falcon.c 90.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
 * Copyright 2006-2008 Solarflare Communications Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/seq_file.h>
16 17
#include <linux/i2c.h>
#include <linux/i2c-algo-bit.h>
B
Ben Hutchings 已提交
18
#include <linux/mii.h>
19 20 21 22 23 24
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "mac.h"
#include "spi.h"
#include "falcon.h"
25
#include "regs.h"
26
#include "io.h"
27 28 29 30 31 32 33 34 35 36 37 38 39
#include "mdio_10g.h"
#include "phy.h"
#include "workarounds.h"

/* Falcon hardware control.
 * Falcon is the internal codename for the SFC4000 controller that is
 * present in SFE400X evaluation boards
 */

/**
 * struct falcon_nic_data - Falcon NIC state
 * @next_buffer_table: First available buffer table id
 * @pci_dev2: The secondary PCI device if present
40
 * @i2c_data: Operations and state for I2C bit-bashing algorithm
41 42
 * @int_error_count: Number of internal errors seen recently
 * @int_error_expire: Time at which error count will be expired
43 44 45 46
 */
struct falcon_nic_data {
	unsigned next_buffer_table;
	struct pci_dev *pci_dev2;
47
	struct i2c_algo_bit_data i2c_data;
48 49 50

	unsigned int_error_count;
	unsigned long int_error_expire;
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
};

/**************************************************************************
 *
 * Configurable values
 *
 **************************************************************************
 */

static int disable_dma_stats;

/* This is set to 16 for a good reason.  In summary, if larger than
 * 16, the descriptor cache holds more than a default socket
 * buffer's worth of packets (for UDP we can only have at most one
 * socket buffer's worth outstanding).  This combined with the fact
 * that we only get 1 TX event per descriptor cache means the NIC
 * goes idle.
 */
#define TX_DC_ENTRIES 16
#define TX_DC_ENTRIES_ORDER 0
#define TX_DC_BASE 0x130000

#define RX_DC_ENTRIES 64
#define RX_DC_ENTRIES_ORDER 2
#define RX_DC_BASE 0x100000

77 78 79 80 81 82 83 84 85 86 87 88 89 90
static const unsigned int
/* "Large" EEPROM device: Atmel AT25640 or similar
 * 8 KB, 16-bit address, 32 B write block */
large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
/* Default flash device: Atmel AT25F1024
 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
/* RX FIFO XOFF watermark
 *
 * When the amount of the RX FIFO increases used increases past this
 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
 * This also has an effect on RX/TX arbitration
 */
static int rx_xoff_thresh_bytes = -1;
module_param(rx_xoff_thresh_bytes, int, 0644);
MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");

/* RX FIFO XON watermark
 *
 * When the amount of the RX FIFO used decreases below this
 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
 * This also has an effect on RX/TX arbitration
 */
static int rx_xon_thresh_bytes = -1;
module_param(rx_xon_thresh_bytes, int, 0644);
MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");

/* TX descriptor ring size - min 512 max 4k */
112
#define FALCON_TXD_RING_ORDER FFE_AZ_TX_DESCQ_SIZE_1K
113 114 115 116
#define FALCON_TXD_RING_SIZE 1024
#define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)

/* RX descriptor ring size - min 512 max 4k */
117
#define FALCON_RXD_RING_ORDER FFE_AZ_RX_DESCQ_SIZE_1K
118 119 120 121
#define FALCON_RXD_RING_SIZE 1024
#define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)

/* Event queue size - max 32k */
122
#define FALCON_EVQ_ORDER FFE_AZ_EVQ_SIZE_4K
123 124 125
#define FALCON_EVQ_SIZE 4096
#define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)

126 127 128 129 130 131
/* If FALCON_MAX_INT_ERRORS internal errors occur within
 * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
 * disable it.
 */
#define FALCON_INT_ERROR_EXPIRE 3600
#define FALCON_MAX_INT_ERRORS 5
132

133 134 135 136
/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
 */
#define FALCON_FLUSH_INTERVAL 10
#define FALCON_FLUSH_POLL_COUNT 100
137 138 139 140 141 142 143 144

/**************************************************************************
 *
 * Falcon constants
 *
 **************************************************************************
 */

145 146
/* DMA address mask */
#define FALCON_DMA_MASK DMA_BIT_MASK(46)
147 148 149 150 151 152 153 154 155 156 157

/* TX DMA length mask (13-bit) */
#define FALCON_TX_DMA_MASK (4096 - 1)

/* Size and alignment of special buffers (4KB) */
#define FALCON_BUF_SIZE 4096

/* Dummy SRAM size code */
#define SRM_NB_BSZ_ONCHIP_ONLY (-1)

#define FALCON_IS_DUAL_FUNC(efx)		\
158
	(falcon_rev(efx) < FALCON_REV_B0)
159 160 161 162 163 164 165

/**************************************************************************
 *
 * Falcon hardware access
 *
 **************************************************************************/

166 167 168 169 170 171 172
static inline void falcon_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
					unsigned int index)
{
	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
			value, index);
}

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/* Read the current event from the event queue */
static inline efx_qword_t *falcon_event(struct efx_channel *channel,
					unsigned int index)
{
	return (((efx_qword_t *) (channel->eventq.addr)) + index);
}

/* See if an event is present
 *
 * We check both the high and low dword of the event for all ones.  We
 * wrote all ones when we cleared the event, and no valid event can
 * have all ones in either its high or low dwords.  This approach is
 * robust against reordering.
 *
 * Note that using a single 64-bit comparison is incorrect; even
 * though the CPU read will be atomic, the DMA write may not be.
 */
static inline int falcon_event_present(efx_qword_t *event)
{
	return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
		  EFX_DWORD_IS_ALL_ONES(event->dword[1])));
}

/**************************************************************************
 *
 * I2C bus - this is a bit-bashing interface using GPIO pins
 * Note that it uses the output enables to tristate the outputs
 * SDA is the data pin and SCL is the clock
 *
 **************************************************************************
 */
204
static void falcon_setsda(void *data, int state)
205
{
206
	struct efx_nic *efx = (struct efx_nic *)data;
207 208
	efx_oword_t reg;

209
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
210
	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
211
	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
212 213
}

214
static void falcon_setscl(void *data, int state)
215
{
216
	struct efx_nic *efx = (struct efx_nic *)data;
217 218
	efx_oword_t reg;

219
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
220
	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
221
	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
222 223 224 225 226 227 228
}

static int falcon_getsda(void *data)
{
	struct efx_nic *efx = (struct efx_nic *)data;
	efx_oword_t reg;

229
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
230
	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
231 232
}

233
static int falcon_getscl(void *data)
234
{
235
	struct efx_nic *efx = (struct efx_nic *)data;
236 237
	efx_oword_t reg;

238
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
239
	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
240 241
}

242 243 244
static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
	.setsda		= falcon_setsda,
	.setscl		= falcon_setscl,
245 246
	.getsda		= falcon_getsda,
	.getscl		= falcon_getscl,
247
	.udelay		= 5,
248 249
	/* Wait up to 50 ms for slave to let us pull SCL high */
	.timeout	= DIV_ROUND_UP(HZ, 20),
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
};

/**************************************************************************
 *
 * Falcon special buffer handling
 * Special buffers are used for event queues and the TX and RX
 * descriptor rings.
 *
 *************************************************************************/

/*
 * Initialise a Falcon special buffer
 *
 * This will define a buffer (previously allocated via
 * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
 * it to be used for event queues, descriptor rings etc.
 */
267
static void
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
falcon_init_special_buffer(struct efx_nic *efx,
			   struct efx_special_buffer *buffer)
{
	efx_qword_t buf_desc;
	int index;
	dma_addr_t dma_addr;
	int i;

	EFX_BUG_ON_PARANOID(!buffer->addr);

	/* Write buffer descriptors to NIC */
	for (i = 0; i < buffer->entries; i++) {
		index = buffer->index + i;
		dma_addr = buffer->dma_addr + (i * 4096);
		EFX_LOG(efx, "mapping special buffer %d at %llx\n",
			index, (unsigned long long)dma_addr);
284 285 286 287
		EFX_POPULATE_QWORD_3(buf_desc,
				     FRF_AZ_BUF_ADR_REGION, 0,
				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
288
		falcon_write_buf_tbl(efx, &buf_desc, index);
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	}
}

/* Unmaps a buffer from Falcon and clears the buffer table entries */
static void
falcon_fini_special_buffer(struct efx_nic *efx,
			   struct efx_special_buffer *buffer)
{
	efx_oword_t buf_tbl_upd;
	unsigned int start = buffer->index;
	unsigned int end = (buffer->index + buffer->entries - 1);

	if (!buffer->entries)
		return;

	EFX_LOG(efx, "unmapping special buffers %d-%d\n",
		buffer->index, buffer->index + buffer->entries - 1);

	EFX_POPULATE_OWORD_4(buf_tbl_upd,
308 309 310 311
			     FRF_AZ_BUF_UPD_CMD, 0,
			     FRF_AZ_BUF_CLR_CMD, 1,
			     FRF_AZ_BUF_CLR_END_ID, end,
			     FRF_AZ_BUF_CLR_START_ID, start);
312
	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
}

/*
 * Allocate a new Falcon special buffer
 *
 * This allocates memory for a new buffer, clears it and allocates a
 * new buffer ID range.  It does not write into Falcon's buffer table.
 *
 * This call will allocate 4KB buffers, since Falcon can't use 8KB
 * buffers for event queues and descriptor rings.
 */
static int falcon_alloc_special_buffer(struct efx_nic *efx,
				       struct efx_special_buffer *buffer,
				       unsigned int len)
{
	struct falcon_nic_data *nic_data = efx->nic_data;

	len = ALIGN(len, FALCON_BUF_SIZE);

	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
					    &buffer->dma_addr);
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
	buffer->entries = len / FALCON_BUF_SIZE;
	BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));

	/* All zeros is a potentially valid event so memset to 0xff */
	memset(buffer->addr, 0xff, len);

	/* Select new buffer ID */
	buffer->index = nic_data->next_buffer_table;
	nic_data->next_buffer_table += buffer->entries;

	EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
348
		"(virt %p phys %llx)\n", buffer->index,
349
		buffer->index + buffer->entries - 1,
350 351
		(u64)buffer->dma_addr, len,
		buffer->addr, (u64)virt_to_phys(buffer->addr));
352 353 354 355 356 357 358 359 360 361 362

	return 0;
}

static void falcon_free_special_buffer(struct efx_nic *efx,
				       struct efx_special_buffer *buffer)
{
	if (!buffer->addr)
		return;

	EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
363
		"(virt %p phys %llx)\n", buffer->index,
364
		buffer->index + buffer->entries - 1,
365 366
		(u64)buffer->dma_addr, buffer->len,
		buffer->addr, (u64)virt_to_phys(buffer->addr));
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

	pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
			    buffer->dma_addr);
	buffer->addr = NULL;
	buffer->entries = 0;
}

/**************************************************************************
 *
 * Falcon generic buffer handling
 * These buffers are used for interrupt status and MAC stats
 *
 **************************************************************************/

static int falcon_alloc_buffer(struct efx_nic *efx,
			       struct efx_buffer *buffer, unsigned int len)
{
	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
					    &buffer->dma_addr);
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
	memset(buffer->addr, 0, len);
	return 0;
}

static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
{
	if (buffer->addr) {
		pci_free_consistent(efx->pci_dev, buffer->len,
				    buffer->addr, buffer->dma_addr);
		buffer->addr = NULL;
	}
}

/**************************************************************************
 *
 * Falcon TX path
 *
 **************************************************************************/

/* Returns a pointer to the specified transmit descriptor in the TX
 * descriptor queue belonging to the specified channel.
 */
static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
					       unsigned int index)
{
	return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
}

/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
	unsigned write_ptr;
	efx_dword_t reg;

	write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
424
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
425 426
	efx_writed_page(tx_queue->efx, &reg,
			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
}


/* For each entry inserted into the software descriptor ring, create a
 * descriptor in the hardware TX descriptor ring (in host memory), and
 * write a doorbell.
 */
void falcon_push_buffers(struct efx_tx_queue *tx_queue)
{

	struct efx_tx_buffer *buffer;
	efx_qword_t *txd;
	unsigned write_ptr;

	BUG_ON(tx_queue->write_count == tx_queue->insert_count);

	do {
		write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
		buffer = &tx_queue->buffer[write_ptr];
		txd = falcon_tx_desc(tx_queue, write_ptr);
		++tx_queue->write_count;

		/* Create TX descriptor ring entry */
450 451 452 453 454
		EFX_POPULATE_QWORD_4(*txd,
				     FSF_AZ_TX_KER_CONT, buffer->continuation,
				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
				     FSF_AZ_TX_KER_BUF_REGION, 0,
				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	} while (tx_queue->write_count != tx_queue->insert_count);

	wmb(); /* Ensure descriptors are written before they are fetched */
	falcon_notify_tx_desc(tx_queue);
}

/* Allocate hardware resources for a TX queue */
int falcon_probe_tx(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	return falcon_alloc_special_buffer(efx, &tx_queue->txd,
					   FALCON_TXD_RING_SIZE *
					   sizeof(efx_qword_t));
}

470
void falcon_init_tx(struct efx_tx_queue *tx_queue)
471 472 473 474
{
	efx_oword_t tx_desc_ptr;
	struct efx_nic *efx = tx_queue->efx;

475 476
	tx_queue->flushed = false;

477
	/* Pin TX descriptor ring */
478
	falcon_init_special_buffer(efx, &tx_queue->txd);
479 480 481

	/* Push TX descriptor ring to card */
	EFX_POPULATE_OWORD_10(tx_desc_ptr,
482 483 484 485 486 487 488 489 490 491 492
			      FRF_AZ_TX_DESCQ_EN, 1,
			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
			      FRF_AZ_TX_DESCQ_EVQ_ID,
			      tx_queue->channel->channel,
			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
			      FRF_AZ_TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
			      FRF_AZ_TX_DESCQ_TYPE, 0,
			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
493

494
	if (falcon_rev(efx) >= FALCON_REV_B0) {
495
		int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
496 497 498
		EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
		EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
				    !csum);
499 500
	}

501 502
	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
			 tx_queue->queue);
503

504
	if (falcon_rev(efx) < FALCON_REV_B0) {
505 506
		efx_oword_t reg;

507 508
		/* Only 128 bits in this register */
		BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
509

510
		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
511
		if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
512 513 514
			clear_bit_le(tx_queue->queue, (void *)&reg);
		else
			set_bit_le(tx_queue->queue, (void *)&reg);
515
		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
516 517 518
	}
}

519
static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
520 521 522 523 524 525
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_flush_descq;

	/* Post a flush command */
	EFX_POPULATE_OWORD_2(tx_flush_descq,
526 527
			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
528
	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
529 530 531 532 533 534 535
}

void falcon_fini_tx(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_desc_ptr;

536 537
	/* The queue should have been flushed */
	WARN_ON(!tx_queue->flushed);
538 539 540

	/* Remove TX descriptor ring from card */
	EFX_ZERO_OWORD(tx_desc_ptr);
541 542
	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
			 tx_queue->queue);
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576

	/* Unpin TX descriptor ring */
	falcon_fini_special_buffer(efx, &tx_queue->txd);
}

/* Free buffers backing TX queue */
void falcon_remove_tx(struct efx_tx_queue *tx_queue)
{
	falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
}

/**************************************************************************
 *
 * Falcon RX path
 *
 **************************************************************************/

/* Returns a pointer to the specified descriptor in the RX descriptor queue */
static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
					       unsigned int index)
{
	return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
}

/* This creates an entry in the RX descriptor queue */
static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
					unsigned index)
{
	struct efx_rx_buffer *rx_buf;
	efx_qword_t *rxd;

	rxd = falcon_rx_desc(rx_queue, index);
	rx_buf = efx_rx_buffer(rx_queue, index);
	EFX_POPULATE_QWORD_3(*rxd,
577
			     FSF_AZ_RX_KER_BUF_SIZE,
578 579
			     rx_buf->len -
			     rx_queue->efx->type->rx_buffer_padding,
580 581
			     FSF_AZ_RX_KER_BUF_REGION, 0,
			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
}

/* This writes to the RX_DESC_WPTR register for the specified receive
 * descriptor ring.
 */
void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
{
	efx_dword_t reg;
	unsigned write_ptr;

	while (rx_queue->notified_count != rx_queue->added_count) {
		falcon_build_rx_desc(rx_queue,
				     rx_queue->notified_count &
				     FALCON_RXD_RING_MASK);
		++rx_queue->notified_count;
	}

	wmb();
	write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
601
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
602 603
	efx_writed_page(rx_queue->efx, &reg,
			FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
604 605 606 607 608 609 610 611 612 613
}

int falcon_probe_rx(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
	return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
					   FALCON_RXD_RING_SIZE *
					   sizeof(efx_qword_t));
}

614
void falcon_init_rx(struct efx_rx_queue *rx_queue)
615 616 617
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;
618 619
	bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
	bool iscsi_digest_en = is_b0;
620 621 622 623 624

	EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
		rx_queue->queue, rx_queue->rxd.index,
		rx_queue->rxd.index + rx_queue->rxd.entries - 1);

625 626
	rx_queue->flushed = false;

627
	/* Pin RX descriptor ring */
628
	falcon_init_special_buffer(efx, &rx_queue->rxd);
629 630 631

	/* Push RX descriptor ring to card */
	EFX_POPULATE_OWORD_10(rx_desc_ptr,
632 633 634 635 636 637 638 639 640
			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
			      FRF_AZ_RX_DESCQ_EVQ_ID,
			      rx_queue->channel->channel,
			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
			      FRF_AZ_RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
641
			      /* For >=B0 this is scatter so disable */
642 643
			      FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
			      FRF_AZ_RX_DESCQ_EN, 1);
644 645
	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
			 rx_queue->queue);
646 647
}

648
static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
649 650 651 652 653 654
{
	struct efx_nic *efx = rx_queue->efx;
	efx_oword_t rx_flush_descq;

	/* Post a flush command */
	EFX_POPULATE_OWORD_2(rx_flush_descq,
655 656
			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
657
	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
658 659 660 661 662 663 664
}

void falcon_fini_rx(struct efx_rx_queue *rx_queue)
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;

665 666
	/* The queue should already have been flushed */
	WARN_ON(!rx_queue->flushed);
667 668 669

	/* Remove RX descriptor ring from card */
	EFX_ZERO_OWORD(rx_desc_ptr);
670 671
	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
			 rx_queue->queue);
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703

	/* Unpin RX descriptor ring */
	falcon_fini_special_buffer(efx, &rx_queue->rxd);
}

/* Free buffers backing RX queue */
void falcon_remove_rx(struct efx_rx_queue *rx_queue)
{
	falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
}

/**************************************************************************
 *
 * Falcon event queue processing
 * Event queues are processed by per-channel tasklets.
 *
 **************************************************************************/

/* Update a channel's event queue's read pointer (RPTR) register
 *
 * This writes the EVQ_RPTR_REG register for the specified channel's
 * event queue.
 *
 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
 * whereas channel->eventq_read_ptr contains the index of the "next to
 * read" event.
 */
void falcon_eventq_read_ack(struct efx_channel *channel)
{
	efx_dword_t reg;
	struct efx_nic *efx = channel->efx;

704
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
705
	efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
706
			    channel->channel);
707 708 709 710 711 712 713
}

/* Use HW to insert a SW defined event */
void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
{
	efx_oword_t drv_ev_reg;

714 715 716 717 718 719 720
	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
	drv_ev_reg.u32[0] = event->u32[0];
	drv_ev_reg.u32[1] = event->u32[1];
	drv_ev_reg.u32[2] = 0;
	drv_ev_reg.u32[3] = 0;
	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
721
	efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
722 723 724 725 726 727 728
}

/* Handle a transmit completion event
 *
 * Falcon batches TX completion events; the message we receive is of
 * the form "complete all TX events up to this index".
 */
729 730
static void falcon_handle_tx_event(struct efx_channel *channel,
				   efx_qword_t *event)
731 732 733 734 735 736
{
	unsigned int tx_ev_desc_ptr;
	unsigned int tx_ev_q_label;
	struct efx_tx_queue *tx_queue;
	struct efx_nic *efx = channel->efx;

737
	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
738
		/* Transmit completion */
739 740
		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
741
		tx_queue = &efx->tx_queue[tx_ev_q_label];
742 743 744
		channel->irq_mod_score +=
			(tx_ev_desc_ptr - tx_queue->read_count) &
			efx->type->txd_ring_mask;
745
		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
746
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
747
		/* Rewrite the FIFO write pointer */
748
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
749 750
		tx_queue = &efx->tx_queue[tx_ev_q_label];

751
		if (efx_dev_registered(efx))
752 753
			netif_tx_lock(efx->net_dev);
		falcon_notify_tx_desc(tx_queue);
754
		if (efx_dev_registered(efx))
755
			netif_tx_unlock(efx->net_dev);
756
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
757 758 759 760 761 762 763 764 765 766 767 768
		   EFX_WORKAROUND_10727(efx)) {
		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
	} else {
		EFX_ERR(efx, "channel %d unexpected TX event "
			EFX_QWORD_FMT"\n", channel->channel,
			EFX_QWORD_VAL(*event));
	}
}

/* Detect errors included in the rx_evt_pkt_ok bit. */
static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
				    const efx_qword_t *event,
769 770
				    bool *rx_ev_pkt_ok,
				    bool *discard)
771 772
{
	struct efx_nic *efx = rx_queue->efx;
773 774 775 776 777 778
	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
	bool rx_ev_other_err, rx_ev_pause_frm;
	bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
	unsigned rx_ev_pkt_type;
779

780 781 782 783
	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
784
	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
785 786
						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
	rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_IP_FRAG_ERR);
787
	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
788
						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
789
	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
790 791 792
						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
793
	rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
794 795
			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
796 797 798 799 800 801

	/* Every error apart from tobe_disc and pause_frm */
	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);

802 803
	/* Count errors that are not in MAC stats.  Ignore expected
	 * checksum errors during self-test. */
804 805 806 807
	if (rx_ev_frm_trunc)
		++rx_queue->channel->n_rx_frm_trunc;
	else if (rx_ev_tobe_disc)
		++rx_queue->channel->n_rx_tobe_disc;
808 809 810 811 812 813
	else if (!efx->loopback_selftest) {
		if (rx_ev_ip_hdr_chksum_err)
			++rx_queue->channel->n_rx_ip_hdr_chksum_err;
		else if (rx_ev_tcp_udp_chksum_err)
			++rx_queue->channel->n_rx_tcp_udp_chksum_err;
	}
814 815 816 817 818 819 820 821 822 823 824 825 826 827
	if (rx_ev_ip_frag_err)
		++rx_queue->channel->n_rx_ip_frag_err;

	/* The frame must be discarded if any of these are true. */
	*discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
		    rx_ev_tobe_disc | rx_ev_pause_frm);

	/* TOBE_DISC is expected on unicast mismatches; don't print out an
	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
	 * to a FIFO overflow.
	 */
#ifdef EFX_ENABLE_DEBUG
	if (rx_ev_other_err) {
		EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
828
			    EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
829 830 831 832 833 834 835 836 837 838
			    rx_queue->queue, EFX_QWORD_VAL(*event),
			    rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
			    rx_ev_ip_hdr_chksum_err ?
			    " [IP_HDR_CHKSUM_ERR]" : "",
			    rx_ev_tcp_udp_chksum_err ?
			    " [TCP_UDP_CHKSUM_ERR]" : "",
			    rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
			    rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
			    rx_ev_drib_nib ? " [DRIB_NIB]" : "",
			    rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
839
			    rx_ev_pause_frm ? " [PAUSE]" : "");
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
	}
#endif
}

/* Handle receive events that are not in-order. */
static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
				       unsigned index)
{
	struct efx_nic *efx = rx_queue->efx;
	unsigned expected, dropped;

	expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
	dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
		   FALCON_RXD_RING_MASK);
	EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
		dropped, index, expected);

	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
}

/* Handle a packet received event
 *
 * Falcon silicon gives a "discard" flag if it's a unicast packet with the
 * wrong destination address
 * Also "is multicast" and "matches multicast filter" flags can be used to
 * discard non-matching multicast packets.
 */
B
Ben Hutchings 已提交
868 869
static void falcon_handle_rx_event(struct efx_channel *channel,
				   const efx_qword_t *event)
870
{
B
Ben Hutchings 已提交
871
	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
872
	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
873
	unsigned expected_ptr;
874
	bool rx_ev_pkt_ok, discard = false, checksummed;
875 876 877 878
	struct efx_rx_queue *rx_queue;
	struct efx_nic *efx = channel->efx;

	/* Basic packet information */
879 880 881 882 883 884 885
	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
		channel->channel);
886

B
Ben Hutchings 已提交
887
	rx_queue = &efx->rx_queue[channel->channel];
888

889
	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
890
	expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
B
Ben Hutchings 已提交
891
	if (unlikely(rx_ev_desc_ptr != expected_ptr))
892 893 894 895 896 897
		falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);

	if (likely(rx_ev_pkt_ok)) {
		/* If packet is marked as OK and packet type is TCP/IPv4 or
		 * UDP/IPv4, then we can rely on the hardware checksum.
		 */
898 899 900
		checksummed =
			rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP ||
			rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP;
901 902
	} else {
		falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
903
					&discard);
904
		checksummed = false;
905 906 907
	}

	/* Detect multicast packets that didn't match the filter */
908
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
909 910
	if (rx_ev_mcast_pkt) {
		unsigned int rx_ev_mcast_hash_match =
911
			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
912 913

		if (unlikely(!rx_ev_mcast_hash_match))
914
			discard = true;
915 916
	}

917 918
	channel->irq_mod_score += 2;

919 920 921 922 923 924 925 926 927 928
	/* Handle received packet */
	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
		      checksummed, discard);
}

/* Global events are basically PHY events */
static void falcon_handle_global_event(struct efx_channel *channel,
				       efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
929
	bool handled = false;
930

931 932 933
	if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
934 935 936 937
		efx->phy_op->clear_interrupt(efx);
		queue_work(efx->workqueue, &efx->phy_work);
		handled = true;
	}
938

939
	if ((falcon_rev(efx) >= FALCON_REV_B0) &&
940
	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
941
		queue_work(efx->workqueue, &efx->mac_work);
942
		handled = true;
943 944
	}

945
	if (falcon_rev(efx) <= FALCON_REV_A1 ?
946 947
	    EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
948 949 950 951 952 953
		EFX_ERR(efx, "channel %d seen global RX_RESET "
			"event. Resetting.\n", channel->channel);

		atomic_inc(&efx->rx_reset);
		efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
954
		handled = true;
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
	}

	if (!handled)
		EFX_ERR(efx, "channel %d unknown global event "
			EFX_QWORD_FMT "\n", channel->channel,
			EFX_QWORD_VAL(*event));
}

static void falcon_handle_driver_event(struct efx_channel *channel,
				       efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	unsigned int ev_sub_code;
	unsigned int ev_sub_data;

970 971
	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
972 973

	switch (ev_sub_code) {
974
	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
975 976 977
		EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
			  channel->channel, ev_sub_data);
		break;
978
	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
979 980 981
		EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
			  channel->channel, ev_sub_data);
		break;
982
	case FSE_AZ_EVQ_INIT_DONE_EV:
983 984 985
		EFX_LOG(efx, "channel %d EVQ %d initialised\n",
			channel->channel, ev_sub_data);
		break;
986
	case FSE_AZ_SRM_UPD_DONE_EV:
987 988 989
		EFX_TRACE(efx, "channel %d SRAM update done\n",
			  channel->channel);
		break;
990
	case FSE_AZ_WAKE_UP_EV:
991 992 993
		EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
			  channel->channel, ev_sub_data);
		break;
994
	case FSE_AZ_TIMER_EV:
995 996 997
		EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
			  channel->channel, ev_sub_data);
		break;
998
	case FSE_AA_RX_RECOVER_EV:
999 1000
		EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
			"Resetting.\n", channel->channel);
1001
		atomic_inc(&efx->rx_reset);
1002 1003 1004 1005 1006
		efx_schedule_reset(efx,
				   EFX_WORKAROUND_6555(efx) ?
				   RESET_TYPE_RX_RECOVERY :
				   RESET_TYPE_DISABLE);
		break;
1007
	case FSE_BZ_RX_DSC_ERROR_EV:
1008 1009 1010 1011
		EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
			" RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
		efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
		break;
1012
	case FSE_BZ_TX_DSC_ERROR_EV:
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
		EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
			" TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
		break;
	default:
		EFX_TRACE(efx, "channel %d unknown driver event code %d "
			  "data %04x\n", channel->channel, ev_sub_code,
			  ev_sub_data);
		break;
	}
}

B
Ben Hutchings 已提交
1025
int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
1026 1027 1028 1029
{
	unsigned int read_ptr;
	efx_qword_t event, *p_event;
	int ev_code;
B
Ben Hutchings 已提交
1030
	int rx_packets = 0;
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

	read_ptr = channel->eventq_read_ptr;

	do {
		p_event = falcon_event(channel, read_ptr);
		event = *p_event;

		if (!falcon_event_present(&event))
			/* End of events */
			break;

		EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
			  channel->channel, EFX_QWORD_VAL(event));

		/* Clear this event by marking it all ones */
		EFX_SET_QWORD(*p_event);

1048
		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1049 1050

		switch (ev_code) {
1051
		case FSE_AZ_EV_CODE_RX_EV:
B
Ben Hutchings 已提交
1052 1053
			falcon_handle_rx_event(channel, &event);
			++rx_packets;
1054
			break;
1055
		case FSE_AZ_EV_CODE_TX_EV:
1056 1057
			falcon_handle_tx_event(channel, &event);
			break;
1058 1059 1060
		case FSE_AZ_EV_CODE_DRV_GEN_EV:
			channel->eventq_magic = EFX_QWORD_FIELD(
				event, FSF_AZ_DRV_GEN_EV_MAGIC);
1061 1062 1063 1064
			EFX_LOG(channel->efx, "channel %d received generated "
				"event "EFX_QWORD_FMT"\n", channel->channel,
				EFX_QWORD_VAL(event));
			break;
1065
		case FSE_AZ_EV_CODE_GLOBAL_EV:
1066 1067
			falcon_handle_global_event(channel, &event);
			break;
1068
		case FSE_AZ_EV_CODE_DRIVER_EV:
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
			falcon_handle_driver_event(channel, &event);
			break;
		default:
			EFX_ERR(channel->efx, "channel %d unknown event type %d"
				" (data " EFX_QWORD_FMT ")\n", channel->channel,
				ev_code, EFX_QWORD_VAL(event));
		}

		/* Increment read pointer */
		read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;

B
Ben Hutchings 已提交
1080
	} while (rx_packets < rx_quota);
1081 1082

	channel->eventq_read_ptr = read_ptr;
B
Ben Hutchings 已提交
1083
	return rx_packets;
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
}

void falcon_set_int_moderation(struct efx_channel *channel)
{
	efx_dword_t timer_cmd;
	struct efx_nic *efx = channel->efx;

	/* Set timer register */
	if (channel->irq_moderation) {
		/* Round to resolution supported by hardware.  The value we
		 * program is based at 0.  So actual interrupt moderation
		 * achieved is ((x + 1) * res).
		 */
1097 1098 1099 1100
		channel->irq_moderation -= (channel->irq_moderation %
					    FALCON_IRQ_MOD_RESOLUTION);
		if (channel->irq_moderation < FALCON_IRQ_MOD_RESOLUTION)
			channel->irq_moderation = FALCON_IRQ_MOD_RESOLUTION;
1101
		EFX_POPULATE_DWORD_2(timer_cmd,
1102 1103 1104
				     FRF_AB_TC_TIMER_MODE,
				     FFE_BB_TIMER_MODE_INT_HLDOFF,
				     FRF_AB_TC_TIMER_VAL,
1105 1106
				     channel->irq_moderation /
				     FALCON_IRQ_MOD_RESOLUTION - 1);
1107 1108
	} else {
		EFX_POPULATE_DWORD_2(timer_cmd,
1109 1110 1111
				     FRF_AB_TC_TIMER_MODE,
				     FFE_BB_TIMER_MODE_DIS,
				     FRF_AB_TC_TIMER_VAL, 0);
1112
	}
1113
	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
1114 1115
	efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
			       channel->channel);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

}

/* Allocate buffer table entries for event queue */
int falcon_probe_eventq(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;
	unsigned int evq_size;

	evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
	return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
}

1129
void falcon_init_eventq(struct efx_channel *channel)
1130 1131 1132 1133 1134 1135 1136 1137 1138
{
	efx_oword_t evq_ptr;
	struct efx_nic *efx = channel->efx;

	EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
		channel->channel, channel->eventq.index,
		channel->eventq.index + channel->eventq.entries - 1);

	/* Pin event queue buffer */
1139
	falcon_init_special_buffer(efx, &channel->eventq);
1140 1141 1142 1143 1144 1145

	/* Fill event queue with all ones (i.e. empty events) */
	memset(channel->eventq.addr, 0xff, channel->eventq.len);

	/* Push event queue to card */
	EFX_POPULATE_OWORD_3(evq_ptr,
1146 1147 1148
			     FRF_AZ_EVQ_EN, 1,
			     FRF_AZ_EVQ_SIZE, FALCON_EVQ_ORDER,
			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1149 1150
	efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
			 channel->channel);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

	falcon_set_int_moderation(channel);
}

void falcon_fini_eventq(struct efx_channel *channel)
{
	efx_oword_t eventq_ptr;
	struct efx_nic *efx = channel->efx;

	/* Remove event queue from card */
	EFX_ZERO_OWORD(eventq_ptr);
1162 1163
	efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
			 channel->channel);
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

	/* Unpin event queue */
	falcon_fini_special_buffer(efx, &channel->eventq);
}

/* Free buffers backing event queue */
void falcon_remove_eventq(struct efx_channel *channel)
{
	falcon_free_special_buffer(channel->efx, &channel->eventq);
}


/* Generates a test event on the event queue.  A subsequent call to
 * process_eventq() should pick up the event and place the value of
 * "magic" into channel->eventq_magic;
 */
void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
{
	efx_qword_t test_event;

1184 1185 1186
	EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
			     FSE_AZ_EV_CODE_DRV_GEN_EV,
			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1187 1188 1189
	falcon_generate_event(channel, &test_event);
}

1190 1191 1192 1193
void falcon_sim_phy_event(struct efx_nic *efx)
{
	efx_qword_t phy_event;

1194 1195
	EFX_POPULATE_QWORD_1(phy_event, FSF_AZ_EV_CODE,
			     FSE_AZ_EV_CODE_GLOBAL_EV);
1196
	if (EFX_IS10G(efx))
1197
		EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_XG_PHY0_INTR, 1);
1198
	else
1199
		EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_G_PHY0_INTR, 1);
1200 1201 1202 1203

	falcon_generate_event(&efx->channel[0], &phy_event);
}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
/**************************************************************************
 *
 * Flush handling
 *
 **************************************************************************/


static void falcon_poll_flush_events(struct efx_nic *efx)
{
	struct efx_channel *channel = &efx->channel[0];
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
1216 1217
	unsigned int read_ptr = channel->eventq_read_ptr;
	unsigned int end_ptr = (read_ptr - 1) & FALCON_EVQ_MASK;
1218

1219
	do {
1220 1221 1222
		efx_qword_t *event = falcon_event(channel, read_ptr);
		int ev_code, ev_sub_code, ev_queue;
		bool ev_failed;
1223

1224 1225 1226
		if (!falcon_event_present(event))
			break;

1227 1228 1229 1230 1231
		ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
		ev_sub_code = EFX_QWORD_FIELD(*event,
					      FSF_AZ_DRIVER_EV_SUBCODE);
		if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
		    ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1232
			ev_queue = EFX_QWORD_FIELD(*event,
1233
						   FSF_AZ_DRIVER_EV_SUBDATA);
1234 1235 1236 1237
			if (ev_queue < EFX_TX_QUEUE_COUNT) {
				tx_queue = efx->tx_queue + ev_queue;
				tx_queue->flushed = true;
			}
1238 1239 1240 1241 1242 1243
		} else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
			   ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
			ev_queue = EFX_QWORD_FIELD(
				*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
			ev_failed = EFX_QWORD_FIELD(
				*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
			if (ev_queue < efx->n_rx_queues) {
				rx_queue = efx->rx_queue + ev_queue;

				/* retry the rx flush */
				if (ev_failed)
					falcon_flush_rx_queue(rx_queue);
				else
					rx_queue->flushed = true;
			}
		}

		read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1256
	} while (read_ptr != end_ptr);
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
}

/* Handle tx and rx flushes at the same time, since they run in
 * parallel in the hardware and there's no reason for us to
 * serialise them */
int falcon_flush_queues(struct efx_nic *efx)
{
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int i;
	bool outstanding;

	/* Issue flush requests */
	efx_for_each_tx_queue(tx_queue, efx) {
		tx_queue->flushed = false;
		falcon_flush_tx_queue(tx_queue);
	}
	efx_for_each_rx_queue(rx_queue, efx) {
		rx_queue->flushed = false;
		falcon_flush_rx_queue(rx_queue);
	}

	/* Poll the evq looking for flush completions. Since we're not pushing
	 * any more rx or tx descriptors at this point, we're in no danger of
	 * overflowing the evq whilst we wait */
	for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
		msleep(FALCON_FLUSH_INTERVAL);
		falcon_poll_flush_events(efx);

		/* Check if every queue has been succesfully flushed */
		outstanding = false;
		efx_for_each_tx_queue(tx_queue, efx)
			outstanding |= !tx_queue->flushed;
		efx_for_each_rx_queue(rx_queue, efx)
			outstanding |= !rx_queue->flushed;
		if (!outstanding)
			return 0;
	}

	/* Mark the queues as all flushed. We're going to return failure
	 * leading to a reset, or fake up success anyway. "flushed" now
	 * indicates that we tried to flush. */
	efx_for_each_tx_queue(tx_queue, efx) {
		if (!tx_queue->flushed)
			EFX_ERR(efx, "tx queue %d flush command timed out\n",
				tx_queue->queue);
		tx_queue->flushed = true;
	}
	efx_for_each_rx_queue(rx_queue, efx) {
		if (!rx_queue->flushed)
			EFX_ERR(efx, "rx queue %d flush command timed out\n",
				rx_queue->queue);
		rx_queue->flushed = true;
	}

	if (EFX_WORKAROUND_7803(efx))
		return 0;

	return -ETIMEDOUT;
}
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332

/**************************************************************************
 *
 * Falcon hardware interrupts
 * The hardware interrupt handler does very little work; all the event
 * queue processing is carried out by per-channel tasklets.
 *
 **************************************************************************/

/* Enable/disable/generate Falcon interrupts */
static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
				     int force)
{
	efx_oword_t int_en_reg_ker;

	EFX_POPULATE_OWORD_2(int_en_reg_ker,
1333 1334
			     FRF_AZ_KER_INT_KER, force,
			     FRF_AZ_DRV_INT_EN_KER, enabled);
1335
	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
}

void falcon_enable_interrupts(struct efx_nic *efx)
{
	efx_oword_t int_adr_reg_ker;
	struct efx_channel *channel;

	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */

	/* Program address */
	EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1348 1349 1350
			     FRF_AZ_NORM_INT_VEC_DIS_KER,
			     EFX_INT_MODE_USE_MSI(efx),
			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1351
	efx_writeo(efx, &int_adr_reg_ker, FR_AZ_INT_ADR_KER);
1352 1353 1354 1355 1356 1357

	/* Enable interrupts */
	falcon_interrupts(efx, 1, 0);

	/* Force processing of all the channels to get the EVQ RPTRs up to
	   date */
1358
	efx_for_each_channel(channel, efx)
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
		efx_schedule_channel(channel);
}

void falcon_disable_interrupts(struct efx_nic *efx)
{
	/* Disable interrupts */
	falcon_interrupts(efx, 0, 0);
}

/* Generate a Falcon test interrupt
 * Interrupt must already have been enabled, otherwise nasty things
 * may happen.
 */
void falcon_generate_interrupt(struct efx_nic *efx)
{
	falcon_interrupts(efx, 1, 1);
}

/* Acknowledge a legacy interrupt from Falcon
 *
 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
 *
 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
 * BIU. Interrupt acknowledge is read sensitive so must write instead
 * (then read to ensure the BIU collector is flushed)
 *
 * NB most hardware supports MSI interrupts
 */
static inline void falcon_irq_ack_a1(struct efx_nic *efx)
{
	efx_dword_t reg;

1391
	EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
1392 1393
	efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
	efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
1394 1395 1396 1397 1398 1399 1400 1401
}

/* Process a fatal interrupt
 * Disable bus mastering ASAP and schedule a reset
 */
static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
1402
	efx_oword_t *int_ker = efx->irq_status.addr;
1403 1404 1405
	efx_oword_t fatal_intr;
	int error, mem_perr;

1406
	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1407
	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1408 1409 1410 1411 1412 1413 1414 1415 1416

	EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
		EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
		EFX_OWORD_VAL(fatal_intr),
		error ? "disabling bus mastering" : "no recognised error");
	if (error == 0)
		goto out;

	/* If this is a memory parity error dump which blocks are offending */
1417
	mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
1418 1419
	if (mem_perr) {
		efx_oword_t reg;
1420
		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1421 1422 1423 1424
		EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
			EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
	}

1425
	/* Disable both devices */
1426
	pci_clear_master(efx->pci_dev);
1427
	if (FALCON_IS_DUAL_FUNC(efx))
1428
		pci_clear_master(nic_data->pci_dev2);
1429
	falcon_disable_interrupts(efx);
1430

1431 1432 1433 1434 1435 1436 1437 1438
	/* Count errors and reset or disable the NIC accordingly */
	if (nic_data->int_error_count == 0 ||
	    time_after(jiffies, nic_data->int_error_expire)) {
		nic_data->int_error_count = 0;
		nic_data->int_error_expire =
			jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
	}
	if (++nic_data->int_error_count < FALCON_MAX_INT_ERRORS) {
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
		EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
	} else {
		EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
			"NIC will be disabled\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	}
out:
	return IRQ_HANDLED;
}

/* Handle a legacy interrupt from Falcon
 * Acknowledges the interrupt and schedule event queue processing.
 */
static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
{
1455 1456
	struct efx_nic *efx = dev_id;
	efx_oword_t *int_ker = efx->irq_status.addr;
1457
	irqreturn_t result = IRQ_NONE;
1458 1459 1460 1461 1462 1463
	struct efx_channel *channel;
	efx_dword_t reg;
	u32 queues;
	int syserr;

	/* Read the ISR which also ACKs the interrupts */
1464
	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1465 1466 1467
	queues = EFX_EXTRACT_DWORD(reg, 0, 31);

	/* Check to see if we have a serious error condition */
1468
	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1469 1470 1471 1472
	if (unlikely(syserr))
		return falcon_fatal_interrupt(efx);

	/* Schedule processing of any interrupting queues */
1473 1474 1475 1476
	efx_for_each_channel(channel, efx) {
		if ((queues & 1) ||
		    falcon_event_present(
			    falcon_event(channel, channel->eventq_read_ptr))) {
1477
			efx_schedule_channel(channel);
1478 1479
			result = IRQ_HANDLED;
		}
1480 1481 1482
		queues >>= 1;
	}

1483 1484 1485 1486 1487 1488 1489
	if (result == IRQ_HANDLED) {
		efx->last_irq_cpu = raw_smp_processor_id();
		EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
			  irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
	}

	return result;
1490 1491 1492 1493 1494
}


static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
{
1495 1496
	struct efx_nic *efx = dev_id;
	efx_oword_t *int_ker = efx->irq_status.addr;
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	struct efx_channel *channel;
	int syserr;
	int queues;

	/* Check to see if this is our interrupt.  If it isn't, we
	 * exit without having touched the hardware.
	 */
	if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
		EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
			  raw_smp_processor_id());
		return IRQ_NONE;
	}
	efx->last_irq_cpu = raw_smp_processor_id();
	EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
		  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));

	/* Check to see if we have a serious error condition */
1514
	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	if (unlikely(syserr))
		return falcon_fatal_interrupt(efx);

	/* Determine interrupting queues, clear interrupt status
	 * register and acknowledge the device interrupt.
	 */
	BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
	queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
	EFX_ZERO_OWORD(*int_ker);
	wmb(); /* Ensure the vector is cleared before interrupt ack */
	falcon_irq_ack_a1(efx);

	/* Schedule processing of any interrupting queues */
	channel = &efx->channel[0];
	while (queues) {
		if (queues & 0x01)
			efx_schedule_channel(channel);
		channel++;
		queues >>= 1;
	}

	return IRQ_HANDLED;
}

/* Handle an MSI interrupt from Falcon
 *
 * Handle an MSI hardware interrupt.  This routine schedules event
 * queue processing.  No interrupt acknowledgement cycle is necessary.
 * Also, we never need to check that the interrupt is for us, since
 * MSI interrupts cannot be shared.
 */
static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
{
1548
	struct efx_channel *channel = dev_id;
1549
	struct efx_nic *efx = channel->efx;
1550
	efx_oword_t *int_ker = efx->irq_status.addr;
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	int syserr;

	efx->last_irq_cpu = raw_smp_processor_id();
	EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
		  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));

	/* Check to see if we have a serious error condition */
	syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
	if (unlikely(syserr))
		return falcon_fatal_interrupt(efx);

	/* Schedule processing of the channel */
	efx_schedule_channel(channel);

	return IRQ_HANDLED;
}


/* Setup RSS indirection table.
 * This maps from the hash value of the packet to RXQ
 */
static void falcon_setup_rss_indir_table(struct efx_nic *efx)
{
	int i = 0;
	unsigned long offset;
	efx_dword_t dword;

1578
	if (falcon_rev(efx) < FALCON_REV_B0)
1579 1580
		return;

1581 1582
	for (offset = FR_BZ_RX_INDIRECTION_TBL;
	     offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
1583
	     offset += 0x10) {
1584
		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1585
				     i % efx->n_rx_queues);
1586
		efx_writed(efx, &dword, offset);
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
		i++;
	}
}

/* Hook interrupt handler(s)
 * Try MSI and then legacy interrupts.
 */
int falcon_init_interrupt(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	if (!EFX_INT_MODE_USE_MSI(efx)) {
		irq_handler_t handler;
1601
		if (falcon_rev(efx) >= FALCON_REV_B0)
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
			handler = falcon_legacy_interrupt_b0;
		else
			handler = falcon_legacy_interrupt_a1;

		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
				 efx->name, efx);
		if (rc) {
			EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
				efx->pci_dev->irq);
			goto fail1;
		}
		return 0;
	}

	/* Hook MSI or MSI-X interrupt */
1617
	efx_for_each_channel(channel, efx) {
1618 1619
		rc = request_irq(channel->irq, falcon_msi_interrupt,
				 IRQF_PROBE_SHARED, /* Not shared */
1620
				 channel->name, channel);
1621 1622 1623 1624 1625 1626 1627 1628 1629
		if (rc) {
			EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
			goto fail2;
		}
	}

	return 0;

 fail2:
1630
	efx_for_each_channel(channel, efx)
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
		free_irq(channel->irq, channel);
 fail1:
	return rc;
}

void falcon_fini_interrupt(struct efx_nic *efx)
{
	struct efx_channel *channel;
	efx_oword_t reg;

	/* Disable MSI/MSI-X interrupts */
1642
	efx_for_each_channel(channel, efx) {
1643 1644
		if (channel->irq)
			free_irq(channel->irq, channel);
1645
	}
1646 1647

	/* ACK legacy interrupt */
1648
	if (falcon_rev(efx) >= FALCON_REV_B0)
1649
		efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	else
		falcon_irq_ack_a1(efx);

	/* Disable legacy interrupt */
	if (efx->legacy_irq)
		free_irq(efx->legacy_irq, efx);
}

/**************************************************************************
 *
 * EEPROM/flash
 *
 **************************************************************************
 */

1665
#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1666

1667 1668 1669
static int falcon_spi_poll(struct efx_nic *efx)
{
	efx_oword_t reg;
1670
	efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
1671
	return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1672 1673
}

1674 1675 1676
/* Wait for SPI command completion */
static int falcon_spi_wait(struct efx_nic *efx)
{
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	/* Most commands will finish quickly, so we start polling at
	 * very short intervals.  Sometimes the command may have to
	 * wait for VPD or expansion ROM access outside of our
	 * control, so we allow up to 100 ms. */
	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
	int i;

	for (i = 0; i < 10; i++) {
		if (!falcon_spi_poll(efx))
			return 0;
		udelay(10);
	}
1689

1690
	for (;;) {
1691
		if (!falcon_spi_poll(efx))
1692
			return 0;
1693 1694 1695 1696
		if (time_after_eq(jiffies, timeout)) {
			EFX_ERR(efx, "timed out waiting for SPI\n");
			return -ETIMEDOUT;
		}
1697
		schedule_timeout_uninterruptible(1);
1698
	}
1699 1700
}

1701 1702
int falcon_spi_cmd(const struct efx_spi_device *spi,
		   unsigned int command, int address,
1703
		   const void *in, void *out, size_t len)
1704
{
1705 1706 1707
	struct efx_nic *efx = spi->efx;
	bool addressed = (address >= 0);
	bool reading = (out != NULL);
1708 1709 1710
	efx_oword_t reg;
	int rc;

1711 1712 1713
	/* Input validation */
	if (len > FALCON_SPI_MAX_LEN)
		return -EINVAL;
1714
	BUG_ON(!mutex_is_locked(&efx->spi_lock));
1715

1716 1717
	/* Check that previous command is not still running */
	rc = falcon_spi_poll(efx);
1718 1719 1720
	if (rc)
		return rc;

1721 1722
	/* Program address register, if we have an address */
	if (addressed) {
1723
		EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
1724
		efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
1725 1726 1727 1728 1729
	}

	/* Program data register, if we have data */
	if (in != NULL) {
		memcpy(&reg, in, len);
1730
		efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
1731
	}
1732

1733
	/* Issue read/write command */
1734
	EFX_POPULATE_OWORD_7(reg,
1735 1736 1737 1738 1739 1740
			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
			     FRF_AB_EE_SPI_HCMD_READ, reading,
			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
			     FRF_AB_EE_SPI_HCMD_ADBCNT,
1741
			     (addressed ? spi->addr_len : 0),
1742
			     FRF_AB_EE_SPI_HCMD_ENC, command);
1743
	efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
1744

1745
	/* Wait for read/write to complete */
1746 1747 1748 1749 1750
	rc = falcon_spi_wait(efx);
	if (rc)
		return rc;

	/* Read data */
1751
	if (out != NULL) {
1752
		efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
1753 1754 1755
		memcpy(out, &reg, len);
	}

1756 1757 1758
	return 0;
}

1759 1760
static size_t
falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
{
	return min(FALCON_SPI_MAX_LEN,
		   (spi->block_size - (start & (spi->block_size - 1))));
}

static inline u8
efx_spi_munge_command(const struct efx_spi_device *spi,
		      const u8 command, const unsigned int address)
{
	return command | (((address >> 8) & spi->munge_address) << 3);
}

1773 1774
/* Wait up to 10 ms for buffered write completion */
int falcon_spi_wait_write(const struct efx_spi_device *spi)
1775
{
1776 1777
	struct efx_nic *efx = spi->efx;
	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1778
	u8 status;
1779
	int rc;
1780

1781
	for (;;) {
1782 1783 1784 1785 1786 1787
		rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
				    &status, sizeof(status));
		if (rc)
			return rc;
		if (!(status & SPI_STATUS_NRDY))
			return 0;
1788 1789 1790 1791 1792 1793 1794
		if (time_after_eq(jiffies, timeout)) {
			EFX_ERR(efx, "SPI write timeout on device %d"
				" last status=0x%02x\n",
				spi->device_id, status);
			return -ETIMEDOUT;
		}
		schedule_timeout_uninterruptible(1);
1795 1796 1797 1798 1799 1800
	}
}

int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
		    size_t len, size_t *retlen, u8 *buffer)
{
1801 1802
	size_t block_len, pos = 0;
	unsigned int command;
1803 1804 1805
	int rc = 0;

	while (pos < len) {
1806
		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831

		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
		rc = falcon_spi_cmd(spi, command, start + pos, NULL,
				    buffer + pos, block_len);
		if (rc)
			break;
		pos += block_len;

		/* Avoid locking up the system */
		cond_resched();
		if (signal_pending(current)) {
			rc = -EINTR;
			break;
		}
	}

	if (retlen)
		*retlen = pos;
	return rc;
}

int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
		     size_t len, size_t *retlen, const u8 *buffer)
{
	u8 verify_buffer[FALCON_SPI_MAX_LEN];
1832 1833
	size_t block_len, pos = 0;
	unsigned int command;
1834 1835 1836 1837 1838 1839 1840
	int rc = 0;

	while (pos < len) {
		rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
		if (rc)
			break;

1841
		block_len = min(len - pos,
1842 1843 1844 1845 1846 1847 1848
				falcon_spi_write_limit(spi, start + pos));
		command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
		rc = falcon_spi_cmd(spi, command, start + pos,
				    buffer + pos, NULL, block_len);
		if (rc)
			break;

1849
		rc = falcon_spi_wait_write(spi);
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
		if (rc)
			break;

		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
		rc = falcon_spi_cmd(spi, command, start + pos,
				    NULL, verify_buffer, block_len);
		if (memcmp(verify_buffer, buffer + pos, block_len)) {
			rc = -EIO;
			break;
		}

		pos += block_len;

		/* Avoid locking up the system */
		cond_resched();
		if (signal_pending(current)) {
			rc = -EINTR;
			break;
		}
	}

	if (retlen)
		*retlen = pos;
	return rc;
}

1876 1877 1878 1879 1880 1881
/**************************************************************************
 *
 * MAC wrapper
 *
 **************************************************************************
 */
1882 1883

static int falcon_reset_macs(struct efx_nic *efx)
1884
{
1885
	efx_oword_t reg;
1886 1887
	int count;

1888 1889 1890 1891 1892
	if (falcon_rev(efx) < FALCON_REV_B0) {
		/* It's not safe to use GLB_CTL_REG to reset the
		 * macs, so instead use the internal MAC resets
		 */
		if (!EFX_IS10G(efx)) {
1893
			EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
1894
			efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1895 1896
			udelay(1000);

1897
			EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
1898
			efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1899 1900 1901
			udelay(1000);
			return 0;
		} else {
1902
			EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1903
			efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1904 1905

			for (count = 0; count < 10000; count++) {
1906
				efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1907 1908
				if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
				    0)
1909 1910 1911
					return 0;
				udelay(10);
			}
1912

1913 1914 1915 1916
			EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
			return -ETIMEDOUT;
		}
	}
1917 1918 1919

	/* MAC stats will fail whilst the TX fifo is draining. Serialise
	 * the drain sequence with the statistics fetch */
1920
	efx_stats_disable(efx);
1921

1922
	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1923
	EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, 1);
1924
	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1925

1926
	efx_reado(efx, &reg, FR_AB_GLB_CTL);
1927 1928 1929
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1930
	efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1931 1932 1933

	count = 0;
	while (1) {
1934
		efx_reado(efx, &reg, FR_AB_GLB_CTL);
1935 1936 1937
		if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
			EFX_LOG(efx, "Completed MAC reset after %d loops\n",
				count);
			break;
		}
		if (count > 20) {
			EFX_ERR(efx, "MAC reset failed\n");
			break;
		}
		count++;
		udelay(10);
	}

1950
	efx_stats_enable(efx);
1951 1952 1953

	/* If we've reset the EM block and the link is up, then
	 * we'll have to kick the XAUI link so the PHY can recover */
1954
	if (efx->link_up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1955
		falcon_reset_xaui(efx);
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967

	return 0;
}

void falcon_drain_tx_fifo(struct efx_nic *efx)
{
	efx_oword_t reg;

	if ((falcon_rev(efx) < FALCON_REV_B0) ||
	    (efx->loopback_mode != LOOPBACK_NONE))
		return;

1968
	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1969
	/* There is no point in draining more than once */
1970
	if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1971 1972 1973
		return;

	falcon_reset_macs(efx);
1974 1975 1976 1977
}

void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
{
1978
	efx_oword_t reg;
1979

1980
	if (falcon_rev(efx) < FALCON_REV_B0)
1981 1982 1983
		return;

	/* Isolate the MAC -> RX */
1984
	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1985
	EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1986
	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1987 1988 1989 1990 1991 1992 1993 1994 1995

	if (!efx->link_up)
		falcon_drain_tx_fifo(efx);
}

void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
{
	efx_oword_t reg;
	int link_speed;
1996
	bool tx_fc;
1997

B
Ben Hutchings 已提交
1998 1999 2000 2001 2002 2003
	switch (efx->link_speed) {
	case 10000: link_speed = 3; break;
	case 1000:  link_speed = 2; break;
	case 100:   link_speed = 1; break;
	default:    link_speed = 0; break;
	}
2004 2005 2006 2007 2008
	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
	 * as advertised.  Disable to ensure packets are not
	 * indefinitely held and TX queue can be flushed at any point
	 * while the link is down. */
	EFX_POPULATE_OWORD_5(reg,
2009 2010 2011 2012 2013
			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
			     FRF_AB_MAC_BCAD_ACPT, 1,
			     FRF_AB_MAC_UC_PROM, efx->promiscuous,
			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
			     FRF_AB_MAC_SPEED, link_speed);
2014 2015
	/* On B0, MAC backpressure can be disabled and packets get
	 * discarded. */
2016
	if (falcon_rev(efx) >= FALCON_REV_B0) {
2017
		EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
2018 2019 2020
				    !efx->link_up);
	}

2021
	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
2022 2023 2024 2025 2026 2027 2028

	/* Restore the multicast hash registers. */
	falcon_set_multicast_hash(efx);

	/* Transmission of pause frames when RX crosses the threshold is
	 * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
	 * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
B
Ben Hutchings 已提交
2029
	tx_fc = !!(efx->link_fc & EFX_FC_TX);
2030
	efx_reado(efx, &reg, FR_AZ_RX_CFG);
2031
	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, tx_fc);
2032 2033

	/* Unisolate the MAC -> RX */
2034
	if (falcon_rev(efx) >= FALCON_REV_B0)
2035
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2036
	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
}

int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
{
	efx_oword_t reg;
	u32 *dma_done;
	int i;

	if (disable_dma_stats)
		return 0;

	/* Statistics fetch will fail if the MAC is in TX drain */
2049
	if (falcon_rev(efx) >= FALCON_REV_B0) {
2050
		efx_oword_t temp;
2051
		efx_reado(efx, &temp, FR_AB_MAC_CTRL);
2052
		if (EFX_OWORD_FIELD(temp, FRF_BB_TXFIFO_DRAIN_EN))
2053 2054 2055 2056 2057 2058 2059 2060 2061
			return 0;
	}

	dma_done = (efx->stats_buffer.addr + done_offset);
	*dma_done = FALCON_STATS_NOT_DONE;
	wmb(); /* ensure done flag is clear */

	/* Initiate DMA transfer of stats */
	EFX_POPULATE_OWORD_2(reg,
2062 2063
			     FRF_AB_MAC_STAT_DMA_CMD, 1,
			     FRF_AB_MAC_STAT_DMA_ADR,
2064
			     efx->stats_buffer.dma_addr);
2065
	efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
2066 2067 2068

	/* Wait for transfer to complete */
	for (i = 0; i < 400; i++) {
2069 2070
		if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
			rmb(); /* Ensure the stats are valid. */
2071
			return 0;
2072
		}
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
		udelay(10);
	}

	EFX_ERR(efx, "timed out waiting for statistics\n");
	return -ETIMEDOUT;
}

/**************************************************************************
 *
 * PHY access via GMII
 *
 **************************************************************************
 */

/* Wait for GMII access to complete */
static int falcon_gmii_wait(struct efx_nic *efx)
{
	efx_dword_t md_stat;
	int count;

2093 2094
	/* wait upto 50ms - taken max from datasheet */
	for (count = 0; count < 5000; count++) {
2095
		efx_readd(efx, &md_stat, FR_AB_MD_STAT);
2096 2097 2098
		if (EFX_DWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
			if (EFX_DWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
			    EFX_DWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
				EFX_ERR(efx, "error from GMII access "
					EFX_DWORD_FMT"\n",
					EFX_DWORD_VAL(md_stat));
				return -EIO;
			}
			return 0;
		}
		udelay(10);
	}
	EFX_ERR(efx, "timed out waiting for GMII\n");
	return -ETIMEDOUT;
}

2112 2113 2114
/* Write an MDIO register of a PHY connected to Falcon. */
static int falcon_mdio_write(struct net_device *net_dev,
			     int prtad, int devad, u16 addr, u16 value)
2115
{
2116
	struct efx_nic *efx = netdev_priv(net_dev);
2117
	efx_oword_t reg;
2118
	int rc;
2119

2120 2121
	EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
		    prtad, devad, addr, value);
2122 2123 2124

	spin_lock_bh(&efx->phy_lock);

2125 2126 2127
	/* Check MDIO not currently being accessed */
	rc = falcon_gmii_wait(efx);
	if (rc)
2128 2129 2130
		goto out;

	/* Write the address/ID register */
2131
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2132
	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2133

2134 2135
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
			     FRF_AB_MD_DEV_ADR, devad);
2136
	efx_writeo(efx, &reg, FR_AB_MD_ID);
2137 2138

	/* Write data */
2139
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
2140
	efx_writeo(efx, &reg, FR_AB_MD_TXD);
2141 2142

	EFX_POPULATE_OWORD_2(reg,
2143 2144
			     FRF_AB_MD_WRC, 1,
			     FRF_AB_MD_GC, 0);
2145
	efx_writeo(efx, &reg, FR_AB_MD_CS);
2146 2147

	/* Wait for data to be written */
2148 2149
	rc = falcon_gmii_wait(efx);
	if (rc) {
2150 2151
		/* Abort the write operation */
		EFX_POPULATE_OWORD_2(reg,
2152 2153
				     FRF_AB_MD_WRC, 0,
				     FRF_AB_MD_GC, 1);
2154
		efx_writeo(efx, &reg, FR_AB_MD_CS);
2155 2156 2157 2158 2159
		udelay(10);
	}

 out:
	spin_unlock_bh(&efx->phy_lock);
2160
	return rc;
2161 2162
}

2163 2164 2165
/* Read an MDIO register of a PHY connected to Falcon. */
static int falcon_mdio_read(struct net_device *net_dev,
			    int prtad, int devad, u16 addr)
2166
{
2167
	struct efx_nic *efx = netdev_priv(net_dev);
2168
	efx_oword_t reg;
2169
	int rc;
2170 2171 2172

	spin_lock_bh(&efx->phy_lock);

2173 2174 2175
	/* Check MDIO not currently being accessed */
	rc = falcon_gmii_wait(efx);
	if (rc)
2176 2177
		goto out;

2178
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2179
	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2180

2181 2182
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
			     FRF_AB_MD_DEV_ADR, devad);
2183
	efx_writeo(efx, &reg, FR_AB_MD_ID);
2184 2185

	/* Request data to be read */
2186
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
2187
	efx_writeo(efx, &reg, FR_AB_MD_CS);
2188 2189

	/* Wait for data to become available */
2190 2191
	rc = falcon_gmii_wait(efx);
	if (rc == 0) {
2192
		efx_reado(efx, &reg, FR_AB_MD_RXD);
2193
		rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
2194 2195
		EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
			    prtad, devad, addr, rc);
2196 2197 2198
	} else {
		/* Abort the read operation */
		EFX_POPULATE_OWORD_2(reg,
2199 2200
				     FRF_AB_MD_RIC, 0,
				     FRF_AB_MD_GC, 1);
2201
		efx_writeo(efx, &reg, FR_AB_MD_CS);
2202

2203 2204
		EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
			prtad, devad, addr, rc);
2205 2206 2207 2208
	}

 out:
	spin_unlock_bh(&efx->phy_lock);
2209
	return rc;
2210 2211 2212 2213 2214
}

static int falcon_probe_phy(struct efx_nic *efx)
{
	switch (efx->phy_type) {
2215 2216 2217 2218 2219 2220
	case PHY_TYPE_SFX7101:
		efx->phy_op = &falcon_sfx7101_phy_ops;
		break;
	case PHY_TYPE_SFT9001A:
	case PHY_TYPE_SFT9001B:
		efx->phy_op = &falcon_sft9001_phy_ops;
2221
		break;
2222
	case PHY_TYPE_QT2022C2:
B
Ben Hutchings 已提交
2223
	case PHY_TYPE_QT2025C:
2224 2225 2226 2227 2228 2229 2230
		efx->phy_op = &falcon_xfp_phy_ops;
		break;
	default:
		EFX_ERR(efx, "Unknown PHY type %d\n",
			efx->phy_type);
		return -1;
	}
2231

2232 2233 2234 2235 2236 2237 2238 2239
	if (efx->phy_op->macs & EFX_XMAC)
		efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
					(1 << LOOPBACK_XGXS) |
					(1 << LOOPBACK_XAUI));
	if (efx->phy_op->macs & EFX_GMAC)
		efx->loopback_modes |= (1 << LOOPBACK_GMAC);
	efx->loopback_modes |= efx->phy_op->loopbacks;

2240 2241 2242
	return 0;
}

2243 2244 2245 2246 2247
int falcon_switch_mac(struct efx_nic *efx)
{
	struct efx_mac_operations *old_mac_op = efx->mac_op;
	efx_oword_t nic_stat;
	unsigned strap_val;
2248 2249 2250 2251
	int rc = 0;

	/* Don't try to fetch MAC stats while we're switching MACs */
	efx_stats_disable(efx);
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261

	/* Internal loopbacks override the phy speed setting */
	if (efx->loopback_mode == LOOPBACK_GMAC) {
		efx->link_speed = 1000;
		efx->link_fd = true;
	} else if (LOOPBACK_INTERNAL(efx)) {
		efx->link_speed = 10000;
		efx->link_fd = true;
	}

2262
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
2263 2264 2265
	efx->mac_op = (EFX_IS10G(efx) ?
		       &falcon_xmac_operations : &falcon_gmac_operations);

2266 2267
	/* Always push the NIC_STAT_REG setting even if the mac hasn't
	 * changed, because this function is run post online reset */
2268
	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2269 2270
	strap_val = EFX_IS10G(efx) ? 5 : 3;
	if (falcon_rev(efx) >= FALCON_REV_B0) {
2271 2272
		EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
		EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
2273
		efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
2274 2275 2276
	} else {
		/* Falcon A1 does not support 1G/10G speed switching
		 * and must not be used with a PHY that does. */
2277 2278
		BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
		       strap_val);
2279 2280
	}

2281
	if (old_mac_op == efx->mac_op)
2282
		goto out;
2283 2284

	EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2285 2286 2287
	/* Not all macs support a mac-level link state */
	efx->mac_up = true;

2288 2289 2290 2291
	rc = falcon_reset_macs(efx);
out:
	efx_stats_enable(efx);
	return rc;
2292 2293
}

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
/* This call is responsible for hooking in the MAC and PHY operations */
int falcon_probe_port(struct efx_nic *efx)
{
	int rc;

	/* Hook in PHY operations table */
	rc = falcon_probe_phy(efx);
	if (rc)
		return rc;

2304 2305 2306 2307 2308
	/* Set up MDIO structure for PHY */
	efx->mdio.mmds = efx->phy_op->mmds;
	efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
	efx->mdio.mdio_read = falcon_mdio_read;
	efx->mdio.mdio_write = falcon_mdio_write;
2309 2310

	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2311
	if (falcon_rev(efx) >= FALCON_REV_B0)
B
Ben Hutchings 已提交
2312
		efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2313
	else
B
Ben Hutchings 已提交
2314
		efx->wanted_fc = EFX_FC_RX;
2315 2316 2317 2318 2319 2320

	/* Allocate buffer for stats */
	rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
				 FALCON_MAC_STATS_SIZE);
	if (rc)
		return rc;
2321 2322
	EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
		(u64)efx->stats_buffer.dma_addr,
2323
		efx->stats_buffer.addr,
2324
		(u64)virt_to_phys(efx->stats_buffer.addr));
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350

	return 0;
}

void falcon_remove_port(struct efx_nic *efx)
{
	falcon_free_buffer(efx, &efx->stats_buffer);
}

/**************************************************************************
 *
 * Multicast filtering
 *
 **************************************************************************
 */

void falcon_set_multicast_hash(struct efx_nic *efx)
{
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;

	/* Broadcast packets go through the multicast hash filter.
	 * ether_crc_le() of the broadcast address is 0xbe2612ff
	 * so we always add bit 0xff to the mask.
	 */
	set_bit_le(0xff, mc_hash->byte);

2351 2352
	efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
	efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
2353 2354
}

B
Ben Hutchings 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370

/**************************************************************************
 *
 * Falcon test code
 *
 **************************************************************************/

int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
{
	struct falcon_nvconfig *nvconfig;
	struct efx_spi_device *spi;
	void *region;
	int rc, magic_num, struct_ver;
	__le16 *word, *limit;
	u32 csum;

2371 2372 2373 2374
	spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
	if (!spi)
		return -EINVAL;

2375
	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
B
Ben Hutchings 已提交
2376 2377
	if (!region)
		return -ENOMEM;
2378
	nvconfig = region + FALCON_NVCONFIG_OFFSET;
B
Ben Hutchings 已提交
2379

2380
	mutex_lock(&efx->spi_lock);
2381
	rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2382
	mutex_unlock(&efx->spi_lock);
B
Ben Hutchings 已提交
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
	if (rc) {
		EFX_ERR(efx, "Failed to read %s\n",
			efx->spi_flash ? "flash" : "EEPROM");
		rc = -EIO;
		goto out;
	}

	magic_num = le16_to_cpu(nvconfig->board_magic_num);
	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);

	rc = -EINVAL;
2394
	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
B
Ben Hutchings 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
		EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
		goto out;
	}
	if (struct_ver < 2) {
		EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
		goto out;
	} else if (struct_ver < 4) {
		word = &nvconfig->board_magic_num;
		limit = (__le16 *) (nvconfig + 1);
	} else {
		word = region;
2406
		limit = region + FALCON_NVCONFIG_END;
B
Ben Hutchings 已提交
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	}
	for (csum = 0; word < limit; ++word)
		csum += le16_to_cpu(*word);

	if (~csum & 0xffff) {
		EFX_ERR(efx, "NVRAM has incorrect checksum\n");
		goto out;
	}

	rc = 0;
	if (nvconfig_out)
		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));

 out:
	kfree(region);
	return rc;
}

/* Registers tested in the falcon register test */
static struct {
	unsigned address;
	efx_oword_t mask;
} efx_test_registers[] = {
2430
	{ FR_AZ_ADR_REGION,
B
Ben Hutchings 已提交
2431
	  EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2432
	{ FR_AZ_RX_CFG,
B
Ben Hutchings 已提交
2433
	  EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2434
	{ FR_AZ_TX_CFG,
B
Ben Hutchings 已提交
2435
	  EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2436
	{ FR_AZ_TX_RESERVED,
B
Ben Hutchings 已提交
2437
	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2438
	{ FR_AB_MAC_CTRL,
B
Ben Hutchings 已提交
2439
	  EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2440
	{ FR_AZ_SRM_TX_DC_CFG,
B
Ben Hutchings 已提交
2441
	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2442
	{ FR_AZ_RX_DC_CFG,
B
Ben Hutchings 已提交
2443
	  EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2444
	{ FR_AZ_RX_DC_PF_WM,
B
Ben Hutchings 已提交
2445
	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2446
	{ FR_BZ_DP_CTRL,
B
Ben Hutchings 已提交
2447
	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2448
	{ FR_AB_GM_CFG2,
2449
	  EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2450
	{ FR_AB_GMF_CFG0,
2451
	  EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2452
	{ FR_AB_XM_GLB_CFG,
B
Ben Hutchings 已提交
2453
	  EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2454
	{ FR_AB_XM_TX_CFG,
B
Ben Hutchings 已提交
2455
	  EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2456
	{ FR_AB_XM_RX_CFG,
B
Ben Hutchings 已提交
2457
	  EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2458
	{ FR_AB_XM_RX_PARAM,
B
Ben Hutchings 已提交
2459
	  EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2460
	{ FR_AB_XM_FC,
B
Ben Hutchings 已提交
2461
	  EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2462
	{ FR_AB_XM_ADR_LO,
B
Ben Hutchings 已提交
2463
	  EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2464
	{ FR_AB_XX_SD_CTL,
B
Ben Hutchings 已提交
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	  EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
};

static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
				     const efx_oword_t *mask)
{
	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
}

int falcon_test_registers(struct efx_nic *efx)
{
	unsigned address = 0, i, j;
	efx_oword_t mask, imask, original, reg, buf;

	/* Falcon should be in loopback to isolate the XMAC from the PHY */
	WARN_ON(!LOOPBACK_INTERNAL(efx));

	for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
		address = efx_test_registers[i].address;
		mask = imask = efx_test_registers[i].mask;
		EFX_INVERT_OWORD(imask);

2488
		efx_reado(efx, &original, address);
B
Ben Hutchings 已提交
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498

		/* bit sweep on and off */
		for (j = 0; j < 128; j++) {
			if (!EFX_EXTRACT_OWORD32(mask, j, j))
				continue;

			/* Test this testable bit can be set in isolation */
			EFX_AND_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 1);

2499 2500
			efx_writeo(efx, &reg, address);
			efx_reado(efx, &buf, address);
B
Ben Hutchings 已提交
2501 2502 2503 2504 2505 2506 2507 2508

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;

			/* Test this testable bit can be cleared in isolation */
			EFX_OR_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 0);

2509 2510
			efx_writeo(efx, &reg, address);
			efx_reado(efx, &buf, address);
B
Ben Hutchings 已提交
2511 2512 2513 2514 2515

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;
		}

2516
		efx_writeo(efx, &original, address);
B
Ben Hutchings 已提交
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
	}

	return 0;

fail:
	EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
		" at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
		EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
	return -EIO;
}

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
/**************************************************************************
 *
 * Device reset
 *
 **************************************************************************
 */

/* Resets NIC to known state.  This routine must be called in process
 * context and is allowed to sleep. */
int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
	efx_oword_t glb_ctl_reg_ker;
	int rc;

	EFX_LOG(efx, "performing hardware reset (%d)\n", method);

	/* Initiate device reset */
	if (method == RESET_TYPE_WORLD) {
		rc = pci_save_state(efx->pci_dev);
		if (rc) {
			EFX_ERR(efx, "failed to backup PCI state of primary "
				"function prior to hardware reset\n");
			goto fail1;
		}
		if (FALCON_IS_DUAL_FUNC(efx)) {
			rc = pci_save_state(nic_data->pci_dev2);
			if (rc) {
				EFX_ERR(efx, "failed to backup PCI state of "
					"secondary function prior to "
					"hardware reset\n");
				goto fail2;
			}
		}

		EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2564 2565 2566
				     FRF_AB_EXT_PHY_RST_DUR,
				     FFE_AB_EXT_PHY_RST_DUR_10240US,
				     FRF_AB_SWRST, 1);
2567 2568
	} else {
		EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
				     /* exclude PHY from "invisible" reset */
				     FRF_AB_EXT_PHY_RST_CTL,
				     method == RESET_TYPE_INVISIBLE,
				     /* exclude EEPROM/flash and PCIe */
				     FRF_AB_PCIE_CORE_RST_CTL, 1,
				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
				     FRF_AB_PCIE_SD_RST_CTL, 1,
				     FRF_AB_EE_RST_CTL, 1,
				     FRF_AB_EXT_PHY_RST_DUR,
				     FFE_AB_EXT_PHY_RST_DUR_10240US,
				     FRF_AB_SWRST, 1);
	}
2581
	efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605

	EFX_LOG(efx, "waiting for hardware reset\n");
	schedule_timeout_uninterruptible(HZ / 20);

	/* Restore PCI configuration if needed */
	if (method == RESET_TYPE_WORLD) {
		if (FALCON_IS_DUAL_FUNC(efx)) {
			rc = pci_restore_state(nic_data->pci_dev2);
			if (rc) {
				EFX_ERR(efx, "failed to restore PCI config for "
					"the secondary function\n");
				goto fail3;
			}
		}
		rc = pci_restore_state(efx->pci_dev);
		if (rc) {
			EFX_ERR(efx, "failed to restore PCI config for the "
				"primary function\n");
			goto fail4;
		}
		EFX_LOG(efx, "successfully restored PCI config\n");
	}

	/* Assert that reset complete */
2606
	efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2607
	if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
		rc = -ETIMEDOUT;
		EFX_ERR(efx, "timed out waiting for hardware reset\n");
		goto fail5;
	}
	EFX_LOG(efx, "hardware reset complete\n");

	return 0;

	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
fail2:
fail3:
	pci_restore_state(efx->pci_dev);
fail1:
fail4:
fail5:
	return rc;
}

/* Zeroes out the SRAM contents.  This routine must be called in
 * process context and is allowed to sleep.
 */
static int falcon_reset_sram(struct efx_nic *efx)
{
	efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
	int count;

	/* Set the SRAM wake/sleep GPIO appropriately. */
2635
	efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2636 2637
	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2638
	efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2639 2640 2641

	/* Initiate SRAM reset */
	EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2642 2643
			     FRF_AZ_SRM_INIT_EN, 1,
			     FRF_AZ_SRM_NB_SZ, 0);
2644
	efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654

	/* Wait for SRAM reset to complete */
	count = 0;
	do {
		EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);

		/* SRAM reset is slow; expect around 16ms */
		schedule_timeout_uninterruptible(HZ / 50);

		/* Check for reset complete */
2655
		efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2656
		if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
			EFX_LOG(efx, "SRAM reset complete\n");

			return 0;
		}
	} while (++count < 20);	/* wait upto 0.4 sec */

	EFX_ERR(efx, "timed out waiting for SRAM reset\n");
	return -ETIMEDOUT;
}

2667 2668 2669 2670 2671 2672 2673
static int falcon_spi_device_init(struct efx_nic *efx,
				  struct efx_spi_device **spi_device_ret,
				  unsigned int device_id, u32 device_type)
{
	struct efx_spi_device *spi_device;

	if (device_type != 0) {
2674
		spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2675 2676 2677 2678 2679 2680 2681 2682 2683
		if (!spi_device)
			return -ENOMEM;
		spi_device->device_id = device_id;
		spi_device->size =
			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
		spi_device->addr_len =
			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
		spi_device->munge_address = (spi_device->size == 1 << 9 &&
					     spi_device->addr_len == 1);
2684 2685 2686 2687 2688
		spi_device->erase_command =
			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
		spi_device->erase_size =
			1 << SPI_DEV_TYPE_FIELD(device_type,
						SPI_DEV_TYPE_ERASE_SIZE);
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
		spi_device->block_size =
			1 << SPI_DEV_TYPE_FIELD(device_type,
						SPI_DEV_TYPE_BLOCK_SIZE);

		spi_device->efx = efx;
	} else {
		spi_device = NULL;
	}

	kfree(*spi_device_ret);
	*spi_device_ret = spi_device;
	return 0;
}


static void falcon_remove_spi_devices(struct efx_nic *efx)
{
	kfree(efx->spi_eeprom);
	efx->spi_eeprom = NULL;
	kfree(efx->spi_flash);
	efx->spi_flash = NULL;
}

2712 2713 2714 2715
/* Extract non-volatile configuration */
static int falcon_probe_nvconfig(struct efx_nic *efx)
{
	struct falcon_nvconfig *nvconfig;
B
Ben Hutchings 已提交
2716
	int board_rev;
2717 2718 2719
	int rc;

	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2720 2721
	if (!nvconfig)
		return -ENOMEM;
2722

B
Ben Hutchings 已提交
2723 2724 2725
	rc = falcon_read_nvram(efx, nvconfig);
	if (rc == -EINVAL) {
		EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2726
		efx->phy_type = PHY_TYPE_NONE;
2727
		efx->mdio.prtad = MDIO_PRTAD_NONE;
2728
		board_rev = 0;
B
Ben Hutchings 已提交
2729 2730 2731
		rc = 0;
	} else if (rc) {
		goto fail1;
2732 2733
	} else {
		struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2734
		struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2735 2736

		efx->phy_type = v2->port0_phy_type;
2737
		efx->mdio.prtad = v2->port0_phy_addr;
2738
		board_rev = le16_to_cpu(v2->board_revision);
2739

B
Ben Hutchings 已提交
2740
		if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2741 2742 2743 2744
			rc = falcon_spi_device_init(
				efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
				le32_to_cpu(v3->spi_device_type
					    [FFE_AB_SPI_DEVICE_FLASH]));
2745 2746
			if (rc)
				goto fail2;
2747 2748 2749 2750
			rc = falcon_spi_device_init(
				efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
				le32_to_cpu(v3->spi_device_type
					    [FFE_AB_SPI_DEVICE_EEPROM]));
2751 2752 2753
			if (rc)
				goto fail2;
		}
2754 2755
	}

B
Ben Hutchings 已提交
2756 2757 2758
	/* Read the MAC addresses */
	memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);

2759
	EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
2760

2761
	falcon_probe_board(efx, board_rev);
2762

2763 2764 2765 2766 2767 2768
	kfree(nvconfig);
	return 0;

 fail2:
	falcon_remove_spi_devices(efx);
 fail1:
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
	kfree(nvconfig);
	return rc;
}

/* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
 * count, port speed).  Set workaround and feature flags accordingly.
 */
static int falcon_probe_nic_variant(struct efx_nic *efx)
{
	efx_oword_t altera_build;
2779
	efx_oword_t nic_stat;
2780

2781
	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
2782
	if (EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER)) {
2783 2784 2785 2786
		EFX_ERR(efx, "Falcon FPGA not supported\n");
		return -ENODEV;
	}

2787
	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2788

2789
	switch (falcon_rev(efx)) {
2790 2791 2792 2793 2794
	case FALCON_REV_A0:
	case 0xff:
		EFX_ERR(efx, "Falcon rev A0 not supported\n");
		return -ENODEV;

2795
	case FALCON_REV_A1:
2796
		if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2797 2798 2799 2800 2801 2802 2803 2804 2805
			EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
			return -ENODEV;
		}
		break;

	case FALCON_REV_B0:
		break;

	default:
2806
		EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2807 2808 2809
		return -ENODEV;
	}

2810
	/* Initial assumed speed */
2811
	efx->link_speed = EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) ? 10000 : 1000;
2812

2813 2814 2815
	return 0;
}

2816 2817 2818 2819
/* Probe all SPI devices on the NIC */
static void falcon_probe_spi_devices(struct efx_nic *efx)
{
	efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2820
	int boot_dev;
2821

2822 2823 2824
	efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
	efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2825

2826 2827 2828
	if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
		boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2829
		EFX_LOG(efx, "Booted from %s\n",
2830
			boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
2831 2832 2833 2834 2835 2836
	} else {
		/* Disable VPD and set clock dividers to safe
		 * values for initial programming. */
		boot_dev = -1;
		EFX_LOG(efx, "Booted from internal ASIC settings;"
			" setting SPI config\n");
2837
		EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2838
				     /* 125 MHz / 7 ~= 20 MHz */
2839
				     FRF_AB_EE_SF_CLOCK_DIV, 7,
2840
				     /* 125 MHz / 63 ~= 2 MHz */
2841
				     FRF_AB_EE_EE_CLOCK_DIV, 63);
2842
		efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2843 2844
	}

2845 2846 2847
	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
		falcon_spi_device_init(efx, &efx->spi_flash,
				       FFE_AB_SPI_DEVICE_FLASH,
2848
				       default_flash_type);
2849 2850 2851
	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
		falcon_spi_device_init(efx, &efx->spi_eeprom,
				       FFE_AB_SPI_DEVICE_EEPROM,
2852
				       large_eeprom_type);
2853 2854
}

2855 2856 2857 2858 2859 2860 2861
int falcon_probe_nic(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data;
	int rc;

	/* Allocate storage for hardware specific data */
	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2862 2863
	if (!nic_data)
		return -ENOMEM;
2864
	efx->nic_data = nic_data;
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902

	/* Determine number of ports etc. */
	rc = falcon_probe_nic_variant(efx);
	if (rc)
		goto fail1;

	/* Probe secondary function if expected */
	if (FALCON_IS_DUAL_FUNC(efx)) {
		struct pci_dev *dev = pci_dev_get(efx->pci_dev);

		while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
					     dev))) {
			if (dev->bus == efx->pci_dev->bus &&
			    dev->devfn == efx->pci_dev->devfn + 1) {
				nic_data->pci_dev2 = dev;
				break;
			}
		}
		if (!nic_data->pci_dev2) {
			EFX_ERR(efx, "failed to find secondary function\n");
			rc = -ENODEV;
			goto fail2;
		}
	}

	/* Now we can reset the NIC */
	rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
	if (rc) {
		EFX_ERR(efx, "failed to reset NIC\n");
		goto fail3;
	}

	/* Allocate memory for INT_KER */
	rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
	if (rc)
		goto fail4;
	BUG_ON(efx->irq_status.dma_addr & 0x0f);

2903 2904 2905
	EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
		(u64)efx->irq_status.dma_addr,
		efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
2906

2907 2908
	falcon_probe_spi_devices(efx);

2909 2910 2911 2912 2913
	/* Read in the non-volatile configuration */
	rc = falcon_probe_nvconfig(efx);
	if (rc)
		goto fail5;

2914
	/* Initialise I2C adapter */
B
Ben Hutchings 已提交
2915
	efx->i2c_adap.owner = THIS_MODULE;
2916 2917
	nic_data->i2c_data = falcon_i2c_bit_operations;
	nic_data->i2c_data.data = efx;
B
Ben Hutchings 已提交
2918
	efx->i2c_adap.algo_data = &nic_data->i2c_data;
2919
	efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
2920
	strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
2921 2922 2923 2924
	rc = i2c_bit_add_bus(&efx->i2c_adap);
	if (rc)
		goto fail5;

2925 2926 2927
	return 0;

 fail5:
2928
	falcon_remove_spi_devices(efx);
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	falcon_free_buffer(efx, &efx->irq_status);
 fail4:
 fail3:
	if (nic_data->pci_dev2) {
		pci_dev_put(nic_data->pci_dev2);
		nic_data->pci_dev2 = NULL;
	}
 fail2:
 fail1:
	kfree(efx->nic_data);
	return rc;
}

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
static void falcon_init_rx_cfg(struct efx_nic *efx)
{
	/* Prior to Siena the RX DMA engine will split each frame at
	 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
	 * be so large that that never happens. */
	const unsigned huge_buf_size = (3 * 4096) >> 5;
	/* RX control FIFO thresholds (32 entries) */
	const unsigned ctrl_xon_thr = 20;
	const unsigned ctrl_xoff_thr = 25;
	/* RX data FIFO thresholds (256-byte units; size varies) */
2952 2953
	int data_xon_thr = rx_xon_thresh_bytes >> 8;
	int data_xoff_thr = rx_xoff_thresh_bytes >> 8;
2954 2955
	efx_oword_t reg;

2956
	efx_reado(efx, &reg, FR_AZ_RX_CFG);
2957
	if (falcon_rev(efx) <= FALCON_REV_A1) {
2958 2959 2960 2961 2962
		/* Data FIFO size is 5.5K */
		if (data_xon_thr < 0)
			data_xon_thr = 512 >> 8;
		if (data_xoff_thr < 0)
			data_xoff_thr = 2048 >> 8;
2963 2964 2965 2966 2967 2968 2969
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
				    huge_buf_size);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2970
	} else {
2971 2972 2973 2974 2975
		/* Data FIFO size is 80K; register fields moved */
		if (data_xon_thr < 0)
			data_xon_thr = 27648 >> 8; /* ~3*max MTU */
		if (data_xoff_thr < 0)
			data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
2976 2977 2978 2979 2980 2981 2982 2983
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
				    huge_buf_size);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2984
	}
2985
	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2986 2987
}

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
/* This call performs hardware-specific global initialisation, such as
 * defining the descriptor cache sizes and number of RSS channels.
 * It does not set up any buffers, descriptor rings or event queues.
 */
int falcon_init_nic(struct efx_nic *efx)
{
	efx_oword_t temp;
	int rc;

	/* Use on-chip SRAM */
2998
	efx_reado(efx, &temp, FR_AB_NIC_STAT);
2999
	EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
3000
	efx_writeo(efx, &temp, FR_AB_NIC_STAT);
3001

B
Ben Hutchings 已提交
3002 3003
	/* Set the source of the GMAC clock */
	if (falcon_rev(efx) == FALCON_REV_B0) {
3004
		efx_reado(efx, &temp, FR_AB_GPIO_CTL);
3005
		EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
3006
		efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
B
Ben Hutchings 已提交
3007 3008
	}

3009 3010 3011 3012 3013
	rc = falcon_reset_sram(efx);
	if (rc)
		return rc;

	/* Set positions of descriptor caches in SRAM. */
3014
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
3015
	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
3016
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
3017
	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
3018 3019 3020

	/* Set TX descriptor cache size. */
	BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
3021
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
3022
	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
3023 3024 3025 3026 3027

	/* Set RX descriptor cache size.  Set low watermark to size-8, as
	 * this allows most efficient prefetching.
	 */
	BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
3028
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
3029
	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
3030
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
3031
	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
3032 3033 3034 3035 3036

	/* Clear the parity enables on the TX data fifos as
	 * they produce false parity errors because of timing issues
	 */
	if (EFX_WORKAROUND_5129(efx)) {
3037
		efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
3038
		EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
3039
		efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
3040 3041 3042 3043 3044 3045 3046 3047 3048
	}

	/* Enable all the genuinely fatal interrupts.  (They are still
	 * masked by the overall interrupt mask, controlled by
	 * falcon_interrupts()).
	 *
	 * Note: All other fatal interrupts are enabled
	 */
	EFX_POPULATE_OWORD_3(temp,
3049 3050 3051
			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
3052
	EFX_INVERT_OWORD(temp);
3053
	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
3054 3055

	if (EFX_WORKAROUND_7244(efx)) {
3056
		efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
3057 3058 3059 3060
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
3061
		efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
3062 3063 3064 3065
	}

	falcon_setup_rss_indir_table(efx);

3066
	/* XXX This is documented only for Falcon A0/A1 */
3067 3068 3069
	/* Setup RX.  Wait for descriptor is broken and must
	 * be disabled.  RXDP recovery shouldn't be needed, but is.
	 */
3070
	efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
3071 3072
	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
3073
	if (EFX_WORKAROUND_5583(efx))
3074
		EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
3075
	efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
3076 3077 3078 3079

	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
	 */
3080
	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
3081 3082 3083 3084 3085
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
3086
	/* Enable SW_EV to inherit in char driver - assume harmless here */
3087
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
3088
	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
3089
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
3090
	/* Squash TX of packets of 16 bytes or less */
3091
	if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3092
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
3093
	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
3094 3095 3096 3097

	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
	 * descriptors (which is bad).
	 */
3098
	efx_reado(efx, &temp, FR_AZ_TX_CFG);
3099
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
3100
	efx_writeo(efx, &temp, FR_AZ_TX_CFG);
3101

3102
	falcon_init_rx_cfg(efx);
3103 3104

	/* Set destination of both TX and RX Flush events */
3105
	if (falcon_rev(efx) >= FALCON_REV_B0) {
3106
		EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
3107
		efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
3108 3109 3110 3111 3112 3113 3114 3115
	}

	return 0;
}

void falcon_remove_nic(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
3116 3117
	int rc;

3118
	/* Remove I2C adapter and clear it in preparation for a retry */
3119 3120
	rc = i2c_del_adapter(&efx->i2c_adap);
	BUG_ON(rc);
3121
	memset(&efx->i2c_adap, 0, sizeof(efx->i2c_adap));
3122

3123
	falcon_remove_spi_devices(efx);
3124 3125
	falcon_free_buffer(efx, &efx->irq_status);

B
Ben Hutchings 已提交
3126
	falcon_reset_hw(efx, RESET_TYPE_ALL);
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142

	/* Release the second function after the reset */
	if (nic_data->pci_dev2) {
		pci_dev_put(nic_data->pci_dev2);
		nic_data->pci_dev2 = NULL;
	}

	/* Tear down the private nic state */
	kfree(efx->nic_data);
	efx->nic_data = NULL;
}

void falcon_update_nic_stats(struct efx_nic *efx)
{
	efx_oword_t cnt;

3143
	efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
3144 3145
	efx->n_rx_nodesc_drop_cnt +=
		EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
}

/**************************************************************************
 *
 * Revision-dependent attributes used by efx.c
 *
 **************************************************************************
 */

struct efx_nic_type falcon_a_nic_type = {
	.mem_bar = 2,
	.mem_map_size = 0x20000,
3158 3159 3160 3161 3162
	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
	.txd_ring_mask = FALCON_TXD_RING_MASK,
	.rxd_ring_mask = FALCON_RXD_RING_MASK,
	.evq_size = FALCON_EVQ_SIZE,
	.max_dma_mask = FALCON_DMA_MASK,
	.tx_dma_mask = FALCON_TX_DMA_MASK,
	.bug5391_mask = 0xf,
	.rx_buffer_padding = 0x24,
	.max_interrupt_mode = EFX_INT_MODE_MSI,
	.phys_addr_channels = 4,
};

struct efx_nic_type falcon_b_nic_type = {
	.mem_bar = 2,
	/* Map everything up to and including the RSS indirection
	 * table.  Don't map MSI-X table, MSI-X PBA since Linux
	 * requires that they not be mapped.  */
3179 3180 3181 3182 3183 3184 3185 3186
	.mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
			 FR_BZ_RX_INDIRECTION_TBL_STEP *
			 FR_BZ_RX_INDIRECTION_TBL_ROWS),
	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
	.txd_ring_mask = FALCON_TXD_RING_MASK,
	.rxd_ring_mask = FALCON_RXD_RING_MASK,
	.evq_size = FALCON_EVQ_SIZE,
	.max_dma_mask = FALCON_DMA_MASK,
	.tx_dma_mask = FALCON_TX_DMA_MASK,
	.bug5391_mask = 0,
	.rx_buffer_padding = 0,
	.max_interrupt_mode = EFX_INT_MODE_MSIX,
	.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
				   * interrupt handler only supports 32
				   * channels */
};