at24.c 25.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * at24.c - handle most I2C EEPROMs
 *
 * Copyright (C) 2005-2007 David Brownell
 * Copyright (C) 2008 Wolfram Sang, Pengutronix
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
15
#include <linux/of_device.h>
16 17 18 19 20 21 22
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/mod_devicetable.h>
#include <linux/log2.h>
#include <linux/bitops.h>
#include <linux/jiffies.h>
23
#include <linux/property.h>
24
#include <linux/acpi.h>
25
#include <linux/i2c.h>
26
#include <linux/nvmem-provider.h>
27
#include <linux/platform_data/at24.h>
28
#include <linux/pm_runtime.h>
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

/*
 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
 * Differences between different vendor product lines (like Atmel AT24C or
 * MicroChip 24LC, etc) won't much matter for typical read/write access.
 * There are also I2C RAM chips, likewise interchangeable. One example
 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
 *
 * However, misconfiguration can lose data. "Set 16-bit memory address"
 * to a part with 8-bit addressing will overwrite data. Writing with too
 * big a page size also loses data. And it's not safe to assume that the
 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
 * uses 0x51, for just one example.
 *
 * Accordingly, explicit board-specific configuration data should be used
 * in almost all cases. (One partial exception is an SMBus used to access
 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
 *
 * So this driver uses "new style" I2C driver binding, expecting to be
 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
 * similar kernel-resident tables; or, configuration data coming from
 * a bootloader.
 *
 * Other than binding model, current differences from "eeprom" driver are
 * that this one handles write access and isn't restricted to 24c02 devices.
 * It also handles larger devices (32 kbit and up) with two-byte addresses,
 * which won't work on pure SMBus systems.
 */

struct at24_data {
	struct at24_platform_data chip;
60
	int use_smbus;
61
	int use_smbus_write;
62

63 64 65 66
	ssize_t (*read_func)(struct at24_data *, char *, unsigned int, size_t);
	ssize_t (*write_func)(struct at24_data *,
			      const char *, unsigned int, size_t);

67 68 69 70 71 72 73 74 75 76
	/*
	 * Lock protects against activities from other Linux tasks,
	 * but not from changes by other I2C masters.
	 */
	struct mutex lock;

	u8 *writebuf;
	unsigned write_max;
	unsigned num_addresses;

77 78 79
	struct nvmem_config nvmem_config;
	struct nvmem_device *nvmem;

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
	/*
	 * Some chips tie up multiple I2C addresses; dummy devices reserve
	 * them for us, and we'll use them with SMBus calls.
	 */
	struct i2c_client *client[];
};

/*
 * This parameter is to help this driver avoid blocking other drivers out
 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
 * clock, one 256 byte read takes about 1/43 second which is excessive;
 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
 *
 * This value is forced to be a power of two so that writes align on pages.
 */
static unsigned io_limit = 128;
module_param(io_limit, uint, 0);
MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");

/*
 * Specs often allow 5 msec for a page write, sometimes 20 msec;
 * it's important to recover from write timeouts.
 */
static unsigned write_timeout = 25;
module_param(write_timeout, uint, 0);
MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");

#define AT24_SIZE_BYTELEN 5
#define AT24_SIZE_FLAGS 8

#define AT24_BITMASK(x) (BIT(x) - 1)

/* create non-zero magic value for given eeprom parameters */
#define AT24_DEVICE_MAGIC(_len, _flags) 		\
	((1 << AT24_SIZE_FLAGS | (_flags)) 		\
	    << AT24_SIZE_BYTELEN | ilog2(_len))

118 119 120
/*
 * Both reads and writes fail if the previous write didn't complete yet. This
 * macro loops a few times waiting at least long enough for one entire page
121 122
 * write to work while making sure that at least one iteration is run before
 * checking the break condition.
123 124 125 126 127 128 129
 *
 * It takes two parameters: a variable in which the future timeout in jiffies
 * will be stored and a temporary variable holding the time of the last
 * iteration of processing the request. Both should be unsigned integers
 * holding at least 32 bits.
 */
#define loop_until_timeout(tout, op_time)				\
130 131
	for (tout = jiffies + msecs_to_jiffies(write_timeout), op_time = 0; \
	     op_time ? time_before(op_time, tout) : true;		\
132 133
	     usleep_range(1000, 1500), op_time = jiffies)

134 135
static const struct i2c_device_id at24_ids[] = {
	/* needs 8 addresses as A0-A2 are ignored */
136
	{ "24c00",	AT24_DEVICE_MAGIC(128 / 8,	AT24_FLAG_TAKE8ADDR) },
137
	/* old variants can't be handled with this generic entry! */
138
	{ "24c01",	AT24_DEVICE_MAGIC(1024 / 8,	0) },
139 140
	{ "24cs01",	AT24_DEVICE_MAGIC(16,
				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
141
	{ "24c02",	AT24_DEVICE_MAGIC(2048 / 8,	0) },
142 143
	{ "24cs02",	AT24_DEVICE_MAGIC(16,
				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
144 145 146 147
	{ "24mac402",	AT24_DEVICE_MAGIC(48 / 8,
				AT24_FLAG_MAC | AT24_FLAG_READONLY) },
	{ "24mac602",	AT24_DEVICE_MAGIC(64 / 8,
				AT24_FLAG_MAC | AT24_FLAG_READONLY) },
148
	/* spd is a 24c02 in memory DIMMs */
149 150 151
	{ "spd",	AT24_DEVICE_MAGIC(2048 / 8,
				AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
	{ "24c04",	AT24_DEVICE_MAGIC(4096 / 8,	0) },
152 153
	{ "24cs04",	AT24_DEVICE_MAGIC(16,
				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
154
	/* 24rf08 quirk is handled at i2c-core */
155
	{ "24c08",	AT24_DEVICE_MAGIC(8192 / 8,	0) },
156 157
	{ "24cs08",	AT24_DEVICE_MAGIC(16,
				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
158
	{ "24c16",	AT24_DEVICE_MAGIC(16384 / 8,	0) },
159 160
	{ "24cs16",	AT24_DEVICE_MAGIC(16,
				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
161
	{ "24c32",	AT24_DEVICE_MAGIC(32768 / 8,	AT24_FLAG_ADDR16) },
162 163 164 165
	{ "24cs32",	AT24_DEVICE_MAGIC(16,
				AT24_FLAG_ADDR16 |
				AT24_FLAG_SERIAL |
				AT24_FLAG_READONLY) },
166
	{ "24c64",	AT24_DEVICE_MAGIC(65536 / 8,	AT24_FLAG_ADDR16) },
167 168 169 170
	{ "24cs64",	AT24_DEVICE_MAGIC(16,
				AT24_FLAG_ADDR16 |
				AT24_FLAG_SERIAL |
				AT24_FLAG_READONLY) },
171 172 173 174
	{ "24c128",	AT24_DEVICE_MAGIC(131072 / 8,	AT24_FLAG_ADDR16) },
	{ "24c256",	AT24_DEVICE_MAGIC(262144 / 8,	AT24_FLAG_ADDR16) },
	{ "24c512",	AT24_DEVICE_MAGIC(524288 / 8,	AT24_FLAG_ADDR16) },
	{ "24c1024",	AT24_DEVICE_MAGIC(1048576 / 8,	AT24_FLAG_ADDR16) },
175 176 177 178 179
	{ "at24", 0 },
	{ /* END OF LIST */ }
};
MODULE_DEVICE_TABLE(i2c, at24_ids);

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
static const struct of_device_id at24_of_match[] = {
	{
		.compatible = "atmel,24c00",
		.data = (void *)AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR)
	},
	{
		.compatible = "atmel,24c01",
		.data = (void *)AT24_DEVICE_MAGIC(1024 / 8, 0)
	},
	{
		.compatible = "atmel,24c02",
		.data = (void *)AT24_DEVICE_MAGIC(2048 / 8, 0)
	},
	{
		.compatible = "atmel,spd",
		.data = (void *)AT24_DEVICE_MAGIC(2048 / 8,
				AT24_FLAG_READONLY | AT24_FLAG_IRUGO)
	},
	{
		.compatible = "atmel,24c04",
		.data = (void *)AT24_DEVICE_MAGIC(4096 / 8, 0)
	},
	{
		.compatible = "atmel,24c08",
		.data = (void *)AT24_DEVICE_MAGIC(8192 / 8, 0)
	},
	{
		.compatible = "atmel,24c16",
		.data = (void *)AT24_DEVICE_MAGIC(16384 / 8, 0)
	},
	{
		.compatible = "atmel,24c32",
		.data = (void *)AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16)
	},
	{
		.compatible = "atmel,24c64",
		.data = (void *)AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16)
	},
	{
		.compatible = "atmel,24c128",
		.data = (void *)AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16)
	},
	{
		.compatible = "atmel,24c256",
		.data = (void *)AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16)
	},
	{
		.compatible = "atmel,24c512",
		.data = (void *)AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16)
	},
	{
		.compatible = "atmel,24c1024",
		.data = (void *)AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16)
	},
	{ },
};
MODULE_DEVICE_TABLE(of, at24_of_match);

238 239 240 241 242 243
static const struct acpi_device_id at24_acpi_ids[] = {
	{ "INT3499", AT24_DEVICE_MAGIC(8192 / 8, 0) },
	{ }
};
MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);

244 245 246 247 248 249
/*-------------------------------------------------------------------------*/

/*
 * This routine supports chips which consume multiple I2C addresses. It
 * computes the addressing information to be used for a given r/w request.
 * Assumes that sanity checks for offset happened at sysfs-layer.
250 251 252 253 254 255 256 257 258 259 260 261 262
 *
 * Slave address and byte offset derive from the offset. Always
 * set the byte address; on a multi-master board, another master
 * may have changed the chip's "current" address pointer.
 *
 * REVISIT some multi-address chips don't rollover page reads to
 * the next slave address, so we may need to truncate the count.
 * Those chips might need another quirk flag.
 *
 * If the real hardware used four adjacent 24c02 chips and that
 * were misconfigured as one 24c08, that would be a similar effect:
 * one "eeprom" file not four, but larger reads would fail when
 * they crossed certain pages.
263 264
 */
static struct i2c_client *at24_translate_offset(struct at24_data *at24,
265
						unsigned int *offset)
266 267 268 269 270 271 272 273 274 275 276 277 278 279
{
	unsigned i;

	if (at24->chip.flags & AT24_FLAG_ADDR16) {
		i = *offset >> 16;
		*offset &= 0xffff;
	} else {
		i = *offset >> 8;
		*offset &= 0xff;
	}

	return at24->client[i];
}

280 281
static ssize_t at24_eeprom_read_smbus(struct at24_data *at24, char *buf,
				      unsigned int offset, size_t count)
282
{
283
	unsigned long timeout, read_time;
284
	struct i2c_client *client;
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
	int status;

	client = at24_translate_offset(at24, &offset);

	if (count > io_limit)
		count = io_limit;

	/* Smaller eeproms can work given some SMBus extension calls */
	if (count > I2C_SMBUS_BLOCK_MAX)
		count = I2C_SMBUS_BLOCK_MAX;

	loop_until_timeout(timeout, read_time) {
		status = i2c_smbus_read_i2c_block_data_or_emulated(client,
								   offset,
								   count, buf);

		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
				count, offset, status, jiffies);

		if (status == count)
			return count;
	}

	return -ETIMEDOUT;
}

static ssize_t at24_eeprom_read_i2c(struct at24_data *at24, char *buf,
				    unsigned int offset, size_t count)
{
W
Wolfram Sang 已提交
314
	unsigned long timeout, read_time;
315 316
	struct i2c_client *client;
	struct i2c_msg msg[2];
317
	int status, i;
318
	u8 msgbuf[2];
319 320 321 322 323 324 325

	memset(msg, 0, sizeof(msg));
	client = at24_translate_offset(at24, &offset);

	if (count > io_limit)
		count = io_limit;

326 327 328 329 330 331 332 333 334 335
	/*
	 * When we have a better choice than SMBus calls, use a combined I2C
	 * message. Write address; then read up to io_limit data bytes. Note
	 * that read page rollover helps us here (unlike writes). msgbuf is
	 * u8 and will cast to our needs.
	 */
	i = 0;
	if (at24->chip.flags & AT24_FLAG_ADDR16)
		msgbuf[i++] = offset >> 8;
	msgbuf[i++] = offset;
W
Wolfram Sang 已提交
336

337 338 339
	msg[0].addr = client->addr;
	msg[0].buf = msgbuf;
	msg[0].len = i;
W
Wolfram Sang 已提交
340

341 342 343 344
	msg[1].addr = client->addr;
	msg[1].flags = I2C_M_RD;
	msg[1].buf = buf;
	msg[1].len = count;
345

346
	loop_until_timeout(timeout, read_time) {
347 348 349 350
		status = i2c_transfer(client->adapter, msg, 2);
		if (status == 2)
			status = count;

W
Wolfram Sang 已提交
351 352
		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
				count, offset, status, jiffies);
353

W
Wolfram Sang 已提交
354 355
		if (status == count)
			return count;
356
	}
357

W
Wolfram Sang 已提交
358
	return -ETIMEDOUT;
359 360
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
static ssize_t at24_eeprom_read_serial(struct at24_data *at24, char *buf,
				       unsigned int offset, size_t count)
{
	unsigned long timeout, read_time;
	struct i2c_client *client;
	struct i2c_msg msg[2];
	u8 addrbuf[2];
	int status;

	client = at24_translate_offset(at24, &offset);

	memset(msg, 0, sizeof(msg));
	msg[0].addr = client->addr;
	msg[0].buf = addrbuf;

	/*
	 * The address pointer of the device is shared between the regular
	 * EEPROM array and the serial number block. The dummy write (part of
	 * the sequential read protocol) ensures the address pointer is reset
	 * to the desired position.
	 */
	if (at24->chip.flags & AT24_FLAG_ADDR16) {
		/*
		 * For 16 bit address pointers, the word address must contain
		 * a '10' sequence in bits 11 and 10 regardless of the
		 * intended position of the address pointer.
		 */
		addrbuf[0] = 0x08;
		addrbuf[1] = offset;
		msg[0].len = 2;
	} else {
		/*
		 * Otherwise the word address must begin with a '10' sequence,
		 * regardless of the intended address.
		 */
		addrbuf[0] = 0x80 + offset;
		msg[0].len = 1;
	}

	msg[1].addr = client->addr;
	msg[1].flags = I2C_M_RD;
	msg[1].buf = buf;
	msg[1].len = count;

	loop_until_timeout(timeout, read_time) {
		status = i2c_transfer(client->adapter, msg, 2);
		if (status == 2)
			return count;
	}

	return -ETIMEDOUT;
}

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
static ssize_t at24_eeprom_read_mac(struct at24_data *at24, char *buf,
				    unsigned int offset, size_t count)
{
	unsigned long timeout, read_time;
	struct i2c_client *client;
	struct i2c_msg msg[2];
	u8 addrbuf[2];
	int status;

	client = at24_translate_offset(at24, &offset);

	memset(msg, 0, sizeof(msg));
	msg[0].addr = client->addr;
	msg[0].buf = addrbuf;
	addrbuf[0] = 0x90 + offset;
	msg[0].len = 1;
	msg[1].addr = client->addr;
	msg[1].flags = I2C_M_RD;
	msg[1].buf = buf;
	msg[1].len = count;

	loop_until_timeout(timeout, read_time) {
		status = i2c_transfer(client->adapter, msg, 2);
		if (status == 2)
			return count;
	}

	return -ETIMEDOUT;
}

444 445 446 447 448
/*
 * Note that if the hardware write-protect pin is pulled high, the whole
 * chip is normally write protected. But there are plenty of product
 * variants here, including OTP fuses and partial chip protect.
 *
449 450
 * We only use page mode writes; the alternative is sloooow. These routines
 * write at most one page.
451
 */
452 453 454

static size_t at24_adjust_write_count(struct at24_data *at24,
				      unsigned int offset, size_t count)
455 456 457 458 459 460 461 462 463 464 465 466
{
	unsigned next_page;

	/* write_max is at most a page */
	if (count > at24->write_max)
		count = at24->write_max;

	/* Never roll over backwards, to the start of this page */
	next_page = roundup(offset + 1, at24->chip.page_size);
	if (offset + count > next_page)
		count = next_page - offset;

467 468 469 470 471 472 473 474 475 476 477 478 479
	return count;
}

static ssize_t at24_eeprom_write_smbus_block(struct at24_data *at24,
					     const char *buf,
					     unsigned int offset, size_t count)
{
	unsigned long timeout, write_time;
	struct i2c_client *client;
	ssize_t status = 0;

	client = at24_translate_offset(at24, &offset);
	count = at24_adjust_write_count(at24, offset, count);
480

481 482 483 484 485
	loop_until_timeout(timeout, write_time) {
		status = i2c_smbus_write_i2c_block_data(client,
							offset, count, buf);
		if (status == 0)
			status = count;
486

487 488
		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
				count, offset, status, jiffies);
489

490 491
		if (status == count)
			return count;
492 493
	}

494 495 496 497 498 499 500 501 502 503 504 505 506
	return -ETIMEDOUT;
}

static ssize_t at24_eeprom_write_smbus_byte(struct at24_data *at24,
					    const char *buf,
					    unsigned int offset, size_t count)
{
	unsigned long timeout, write_time;
	struct i2c_client *client;
	ssize_t status = 0;

	client = at24_translate_offset(at24, &offset);

507
	loop_until_timeout(timeout, write_time) {
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
		status = i2c_smbus_write_byte_data(client, offset, buf[0]);
		if (status == 0)
			status = count;

		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
				count, offset, status, jiffies);

		if (status == count)
			return count;
	}

	return -ETIMEDOUT;
}

static ssize_t at24_eeprom_write_i2c(struct at24_data *at24, const char *buf,
				     unsigned int offset, size_t count)
{
	unsigned long timeout, write_time;
	struct i2c_client *client;
	struct i2c_msg msg;
	ssize_t status = 0;
	int i = 0;

	client = at24_translate_offset(at24, &offset);
	count = at24_adjust_write_count(at24, offset, count);

	msg.addr = client->addr;
	msg.flags = 0;

	/* msg.buf is u8 and casts will mask the values */
	msg.buf = at24->writebuf;
	if (at24->chip.flags & AT24_FLAG_ADDR16)
		msg.buf[i++] = offset >> 8;

	msg.buf[i++] = offset;
	memcpy(&msg.buf[i], buf, count);
	msg.len = i + count;

	loop_until_timeout(timeout, write_time) {
		status = i2c_transfer(client->adapter, &msg, 1);
		if (status == 1)
			status = count;

551
		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
552 553 554 555
				count, offset, status, jiffies);

		if (status == count)
			return count;
556
	}
557 558 559 560

	return -ETIMEDOUT;
}

561 562 563
static int at24_read(void *priv, unsigned int off, void *val, size_t count)
{
	struct at24_data *at24 = priv;
564
	struct i2c_client *client;
565
	char *buf = val;
566
	int ret;
567 568 569 570

	if (unlikely(!count))
		return count;

571 572 573 574 575 576 577 578
	client = at24_translate_offset(at24, &off);

	ret = pm_runtime_get_sync(&client->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&client->dev);
		return ret;
	}

579 580 581 582 583 584 585 586 587
	/*
	 * Read data from chip, protecting against concurrent updates
	 * from this host, but not from other I2C masters.
	 */
	mutex_lock(&at24->lock);

	while (count) {
		int	status;

588
		status = at24->read_func(at24, buf, off, count);
589 590
		if (status < 0) {
			mutex_unlock(&at24->lock);
591
			pm_runtime_put(&client->dev);
592 593 594 595 596 597 598 599 600
			return status;
		}
		buf += status;
		off += status;
		count -= status;
	}

	mutex_unlock(&at24->lock);

601 602
	pm_runtime_put(&client->dev);

603 604 605
	return 0;
}

606
static int at24_write(void *priv, unsigned int off, void *val, size_t count)
607
{
608
	struct at24_data *at24 = priv;
609
	struct i2c_client *client;
610
	char *buf = val;
611
	int ret;
612 613

	if (unlikely(!count))
614
		return -EINVAL;
615

616 617 618 619 620 621 622 623
	client = at24_translate_offset(at24, &off);

	ret = pm_runtime_get_sync(&client->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&client->dev);
		return ret;
	}

624 625 626 627 628 629 630
	/*
	 * Write data to chip, protecting against concurrent updates
	 * from this host, but not from other I2C masters.
	 */
	mutex_lock(&at24->lock);

	while (count) {
631
		int status;
632

633
		status = at24->write_func(at24, buf, off, count);
634 635
		if (status < 0) {
			mutex_unlock(&at24->lock);
636
			pm_runtime_put(&client->dev);
637
			return status;
638 639 640 641 642 643 644 645
		}
		buf += status;
		off += status;
		count -= status;
	}

	mutex_unlock(&at24->lock);

646 647
	pm_runtime_put(&client->dev);

648 649 650
	return 0;
}

651
static void at24_get_pdata(struct device *dev, struct at24_platform_data *chip)
W
Wolfram Sang 已提交
652
{
653 654 655 656 657 658
	int err;
	u32 val;

	if (device_property_present(dev, "read-only"))
		chip->flags |= AT24_FLAG_READONLY;

659 660 661 662
	err = device_property_read_u32(dev, "size", &val);
	if (!err)
		chip->byte_len = val;

663 664 665 666 667 668 669 670 671 672
	err = device_property_read_u32(dev, "pagesize", &val);
	if (!err) {
		chip->page_size = val;
	} else {
		/*
		 * This is slow, but we can't know all eeproms, so we better
		 * play safe. Specifying custom eeprom-types via platform_data
		 * is recommended anyhow.
		 */
		chip->page_size = 1;
W
Wolfram Sang 已提交
673 674 675
	}
}

676 677 678
static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
	struct at24_platform_data chip;
679
	kernel_ulong_t magic = 0;
680
	bool writable;
681
	int use_smbus = 0;
682
	int use_smbus_write = 0;
683 684 685
	struct at24_data *at24;
	int err;
	unsigned i, num_addresses;
686
	u8 test_byte;
687 688 689 690

	if (client->dev.platform_data) {
		chip = *(struct at24_platform_data *)client->dev.platform_data;
	} else {
691 692 693 694 695 696 697 698 699 700
		/*
		 * The I2C core allows OF nodes compatibles to match against the
		 * I2C device ID table as a fallback, so check not only if an OF
		 * node is present but also if it matches an OF device ID entry.
		 */
		if (client->dev.of_node &&
		    of_match_device(at24_of_match, &client->dev)) {
			magic = (kernel_ulong_t)
				of_device_get_match_data(&client->dev);
		} else if (id) {
701 702 703 704 705 706 707 708 709
			magic = id->driver_data;
		} else {
			const struct acpi_device_id *aid;

			aid = acpi_match_device(at24_acpi_ids, &client->dev);
			if (aid)
				magic = aid->driver_data;
		}
		if (!magic)
710 711
			return -ENODEV;

712 713 714
		chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
		magic >>= AT24_SIZE_BYTELEN;
		chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
715

716
		at24_get_pdata(&client->dev, &chip);
W
Wolfram Sang 已提交
717

718 719
		chip.setup = NULL;
		chip.context = NULL;
720 721 722 723 724
	}

	if (!is_power_of_2(chip.byte_len))
		dev_warn(&client->dev,
			"byte_len looks suspicious (no power of 2)!\n");
725 726
	if (!chip.page_size) {
		dev_err(&client->dev, "page_size must not be 0!\n");
727
		return -EINVAL;
728
	}
729 730 731 732
	if (!is_power_of_2(chip.page_size))
		dev_warn(&client->dev,
			"page_size looks suspicious (no power of 2)!\n");

733 734 735 736 737 738 739 740 741 742
	/*
	 * REVISIT: the size of the EUI-48 byte array is 6 in at24mac402, while
	 * the call to ilog2() in AT24_DEVICE_MAGIC() rounds it down to 4.
	 *
	 * Eventually we'll get rid of the magic values altoghether in favor of
	 * real structs, but for now just manually set the right size.
	 */
	if (chip.flags & AT24_FLAG_MAC && chip.byte_len == 4)
		chip.byte_len = 6;

743 744
	/* Use I2C operations unless we're stuck with SMBus extensions. */
	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
745 746 747
		if (chip.flags & AT24_FLAG_ADDR16)
			return -EPFNOSUPPORT;

748
		if (i2c_check_functionality(client->adapter,
749
				I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
750 751 752 753 754 755 756 757
			use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
		} else if (i2c_check_functionality(client->adapter,
				I2C_FUNC_SMBUS_READ_WORD_DATA)) {
			use_smbus = I2C_SMBUS_WORD_DATA;
		} else if (i2c_check_functionality(client->adapter,
				I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
			use_smbus = I2C_SMBUS_BYTE_DATA;
		} else {
758
			return -EPFNOSUPPORT;
759 760
		}

761 762 763 764 765 766 767 768 769 770
		if (i2c_check_functionality(client->adapter,
				I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
			use_smbus_write = I2C_SMBUS_I2C_BLOCK_DATA;
		} else if (i2c_check_functionality(client->adapter,
				I2C_FUNC_SMBUS_WRITE_BYTE_DATA)) {
			use_smbus_write = I2C_SMBUS_BYTE_DATA;
			chip.page_size = 1;
		}
	}

771 772 773 774 775 776
	if (chip.flags & AT24_FLAG_TAKE8ADDR)
		num_addresses = 8;
	else
		num_addresses =	DIV_ROUND_UP(chip.byte_len,
			(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);

777
	at24 = devm_kzalloc(&client->dev, sizeof(struct at24_data) +
778
		num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
779 780
	if (!at24)
		return -ENOMEM;
781 782 783

	mutex_init(&at24->lock);
	at24->use_smbus = use_smbus;
784
	at24->use_smbus_write = use_smbus_write;
785 786 787
	at24->chip = chip;
	at24->num_addresses = num_addresses;

788 789 790 791 792 793
	if ((chip.flags & AT24_FLAG_SERIAL) && (chip.flags & AT24_FLAG_MAC)) {
		dev_err(&client->dev,
			"invalid device data - cannot have both AT24_FLAG_SERIAL & AT24_FLAG_MAC.");
		return -EINVAL;
	}

794 795
	if (chip.flags & AT24_FLAG_SERIAL) {
		at24->read_func = at24_eeprom_read_serial;
796 797
	} else if (chip.flags & AT24_FLAG_MAC) {
		at24->read_func = at24_eeprom_read_mac;
798 799 800 801 802
	} else {
		at24->read_func = at24->use_smbus ? at24_eeprom_read_smbus
						  : at24_eeprom_read_i2c;
	}

803 804 805 806 807 808 809 810
	if (at24->use_smbus) {
		if (at24->use_smbus_write == I2C_SMBUS_I2C_BLOCK_DATA)
			at24->write_func = at24_eeprom_write_smbus_block;
		else
			at24->write_func = at24_eeprom_write_smbus_byte;
	} else {
		at24->write_func = at24_eeprom_write_i2c;
	}
811

812 813
	writable = !(chip.flags & AT24_FLAG_READONLY);
	if (writable) {
814
		if (!use_smbus || use_smbus_write) {
815 816 817 818 819 820 821 822 823 824

			unsigned write_max = chip.page_size;

			if (write_max > io_limit)
				write_max = io_limit;
			if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
				write_max = I2C_SMBUS_BLOCK_MAX;
			at24->write_max = write_max;

			/* buffer (data + address at the beginning) */
825 826 827 828
			at24->writebuf = devm_kzalloc(&client->dev,
				write_max + 2, GFP_KERNEL);
			if (!at24->writebuf)
				return -ENOMEM;
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
		} else {
			dev_warn(&client->dev,
				"cannot write due to controller restrictions.");
		}
	}

	at24->client[0] = client;

	/* use dummy devices for multiple-address chips */
	for (i = 1; i < num_addresses; i++) {
		at24->client[i] = i2c_new_dummy(client->adapter,
					client->addr + i);
		if (!at24->client[i]) {
			dev_err(&client->dev, "address 0x%02x unavailable\n",
					client->addr + i);
			err = -EADDRINUSE;
			goto err_clients;
		}
	}

849 850
	i2c_set_clientdata(client, at24);

851 852 853 854
	/* enable runtime pm */
	pm_runtime_set_active(&client->dev);
	pm_runtime_enable(&client->dev);

855 856 857 858 859
	/*
	 * Perform a one-byte test read to verify that the
	 * chip is functional.
	 */
	err = at24_read(at24, 0, &test_byte, 1);
860
	pm_runtime_idle(&client->dev);
861 862 863 864 865
	if (err) {
		err = -ENODEV;
		goto err_clients;
	}

866 867 868 869 870 871 872
	at24->nvmem_config.name = dev_name(&client->dev);
	at24->nvmem_config.dev = &client->dev;
	at24->nvmem_config.read_only = !writable;
	at24->nvmem_config.root_only = true;
	at24->nvmem_config.owner = THIS_MODULE;
	at24->nvmem_config.compat = true;
	at24->nvmem_config.base_dev = &client->dev;
873 874 875 876 877 878
	at24->nvmem_config.reg_read = at24_read;
	at24->nvmem_config.reg_write = at24_write;
	at24->nvmem_config.priv = at24;
	at24->nvmem_config.stride = 4;
	at24->nvmem_config.word_size = 1;
	at24->nvmem_config.size = chip.byte_len;
879 880 881 882 883 884 885

	at24->nvmem = nvmem_register(&at24->nvmem_config);

	if (IS_ERR(at24->nvmem)) {
		err = PTR_ERR(at24->nvmem);
		goto err_clients;
	}
886

887 888
	dev_info(&client->dev, "%u byte %s EEPROM, %s, %u bytes/write\n",
		chip.byte_len, client->name,
W
Wolfram Sang 已提交
889
		writable ? "writable" : "read-only", at24->write_max);
890 891 892 893 894 895
	if (use_smbus == I2C_SMBUS_WORD_DATA ||
	    use_smbus == I2C_SMBUS_BYTE_DATA) {
		dev_notice(&client->dev, "Falling back to %s reads, "
			   "performance will suffer\n", use_smbus ==
			   I2C_SMBUS_WORD_DATA ? "word" : "byte");
	}
896

897 898
	/* export data to kernel code */
	if (chip.setup)
899
		chip.setup(at24->nvmem, chip.context);
900

901 902 903 904 905 906 907
	return 0;

err_clients:
	for (i = 1; i < num_addresses; i++)
		if (at24->client[i])
			i2c_unregister_device(at24->client[i]);

908 909
	pm_runtime_disable(&client->dev);

910 911 912
	return err;
}

B
Bill Pemberton 已提交
913
static int at24_remove(struct i2c_client *client)
914 915 916 917 918
{
	struct at24_data *at24;
	int i;

	at24 = i2c_get_clientdata(client);
919 920

	nvmem_unregister(at24->nvmem);
921 922 923 924

	for (i = 1; i < at24->num_addresses; i++)
		i2c_unregister_device(at24->client[i]);

925 926 927
	pm_runtime_disable(&client->dev);
	pm_runtime_set_suspended(&client->dev);

928 929 930 931 932 933 934 935
	return 0;
}

/*-------------------------------------------------------------------------*/

static struct i2c_driver at24_driver = {
	.driver = {
		.name = "at24",
936
		.of_match_table = at24_of_match,
937
		.acpi_match_table = ACPI_PTR(at24_acpi_ids),
938 939
	},
	.probe = at24_probe,
940
	.remove = at24_remove,
941 942 943 944 945
	.id_table = at24_ids,
};

static int __init at24_init(void)
{
946 947 948 949 950
	if (!io_limit) {
		pr_err("at24: io_limit must not be 0!\n");
		return -EINVAL;
	}

951 952 953 954 955 956 957 958 959 960 961 962 963 964
	io_limit = rounddown_pow_of_two(io_limit);
	return i2c_add_driver(&at24_driver);
}
module_init(at24_init);

static void __exit at24_exit(void)
{
	i2c_del_driver(&at24_driver);
}
module_exit(at24_exit);

MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
MODULE_AUTHOR("David Brownell and Wolfram Sang");
MODULE_LICENSE("GPL");