queue->txd,
421
					   EFX_TXQ_SIZE * sizeof(efx_qword_t));
422 423
}

424
void falcon_init_tx(struct efx_tx_queue *tx_queue)
425 426 427 428
{
	efx_oword_t tx_desc_ptr;
	struct efx_nic *efx = tx_queue->efx;

429 430
	tx_queue->flushed = false;

431
	/* Pin TX descriptor ring */
432
	falcon_init_special_buffer(efx, &tx_queue->txd);
433 434 435

	/* Push TX descriptor ring to card */
	EFX_POPULATE_OWORD_10(tx_desc_ptr,
436 437 438 439 440 441 442 443
			      FRF_AZ_TX_DESCQ_EN, 1,
			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
			      FRF_AZ_TX_DESCQ_EVQ_ID,
			      tx_queue->channel->channel,
			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
444 445
			      FRF_AZ_TX_DESCQ_SIZE,
			      __ffs(tx_queue->txd.entries),
446 447
			      FRF_AZ_TX_DESCQ_TYPE, 0,
			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
448

449
	if (falcon_rev(efx) >= FALCON_REV_B0) {
450
		int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
451 452 453
		EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
		EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
				    !csum);
454 455
	}

456 457
	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
			 tx_queue->queue);
458

459
	if (falcon_rev(efx) < FALCON_REV_B0) {
460 461
		efx_oword_t reg;

462 463
		/* Only 128 bits in this register */
		BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
464

465
		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
466
		if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
467 468 469
			clear_bit_le(tx_queue->queue, (void *)&reg);
		else
			set_bit_le(tx_queue->queue, (void *)&reg);
470
		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
471 472 473
	}
}

474
static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
475 476 477 478 479 480
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_flush_descq;

	/* Post a flush command */
	EFX_POPULATE_OWORD_2(tx_flush_descq,
481 482
			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
483
	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
484 485 486 487 488 489 490
}

void falcon_fini_tx(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_desc_ptr;

491 492
	/* The queue should have been flushed */
	WARN_ON(!tx_queue->flushed);
493 494 495

	/* Remove TX descriptor ring from card */
	EFX_ZERO_OWORD(tx_desc_ptr);
496 497
	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
			 tx_queue->queue);
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531

	/* Unpin TX descriptor ring */
	falcon_fini_special_buffer(efx, &tx_queue->txd);
}

/* Free buffers backing TX queue */
void falcon_remove_tx(struct efx_tx_queue *tx_queue)
{
	falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
}

/**************************************************************************
 *
 * Falcon RX path
 *
 **************************************************************************/

/* Returns a pointer to the specified descriptor in the RX descriptor queue */
static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
					       unsigned int index)
{
	return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
}

/* This creates an entry in the RX descriptor queue */
static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
					unsigned index)
{
	struct efx_rx_buffer *rx_buf;
	efx_qword_t *rxd;

	rxd = falcon_rx_desc(rx_queue, index);
	rx_buf = efx_rx_buffer(rx_queue, index);
	EFX_POPULATE_QWORD_3(*rxd,
532
			     FSF_AZ_RX_KER_BUF_SIZE,
533 534
			     rx_buf->len -
			     rx_queue->efx->type->rx_buffer_padding,
535 536
			     FSF_AZ_RX_KER_BUF_REGION, 0,
			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
537 538 539 540 541 542 543 544 545 546 547 548 549
}

/* This writes to the RX_DESC_WPTR register for the specified receive
 * descriptor ring.
 */
void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
{
	efx_dword_t reg;
	unsigned write_ptr;

	while (rx_queue->notified_count != rx_queue->added_count) {
		falcon_build_rx_desc(rx_queue,
				     rx_queue->notified_count &
550
				     EFX_RXQ_MASK);
551 552 553 554
		++rx_queue->notified_count;
	}

	wmb();
555
	write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
556
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
557 558
	efx_writed_page(rx_queue->efx, &reg,
			FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
559 560 561 562 563
}

int falcon_probe_rx(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
564 565
	BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
		     EFX_RXQ_SIZE & EFX_RXQ_MASK);
566
	return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
567
					   EFX_RXQ_SIZE * sizeof(efx_qword_t));
568 569
}

570
void falcon_init_rx(struct efx_rx_queue *rx_queue)
571 572 573
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;
574 575
	bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
	bool iscsi_digest_en = is_b0;
576 577 578 579 580

	EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
		rx_queue->queue, rx_queue->rxd.index,
		rx_queue->rxd.index + rx_queue->rxd.entries - 1);

581 582
	rx_queue->flushed = false;

583
	/* Pin RX descriptor ring */
584
	falcon_init_special_buffer(efx, &rx_queue->rxd);
585 586 587

	/* Push RX descriptor ring to card */
	EFX_POPULATE_OWORD_10(rx_desc_ptr,
588 589 590 591 592 593 594
			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
			      FRF_AZ_RX_DESCQ_EVQ_ID,
			      rx_queue->channel->channel,
			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
595 596
			      FRF_AZ_RX_DESCQ_SIZE,
			      __ffs(rx_queue->rxd.entries),
597
			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
598
			      /* For >=B0 this is scatter so disable */
599 600
			      FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
			      FRF_AZ_RX_DESCQ_EN, 1);
601 602
	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
			 rx_queue->queue);
603 604
}

605
static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
606 607 608 609 610 611
{
	struct efx_nic *efx = rx_queue->efx;
	efx_oword_t rx_flush_descq;

	/* Post a flush command */
	EFX_POPULATE_OWORD_2(rx_flush_descq,
612 613
			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
614
	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
615 616 617 618 619 620 621
}

void falcon_fini_rx(struct efx_rx_queue *rx_queue)
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;

622 623
	/* The queue should already have been flushed */
	WARN_ON(!rx_queue->flushed);
624 625 626

	/* Remove RX descriptor ring from card */
	EFX_ZERO_OWORD(rx_desc_ptr);
627 628
	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
			 rx_queue->queue);
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

	/* Unpin RX descriptor ring */
	falcon_fini_special_buffer(efx, &rx_queue->rxd);
}

/* Free buffers backing RX queue */
void falcon_remove_rx(struct efx_rx_queue *rx_queue)
{
	falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
}

/**************************************************************************
 *
 * Falcon event queue processing
 * Event queues are processed by per-channel tasklets.
 *
 **************************************************************************/

/* Update a channel's event queue's read pointer (RPTR) register
 *
 * This writes the EVQ_RPTR_REG register for the specified channel's
 * event queue.
 *
 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
 * whereas channel->eventq_read_ptr contains the index of the "next to
 * read" event.
 */
void falcon_eventq_read_ack(struct efx_channel *channel)
{
	efx_dword_t reg;
	struct efx_nic *efx = channel->efx;

661
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
662
	efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
663
			    channel->channel);
664 665 666 667 668 669 670
}

/* Use HW to insert a SW defined event */
void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
{
	efx_oword_t drv_ev_reg;

671 672 673 674 675 676 677
	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
	drv_ev_reg.u32[0] = event->u32[0];
	drv_ev_reg.u32[1] = event->u32[1];
	drv_ev_reg.u32[2] = 0;
	drv_ev_reg.u32[3] = 0;
	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
678
	efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
679 680 681 682 683 684 685
}

/* Handle a transmit completion event
 *
 * Falcon batches TX completion events; the message we receive is of
 * the form "complete all TX events up to this index".
 */
686 687
static void falcon_handle_tx_event(struct efx_channel *channel,
				   efx_qword_t *event)
688 689 690 691 692 693
{
	unsigned int tx_ev_desc_ptr;
	unsigned int tx_ev_q_label;
	struct efx_tx_queue *tx_queue;
	struct efx_nic *efx = channel->efx;

694
	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
695
		/* Transmit completion */
696 697
		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
698
		tx_queue = &efx->tx_queue[tx_ev_q_label];
699 700
		channel->irq_mod_score +=
			(tx_ev_desc_ptr - tx_queue->read_count) &
701
			EFX_TXQ_MASK;
702
		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
703
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
704
		/* Rewrite the FIFO write pointer */
705
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
706 707
		tx_queue = &efx->tx_queue[tx_ev_q_label];

708
		if (efx_dev_registered(efx))
709 710
			netif_tx_lock(efx->net_dev);
		falcon_notify_tx_desc(tx_queue);
711
		if (efx_dev_registered(efx))
712
			netif_tx_unlock(efx->net_dev);
713
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
714 715 716 717 718 719 720 721 722 723 724 725
		   EFX_WORKAROUND_10727(efx)) {
		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
	} else {
		EFX_ERR(efx, "channel %d unexpected TX event "
			EFX_QWORD_FMT"\n", channel->channel,
			EFX_QWORD_VAL(*event));
	}
}

/* Detect errors included in the rx_evt_pkt_ok bit. */
static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
				    const efx_qword_t *event,
726 727
				    bool *rx_ev_pkt_ok,
				    bool *discard)
728 729
{
	struct efx_nic *efx = rx_queue->efx;
730 731 732 733 734 735
	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
	bool rx_ev_other_err, rx_ev_pause_frm;
	bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
	unsigned rx_ev_pkt_type;
736

737 738 739 740
	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
741
	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
742 743
						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
	rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_IP_FRAG_ERR);
744
	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
745
						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
746
	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
747 748 749
						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
750
	rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
751 752
			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
753 754 755 756 757 758

	/* Every error apart from tobe_disc and pause_frm */
	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);

759 760
	/* Count errors that are not in MAC stats.  Ignore expected
	 * checksum errors during self-test. */
761 762 763 764
	if (rx_ev_frm_trunc)
		++rx_queue->channel->n_rx_frm_trunc;
	else if (rx_ev_tobe_disc)
		++rx_queue->channel->n_rx_tobe_disc;
765 766 767 768 769 770
	else if (!efx->loopback_selftest) {
		if (rx_ev_ip_hdr_chksum_err)
			++rx_queue->channel->n_rx_ip_hdr_chksum_err;
		else if (rx_ev_tcp_udp_chksum_err)
			++rx_queue->channel->n_rx_tcp_udp_chksum_err;
	}
771 772 773 774 775 776 777 778 779 780 781 782 783 784
	if (rx_ev_ip_frag_err)
		++rx_queue->channel->n_rx_ip_frag_err;

	/* The frame must be discarded if any of these are true. */
	*discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
		    rx_ev_tobe_disc | rx_ev_pause_frm);

	/* TOBE_DISC is expected on unicast mismatches; don't print out an
	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
	 * to a FIFO overflow.
	 */
#ifdef EFX_ENABLE_DEBUG
	if (rx_ev_other_err) {
		EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
785
			    EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
786 787 788 789 790 791 792 793 794 795
			    rx_queue->queue, EFX_QWORD_VAL(*event),
			    rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
			    rx_ev_ip_hdr_chksum_err ?
			    " [IP_HDR_CHKSUM_ERR]" : "",
			    rx_ev_tcp_udp_chksum_err ?
			    " [TCP_UDP_CHKSUM_ERR]" : "",
			    rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
			    rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
			    rx_ev_drib_nib ? " [DRIB_NIB]" : "",
			    rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
796
			    rx_ev_pause_frm ? " [PAUSE]" : "");
797 798 799 800 801 802 803 804 805 806 807
	}
#endif
}

/* Handle receive events that are not in-order. */
static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
				       unsigned index)
{
	struct efx_nic *efx = rx_queue->efx;
	unsigned expected, dropped;

808 809
	expected = rx_queue->removed_count & EFX_RXQ_MASK;
	dropped = (index - expected) & EFX_RXQ_MASK;
810 811 812 813 814 815 816 817 818 819 820 821 822 823
	EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
		dropped, index, expected);

	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
}

/* Handle a packet received event
 *
 * Falcon silicon gives a "discard" flag if it's a unicast packet with the
 * wrong destination address
 * Also "is multicast" and "matches multicast filter" flags can be used to
 * discard non-matching multicast packets.
 */
B
Ben Hutchings 已提交
824 825
static void falcon_handle_rx_event(struct efx_channel *channel,
				   const efx_qword_t *event)
826
{
B
Ben Hutchings 已提交
827
	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
828
	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
829
	unsigned expected_ptr;
830
	bool rx_ev_pkt_ok, discard = false, checksummed;
831 832 833 834
	struct efx_rx_queue *rx_queue;
	struct efx_nic *efx = channel->efx;

	/* Basic packet information */
835 836 837 838 839 840 841
	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
		channel->channel);
842

B
Ben Hutchings 已提交
843
	rx_queue = &efx->rx_queue[channel->channel];
844

845
	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
846
	expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
B
Ben Hutchings 已提交
847
	if (unlikely(rx_ev_desc_ptr != expected_ptr))
848 849 850 851 852 853
		falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);

	if (likely(rx_ev_pkt_ok)) {
		/* If packet is marked as OK and packet type is TCP/IPv4 or
		 * UDP/IPv4, then we can rely on the hardware checksum.
		 */
854
		checksummed =
855 856 857
			efx->rx_checksum_enabled &&
			(rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP ||
			 rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP);
858 859
	} else {
		falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
860
					&discard);
861
		checksummed = false;
862 863 864
	}

	/* Detect multicast packets that didn't match the filter */
865
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
866 867
	if (rx_ev_mcast_pkt) {
		unsigned int rx_ev_mcast_hash_match =
868
			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
869 870

		if (unlikely(!rx_ev_mcast_hash_match))
871
			discard = true;
872 873
	}

874 875
	channel->irq_mod_score += 2;

876 877 878 879 880 881 882 883 884 885
	/* Handle received packet */
	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
		      checksummed, discard);
}

/* Global events are basically PHY events */
static void falcon_handle_global_event(struct efx_channel *channel,
				       efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
886
	bool handled = false;
887

888 889 890
	if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
891 892 893 894
		efx->phy_op->clear_interrupt(efx);
		queue_work(efx->workqueue, &efx->phy_work);
		handled = true;
	}
895

896
	if ((falcon_rev(efx) >= FALCON_REV_B0) &&
897
	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
898
		queue_work(efx->workqueue, &efx->mac_work);
899
		handled = true;
900 901
	}

902
	if (falcon_rev(efx) <= FALCON_REV_A1 ?
903 904
	    EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
905 906 907 908 909 910
		EFX_ERR(efx, "channel %d seen global RX_RESET "
			"event. Resetting.\n", channel->channel);

		atomic_inc(&efx->rx_reset);
		efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
911
		handled = true;
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
	}

	if (!handled)
		EFX_ERR(efx, "channel %d unknown global event "
			EFX_QWORD_FMT "\n", channel->channel,
			EFX_QWORD_VAL(*event));
}

static void falcon_handle_driver_event(struct efx_channel *channel,
				       efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	unsigned int ev_sub_code;
	unsigned int ev_sub_data;

927 928
	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
929 930

	switch (ev_sub_code) {
931
	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
932 933 934
		EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
			  channel->channel, ev_sub_data);
		break;
935
	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
936 937 938
		EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
			  channel->channel, ev_sub_data);
		break;
939
	case FSE_AZ_EVQ_INIT_DONE_EV:
940 941 942
		EFX_LOG(efx, "channel %d EVQ %d initialised\n",
			channel->channel, ev_sub_data);
		break;
943
	case FSE_AZ_SRM_UPD_DONE_EV:
944 945 946
		EFX_TRACE(efx, "channel %d SRAM update done\n",
			  channel->channel);
		break;
947
	case FSE_AZ_WAKE_UP_EV:
948 949 950
		EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
			  channel->channel, ev_sub_data);
		break;
951
	case FSE_AZ_TIMER_EV:
952 953 954
		EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
			  channel->channel, ev_sub_data);
		break;
955
	case FSE_AA_RX_RECOVER_EV:
956 957
		EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
			"Resetting.\n", channel->channel);
958
		atomic_inc(&efx->rx_reset);
959 960 961 962 963
		efx_schedule_reset(efx,
				   EFX_WORKAROUND_6555(efx) ?
				   RESET_TYPE_RX_RECOVERY :
				   RESET_TYPE_DISABLE);
		break;
964
	case FSE_BZ_RX_DSC_ERROR_EV:
965 966 967 968
		EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
			" RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
		efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
		break;
969
	case FSE_BZ_TX_DSC_ERROR_EV:
970 971 972 973 974 975 976 977 978 979 980 981
		EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
			" TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
		break;
	default:
		EFX_TRACE(efx, "channel %d unknown driver event code %d "
			  "data %04x\n", channel->channel, ev_sub_code,
			  ev_sub_data);
		break;
	}
}

B
Ben Hutchings 已提交
982
int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
983 984 985 986
{
	unsigned int read_ptr;
	efx_qword_t event, *p_event;
	int ev_code;
B
Ben Hutchings 已提交
987
	int rx_packets = 0;
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004

	read_ptr = channel->eventq_read_ptr;

	do {
		p_event = falcon_event(channel, read_ptr);
		event = *p_event;

		if (!falcon_event_present(&event))
			/* End of events */
			break;

		EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
			  channel->channel, EFX_QWORD_VAL(event));

		/* Clear this event by marking it all ones */
		EFX_SET_QWORD(*p_event);

1005
		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1006 1007

		switch (ev_code) {
1008
		case FSE_AZ_EV_CODE_RX_EV:
B
Ben Hutchings 已提交
1009 1010
			falcon_handle_rx_event(channel, &event);
			++rx_packets;
1011
			break;
1012
		case FSE_AZ_EV_CODE_TX_EV:
1013 1014
			falcon_handle_tx_event(channel, &event);
			break;
1015 1016 1017
		case FSE_AZ_EV_CODE_DRV_GEN_EV:
			channel->eventq_magic = EFX_QWORD_FIELD(
				event, FSF_AZ_DRV_GEN_EV_MAGIC);
1018 1019 1020 1021
			EFX_LOG(channel->efx, "channel %d received generated "
				"event "EFX_QWORD_FMT"\n", channel->channel,
				EFX_QWORD_VAL(event));
			break;
1022
		case FSE_AZ_EV_CODE_GLOBAL_EV:
1023 1024
			falcon_handle_global_event(channel, &event);
			break;
1025
		case FSE_AZ_EV_CODE_DRIVER_EV:
1026 1027 1028 1029 1030 1031 1032 1033 1034
			falcon_handle_driver_event(channel, &event);
			break;
		default:
			EFX_ERR(channel->efx, "channel %d unknown event type %d"
				" (data " EFX_QWORD_FMT ")\n", channel->channel,
				ev_code, EFX_QWORD_VAL(event));
		}

		/* Increment read pointer */
1035
		read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1036

B
Ben Hutchings 已提交
1037
	} while (rx_packets < rx_quota);
1038 1039

	channel->eventq_read_ptr = read_ptr;
B
Ben Hutchings 已提交
1040
	return rx_packets;
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
}

void falcon_set_int_moderation(struct efx_channel *channel)
{
	efx_dword_t timer_cmd;
	struct efx_nic *efx = channel->efx;

	/* Set timer register */
	if (channel->irq_moderation) {
		EFX_POPULATE_DWORD_2(timer_cmd,
1051 1052 1053
				     FRF_AB_TC_TIMER_MODE,
				     FFE_BB_TIMER_MODE_INT_HLDOFF,
				     FRF_AB_TC_TIMER_VAL,
1054
				     channel->irq_moderation - 1);
1055 1056
	} else {
		EFX_POPULATE_DWORD_2(timer_cmd,
1057 1058 1059
				     FRF_AB_TC_TIMER_MODE,
				     FFE_BB_TIMER_MODE_DIS,
				     FRF_AB_TC_TIMER_VAL, 0);
1060
	}
1061
	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
1062 1063
	efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
			       channel->channel);
1064 1065 1066 1067 1068 1069 1070

}

/* Allocate buffer table entries for event queue */
int falcon_probe_eventq(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;
1071 1072 1073 1074
	BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
		     EFX_EVQ_SIZE & EFX_EVQ_MASK);
	return falcon_alloc_special_buffer(efx, &channel->eventq,
					   EFX_EVQ_SIZE * sizeof(efx_qword_t));
1075 1076
}

1077
void falcon_init_eventq(struct efx_channel *channel)
1078 1079 1080 1081 1082 1083 1084 1085 1086
{
	efx_oword_t evq_ptr;
	struct efx_nic *efx = channel->efx;

	EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
		channel->channel, channel->eventq.index,
		channel->eventq.index + channel->eventq.entries - 1);

	/* Pin event queue buffer */
1087
	falcon_init_special_buffer(efx, &channel->eventq);
1088 1089 1090 1091 1092 1093

	/* Fill event queue with all ones (i.e. empty events) */
	memset(channel->eventq.addr, 0xff, channel->eventq.len);

	/* Push event queue to card */
	EFX_POPULATE_OWORD_3(evq_ptr,
1094
			     FRF_AZ_EVQ_EN, 1,
1095
			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1096
			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1097 1098
	efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
			 channel->channel);
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

	falcon_set_int_moderation(channel);
}

void falcon_fini_eventq(struct efx_channel *channel)
{
	efx_oword_t eventq_ptr;
	struct efx_nic *efx = channel->efx;

	/* Remove event queue from card */
	EFX_ZERO_OWORD(eventq_ptr);
1110 1111
	efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
			 channel->channel);
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

	/* Unpin event queue */
	falcon_fini_special_buffer(efx, &channel->eventq);
}

/* Free buffers backing event queue */
void falcon_remove_eventq(struct efx_channel *channel)
{
	falcon_free_special_buffer(channel->efx, &channel->eventq);
}


/* Generates a test event on the event queue.  A subsequent call to
 * process_eventq() should pick up the event and place the value of
 * "magic" into channel->eventq_magic;
 */
void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
{
	efx_qword_t test_event;

1132 1133 1134
	EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
			     FSE_AZ_EV_CODE_DRV_GEN_EV,
			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1135 1136 1137
	falcon_generate_event(channel, &test_event);
}

1138 1139 1140 1141
void falcon_sim_phy_event(struct efx_nic *efx)
{
	efx_qword_t phy_event;

1142 1143
	EFX_POPULATE_QWORD_1(phy_event, FSF_AZ_EV_CODE,
			     FSE_AZ_EV_CODE_GLOBAL_EV);
1144
	if (EFX_IS10G(efx))
1145
		EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_XG_PHY0_INTR, 1);
1146
	else
1147
		EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_G_PHY0_INTR, 1);
1148 1149 1150 1151

	falcon_generate_event(&efx->channel[0], &phy_event);
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
/**************************************************************************
 *
 * Flush handling
 *
 **************************************************************************/


static void falcon_poll_flush_events(struct efx_nic *efx)
{
	struct efx_channel *channel = &efx->channel[0];
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
1164
	unsigned int read_ptr = channel->eventq_read_ptr;
1165
	unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
1166

1167
	do {
1168 1169 1170
		efx_qword_t *event = falcon_event(channel, read_ptr);
		int ev_code, ev_sub_code, ev_queue;
		bool ev_failed;
1171

1172 1173 1174
		if (!falcon_event_present(event))
			break;

1175 1176 1177 1178 1179
		ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
		ev_sub_code = EFX_QWORD_FIELD(*event,
					      FSF_AZ_DRIVER_EV_SUBCODE);
		if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
		    ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1180
			ev_queue = EFX_QWORD_FIELD(*event,
1181
						   FSF_AZ_DRIVER_EV_SUBDATA);
1182 1183 1184 1185
			if (ev_queue < EFX_TX_QUEUE_COUNT) {
				tx_queue = efx->tx_queue + ev_queue;
				tx_queue->flushed = true;
			}
1186 1187 1188 1189 1190 1191
		} else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
			   ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
			ev_queue = EFX_QWORD_FIELD(
				*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
			ev_failed = EFX_QWORD_FIELD(
				*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
			if (ev_queue < efx->n_rx_queues) {
				rx_queue = efx->rx_queue + ev_queue;

				/* retry the rx flush */
				if (ev_failed)
					falcon_flush_rx_queue(rx_queue);
				else
					rx_queue->flushed = true;
			}
		}

1203
		read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1204
	} while (read_ptr != end_ptr);
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
}

/* Handle tx and rx flushes at the same time, since they run in
 * parallel in the hardware and there's no reason for us to
 * serialise them */
int falcon_flush_queues(struct efx_nic *efx)
{
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int i;
	bool outstanding;

	/* Issue flush requests */
	efx_for_each_tx_queue(tx_queue, efx) {
		tx_queue->flushed = false;
		falcon_flush_tx_queue(tx_queue);
	}
	efx_for_each_rx_queue(rx_queue, efx) {
		rx_queue->flushed = false;
		falcon_flush_rx_queue(rx_queue);
	}

	/* Poll the evq looking for flush completions. Since we're not pushing
	 * any more rx or tx descriptors at this point, we're in no danger of
	 * overflowing the evq whilst we wait */
	for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
		msleep(FALCON_FLUSH_INTERVAL);
		falcon_poll_flush_events(efx);

		/* Check if every queue has been succesfully flushed */
		outstanding = false;
		efx_for_each_tx_queue(tx_queue, efx)
			outstanding |= !tx_queue->flushed;
		efx_for_each_rx_queue(rx_queue, efx)
			outstanding |= !rx_queue->flushed;
		if (!outstanding)
			return 0;
	}

	/* Mark the queues as all flushed. We're going to return failure
	 * leading to a reset, or fake up success anyway. "flushed" now
	 * indicates that we tried to flush. */
	efx_for_each_tx_queue(tx_queue, efx) {
		if (!tx_queue->flushed)
			EFX_ERR(efx, "tx queue %d flush command timed out\n",
				tx_queue->queue);
		tx_queue->flushed = true;
	}
	efx_for_each_rx_queue(rx_queue, efx) {
		if (!rx_queue->flushed)
			EFX_ERR(efx, "rx queue %d flush command timed out\n",
				rx_queue->queue);
		rx_queue->flushed = true;
	}

	if (EFX_WORKAROUND_7803(efx))
		return 0;

	return -ETIMEDOUT;
}
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

/**************************************************************************
 *
 * Falcon hardware interrupts
 * The hardware interrupt handler does very little work; all the event
 * queue processing is carried out by per-channel tasklets.
 *
 **************************************************************************/

/* Enable/disable/generate Falcon interrupts */
static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
				     int force)
{
	efx_oword_t int_en_reg_ker;

	EFX_POPULATE_OWORD_2(int_en_reg_ker,
1281 1282
			     FRF_AZ_KER_INT_KER, force,
			     FRF_AZ_DRV_INT_EN_KER, enabled);
1283
	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
}

void falcon_enable_interrupts(struct efx_nic *efx)
{
	efx_oword_t int_adr_reg_ker;
	struct efx_channel *channel;

	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */

	/* Program address */
	EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1296 1297 1298
			     FRF_AZ_NORM_INT_VEC_DIS_KER,
			     EFX_INT_MODE_USE_MSI(efx),
			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1299
	efx_writeo(efx, &int_adr_reg_ker, FR_AZ_INT_ADR_KER);
1300 1301 1302 1303 1304 1305

	/* Enable interrupts */
	falcon_interrupts(efx, 1, 0);

	/* Force processing of all the channels to get the EVQ RPTRs up to
	   date */
1306
	efx_for_each_channel(channel, efx)
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
		efx_schedule_channel(channel);
}

void falcon_disable_interrupts(struct efx_nic *efx)
{
	/* Disable interrupts */
	falcon_interrupts(efx, 0, 0);
}

/* Generate a Falcon test interrupt
 * Interrupt must already have been enabled, otherwise nasty things
 * may happen.
 */
void falcon_generate_interrupt(struct efx_nic *efx)
{
	falcon_interrupts(efx, 1, 1);
}

/* Acknowledge a legacy interrupt from Falcon
 *
 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
 *
 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
 * BIU. Interrupt acknowledge is read sensitive so must write instead
 * (then read to ensure the BIU collector is flushed)
 *
 * NB most hardware supports MSI interrupts
 */
static inline void falcon_irq_ack_a1(struct efx_nic *efx)
{
	efx_dword_t reg;

1339
	EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
1340 1341
	efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
	efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
1342 1343 1344 1345 1346 1347 1348 1349
}

/* Process a fatal interrupt
 * Disable bus mastering ASAP and schedule a reset
 */
static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
1350
	efx_oword_t *int_ker = efx->irq_status.addr;
1351 1352 1353
	efx_oword_t fatal_intr;
	int error, mem_perr;

1354
	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1355
	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1356 1357 1358 1359 1360 1361 1362 1363 1364

	EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
		EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
		EFX_OWORD_VAL(fatal_intr),
		error ? "disabling bus mastering" : "no recognised error");
	if (error == 0)
		goto out;

	/* If this is a memory parity error dump which blocks are offending */
1365
	mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
1366 1367
	if (mem_perr) {
		efx_oword_t reg;
1368
		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1369 1370 1371 1372
		EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
			EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
	}

1373
	/* Disable both devices */
1374
	pci_clear_master(efx->pci_dev);
1375
	if (FALCON_IS_DUAL_FUNC(efx))
1376
		pci_clear_master(nic_data->pci_dev2);
1377
	falcon_disable_interrupts(efx);
1378

1379
	/* Count errors and reset or disable the NIC accordingly */
1380 1381 1382 1383
	if (efx->int_error_count == 0 ||
	    time_after(jiffies, efx->int_error_expire)) {
		efx->int_error_count = 0;
		efx->int_error_expire =
1384 1385
			jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
	}
1386
	if (++efx->int_error_count < FALCON_MAX_INT_ERRORS) {
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
		EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
	} else {
		EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
			"NIC will be disabled\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	}
out:
	return IRQ_HANDLED;
}

/* Handle a legacy interrupt from Falcon
 * Acknowledges the interrupt and schedule event queue processing.
 */
static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
{
1403 1404
	struct efx_nic *efx = dev_id;
	efx_oword_t *int_ker = efx->irq_status.addr;
1405
	irqreturn_t result = IRQ_NONE;
1406 1407 1408 1409 1410 1411
	struct efx_channel *channel;
	efx_dword_t reg;
	u32 queues;
	int syserr;

	/* Read the ISR which also ACKs the interrupts */
1412
	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1413 1414 1415
	queues = EFX_EXTRACT_DWORD(reg, 0, 31);

	/* Check to see if we have a serious error condition */
1416
	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1417 1418 1419 1420
	if (unlikely(syserr))
		return falcon_fatal_interrupt(efx);

	/* Schedule processing of any interrupting queues */
1421 1422 1423 1424
	efx_for_each_channel(channel, efx) {
		if ((queues & 1) ||
		    falcon_event_present(
			    falcon_event(channel, channel->eventq_read_ptr))) {
1425
			efx_schedule_channel(channel);
1426 1427
			result = IRQ_HANDLED;
		}
1428 1429 1430
		queues >>= 1;
	}

1431 1432 1433 1434 1435 1436 1437
	if (result == IRQ_HANDLED) {
		efx->last_irq_cpu = raw_smp_processor_id();
		EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
			  irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
	}

	return result;
1438 1439 1440 1441 1442
}


static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
{
1443 1444
	struct efx_nic *efx = dev_id;
	efx_oword_t *int_ker = efx->irq_status.addr;
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	struct efx_channel *channel;
	int syserr;
	int queues;

	/* Check to see if this is our interrupt.  If it isn't, we
	 * exit without having touched the hardware.
	 */
	if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
		EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
			  raw_smp_processor_id());
		return IRQ_NONE;
	}
	efx->last_irq_cpu = raw_smp_processor_id();
	EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
		  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));

	/* Check to see if we have a serious error condition */
1462
	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	if (unlikely(syserr))
		return falcon_fatal_interrupt(efx);

	/* Determine interrupting queues, clear interrupt status
	 * register and acknowledge the device interrupt.
	 */
	BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
	queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
	EFX_ZERO_OWORD(*int_ker);
	wmb(); /* Ensure the vector is cleared before interrupt ack */
	falcon_irq_ack_a1(efx);

	/* Schedule processing of any interrupting queues */
	channel = &efx->channel[0];
	while (queues) {
		if (queues & 0x01)
			efx_schedule_channel(channel);
		channel++;
		queues >>= 1;
	}

	return IRQ_HANDLED;
}

/* Handle an MSI interrupt from Falcon
 *
 * Handle an MSI hardware interrupt.  This routine schedules event
 * queue processing.  No interrupt acknowledgement cycle is necessary.
 * Also, we never need to check that the interrupt is for us, since
 * MSI interrupts cannot be shared.
 */
static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
{
1496
	struct efx_channel *channel = dev_id;
1497
	struct efx_nic *efx = channel->efx;
1498
	efx_oword_t *int_ker = efx->irq_status.addr;
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
	int syserr;

	efx->last_irq_cpu = raw_smp_processor_id();
	EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
		  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));

	/* Check to see if we have a serious error condition */
	syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
	if (unlikely(syserr))
		return falcon_fatal_interrupt(efx);

	/* Schedule processing of the channel */
	efx_schedule_channel(channel);

	return IRQ_HANDLED;
}


/* Setup RSS indirection table.
 * This maps from the hash value of the packet to RXQ
 */
static void falcon_setup_rss_indir_table(struct efx_nic *efx)
{
	int i = 0;
	unsigned long offset;
	efx_dword_t dword;

1526
	if (falcon_rev(efx) < FALCON_REV_B0)
1527 1528
		return;

1529 1530
	for (offset = FR_BZ_RX_INDIRECTION_TBL;
	     offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
1531
	     offset += 0x10) {
1532
		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1533
				     i % efx->n_rx_queues);
1534
		efx_writed(efx, &dword, offset);
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
		i++;
	}
}

/* Hook interrupt handler(s)
 * Try MSI and then legacy interrupts.
 */
int falcon_init_interrupt(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	if (!EFX_INT_MODE_USE_MSI(efx)) {
		irq_handler_t handler;
1549
		if (falcon_rev(efx) >= FALCON_REV_B0)
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
			handler = falcon_legacy_interrupt_b0;
		else
			handler = falcon_legacy_interrupt_a1;

		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
				 efx->name, efx);
		if (rc) {
			EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
				efx->pci_dev->irq);
			goto fail1;
		}
		return 0;
	}

	/* Hook MSI or MSI-X interrupt */
1565
	efx_for_each_channel(channel, efx) {
1566 1567
		rc = request_irq(channel->irq, falcon_msi_interrupt,
				 IRQF_PROBE_SHARED, /* Not shared */
1568
				 channel->name, channel);
1569 1570 1571 1572 1573 1574 1575 1576 1577
		if (rc) {
			EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
			goto fail2;
		}
	}

	return 0;

 fail2:
1578
	efx_for_each_channel(channel, efx)
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
		free_irq(channel->irq, channel);
 fail1:
	return rc;
}

void falcon_fini_interrupt(struct efx_nic *efx)
{
	struct efx_channel *channel;
	efx_oword_t reg;

	/* Disable MSI/MSI-X interrupts */
1590
	efx_for_each_channel(channel, efx) {
1591 1592
		if (channel->irq)
			free_irq(channel->irq, channel);
1593
	}
1594 1595

	/* ACK legacy interrupt */
1596
	if (falcon_rev(efx) >= FALCON_REV_B0)
1597
		efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
	else
		falcon_irq_ack_a1(efx);

	/* Disable legacy interrupt */
	if (efx->legacy_irq)
		free_irq(efx->legacy_irq, efx);
}

/**************************************************************************
 *
 * EEPROM/flash
 *
 **************************************************************************
 */

1613
#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1614

1615 1616 1617
static int falcon_spi_poll(struct efx_nic *efx)
{
	efx_oword_t reg;
1618
	efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
1619
	return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1620 1621
}

1622 1623 1624
/* Wait for SPI command completion */
static int falcon_spi_wait(struct efx_nic *efx)
{
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
	/* Most commands will finish quickly, so we start polling at
	 * very short intervals.  Sometimes the command may have to
	 * wait for VPD or expansion ROM access outside of our
	 * control, so we allow up to 100 ms. */
	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
	int i;

	for (i = 0; i < 10; i++) {
		if (!falcon_spi_poll(efx))
			return 0;
		udelay(10);
	}
1637

1638
	for (;;) {
1639
		if (!falcon_spi_poll(efx))
1640
			return 0;
1641 1642 1643 1644
		if (time_after_eq(jiffies, timeout)) {
			EFX_ERR(efx, "timed out waiting for SPI\n");
			return -ETIMEDOUT;
		}
1645
		schedule_timeout_uninterruptible(1);
1646
	}
1647 1648
}

1649 1650
int falcon_spi_cmd(const struct efx_spi_device *spi,
		   unsigned int command, int address,
1651
		   const void *in, void *out, size_t len)
1652
{
1653 1654 1655
	struct efx_nic *efx = spi->efx;
	bool addressed = (address >= 0);
	bool reading = (out != NULL);
1656 1657 1658
	efx_oword_t reg;
	int rc;

1659 1660 1661
	/* Input validation */
	if (len > FALCON_SPI_MAX_LEN)
		return -EINVAL;
1662
	BUG_ON(!mutex_is_locked(&efx->spi_lock));
1663

1664 1665
	/* Check that previous command is not still running */
	rc = falcon_spi_poll(efx);
1666 1667 1668
	if (rc)
		return rc;

1669 1670
	/* Program address register, if we have an address */
	if (addressed) {
1671
		EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
1672
		efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
1673 1674 1675 1676 1677
	}

	/* Program data register, if we have data */
	if (in != NULL) {
		memcpy(&reg, in, len);
1678
		efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
1679
	}
1680

1681
	/* Issue read/write command */
1682
	EFX_POPULATE_OWORD_7(reg,
1683 1684 1685 1686 1687 1688
			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
			     FRF_AB_EE_SPI_HCMD_READ, reading,
			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
			     FRF_AB_EE_SPI_HCMD_ADBCNT,
1689
			     (addressed ? spi->addr_len : 0),
1690
			     FRF_AB_EE_SPI_HCMD_ENC, command);
1691
	efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
1692

1693
	/* Wait for read/write to complete */
1694 1695 1696 1697 1698
	rc = falcon_spi_wait(efx);
	if (rc)
		return rc;

	/* Read data */
1699
	if (out != NULL) {
1700
		efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
1701 1702 1703
		memcpy(out, &reg, len);
	}

1704 1705 1706
	return 0;
}

1707 1708
static size_t
falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
{
	return min(FALCON_SPI_MAX_LEN,
		   (spi->block_size - (start & (spi->block_size - 1))));
}

static inline u8
efx_spi_munge_command(const struct efx_spi_device *spi,
		      const u8 command, const unsigned int address)
{
	return command | (((address >> 8) & spi->munge_address) << 3);
}

1721 1722
/* Wait up to 10 ms for buffered write completion */
int falcon_spi_wait_write(const struct efx_spi_device *spi)
1723
{
1724 1725
	struct efx_nic *efx = spi->efx;
	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1726
	u8 status;
1727
	int rc;
1728

1729
	for (;;) {
1730 1731 1732 1733 1734 1735
		rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
				    &status, sizeof(status));
		if (rc)
			return rc;
		if (!(status & SPI_STATUS_NRDY))
			return 0;
1736 1737 1738 1739 1740 1741 1742
		if (time_after_eq(jiffies, timeout)) {
			EFX_ERR(efx, "SPI write timeout on device %d"
				" last status=0x%02x\n",
				spi->device_id, status);
			return -ETIMEDOUT;
		}
		schedule_timeout_uninterruptible(1);
1743 1744 1745 1746 1747 1748
	}
}

int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
		    size_t len, size_t *retlen, u8 *buffer)
{
1749 1750
	size_t block_len, pos = 0;
	unsigned int command;
1751 1752 1753
	int rc = 0;

	while (pos < len) {
1754
		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
		rc = falcon_spi_cmd(spi, command, start + pos, NULL,
				    buffer + pos, block_len);
		if (rc)
			break;
		pos += block_len;

		/* Avoid locking up the system */
		cond_resched();
		if (signal_pending(current)) {
			rc = -EINTR;
			break;
		}
	}

	if (retlen)
		*retlen = pos;
	return rc;
}

int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
		     size_t len, size_t *retlen, const u8 *buffer)
{
	u8 verify_buffer[FALCON_SPI_MAX_LEN];
1780 1781
	size_t block_len, pos = 0;
	unsigned int command;
1782 1783 1784 1785 1786 1787 1788
	int rc = 0;

	while (pos < len) {
		rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
		if (rc)
			break;

1789
		block_len = min(len - pos,
1790 1791 1792 1793 1794 1795 1796
				falcon_spi_write_limit(spi, start + pos));
		command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
		rc = falcon_spi_cmd(spi, command, start + pos,
				    buffer + pos, NULL, block_len);
		if (rc)
			break;

1797
		rc = falcon_spi_wait_write(spi);
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
		if (rc)
			break;

		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
		rc = falcon_spi_cmd(spi, command, start + pos,
				    NULL, verify_buffer, block_len);
		if (memcmp(verify_buffer, buffer + pos, block_len)) {
			rc = -EIO;
			break;
		}

		pos += block_len;

		/* Avoid locking up the system */
		cond_resched();
		if (signal_pending(current)) {
			rc = -EINTR;
			break;
		}
	}

	if (retlen)
		*retlen = pos;
	return rc;
}

1824 1825 1826 1827 1828 1829
/**************************************************************************
 *
 * MAC wrapper
 *
 **************************************************************************
 */
1830 1831

static int falcon_reset_macs(struct efx_nic *efx)
1832
{
1833
	efx_oword_t reg;
1834 1835
	int count;

1836 1837 1838 1839 1840
	if (falcon_rev(efx) < FALCON_REV_B0) {
		/* It's not safe to use GLB_CTL_REG to reset the
		 * macs, so instead use the internal MAC resets
		 */
		if (!EFX_IS10G(efx)) {
1841
			EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
1842
			efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1843 1844
			udelay(1000);

1845
			EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
1846
			efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1847 1848 1849
			udelay(1000);
			return 0;
		} else {
1850
			EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1851
			efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1852 1853

			for (count = 0; count < 10000; count++) {
1854
				efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1855 1856
				if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
				    0)
1857 1858 1859
					return 0;
				udelay(10);
			}
1860

1861 1862 1863 1864
			EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
			return -ETIMEDOUT;
		}
	}
1865 1866 1867

	/* MAC stats will fail whilst the TX fifo is draining. Serialise
	 * the drain sequence with the statistics fetch */
1868
	efx_stats_disable(efx);
1869

1870
	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1871
	EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, 1);
1872
	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1873

1874
	efx_reado(efx, &reg, FR_AB_GLB_CTL);
1875 1876 1877
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1878
	efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1879 1880 1881

	count = 0;
	while (1) {
1882
		efx_reado(efx, &reg, FR_AB_GLB_CTL);
1883 1884 1885
		if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
			EFX_LOG(efx, "Completed MAC reset after %d loops\n",
				count);
			break;
		}
		if (count > 20) {
			EFX_ERR(efx, "MAC reset failed\n");
			break;
		}
		count++;
		udelay(10);
	}

1898
	efx_stats_enable(efx);
1899 1900 1901

	/* If we've reset the EM block and the link is up, then
	 * we'll have to kick the XAUI link so the PHY can recover */
1902
	if (efx->link_state.up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1903
		falcon_reset_xaui(efx);
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915

	return 0;
}

void falcon_drain_tx_fifo(struct efx_nic *efx)
{
	efx_oword_t reg;

	if ((falcon_rev(efx) < FALCON_REV_B0) ||
	    (efx->loopback_mode != LOOPBACK_NONE))
		return;

1916
	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1917
	/* There is no point in draining more than once */
1918
	if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1919 1920 1921
		return;

	falcon_reset_macs(efx);
1922 1923 1924 1925
}

void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
{
1926
	efx_oword_t reg;
1927

1928
	if (falcon_rev(efx) < FALCON_REV_B0)
1929 1930 1931
		return;

	/* Isolate the MAC -> RX */
1932
	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1933
	EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1934
	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1935

1936
	if (!efx->link_state.up)
1937 1938 1939 1940 1941
		falcon_drain_tx_fifo(efx);
}

void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
{
1942
	struct efx_link_state *link_state = &efx->link_state;
1943 1944
	efx_oword_t reg;
	int link_speed;
1945
	bool tx_fc;
1946

1947
	switch (link_state->speed) {
B
Ben Hutchings 已提交
1948 1949 1950 1951 1952
	case 10000: link_speed = 3; break;
	case 1000:  link_speed = 2; break;
	case 100:   link_speed = 1; break;
	default:    link_speed = 0; break;
	}
1953 1954 1955 1956 1957
	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
	 * as advertised.  Disable to ensure packets are not
	 * indefinitely held and TX queue can be flushed at any point
	 * while the link is down. */
	EFX_POPULATE_OWORD_5(reg,
1958 1959 1960 1961 1962
			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
			     FRF_AB_MAC_BCAD_ACPT, 1,
			     FRF_AB_MAC_UC_PROM, efx->promiscuous,
			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
			     FRF_AB_MAC_SPEED, link_speed);
1963 1964
	/* On B0, MAC backpressure can be disabled and packets get
	 * discarded. */
1965
	if (falcon_rev(efx) >= FALCON_REV_B0) {
1966
		EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1967
				    !link_state->up);
1968 1969
	}

1970
	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1971 1972 1973 1974 1975 1976 1977

	/* Restore the multicast hash registers. */
	falcon_set_multicast_hash(efx);

	/* Transmission of pause frames when RX crosses the threshold is
	 * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
	 * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1978
	tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1979
	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1980
	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, tx_fc);
1981 1982

	/* Unisolate the MAC -> RX */
1983
	if (falcon_rev(efx) >= FALCON_REV_B0)
1984
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1985
	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
}

int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
{
	efx_oword_t reg;
	u32 *dma_done;
	int i;

	if (disable_dma_stats)
		return 0;

	/* Statistics fetch will fail if the MAC is in TX drain */
1998
	if (falcon_rev(efx) >= FALCON_REV_B0) {
1999
		efx_oword_t temp;
2000
		efx_reado(efx, &temp, FR_AB_MAC_CTRL);
2001
		if (EFX_OWORD_FIELD(temp, FRF_BB_TXFIFO_DRAIN_EN))
2002 2003 2004 2005 2006 2007 2008 2009 2010
			return 0;
	}

	dma_done = (efx->stats_buffer.addr + done_offset);
	*dma_done = FALCON_STATS_NOT_DONE;
	wmb(); /* ensure done flag is clear */

	/* Initiate DMA transfer of stats */
	EFX_POPULATE_OWORD_2(reg,
2011 2012
			     FRF_AB_MAC_STAT_DMA_CMD, 1,
			     FRF_AB_MAC_STAT_DMA_ADR,
2013
			     efx->stats_buffer.dma_addr);
2014
	efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
2015 2016 2017

	/* Wait for transfer to complete */
	for (i = 0; i < 400; i++) {
2018 2019
		if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
			rmb(); /* Ensure the stats are valid. */
2020
			return 0;
2021
		}
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
		udelay(10);
	}

	EFX_ERR(efx, "timed out waiting for statistics\n");
	return -ETIMEDOUT;
}

/**************************************************************************
 *
 * PHY access via GMII
 *
 **************************************************************************
 */

/* Wait for GMII access to complete */
static int falcon_gmii_wait(struct efx_nic *efx)
{
2039
	efx_oword_t md_stat;
2040 2041
	int count;

2042 2043
	/* wait upto 50ms - taken max from datasheet */
	for (count = 0; count < 5000; count++) {
2044 2045 2046 2047
		efx_reado(efx, &md_stat, FR_AB_MD_STAT);
		if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
			if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
			    EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
2048
				EFX_ERR(efx, "error from GMII access "
2049 2050
					EFX_OWORD_FMT"\n",
					EFX_OWORD_VAL(md_stat));
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
				return -EIO;
			}
			return 0;
		}
		udelay(10);
	}
	EFX_ERR(efx, "timed out waiting for GMII\n");
	return -ETIMEDOUT;
}

2061 2062 2063
/* Write an MDIO register of a PHY connected to Falcon. */
static int falcon_mdio_write(struct net_device *net_dev,
			     int prtad, int devad, u16 addr, u16 value)
2064
{
2065
	struct efx_nic *efx = netdev_priv(net_dev);
2066
	efx_oword_t reg;
2067
	int rc;
2068

2069 2070
	EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
		    prtad, devad, addr, value);
2071 2072 2073

	spin_lock_bh(&efx->phy_lock);

2074 2075 2076
	/* Check MDIO not currently being accessed */
	rc = falcon_gmii_wait(efx);
	if (rc)
2077 2078 2079
		goto out;

	/* Write the address/ID register */
2080
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2081
	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2082

2083 2084
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
			     FRF_AB_MD_DEV_ADR, devad);
2085
	efx_writeo(efx, &reg, FR_AB_MD_ID);
2086 2087

	/* Write data */
2088
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
2089
	efx_writeo(efx, &reg, FR_AB_MD_TXD);
2090 2091

	EFX_POPULATE_OWORD_2(reg,
2092 2093
			     FRF_AB_MD_WRC, 1,
			     FRF_AB_MD_GC, 0);
2094
	efx_writeo(efx, &reg, FR_AB_MD_CS);
2095 2096

	/* Wait for data to be written */
2097 2098
	rc = falcon_gmii_wait(efx);
	if (rc) {
2099 2100
		/* Abort the write operation */
		EFX_POPULATE_OWORD_2(reg,
2101 2102
				     FRF_AB_MD_WRC, 0,
				     FRF_AB_MD_GC, 1);
2103
		efx_writeo(efx, &reg, FR_AB_MD_CS);
2104 2105 2106 2107 2108
		udelay(10);
	}

 out:
	spin_unlock_bh(&efx->phy_lock);
2109
	return rc;
2110 2111
}

2112 2113 2114
/* Read an MDIO register of a PHY connected to Falcon. */
static int falcon_mdio_read(struct net_device *net_dev,
			    int prtad, int devad, u16 addr)
2115
{
2116
	struct efx_nic *efx = netdev_priv(net_dev);
2117
	efx_oword_t reg;
2118
	int rc;
2119 2120 2121

	spin_lock_bh(&efx->phy_lock);

2122 2123 2124
	/* Check MDIO not currently being accessed */
	rc = falcon_gmii_wait(efx);
	if (rc)
2125 2126
		goto out;

2127
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2128
	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2129

2130 2131
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
			     FRF_AB_MD_DEV_ADR, devad);
2132
	efx_writeo(efx, &reg, FR_AB_MD_ID);
2133 2134

	/* Request data to be read */
2135
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
2136
	efx_writeo(efx, &reg, FR_AB_MD_CS);
2137 2138

	/* Wait for data to become available */
2139 2140
	rc = falcon_gmii_wait(efx);
	if (rc == 0) {
2141
		efx_reado(efx, &reg, FR_AB_MD_RXD);
2142
		rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
2143 2144
		EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
			    prtad, devad, addr, rc);
2145 2146 2147
	} else {
		/* Abort the read operation */
		EFX_POPULATE_OWORD_2(reg,
2148 2149
				     FRF_AB_MD_RIC, 0,
				     FRF_AB_MD_GC, 1);
2150
		efx_writeo(efx, &reg, FR_AB_MD_CS);
2151

2152 2153
		EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
			prtad, devad, addr, rc);
2154 2155 2156 2157
	}

 out:
	spin_unlock_bh(&efx->phy_lock);
2158
	return rc;
2159 2160
}

2161 2162 2163 2164 2165
int falcon_switch_mac(struct efx_nic *efx)
{
	struct efx_mac_operations *old_mac_op = efx->mac_op;
	efx_oword_t nic_stat;
	unsigned strap_val;
2166 2167 2168 2169
	int rc = 0;

	/* Don't try to fetch MAC stats while we're switching MACs */
	efx_stats_disable(efx);
2170 2171 2172

	/* Internal loopbacks override the phy speed setting */
	if (efx->loopback_mode == LOOPBACK_GMAC) {
2173 2174
		efx->link_state.speed = 1000;
		efx->link_state.fd = true;
2175
	} else if (LOOPBACK_INTERNAL(efx)) {
2176 2177
		efx->link_state.speed = 10000;
		efx->link_state.fd = true;
2178 2179
	}

2180
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
2181 2182 2183
	efx->mac_op = (EFX_IS10G(efx) ?
		       &falcon_xmac_operations : &falcon_gmac_operations);

2184 2185
	/* Always push the NIC_STAT_REG setting even if the mac hasn't
	 * changed, because this function is run post online reset */
2186
	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2187 2188
	strap_val = EFX_IS10G(efx) ? 5 : 3;
	if (falcon_rev(efx) >= FALCON_REV_B0) {
2189 2190
		EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
		EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
2191
		efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
2192 2193 2194
	} else {
		/* Falcon A1 does not support 1G/10G speed switching
		 * and must not be used with a PHY that does. */
2195 2196
		BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
		       strap_val);
2197 2198
	}

2199
	if (old_mac_op == efx->mac_op)
2200
		goto out;
2201 2202

	EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2203 2204 2205
	/* Not all macs support a mac-level link state */
	efx->mac_up = true;

2206 2207 2208 2209
	rc = falcon_reset_macs(efx);
out:
	efx_stats_enable(efx);
	return rc;
2210 2211
}

2212 2213 2214 2215 2216
/* This call is responsible for hooking in the MAC and PHY operations */
int falcon_probe_port(struct efx_nic *efx)
{
	int rc;

2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
	switch (efx->phy_type) {
	case PHY_TYPE_SFX7101:
		efx->phy_op = &falcon_sfx7101_phy_ops;
		break;
	case PHY_TYPE_SFT9001A:
	case PHY_TYPE_SFT9001B:
		efx->phy_op = &falcon_sft9001_phy_ops;
		break;
	case PHY_TYPE_QT2022C2:
	case PHY_TYPE_QT2025C:
2227
		efx->phy_op = &falcon_qt202x_phy_ops;
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
		break;
	default:
		EFX_ERR(efx, "Unknown PHY type %d\n",
			efx->phy_type);
		return -ENODEV;
	}

	if (efx->phy_op->macs & EFX_XMAC)
		efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
					(1 << LOOPBACK_XGXS) |
					(1 << LOOPBACK_XAUI));
	if (efx->phy_op->macs & EFX_GMAC)
		efx->loopback_modes |= (1 << LOOPBACK_GMAC);
	efx->loopback_modes |= efx->phy_op->loopbacks;
2242

2243 2244 2245 2246 2247
	/* Set up MDIO structure for PHY */
	efx->mdio.mmds = efx->phy_op->mmds;
	efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
	efx->mdio.mdio_read = falcon_mdio_read;
	efx->mdio.mdio_write = falcon_mdio_write;
2248 2249

	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2250
	if (falcon_rev(efx) >= FALCON_REV_B0)
B
Ben Hutchings 已提交
2251
		efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2252
	else
B
Ben Hutchings 已提交
2253
		efx->wanted_fc = EFX_FC_RX;
2254 2255 2256 2257 2258 2259

	/* Allocate buffer for stats */
	rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
				 FALCON_MAC_STATS_SIZE);
	if (rc)
		return rc;
2260 2261
	EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
		(u64)efx->stats_buffer.dma_addr,
2262
		efx->stats_buffer.addr,
2263
		(u64)virt_to_phys(efx->stats_buffer.addr));
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289

	return 0;
}

void falcon_remove_port(struct efx_nic *efx)
{
	falcon_free_buffer(efx, &efx->stats_buffer);
}

/**************************************************************************
 *
 * Multicast filtering
 *
 **************************************************************************
 */

void falcon_set_multicast_hash(struct efx_nic *efx)
{
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;

	/* Broadcast packets go through the multicast hash filter.
	 * ether_crc_le() of the broadcast address is 0xbe2612ff
	 * so we always add bit 0xff to the mask.
	 */
	set_bit_le(0xff, mc_hash->byte);

2290 2291
	efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
	efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
2292 2293
}

B
Ben Hutchings 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309

/**************************************************************************
 *
 * Falcon test code
 *
 **************************************************************************/

int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
{
	struct falcon_nvconfig *nvconfig;
	struct efx_spi_device *spi;
	void *region;
	int rc, magic_num, struct_ver;
	__le16 *word, *limit;
	u32 csum;

2310 2311 2312 2313
	spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
	if (!spi)
		return -EINVAL;

2314
	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
B
Ben Hutchings 已提交
2315 2316
	if (!region)
		return -ENOMEM;
2317
	nvconfig = region + FALCON_NVCONFIG_OFFSET;
B
Ben Hutchings 已提交
2318

2319
	mutex_lock(&efx->spi_lock);
2320
	rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2321
	mutex_unlock(&efx->spi_lock);
B
Ben Hutchings 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
	if (rc) {
		EFX_ERR(efx, "Failed to read %s\n",
			efx->spi_flash ? "flash" : "EEPROM");
		rc = -EIO;
		goto out;
	}

	magic_num = le16_to_cpu(nvconfig->board_magic_num);
	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);

	rc = -EINVAL;
2333
	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
B
Ben Hutchings 已提交
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
		EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
		goto out;
	}
	if (struct_ver < 2) {
		EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
		goto out;
	} else if (struct_ver < 4) {
		word = &nvconfig->board_magic_num;
		limit = (__le16 *) (nvconfig + 1);
	} else {
		word = region;
2345
		limit = region + FALCON_NVCONFIG_END;
B
Ben Hutchings 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	}
	for (csum = 0; word < limit; ++word)
		csum += le16_to_cpu(*word);

	if (~csum & 0xffff) {
		EFX_ERR(efx, "NVRAM has incorrect checksum\n");
		goto out;
	}

	rc = 0;
	if (nvconfig_out)
		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));

 out:
	kfree(region);
	return rc;
}

/* Registers tested in the falcon register test */
static struct {
	unsigned address;
	efx_oword_t mask;
} efx_test_registers[] = {
2369
	{ FR_AZ_ADR_REGION,
B
Ben Hutchings 已提交
2370
	  EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2371
	{ FR_AZ_RX_CFG,
B
Ben Hutchings 已提交
2372
	  EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2373
	{ FR_AZ_TX_CFG,
B
Ben Hutchings 已提交
2374
	  EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2375
	{ FR_AZ_TX_RESERVED,
B
Ben Hutchings 已提交
2376
	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2377
	{ FR_AB_MAC_CTRL,
B
Ben Hutchings 已提交
2378
	  EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2379
	{ FR_AZ_SRM_TX_DC_CFG,
B
Ben Hutchings 已提交
2380
	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2381
	{ FR_AZ_RX_DC_CFG,
B
Ben Hutchings 已提交
2382
	  EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2383
	{ FR_AZ_RX_DC_PF_WM,
B
Ben Hutchings 已提交
2384
	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2385
	{ FR_BZ_DP_CTRL,
B
Ben Hutchings 已提交
2386
	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2387
	{ FR_AB_GM_CFG2,
2388
	  EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2389
	{ FR_AB_GMF_CFG0,
2390
	  EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2391
	{ FR_AB_XM_GLB_CFG,
B
Ben Hutchings 已提交
2392
	  EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2393
	{ FR_AB_XM_TX_CFG,
B
Ben Hutchings 已提交
2394
	  EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2395
	{ FR_AB_XM_RX_CFG,
B
Ben Hutchings 已提交
2396
	  EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2397
	{ FR_AB_XM_RX_PARAM,
B
Ben Hutchings 已提交
2398
	  EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2399
	{ FR_AB_XM_FC,
B
Ben Hutchings 已提交
2400
	  EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2401
	{ FR_AB_XM_ADR_LO,
B
Ben Hutchings 已提交
2402
	  EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2403
	{ FR_AB_XX_SD_CTL,
B
Ben Hutchings 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	  EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
};

static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
				     const efx_oword_t *mask)
{
	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
}

int falcon_test_registers(struct efx_nic *efx)
{
	unsigned address = 0, i, j;
	efx_oword_t mask, imask, original, reg, buf;

	/* Falcon should be in loopback to isolate the XMAC from the PHY */
	WARN_ON(!LOOPBACK_INTERNAL(efx));

	for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
		address = efx_test_registers[i].address;
		mask = imask = efx_test_registers[i].mask;
		EFX_INVERT_OWORD(imask);

2427
		efx_reado(efx, &original, address);
B
Ben Hutchings 已提交
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437

		/* bit sweep on and off */
		for (j = 0; j < 128; j++) {
			if (!EFX_EXTRACT_OWORD32(mask, j, j))
				continue;

			/* Test this testable bit can be set in isolation */
			EFX_AND_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 1);

2438 2439
			efx_writeo(efx, &reg, address);
			efx_reado(efx, &buf, address);
B
Ben Hutchings 已提交
2440 2441 2442 2443 2444 2445 2446 2447

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;

			/* Test this testable bit can be cleared in isolation */
			EFX_OR_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 0);

2448 2449
			efx_writeo(efx, &reg, address);
			efx_reado(efx, &buf, address);
B
Ben Hutchings 已提交
2450 2451 2452 2453 2454

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;
		}

2455
		efx_writeo(efx, &original, address);
B
Ben Hutchings 已提交
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
	}

	return 0;

fail:
	EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
		" at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
		EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
	return -EIO;
}

2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
/**************************************************************************
 *
 * Device reset
 *
 **************************************************************************
 */

/* Resets NIC to known state.  This routine must be called in process
 * context and is allowed to sleep. */
int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
	efx_oword_t glb_ctl_reg_ker;
	int rc;

2482
	EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method));
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502

	/* Initiate device reset */
	if (method == RESET_TYPE_WORLD) {
		rc = pci_save_state(efx->pci_dev);
		if (rc) {
			EFX_ERR(efx, "failed to backup PCI state of primary "
				"function prior to hardware reset\n");
			goto fail1;
		}
		if (FALCON_IS_DUAL_FUNC(efx)) {
			rc = pci_save_state(nic_data->pci_dev2);
			if (rc) {
				EFX_ERR(efx, "failed to backup PCI state of "
					"secondary function prior to "
					"hardware reset\n");
				goto fail2;
			}
		}

		EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2503 2504 2505
				     FRF_AB_EXT_PHY_RST_DUR,
				     FFE_AB_EXT_PHY_RST_DUR_10240US,
				     FRF_AB_SWRST, 1);
2506 2507
	} else {
		EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
				     /* exclude PHY from "invisible" reset */
				     FRF_AB_EXT_PHY_RST_CTL,
				     method == RESET_TYPE_INVISIBLE,
				     /* exclude EEPROM/flash and PCIe */
				     FRF_AB_PCIE_CORE_RST_CTL, 1,
				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
				     FRF_AB_PCIE_SD_RST_CTL, 1,
				     FRF_AB_EE_RST_CTL, 1,
				     FRF_AB_EXT_PHY_RST_DUR,
				     FFE_AB_EXT_PHY_RST_DUR_10240US,
				     FRF_AB_SWRST, 1);
	}
2520
	efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544

	EFX_LOG(efx, "waiting for hardware reset\n");
	schedule_timeout_uninterruptible(HZ / 20);

	/* Restore PCI configuration if needed */
	if (method == RESET_TYPE_WORLD) {
		if (FALCON_IS_DUAL_FUNC(efx)) {
			rc = pci_restore_state(nic_data->pci_dev2);
			if (rc) {
				EFX_ERR(efx, "failed to restore PCI config for "
					"the secondary function\n");
				goto fail3;
			}
		}
		rc = pci_restore_state(efx->pci_dev);
		if (rc) {
			EFX_ERR(efx, "failed to restore PCI config for the "
				"primary function\n");
			goto fail4;
		}
		EFX_LOG(efx, "successfully restored PCI config\n");
	}

	/* Assert that reset complete */
2545
	efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2546
	if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
		rc = -ETIMEDOUT;
		EFX_ERR(efx, "timed out waiting for hardware reset\n");
		goto fail5;
	}
	EFX_LOG(efx, "hardware reset complete\n");

	return 0;

	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
fail2:
fail3:
	pci_restore_state(efx->pci_dev);
fail1:
fail4:
fail5:
	return rc;
}

/* Zeroes out the SRAM contents.  This routine must be called in
 * process context and is allowed to sleep.
 */
static int falcon_reset_sram(struct efx_nic *efx)
{
	efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
	int count;

	/* Set the SRAM wake/sleep GPIO appropriately. */
2574
	efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2575 2576
	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2577
	efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2578 2579 2580

	/* Initiate SRAM reset */
	EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2581 2582
			     FRF_AZ_SRM_INIT_EN, 1,
			     FRF_AZ_SRM_NB_SZ, 0);
2583
	efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593

	/* Wait for SRAM reset to complete */
	count = 0;
	do {
		EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);

		/* SRAM reset is slow; expect around 16ms */
		schedule_timeout_uninterruptible(HZ / 50);

		/* Check for reset complete */
2594
		efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2595
		if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
			EFX_LOG(efx, "SRAM reset complete\n");

			return 0;
		}
	} while (++count < 20);	/* wait upto 0.4 sec */

	EFX_ERR(efx, "timed out waiting for SRAM reset\n");
	return -ETIMEDOUT;
}

2606 2607 2608 2609 2610 2611 2612
static int falcon_spi_device_init(struct efx_nic *efx,
				  struct efx_spi_device **spi_device_ret,
				  unsigned int device_id, u32 device_type)
{
	struct efx_spi_device *spi_device;

	if (device_type != 0) {
2613
		spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2614 2615 2616 2617 2618 2619 2620 2621 2622
		if (!spi_device)
			return -ENOMEM;
		spi_device->device_id = device_id;
		spi_device->size =
			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
		spi_device->addr_len =
			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
		spi_device->munge_address = (spi_device->size == 1 << 9 &&
					     spi_device->addr_len == 1);
2623 2624 2625 2626 2627
		spi_device->erase_command =
			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
		spi_device->erase_size =
			1 << SPI_DEV_TYPE_FIELD(device_type,
						SPI_DEV_TYPE_ERASE_SIZE);
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
		spi_device->block_size =
			1 << SPI_DEV_TYPE_FIELD(device_type,
						SPI_DEV_TYPE_BLOCK_SIZE);

		spi_device->efx = efx;
	} else {
		spi_device = NULL;
	}

	kfree(*spi_device_ret);
	*spi_device_ret = spi_device;
	return 0;
}


static void falcon_remove_spi_devices(struct efx_nic *efx)
{
	kfree(efx->spi_eeprom);
	efx->spi_eeprom = NULL;
	kfree(efx->spi_flash);
	efx->spi_flash = NULL;
}

2651 2652 2653 2654
/* Extract non-volatile configuration */
static int falcon_probe_nvconfig(struct efx_nic *efx)
{
	struct falcon_nvconfig *nvconfig;
B
Ben Hutchings 已提交
2655
	int board_rev;
2656 2657 2658
	int rc;

	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2659 2660
	if (!nvconfig)
		return -ENOMEM;
2661

B
Ben Hutchings 已提交
2662 2663 2664
	rc = falcon_read_nvram(efx, nvconfig);
	if (rc == -EINVAL) {
		EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2665
		efx->phy_type = PHY_TYPE_NONE;
2666
		efx->mdio.prtad = MDIO_PRTAD_NONE;
2667
		board_rev = 0;
B
Ben Hutchings 已提交
2668 2669 2670
		rc = 0;
	} else if (rc) {
		goto fail1;
2671 2672
	} else {
		struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2673
		struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2674 2675

		efx->phy_type = v2->port0_phy_type;
2676
		efx->mdio.prtad = v2->port0_phy_addr;
2677
		board_rev = le16_to_cpu(v2->board_revision);
2678

B
Ben Hutchings 已提交
2679
		if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2680 2681 2682 2683
			rc = falcon_spi_device_init(
				efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
				le32_to_cpu(v3->spi_device_type
					    [FFE_AB_SPI_DEVICE_FLASH]));
2684 2685
			if (rc)
				goto fail2;
2686 2687 2688 2689
			rc = falcon_spi_device_init(
				efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
				le32_to_cpu(v3->spi_device_type
					    [FFE_AB_SPI_DEVICE_EEPROM]));
2690 2691 2692
			if (rc)
				goto fail2;
		}
2693 2694
	}

B
Ben Hutchings 已提交
2695 2696 2697
	/* Read the MAC addresses */
	memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);

2698
	EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
2699

2700
	falcon_probe_board(efx, board_rev);
2701

2702 2703 2704 2705 2706 2707
	kfree(nvconfig);
	return 0;

 fail2:
	falcon_remove_spi_devices(efx);
 fail1:
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	kfree(nvconfig);
	return rc;
}

/* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
 * count, port speed).  Set workaround and feature flags accordingly.
 */
static int falcon_probe_nic_variant(struct efx_nic *efx)
{
	efx_oword_t altera_build;
2718
	efx_oword_t nic_stat;
2719

2720
	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
2721
	if (EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER)) {
2722 2723 2724 2725
		EFX_ERR(efx, "Falcon FPGA not supported\n");
		return -ENODEV;
	}

2726
	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2727

2728
	switch (falcon_rev(efx)) {
2729 2730 2731 2732 2733
	case FALCON_REV_A0:
	case 0xff:
		EFX_ERR(efx, "Falcon rev A0 not supported\n");
		return -ENODEV;

2734
	case FALCON_REV_A1:
2735
		if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2736 2737 2738 2739 2740 2741 2742 2743 2744
			EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
			return -ENODEV;
		}
		break;

	case FALCON_REV_B0:
		break;

	default:
2745
		EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2746 2747 2748
		return -ENODEV;
	}

2749
	/* Initial assumed speed */
2750
	efx->link_state.speed = EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) ? 10000 : 1000;
2751

2752 2753 2754
	return 0;
}

2755 2756 2757 2758
/* Probe all SPI devices on the NIC */
static void falcon_probe_spi_devices(struct efx_nic *efx)
{
	efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2759
	int boot_dev;
2760

2761 2762 2763
	efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
	efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2764

2765 2766 2767
	if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
		boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2768
		EFX_LOG(efx, "Booted from %s\n",
2769
			boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
2770 2771 2772 2773 2774 2775
	} else {
		/* Disable VPD and set clock dividers to safe
		 * values for initial programming. */
		boot_dev = -1;
		EFX_LOG(efx, "Booted from internal ASIC settings;"
			" setting SPI config\n");
2776
		EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2777
				     /* 125 MHz / 7 ~= 20 MHz */
2778
				     FRF_AB_EE_SF_CLOCK_DIV, 7,
2779
				     /* 125 MHz / 63 ~= 2 MHz */
2780
				     FRF_AB_EE_EE_CLOCK_DIV, 63);
2781
		efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2782 2783
	}

2784 2785 2786
	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
		falcon_spi_device_init(efx, &efx->spi_flash,
				       FFE_AB_SPI_DEVICE_FLASH,
2787
				       default_flash_type);
2788 2789 2790
	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
		falcon_spi_device_init(efx, &efx->spi_eeprom,
				       FFE_AB_SPI_DEVICE_EEPROM,
2791
				       large_eeprom_type);
2792 2793
}

2794 2795 2796
int falcon_probe_nic(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data;
2797
	struct falcon_board *board;
2798 2799 2800 2801
	int rc;

	/* Allocate storage for hardware specific data */
	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2802 2803
	if (!nic_data)
		return -ENOMEM;
2804
	efx->nic_data = nic_data;
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842

	/* Determine number of ports etc. */
	rc = falcon_probe_nic_variant(efx);
	if (rc)
		goto fail1;

	/* Probe secondary function if expected */
	if (FALCON_IS_DUAL_FUNC(efx)) {
		struct pci_dev *dev = pci_dev_get(efx->pci_dev);

		while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
					     dev))) {
			if (dev->bus == efx->pci_dev->bus &&
			    dev->devfn == efx->pci_dev->devfn + 1) {
				nic_data->pci_dev2 = dev;
				break;
			}
		}
		if (!nic_data->pci_dev2) {
			EFX_ERR(efx, "failed to find secondary function\n");
			rc = -ENODEV;
			goto fail2;
		}
	}

	/* Now we can reset the NIC */
	rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
	if (rc) {
		EFX_ERR(efx, "failed to reset NIC\n");
		goto fail3;
	}

	/* Allocate memory for INT_KER */
	rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
	if (rc)
		goto fail4;
	BUG_ON(efx->irq_status.dma_addr & 0x0f);

2843 2844 2845
	EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
		(u64)efx->irq_status.dma_addr,
		efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
2846

2847 2848
	falcon_probe_spi_devices(efx);

2849 2850 2851 2852 2853
	/* Read in the non-volatile configuration */
	rc = falcon_probe_nvconfig(efx);
	if (rc)
		goto fail5;

2854
	/* Initialise I2C adapter */
2855 2856 2857 2858 2859 2860 2861 2862 2863
	board = falcon_board(efx);
	board->i2c_adap.owner = THIS_MODULE;
	board->i2c_data = falcon_i2c_bit_operations;
	board->i2c_data.data = efx;
	board->i2c_adap.algo_data = &board->i2c_data;
	board->i2c_adap.dev.parent = &efx->pci_dev->dev;
	strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
		sizeof(board->i2c_adap.name));
	rc = i2c_bit_add_bus(&board->i2c_adap);
2864 2865 2866
	if (rc)
		goto fail5;

2867
	rc = falcon_board(efx)->type->init(efx);
2868 2869 2870 2871 2872
	if (rc) {
		EFX_ERR(efx, "failed to initialise board\n");
		goto fail6;
	}

2873 2874
	return 0;

2875
 fail6:
2876 2877
	BUG_ON(i2c_del_adapter(&board->i2c_adap));
	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2878
 fail5:
2879
	falcon_remove_spi_devices(efx);
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	falcon_free_buffer(efx, &efx->irq_status);
 fail4:
 fail3:
	if (nic_data->pci_dev2) {
		pci_dev_put(nic_data->pci_dev2);
		nic_data->pci_dev2 = NULL;
	}
 fail2:
 fail1:
	kfree(efx->nic_data);
	return rc;
}

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
static void falcon_init_rx_cfg(struct efx_nic *efx)
{
	/* Prior to Siena the RX DMA engine will split each frame at
	 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
	 * be so large that that never happens. */
	const unsigned huge_buf_size = (3 * 4096) >> 5;
	/* RX control FIFO thresholds (32 entries) */
	const unsigned ctrl_xon_thr = 20;
	const unsigned ctrl_xoff_thr = 25;
	/* RX data FIFO thresholds (256-byte units; size varies) */
2903 2904
	int data_xon_thr = rx_xon_thresh_bytes >> 8;
	int data_xoff_thr = rx_xoff_thresh_bytes >> 8;
2905 2906
	efx_oword_t reg;

2907
	efx_reado(efx, &reg, FR_AZ_RX_CFG);
2908
	if (falcon_rev(efx) <= FALCON_REV_A1) {
2909 2910 2911 2912 2913
		/* Data FIFO size is 5.5K */
		if (data_xon_thr < 0)
			data_xon_thr = 512 >> 8;
		if (data_xoff_thr < 0)
			data_xoff_thr = 2048 >> 8;
2914 2915 2916 2917 2918 2919 2920
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
				    huge_buf_size);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2921
	} else {
2922 2923 2924 2925 2926
		/* Data FIFO size is 80K; register fields moved */
		if (data_xon_thr < 0)
			data_xon_thr = 27648 >> 8; /* ~3*max MTU */
		if (data_xoff_thr < 0)
			data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
2927 2928 2929 2930 2931 2932 2933 2934
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
				    huge_buf_size);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2935
	}
2936
	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2937 2938
}

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
/* This call performs hardware-specific global initialisation, such as
 * defining the descriptor cache sizes and number of RSS channels.
 * It does not set up any buffers, descriptor rings or event queues.
 */
int falcon_init_nic(struct efx_nic *efx)
{
	efx_oword_t temp;
	int rc;

	/* Use on-chip SRAM */
2949
	efx_reado(efx, &temp, FR_AB_NIC_STAT);
2950
	EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2951
	efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2952

B
Ben Hutchings 已提交
2953 2954
	/* Set the source of the GMAC clock */
	if (falcon_rev(efx) == FALCON_REV_B0) {
2955
		efx_reado(efx, &temp, FR_AB_GPIO_CTL);
2956
		EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
2957
		efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
B
Ben Hutchings 已提交
2958 2959
	}

2960 2961 2962 2963 2964
	rc = falcon_reset_sram(efx);
	if (rc)
		return rc;

	/* Set positions of descriptor caches in SRAM. */
2965
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
2966
	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
2967
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
2968
	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
2969 2970

	/* Set TX descriptor cache size. */
B
Ben Hutchings 已提交
2971
	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
2972
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
2973
	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
2974 2975 2976 2977

	/* Set RX descriptor cache size.  Set low watermark to size-8, as
	 * this allows most efficient prefetching.
	 */
B
Ben Hutchings 已提交
2978
	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
2979
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
2980
	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
2981
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
2982
	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
2983 2984 2985 2986 2987

	/* Clear the parity enables on the TX data fifos as
	 * they produce false parity errors because of timing issues
	 */
	if (EFX_WORKAROUND_5129(efx)) {
2988
		efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
2989
		EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2990
		efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2991 2992 2993 2994 2995 2996 2997 2998 2999
	}

	/* Enable all the genuinely fatal interrupts.  (They are still
	 * masked by the overall interrupt mask, controlled by
	 * falcon_interrupts()).
	 *
	 * Note: All other fatal interrupts are enabled
	 */
	EFX_POPULATE_OWORD_3(temp,
3000 3001 3002
			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
3003
	EFX_INVERT_OWORD(temp);
3004
	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
3005 3006

	if (EFX_WORKAROUND_7244(efx)) {
3007
		efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
3008 3009 3010 3011
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
3012
		efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
3013 3014 3015 3016
	}

	falcon_setup_rss_indir_table(efx);

3017
	/* XXX This is documented only for Falcon A0/A1 */
3018 3019 3020
	/* Setup RX.  Wait for descriptor is broken and must
	 * be disabled.  RXDP recovery shouldn't be needed, but is.
	 */
3021
	efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
3022 3023
	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
3024
	if (EFX_WORKAROUND_5583(efx))
3025
		EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
3026
	efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
3027 3028 3029 3030

	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
	 */
3031
	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
3032 3033 3034 3035 3036
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
3037
	/* Enable SW_EV to inherit in char driver - assume harmless here */
3038
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
3039
	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
3040
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
3041
	/* Squash TX of packets of 16 bytes or less */
3042
	if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3043
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
3044
	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
3045 3046 3047 3048

	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
	 * descriptors (which is bad).
	 */
3049
	efx_reado(efx, &temp, FR_AZ_TX_CFG);
3050
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
3051
	efx_writeo(efx, &temp, FR_AZ_TX_CFG);
3052

3053
	falcon_init_rx_cfg(efx);
3054 3055

	/* Set destination of both TX and RX Flush events */
3056
	if (falcon_rev(efx) >= FALCON_REV_B0) {
3057
		EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
3058
		efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
3059 3060 3061 3062 3063 3064 3065 3066
	}

	return 0;
}

void falcon_remove_nic(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
3067
	struct falcon_board *board = falcon_board(efx);
3068 3069
	int rc;

3070
	board->type->fini(efx);
3071

3072
	/* Remove I2C adapter and clear it in preparation for a retry */
3073
	rc = i2c_del_adapter(&board->i2c_adap);
3074
	BUG_ON(rc);
3075
	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
3076

3077
	falcon_remove_spi_devices(efx);
3078 3079
	falcon_free_buffer(efx, &efx->irq_status);

B
Ben Hutchings 已提交
3080
	falcon_reset_hw(efx, RESET_TYPE_ALL);
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096

	/* Release the second function after the reset */
	if (nic_data->pci_dev2) {
		pci_dev_put(nic_data->pci_dev2);
		nic_data->pci_dev2 = NULL;
	}

	/* Tear down the private nic state */
	kfree(efx->nic_data);
	efx->nic_data = NULL;
}

void falcon_update_nic_stats(struct efx_nic *efx)
{
	efx_oword_t cnt;

3097
	efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
3098 3099
	efx->n_rx_nodesc_drop_cnt +=
		EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
}

/**************************************************************************
 *
 * Revision-dependent attributes used by efx.c
 *
 **************************************************************************
 */

struct efx_nic_type falcon_a_nic_type = {
	.mem_map_size = 0x20000,
3111 3112 3113 3114 3115
	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
3116
	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3117 3118 3119 3120 3121 3122 3123 3124 3125
	.rx_buffer_padding = 0x24,
	.max_interrupt_mode = EFX_INT_MODE_MSI,
	.phys_addr_channels = 4,
};

struct efx_nic_type falcon_b_nic_type = {
	/* Map everything up to and including the RSS indirection
	 * table.  Don't map MSI-X table, MSI-X PBA since Linux
	 * requires that they not be mapped.  */
3126 3127 3128 3129 3130 3131 3132 3133
	.mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
			 FR_BZ_RX_INDIRECTION_TBL_STEP *
			 FR_BZ_RX_INDIRECTION_TBL_ROWS),
	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
3134
	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3135 3136 3137 3138 3139 3140 3141
	.rx_buffer_padding = 0,
	.max_interrupt_mode = EFX_INT_MODE_MSIX,
	.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
				   * interrupt handler only supports 32
				   * channels */
};