at24.c 18.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/*
 * at24.c - handle most I2C EEPROMs
 *
 * Copyright (C) 2005-2007 David Brownell
 * Copyright (C) 2008 Wolfram Sang, Pengutronix
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/sysfs.h>
#include <linux/mod_devicetable.h>
#include <linux/log2.h>
#include <linux/bitops.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/i2c/at24.h>

/*
 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
 * Differences between different vendor product lines (like Atmel AT24C or
 * MicroChip 24LC, etc) won't much matter for typical read/write access.
 * There are also I2C RAM chips, likewise interchangeable. One example
 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
 *
 * However, misconfiguration can lose data. "Set 16-bit memory address"
 * to a part with 8-bit addressing will overwrite data. Writing with too
 * big a page size also loses data. And it's not safe to assume that the
 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
 * uses 0x51, for just one example.
 *
 * Accordingly, explicit board-specific configuration data should be used
 * in almost all cases. (One partial exception is an SMBus used to access
 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
 *
 * So this driver uses "new style" I2C driver binding, expecting to be
 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
 * similar kernel-resident tables; or, configuration data coming from
 * a bootloader.
 *
 * Other than binding model, current differences from "eeprom" driver are
 * that this one handles write access and isn't restricted to 24c02 devices.
 * It also handles larger devices (32 kbit and up) with two-byte addresses,
 * which won't work on pure SMBus systems.
 */

struct at24_data {
	struct at24_platform_data chip;
56
	struct memory_accessor macc;
57
	int use_smbus;
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

	/*
	 * Lock protects against activities from other Linux tasks,
	 * but not from changes by other I2C masters.
	 */
	struct mutex lock;
	struct bin_attribute bin;

	u8 *writebuf;
	unsigned write_max;
	unsigned num_addresses;

	/*
	 * Some chips tie up multiple I2C addresses; dummy devices reserve
	 * them for us, and we'll use them with SMBus calls.
	 */
	struct i2c_client *client[];
};

/*
 * This parameter is to help this driver avoid blocking other drivers out
 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
 * clock, one 256 byte read takes about 1/43 second which is excessive;
 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
 *
 * This value is forced to be a power of two so that writes align on pages.
 */
static unsigned io_limit = 128;
module_param(io_limit, uint, 0);
MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");

/*
 * Specs often allow 5 msec for a page write, sometimes 20 msec;
 * it's important to recover from write timeouts.
 */
static unsigned write_timeout = 25;
module_param(write_timeout, uint, 0);
MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");

#define AT24_SIZE_BYTELEN 5
#define AT24_SIZE_FLAGS 8

#define AT24_BITMASK(x) (BIT(x) - 1)

/* create non-zero magic value for given eeprom parameters */
#define AT24_DEVICE_MAGIC(_len, _flags) 		\
	((1 << AT24_SIZE_FLAGS | (_flags)) 		\
	    << AT24_SIZE_BYTELEN | ilog2(_len))

static const struct i2c_device_id at24_ids[] = {
	/* needs 8 addresses as A0-A2 are ignored */
	{ "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
	/* old variants can't be handled with this generic entry! */
	{ "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
	{ "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
	/* spd is a 24c02 in memory DIMMs */
	{ "spd", AT24_DEVICE_MAGIC(2048 / 8,
		AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
	{ "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
	/* 24rf08 quirk is handled at i2c-core */
	{ "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
	{ "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
	{ "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
	{ "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
	{ "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
	{ "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
	{ "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
	{ "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
	{ "at24", 0 },
	{ /* END OF LIST */ }
};
MODULE_DEVICE_TABLE(i2c, at24_ids);

/*-------------------------------------------------------------------------*/

/*
 * This routine supports chips which consume multiple I2C addresses. It
 * computes the addressing information to be used for a given r/w request.
 * Assumes that sanity checks for offset happened at sysfs-layer.
 */
static struct i2c_client *at24_translate_offset(struct at24_data *at24,
		unsigned *offset)
{
	unsigned i;

	if (at24->chip.flags & AT24_FLAG_ADDR16) {
		i = *offset >> 16;
		*offset &= 0xffff;
	} else {
		i = *offset >> 8;
		*offset &= 0xff;
	}

	return at24->client[i];
}

static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
		unsigned offset, size_t count)
{
	struct i2c_msg msg[2];
	u8 msgbuf[2];
	struct i2c_client *client;
W
Wolfram Sang 已提交
161
	unsigned long timeout, read_time;
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
	int status, i;

	memset(msg, 0, sizeof(msg));

	/*
	 * REVISIT some multi-address chips don't rollover page reads to
	 * the next slave address, so we may need to truncate the count.
	 * Those chips might need another quirk flag.
	 *
	 * If the real hardware used four adjacent 24c02 chips and that
	 * were misconfigured as one 24c08, that would be a similar effect:
	 * one "eeprom" file not four, but larger reads would fail when
	 * they crossed certain pages.
	 */

	/*
	 * Slave address and byte offset derive from the offset. Always
	 * set the byte address; on a multi-master board, another master
	 * may have changed the chip's "current" address pointer.
	 */
	client = at24_translate_offset(at24, &offset);

	if (count > io_limit)
		count = io_limit;

187 188
	switch (at24->use_smbus) {
	case I2C_SMBUS_I2C_BLOCK_DATA:
W
Wolfram Sang 已提交
189
		/* Smaller eeproms can work given some SMBus extension calls */
190 191
		if (count > I2C_SMBUS_BLOCK_MAX)
			count = I2C_SMBUS_BLOCK_MAX;
192 193 194 195 196 197 198 199
		break;
	case I2C_SMBUS_WORD_DATA:
		count = 2;
		break;
	case I2C_SMBUS_BYTE_DATA:
		count = 1;
		break;
	default:
W
Wolfram Sang 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
		/*
		 * When we have a better choice than SMBus calls, use a
		 * combined I2C message. Write address; then read up to
		 * io_limit data bytes. Note that read page rollover helps us
		 * here (unlike writes). msgbuf is u8 and will cast to our
		 * needs.
		 */
		i = 0;
		if (at24->chip.flags & AT24_FLAG_ADDR16)
			msgbuf[i++] = offset >> 8;
		msgbuf[i++] = offset;

		msg[0].addr = client->addr;
		msg[0].buf = msgbuf;
		msg[0].len = i;

		msg[1].addr = client->addr;
		msg[1].flags = I2C_M_RD;
		msg[1].buf = buf;
		msg[1].len = count;
220 221 222
	}

	/*
W
Wolfram Sang 已提交
223 224 225
	 * Reads fail if the previous write didn't complete yet. We may
	 * loop a few times until this one succeeds, waiting at least
	 * long enough for one entire page write to work.
226
	 */
W
Wolfram Sang 已提交
227 228 229
	timeout = jiffies + msecs_to_jiffies(write_timeout);
	do {
		read_time = jiffies;
230 231
		switch (at24->use_smbus) {
		case I2C_SMBUS_I2C_BLOCK_DATA:
W
Wolfram Sang 已提交
232 233
			status = i2c_smbus_read_i2c_block_data(client, offset,
					count, buf);
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
			break;
		case I2C_SMBUS_WORD_DATA:
			status = i2c_smbus_read_word_data(client, offset);
			if (status >= 0) {
				buf[0] = status & 0xff;
				buf[1] = status >> 8;
				status = count;
			}
			break;
		case I2C_SMBUS_BYTE_DATA:
			status = i2c_smbus_read_byte_data(client, offset);
			if (status >= 0) {
				buf[0] = status;
				status = count;
			}
			break;
		default:
W
Wolfram Sang 已提交
251 252 253 254 255 256
			status = i2c_transfer(client->adapter, msg, 2);
			if (status == 2)
				status = count;
		}
		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
				count, offset, status, jiffies);
257

W
Wolfram Sang 已提交
258 259
		if (status == count)
			return count;
260

W
Wolfram Sang 已提交
261 262 263
		/* REVISIT: at HZ=100, this is sloooow */
		msleep(1);
	} while (time_before(read_time, timeout));
264

W
Wolfram Sang 已提交
265
	return -ETIMEDOUT;
266 267
}

268
static ssize_t at24_read(struct at24_data *at24,
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
		char *buf, loff_t off, size_t count)
{
	ssize_t retval = 0;

	if (unlikely(!count))
		return count;

	/*
	 * Read data from chip, protecting against concurrent updates
	 * from this host, but not from other I2C masters.
	 */
	mutex_lock(&at24->lock);

	while (count) {
		ssize_t	status;

		status = at24_eeprom_read(at24, buf, off, count);
		if (status <= 0) {
			if (retval == 0)
				retval = status;
			break;
		}
		buf += status;
		off += status;
		count -= status;
		retval += status;
	}

	mutex_unlock(&at24->lock);

	return retval;
}

302 303
static ssize_t at24_bin_read(struct file *filp, struct kobject *kobj,
		struct bin_attribute *attr,
304 305 306
		char *buf, loff_t off, size_t count)
{
	struct at24_data *at24;
307

308 309 310
	at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
	return at24_read(at24, buf, off, count);
}
311 312 313 314 315 316 317 318 319 320


/*
 * Note that if the hardware write-protect pin is pulled high, the whole
 * chip is normally write protected. But there are plenty of product
 * variants here, including OTP fuses and partial chip protect.
 *
 * We only use page mode writes; the alternative is sloooow. This routine
 * writes at most one page.
 */
321
static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
		unsigned offset, size_t count)
{
	struct i2c_client *client;
	struct i2c_msg msg;
	ssize_t status;
	unsigned long timeout, write_time;
	unsigned next_page;

	/* Get corresponding I2C address and adjust offset */
	client = at24_translate_offset(at24, &offset);

	/* write_max is at most a page */
	if (count > at24->write_max)
		count = at24->write_max;

	/* Never roll over backwards, to the start of this page */
	next_page = roundup(offset + 1, at24->chip.page_size);
	if (offset + count > next_page)
		count = next_page - offset;

	/* If we'll use I2C calls for I/O, set up the message */
	if (!at24->use_smbus) {
		int i = 0;

		msg.addr = client->addr;
		msg.flags = 0;

		/* msg.buf is u8 and casts will mask the values */
		msg.buf = at24->writebuf;
		if (at24->chip.flags & AT24_FLAG_ADDR16)
			msg.buf[i++] = offset >> 8;

		msg.buf[i++] = offset;
		memcpy(&msg.buf[i], buf, count);
		msg.len = i + count;
	}

	/*
	 * Writes fail if the previous one didn't complete yet. We may
	 * loop a few times until this one succeeds, waiting at least
	 * long enough for one entire page write to work.
	 */
	timeout = jiffies + msecs_to_jiffies(write_timeout);
	do {
		write_time = jiffies;
		if (at24->use_smbus) {
			status = i2c_smbus_write_i2c_block_data(client,
					offset, count, buf);
			if (status == 0)
				status = count;
		} else {
			status = i2c_transfer(client->adapter, &msg, 1);
			if (status == 1)
				status = count;
		}
377
		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
378 379 380 381 382 383 384 385 386 387 388 389
				count, offset, status, jiffies);

		if (status == count)
			return count;

		/* REVISIT: at HZ=100, this is sloooow */
		msleep(1);
	} while (time_before(write_time, timeout));

	return -ETIMEDOUT;
}

390 391
static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
			  size_t count)
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
{
	ssize_t retval = 0;

	if (unlikely(!count))
		return count;

	/*
	 * Write data to chip, protecting against concurrent updates
	 * from this host, but not from other I2C masters.
	 */
	mutex_lock(&at24->lock);

	while (count) {
		ssize_t	status;

		status = at24_eeprom_write(at24, buf, off, count);
		if (status <= 0) {
			if (retval == 0)
				retval = status;
			break;
		}
		buf += status;
		off += status;
		count -= status;
		retval += status;
	}

	mutex_unlock(&at24->lock);

	return retval;
}

424 425
static ssize_t at24_bin_write(struct file *filp, struct kobject *kobj,
		struct bin_attribute *attr,
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
		char *buf, loff_t off, size_t count)
{
	struct at24_data *at24;

	at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
	return at24_write(at24, buf, off, count);
}

/*-------------------------------------------------------------------------*/

/*
 * This lets other kernel code access the eeprom data. For example, it
 * might hold a board's Ethernet address, or board-specific calibration
 * data generated on the manufacturing floor.
 */

static ssize_t at24_macc_read(struct memory_accessor *macc, char *buf,
			 off_t offset, size_t count)
{
	struct at24_data *at24 = container_of(macc, struct at24_data, macc);

	return at24_read(at24, buf, offset, count);
}

450
static ssize_t at24_macc_write(struct memory_accessor *macc, const char *buf,
451 452 453 454 455 456 457
			  off_t offset, size_t count)
{
	struct at24_data *at24 = container_of(macc, struct at24_data, macc);

	return at24_write(at24, buf, offset, count);
}

458 459 460 461 462 463
/*-------------------------------------------------------------------------*/

static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
	struct at24_platform_data chip;
	bool writable;
464
	int use_smbus = 0;
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	struct at24_data *at24;
	int err;
	unsigned i, num_addresses;
	kernel_ulong_t magic;

	if (client->dev.platform_data) {
		chip = *(struct at24_platform_data *)client->dev.platform_data;
	} else {
		if (!id->driver_data) {
			err = -ENODEV;
			goto err_out;
		}
		magic = id->driver_data;
		chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
		magic >>= AT24_SIZE_BYTELEN;
		chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
		/*
		 * This is slow, but we can't know all eeproms, so we better
		 * play safe. Specifying custom eeprom-types via platform_data
		 * is recommended anyhow.
		 */
		chip.page_size = 1;
487 488 489

		chip.setup = NULL;
		chip.context = NULL;
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
	}

	if (!is_power_of_2(chip.byte_len))
		dev_warn(&client->dev,
			"byte_len looks suspicious (no power of 2)!\n");
	if (!is_power_of_2(chip.page_size))
		dev_warn(&client->dev,
			"page_size looks suspicious (no power of 2)!\n");

	/* Use I2C operations unless we're stuck with SMBus extensions. */
	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
		if (chip.flags & AT24_FLAG_ADDR16) {
			err = -EPFNOSUPPORT;
			goto err_out;
		}
505
		if (i2c_check_functionality(client->adapter,
506
				I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
507 508 509 510 511 512 513 514
			use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
		} else if (i2c_check_functionality(client->adapter,
				I2C_FUNC_SMBUS_READ_WORD_DATA)) {
			use_smbus = I2C_SMBUS_WORD_DATA;
		} else if (i2c_check_functionality(client->adapter,
				I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
			use_smbus = I2C_SMBUS_BYTE_DATA;
		} else {
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
			err = -EPFNOSUPPORT;
			goto err_out;
		}
	}

	if (chip.flags & AT24_FLAG_TAKE8ADDR)
		num_addresses = 8;
	else
		num_addresses =	DIV_ROUND_UP(chip.byte_len,
			(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);

	at24 = kzalloc(sizeof(struct at24_data) +
		num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
	if (!at24) {
		err = -ENOMEM;
		goto err_out;
	}

	mutex_init(&at24->lock);
	at24->use_smbus = use_smbus;
	at24->chip = chip;
	at24->num_addresses = num_addresses;

	/*
	 * Export the EEPROM bytes through sysfs, since that's convenient.
	 * By default, only root should see the data (maybe passwords etc)
	 */
542
	sysfs_bin_attr_init(&at24->bin);
543 544 545 546 547
	at24->bin.attr.name = "eeprom";
	at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR;
	at24->bin.read = at24_bin_read;
	at24->bin.size = chip.byte_len;

548 549
	at24->macc.read = at24_macc_read;

550 551 552 553 554 555 556
	writable = !(chip.flags & AT24_FLAG_READONLY);
	if (writable) {
		if (!use_smbus || i2c_check_functionality(client->adapter,
				I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {

			unsigned write_max = chip.page_size;

557 558
			at24->macc.write = at24_macc_write;

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
			at24->bin.write = at24_bin_write;
			at24->bin.attr.mode |= S_IWUSR;

			if (write_max > io_limit)
				write_max = io_limit;
			if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
				write_max = I2C_SMBUS_BLOCK_MAX;
			at24->write_max = write_max;

			/* buffer (data + address at the beginning) */
			at24->writebuf = kmalloc(write_max + 2, GFP_KERNEL);
			if (!at24->writebuf) {
				err = -ENOMEM;
				goto err_struct;
			}
		} else {
			dev_warn(&client->dev,
				"cannot write due to controller restrictions.");
		}
	}

	at24->client[0] = client;

	/* use dummy devices for multiple-address chips */
	for (i = 1; i < num_addresses; i++) {
		at24->client[i] = i2c_new_dummy(client->adapter,
					client->addr + i);
		if (!at24->client[i]) {
			dev_err(&client->dev, "address 0x%02x unavailable\n",
					client->addr + i);
			err = -EADDRINUSE;
			goto err_clients;
		}
	}

	err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin);
	if (err)
		goto err_clients;

	i2c_set_clientdata(client, at24);

600
	dev_info(&client->dev, "%zu byte %s EEPROM %s\n",
601 602
		at24->bin.size, client->name,
		writable ? "(writable)" : "(read-only)");
603 604 605 606 607 608
	if (use_smbus == I2C_SMBUS_WORD_DATA ||
	    use_smbus == I2C_SMBUS_BYTE_DATA) {
		dev_notice(&client->dev, "Falling back to %s reads, "
			   "performance will suffer\n", use_smbus ==
			   I2C_SMBUS_WORD_DATA ? "word" : "byte");
	}
609
	dev_dbg(&client->dev,
610
		"page_size %d, num_addresses %d, write_max %d, use_smbus %d\n",
611
		chip.page_size, num_addresses,
612
		at24->write_max, use_smbus);
613

614 615 616 617
	/* export data to kernel code */
	if (chip.setup)
		chip.setup(&at24->macc, chip.context);

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
	return 0;

err_clients:
	for (i = 1; i < num_addresses; i++)
		if (at24->client[i])
			i2c_unregister_device(at24->client[i]);

	kfree(at24->writebuf);
err_struct:
	kfree(at24);
err_out:
	dev_dbg(&client->dev, "probe error %d\n", err);
	return err;
}

static int __devexit at24_remove(struct i2c_client *client)
{
	struct at24_data *at24;
	int i;

	at24 = i2c_get_clientdata(client);
	sysfs_remove_bin_file(&client->dev.kobj, &at24->bin);

	for (i = 1; i < at24->num_addresses; i++)
		i2c_unregister_device(at24->client[i]);

	kfree(at24->writebuf);
	kfree(at24);
	return 0;
}

/*-------------------------------------------------------------------------*/

static struct i2c_driver at24_driver = {
	.driver = {
		.name = "at24",
		.owner = THIS_MODULE,
	},
	.probe = at24_probe,
	.remove = __devexit_p(at24_remove),
	.id_table = at24_ids,
};

static int __init at24_init(void)
{
	io_limit = rounddown_pow_of_two(io_limit);
	return i2c_add_driver(&at24_driver);
}
module_init(at24_init);

static void __exit at24_exit(void)
{
	i2c_del_driver(&at24_driver);
}
module_exit(at24_exit);

MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
MODULE_AUTHOR("David Brownell and Wolfram Sang");
MODULE_LICENSE("GPL");