at24.c 22.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * at24.c - handle most I2C EEPROMs
 *
 * Copyright (C) 2005-2007 David Brownell
 * Copyright (C) 2008 Wolfram Sang, Pengutronix
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/mod_devicetable.h>
#include <linux/log2.h>
#include <linux/bitops.h>
#include <linux/jiffies.h>
22
#include <linux/property.h>
23
#include <linux/acpi.h>
24
#include <linux/i2c.h>
25
#include <linux/nvmem-provider.h>
26
#include <linux/platform_data/at24.h>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

/*
 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
 * Differences between different vendor product lines (like Atmel AT24C or
 * MicroChip 24LC, etc) won't much matter for typical read/write access.
 * There are also I2C RAM chips, likewise interchangeable. One example
 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
 *
 * However, misconfiguration can lose data. "Set 16-bit memory address"
 * to a part with 8-bit addressing will overwrite data. Writing with too
 * big a page size also loses data. And it's not safe to assume that the
 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
 * uses 0x51, for just one example.
 *
 * Accordingly, explicit board-specific configuration data should be used
 * in almost all cases. (One partial exception is an SMBus used to access
 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
 *
 * So this driver uses "new style" I2C driver binding, expecting to be
 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
 * similar kernel-resident tables; or, configuration data coming from
 * a bootloader.
 *
 * Other than binding model, current differences from "eeprom" driver are
 * that this one handles write access and isn't restricted to 24c02 devices.
 * It also handles larger devices (32 kbit and up) with two-byte addresses,
 * which won't work on pure SMBus systems.
 */

struct at24_data {
	struct at24_platform_data chip;
58
	int use_smbus;
59
	int use_smbus_write;
60

61 62 63 64
	ssize_t (*read_func)(struct at24_data *, char *, unsigned int, size_t);
	ssize_t (*write_func)(struct at24_data *,
			      const char *, unsigned int, size_t);

65 66 67 68 69 70 71 72 73 74
	/*
	 * Lock protects against activities from other Linux tasks,
	 * but not from changes by other I2C masters.
	 */
	struct mutex lock;

	u8 *writebuf;
	unsigned write_max;
	unsigned num_addresses;

75 76 77
	struct nvmem_config nvmem_config;
	struct nvmem_device *nvmem;

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
	/*
	 * Some chips tie up multiple I2C addresses; dummy devices reserve
	 * them for us, and we'll use them with SMBus calls.
	 */
	struct i2c_client *client[];
};

/*
 * This parameter is to help this driver avoid blocking other drivers out
 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
 * clock, one 256 byte read takes about 1/43 second which is excessive;
 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
 *
 * This value is forced to be a power of two so that writes align on pages.
 */
static unsigned io_limit = 128;
module_param(io_limit, uint, 0);
MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");

/*
 * Specs often allow 5 msec for a page write, sometimes 20 msec;
 * it's important to recover from write timeouts.
 */
static unsigned write_timeout = 25;
module_param(write_timeout, uint, 0);
MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");

#define AT24_SIZE_BYTELEN 5
#define AT24_SIZE_FLAGS 8

#define AT24_BITMASK(x) (BIT(x) - 1)

/* create non-zero magic value for given eeprom parameters */
#define AT24_DEVICE_MAGIC(_len, _flags) 		\
	((1 << AT24_SIZE_FLAGS | (_flags)) 		\
	    << AT24_SIZE_BYTELEN | ilog2(_len))

116 117 118
/*
 * Both reads and writes fail if the previous write didn't complete yet. This
 * macro loops a few times waiting at least long enough for one entire page
119 120
 * write to work while making sure that at least one iteration is run before
 * checking the break condition.
121 122 123 124 125 126 127
 *
 * It takes two parameters: a variable in which the future timeout in jiffies
 * will be stored and a temporary variable holding the time of the last
 * iteration of processing the request. Both should be unsigned integers
 * holding at least 32 bits.
 */
#define loop_until_timeout(tout, op_time)				\
128 129
	for (tout = jiffies + msecs_to_jiffies(write_timeout), op_time = 0; \
	     op_time ? time_before(op_time, tout) : true;		\
130 131
	     usleep_range(1000, 1500), op_time = jiffies)

132 133
static const struct i2c_device_id at24_ids[] = {
	/* needs 8 addresses as A0-A2 are ignored */
134
	{ "24c00",	AT24_DEVICE_MAGIC(128 / 8,	AT24_FLAG_TAKE8ADDR) },
135
	/* old variants can't be handled with this generic entry! */
136
	{ "24c01",	AT24_DEVICE_MAGIC(1024 / 8,	0) },
137 138
	{ "24cs01",	AT24_DEVICE_MAGIC(16,
				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
139
	{ "24c02",	AT24_DEVICE_MAGIC(2048 / 8,	0) },
140 141
	{ "24cs02",	AT24_DEVICE_MAGIC(16,
				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
142 143 144 145
	{ "24mac402",	AT24_DEVICE_MAGIC(48 / 8,
				AT24_FLAG_MAC | AT24_FLAG_READONLY) },
	{ "24mac602",	AT24_DEVICE_MAGIC(64 / 8,
				AT24_FLAG_MAC | AT24_FLAG_READONLY) },
146
	/* spd is a 24c02 in memory DIMMs */
147 148 149
	{ "spd",	AT24_DEVICE_MAGIC(2048 / 8,
				AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
	{ "24c04",	AT24_DEVICE_MAGIC(4096 / 8,	0) },
150 151
	{ "24cs04",	AT24_DEVICE_MAGIC(16,
				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
152
	/* 24rf08 quirk is handled at i2c-core */
153
	{ "24c08",	AT24_DEVICE_MAGIC(8192 / 8,	0) },
154 155
	{ "24cs08",	AT24_DEVICE_MAGIC(16,
				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
156
	{ "24c16",	AT24_DEVICE_MAGIC(16384 / 8,	0) },
157 158
	{ "24cs16",	AT24_DEVICE_MAGIC(16,
				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
159
	{ "24c32",	AT24_DEVICE_MAGIC(32768 / 8,	AT24_FLAG_ADDR16) },
160 161 162 163
	{ "24cs32",	AT24_DEVICE_MAGIC(16,
				AT24_FLAG_ADDR16 |
				AT24_FLAG_SERIAL |
				AT24_FLAG_READONLY) },
164
	{ "24c64",	AT24_DEVICE_MAGIC(65536 / 8,	AT24_FLAG_ADDR16) },
165 166 167 168
	{ "24cs64",	AT24_DEVICE_MAGIC(16,
				AT24_FLAG_ADDR16 |
				AT24_FLAG_SERIAL |
				AT24_FLAG_READONLY) },
169 170 171 172
	{ "24c128",	AT24_DEVICE_MAGIC(131072 / 8,	AT24_FLAG_ADDR16) },
	{ "24c256",	AT24_DEVICE_MAGIC(262144 / 8,	AT24_FLAG_ADDR16) },
	{ "24c512",	AT24_DEVICE_MAGIC(524288 / 8,	AT24_FLAG_ADDR16) },
	{ "24c1024",	AT24_DEVICE_MAGIC(1048576 / 8,	AT24_FLAG_ADDR16) },
173 174 175 176 177
	{ "at24", 0 },
	{ /* END OF LIST */ }
};
MODULE_DEVICE_TABLE(i2c, at24_ids);

178 179 180 181 182 183
static const struct acpi_device_id at24_acpi_ids[] = {
	{ "INT3499", AT24_DEVICE_MAGIC(8192 / 8, 0) },
	{ }
};
MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);

184 185 186 187 188 189
/*-------------------------------------------------------------------------*/

/*
 * This routine supports chips which consume multiple I2C addresses. It
 * computes the addressing information to be used for a given r/w request.
 * Assumes that sanity checks for offset happened at sysfs-layer.
190 191 192 193 194 195 196 197 198 199 200 201 202
 *
 * Slave address and byte offset derive from the offset. Always
 * set the byte address; on a multi-master board, another master
 * may have changed the chip's "current" address pointer.
 *
 * REVISIT some multi-address chips don't rollover page reads to
 * the next slave address, so we may need to truncate the count.
 * Those chips might need another quirk flag.
 *
 * If the real hardware used four adjacent 24c02 chips and that
 * were misconfigured as one 24c08, that would be a similar effect:
 * one "eeprom" file not four, but larger reads would fail when
 * they crossed certain pages.
203 204
 */
static struct i2c_client *at24_translate_offset(struct at24_data *at24,
205
						unsigned int *offset)
206 207 208 209 210 211 212 213 214 215 216 217 218 219
{
	unsigned i;

	if (at24->chip.flags & AT24_FLAG_ADDR16) {
		i = *offset >> 16;
		*offset &= 0xffff;
	} else {
		i = *offset >> 8;
		*offset &= 0xff;
	}

	return at24->client[i];
}

220 221
static ssize_t at24_eeprom_read_smbus(struct at24_data *at24, char *buf,
				      unsigned int offset, size_t count)
222
{
223
	unsigned long timeout, read_time;
224
	struct i2c_client *client;
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
	int status;

	client = at24_translate_offset(at24, &offset);

	if (count > io_limit)
		count = io_limit;

	/* Smaller eeproms can work given some SMBus extension calls */
	if (count > I2C_SMBUS_BLOCK_MAX)
		count = I2C_SMBUS_BLOCK_MAX;

	loop_until_timeout(timeout, read_time) {
		status = i2c_smbus_read_i2c_block_data_or_emulated(client,
								   offset,
								   count, buf);

		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
				count, offset, status, jiffies);

		if (status == count)
			return count;
	}

	return -ETIMEDOUT;
}

static ssize_t at24_eeprom_read_i2c(struct at24_data *at24, char *buf,
				    unsigned int offset, size_t count)
{
W
Wolfram Sang 已提交
254
	unsigned long timeout, read_time;
255 256
	struct i2c_client *client;
	struct i2c_msg msg[2];
257
	int status, i;
258
	u8 msgbuf[2];
259 260 261 262 263 264 265

	memset(msg, 0, sizeof(msg));
	client = at24_translate_offset(at24, &offset);

	if (count > io_limit)
		count = io_limit;

266 267 268 269 270 271 272 273 274 275
	/*
	 * When we have a better choice than SMBus calls, use a combined I2C
	 * message. Write address; then read up to io_limit data bytes. Note
	 * that read page rollover helps us here (unlike writes). msgbuf is
	 * u8 and will cast to our needs.
	 */
	i = 0;
	if (at24->chip.flags & AT24_FLAG_ADDR16)
		msgbuf[i++] = offset >> 8;
	msgbuf[i++] = offset;
W
Wolfram Sang 已提交
276

277 278 279
	msg[0].addr = client->addr;
	msg[0].buf = msgbuf;
	msg[0].len = i;
W
Wolfram Sang 已提交
280

281 282 283 284
	msg[1].addr = client->addr;
	msg[1].flags = I2C_M_RD;
	msg[1].buf = buf;
	msg[1].len = count;
285

286
	loop_until_timeout(timeout, read_time) {
287 288 289 290
		status = i2c_transfer(client->adapter, msg, 2);
		if (status == 2)
			status = count;

W
Wolfram Sang 已提交
291 292
		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
				count, offset, status, jiffies);
293

W
Wolfram Sang 已提交
294 295
		if (status == count)
			return count;
296
	}
297

W
Wolfram Sang 已提交
298
	return -ETIMEDOUT;
299 300
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
static ssize_t at24_eeprom_read_serial(struct at24_data *at24, char *buf,
				       unsigned int offset, size_t count)
{
	unsigned long timeout, read_time;
	struct i2c_client *client;
	struct i2c_msg msg[2];
	u8 addrbuf[2];
	int status;

	client = at24_translate_offset(at24, &offset);

	memset(msg, 0, sizeof(msg));
	msg[0].addr = client->addr;
	msg[0].buf = addrbuf;

	/*
	 * The address pointer of the device is shared between the regular
	 * EEPROM array and the serial number block. The dummy write (part of
	 * the sequential read protocol) ensures the address pointer is reset
	 * to the desired position.
	 */
	if (at24->chip.flags & AT24_FLAG_ADDR16) {
		/*
		 * For 16 bit address pointers, the word address must contain
		 * a '10' sequence in bits 11 and 10 regardless of the
		 * intended position of the address pointer.
		 */
		addrbuf[0] = 0x08;
		addrbuf[1] = offset;
		msg[0].len = 2;
	} else {
		/*
		 * Otherwise the word address must begin with a '10' sequence,
		 * regardless of the intended address.
		 */
		addrbuf[0] = 0x80 + offset;
		msg[0].len = 1;
	}

	msg[1].addr = client->addr;
	msg[1].flags = I2C_M_RD;
	msg[1].buf = buf;
	msg[1].len = count;

	loop_until_timeout(timeout, read_time) {
		status = i2c_transfer(client->adapter, msg, 2);
		if (status == 2)
			return count;
	}

	return -ETIMEDOUT;
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
static ssize_t at24_eeprom_read_mac(struct at24_data *at24, char *buf,
				    unsigned int offset, size_t count)
{
	unsigned long timeout, read_time;
	struct i2c_client *client;
	struct i2c_msg msg[2];
	u8 addrbuf[2];
	int status;

	client = at24_translate_offset(at24, &offset);

	memset(msg, 0, sizeof(msg));
	msg[0].addr = client->addr;
	msg[0].buf = addrbuf;
	addrbuf[0] = 0x90 + offset;
	msg[0].len = 1;
	msg[1].addr = client->addr;
	msg[1].flags = I2C_M_RD;
	msg[1].buf = buf;
	msg[1].len = count;

	loop_until_timeout(timeout, read_time) {
		status = i2c_transfer(client->adapter, msg, 2);
		if (status == 2)
			return count;
	}

	return -ETIMEDOUT;
}

384 385 386 387 388
/*
 * Note that if the hardware write-protect pin is pulled high, the whole
 * chip is normally write protected. But there are plenty of product
 * variants here, including OTP fuses and partial chip protect.
 *
389 390
 * We only use page mode writes; the alternative is sloooow. These routines
 * write at most one page.
391
 */
392 393 394

static size_t at24_adjust_write_count(struct at24_data *at24,
				      unsigned int offset, size_t count)
395 396 397 398 399 400 401 402 403 404 405 406
{
	unsigned next_page;

	/* write_max is at most a page */
	if (count > at24->write_max)
		count = at24->write_max;

	/* Never roll over backwards, to the start of this page */
	next_page = roundup(offset + 1, at24->chip.page_size);
	if (offset + count > next_page)
		count = next_page - offset;

407 408 409 410 411 412 413 414 415 416 417 418 419
	return count;
}

static ssize_t at24_eeprom_write_smbus_block(struct at24_data *at24,
					     const char *buf,
					     unsigned int offset, size_t count)
{
	unsigned long timeout, write_time;
	struct i2c_client *client;
	ssize_t status = 0;

	client = at24_translate_offset(at24, &offset);
	count = at24_adjust_write_count(at24, offset, count);
420

421 422 423 424 425
	loop_until_timeout(timeout, write_time) {
		status = i2c_smbus_write_i2c_block_data(client,
							offset, count, buf);
		if (status == 0)
			status = count;
426

427 428
		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
				count, offset, status, jiffies);
429

430 431
		if (status == count)
			return count;
432 433
	}

434 435 436 437 438 439 440 441 442 443 444 445 446
	return -ETIMEDOUT;
}

static ssize_t at24_eeprom_write_smbus_byte(struct at24_data *at24,
					    const char *buf,
					    unsigned int offset, size_t count)
{
	unsigned long timeout, write_time;
	struct i2c_client *client;
	ssize_t status = 0;

	client = at24_translate_offset(at24, &offset);

447
	loop_until_timeout(timeout, write_time) {
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
		status = i2c_smbus_write_byte_data(client, offset, buf[0]);
		if (status == 0)
			status = count;

		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
				count, offset, status, jiffies);

		if (status == count)
			return count;
	}

	return -ETIMEDOUT;
}

static ssize_t at24_eeprom_write_i2c(struct at24_data *at24, const char *buf,
				     unsigned int offset, size_t count)
{
	unsigned long timeout, write_time;
	struct i2c_client *client;
	struct i2c_msg msg;
	ssize_t status = 0;
	int i = 0;

	client = at24_translate_offset(at24, &offset);
	count = at24_adjust_write_count(at24, offset, count);

	msg.addr = client->addr;
	msg.flags = 0;

	/* msg.buf is u8 and casts will mask the values */
	msg.buf = at24->writebuf;
	if (at24->chip.flags & AT24_FLAG_ADDR16)
		msg.buf[i++] = offset >> 8;

	msg.buf[i++] = offset;
	memcpy(&msg.buf[i], buf, count);
	msg.len = i + count;

	loop_until_timeout(timeout, write_time) {
		status = i2c_transfer(client->adapter, &msg, 1);
		if (status == 1)
			status = count;

491
		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
492 493 494 495
				count, offset, status, jiffies);

		if (status == count)
			return count;
496
	}
497 498 499 500

	return -ETIMEDOUT;
}

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
static int at24_read(void *priv, unsigned int off, void *val, size_t count)
{
	struct at24_data *at24 = priv;
	char *buf = val;

	if (unlikely(!count))
		return count;

	/*
	 * Read data from chip, protecting against concurrent updates
	 * from this host, but not from other I2C masters.
	 */
	mutex_lock(&at24->lock);

	while (count) {
		int	status;

518
		status = at24->read_func(at24, buf, off, count);
519 520 521 522 523 524 525 526 527 528 529 530 531 532
		if (status < 0) {
			mutex_unlock(&at24->lock);
			return status;
		}
		buf += status;
		off += status;
		count -= status;
	}

	mutex_unlock(&at24->lock);

	return 0;
}

533
static int at24_write(void *priv, unsigned int off, void *val, size_t count)
534
{
535 536
	struct at24_data *at24 = priv;
	char *buf = val;
537 538

	if (unlikely(!count))
539
		return -EINVAL;
540 541 542 543 544 545 546 547

	/*
	 * Write data to chip, protecting against concurrent updates
	 * from this host, but not from other I2C masters.
	 */
	mutex_lock(&at24->lock);

	while (count) {
548
		int status;
549

550
		status = at24->write_func(at24, buf, off, count);
551 552 553
		if (status < 0) {
			mutex_unlock(&at24->lock);
			return status;
554 555 556 557 558 559 560 561
		}
		buf += status;
		off += status;
		count -= status;
	}

	mutex_unlock(&at24->lock);

562 563 564
	return 0;
}

565
static void at24_get_pdata(struct device *dev, struct at24_platform_data *chip)
W
Wolfram Sang 已提交
566
{
567 568 569 570 571 572
	int err;
	u32 val;

	if (device_property_present(dev, "read-only"))
		chip->flags |= AT24_FLAG_READONLY;

573 574 575 576
	err = device_property_read_u32(dev, "size", &val);
	if (!err)
		chip->byte_len = val;

577 578 579 580 581 582 583 584 585 586
	err = device_property_read_u32(dev, "pagesize", &val);
	if (!err) {
		chip->page_size = val;
	} else {
		/*
		 * This is slow, but we can't know all eeproms, so we better
		 * play safe. Specifying custom eeprom-types via platform_data
		 * is recommended anyhow.
		 */
		chip->page_size = 1;
W
Wolfram Sang 已提交
587 588 589
	}
}

590 591 592
static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
	struct at24_platform_data chip;
593
	kernel_ulong_t magic = 0;
594
	bool writable;
595
	int use_smbus = 0;
596
	int use_smbus_write = 0;
597 598 599
	struct at24_data *at24;
	int err;
	unsigned i, num_addresses;
600
	u8 test_byte;
601 602 603 604

	if (client->dev.platform_data) {
		chip = *(struct at24_platform_data *)client->dev.platform_data;
	} else {
605 606 607 608 609 610 611 612 613 614
		if (id) {
			magic = id->driver_data;
		} else {
			const struct acpi_device_id *aid;

			aid = acpi_match_device(at24_acpi_ids, &client->dev);
			if (aid)
				magic = aid->driver_data;
		}
		if (!magic)
615 616
			return -ENODEV;

617 618 619
		chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
		magic >>= AT24_SIZE_BYTELEN;
		chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
620

621
		at24_get_pdata(&client->dev, &chip);
W
Wolfram Sang 已提交
622

623 624
		chip.setup = NULL;
		chip.context = NULL;
625 626 627 628 629
	}

	if (!is_power_of_2(chip.byte_len))
		dev_warn(&client->dev,
			"byte_len looks suspicious (no power of 2)!\n");
630 631
	if (!chip.page_size) {
		dev_err(&client->dev, "page_size must not be 0!\n");
632
		return -EINVAL;
633
	}
634 635 636 637 638 639
	if (!is_power_of_2(chip.page_size))
		dev_warn(&client->dev,
			"page_size looks suspicious (no power of 2)!\n");

	/* Use I2C operations unless we're stuck with SMBus extensions. */
	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
640 641 642
		if (chip.flags & AT24_FLAG_ADDR16)
			return -EPFNOSUPPORT;

643
		if (i2c_check_functionality(client->adapter,
644
				I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
645 646 647 648 649 650 651 652
			use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
		} else if (i2c_check_functionality(client->adapter,
				I2C_FUNC_SMBUS_READ_WORD_DATA)) {
			use_smbus = I2C_SMBUS_WORD_DATA;
		} else if (i2c_check_functionality(client->adapter,
				I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
			use_smbus = I2C_SMBUS_BYTE_DATA;
		} else {
653
			return -EPFNOSUPPORT;
654 655
		}

656 657 658 659 660 661 662 663 664 665
		if (i2c_check_functionality(client->adapter,
				I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
			use_smbus_write = I2C_SMBUS_I2C_BLOCK_DATA;
		} else if (i2c_check_functionality(client->adapter,
				I2C_FUNC_SMBUS_WRITE_BYTE_DATA)) {
			use_smbus_write = I2C_SMBUS_BYTE_DATA;
			chip.page_size = 1;
		}
	}

666 667 668 669 670 671
	if (chip.flags & AT24_FLAG_TAKE8ADDR)
		num_addresses = 8;
	else
		num_addresses =	DIV_ROUND_UP(chip.byte_len,
			(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);

672
	at24 = devm_kzalloc(&client->dev, sizeof(struct at24_data) +
673
		num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
674 675
	if (!at24)
		return -ENOMEM;
676 677 678

	mutex_init(&at24->lock);
	at24->use_smbus = use_smbus;
679
	at24->use_smbus_write = use_smbus_write;
680 681 682
	at24->chip = chip;
	at24->num_addresses = num_addresses;

683 684 685 686 687 688
	if ((chip.flags & AT24_FLAG_SERIAL) && (chip.flags & AT24_FLAG_MAC)) {
		dev_err(&client->dev,
			"invalid device data - cannot have both AT24_FLAG_SERIAL & AT24_FLAG_MAC.");
		return -EINVAL;
	}

689 690
	if (chip.flags & AT24_FLAG_SERIAL) {
		at24->read_func = at24_eeprom_read_serial;
691 692
	} else if (chip.flags & AT24_FLAG_MAC) {
		at24->read_func = at24_eeprom_read_mac;
693 694 695 696 697
	} else {
		at24->read_func = at24->use_smbus ? at24_eeprom_read_smbus
						  : at24_eeprom_read_i2c;
	}

698 699 700 701 702 703 704 705
	if (at24->use_smbus) {
		if (at24->use_smbus_write == I2C_SMBUS_I2C_BLOCK_DATA)
			at24->write_func = at24_eeprom_write_smbus_block;
		else
			at24->write_func = at24_eeprom_write_smbus_byte;
	} else {
		at24->write_func = at24_eeprom_write_i2c;
	}
706

707 708
	writable = !(chip.flags & AT24_FLAG_READONLY);
	if (writable) {
709
		if (!use_smbus || use_smbus_write) {
710 711 712 713 714 715 716 717 718 719

			unsigned write_max = chip.page_size;

			if (write_max > io_limit)
				write_max = io_limit;
			if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
				write_max = I2C_SMBUS_BLOCK_MAX;
			at24->write_max = write_max;

			/* buffer (data + address at the beginning) */
720 721 722 723
			at24->writebuf = devm_kzalloc(&client->dev,
				write_max + 2, GFP_KERNEL);
			if (!at24->writebuf)
				return -ENOMEM;
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
		} else {
			dev_warn(&client->dev,
				"cannot write due to controller restrictions.");
		}
	}

	at24->client[0] = client;

	/* use dummy devices for multiple-address chips */
	for (i = 1; i < num_addresses; i++) {
		at24->client[i] = i2c_new_dummy(client->adapter,
					client->addr + i);
		if (!at24->client[i]) {
			dev_err(&client->dev, "address 0x%02x unavailable\n",
					client->addr + i);
			err = -EADDRINUSE;
			goto err_clients;
		}
	}

744 745 746 747 748 749 750 751 752 753 754 755
	i2c_set_clientdata(client, at24);

	/*
	 * Perform a one-byte test read to verify that the
	 * chip is functional.
	 */
	err = at24_read(at24, 0, &test_byte, 1);
	if (err) {
		err = -ENODEV;
		goto err_clients;
	}

756 757 758 759 760 761 762
	at24->nvmem_config.name = dev_name(&client->dev);
	at24->nvmem_config.dev = &client->dev;
	at24->nvmem_config.read_only = !writable;
	at24->nvmem_config.root_only = true;
	at24->nvmem_config.owner = THIS_MODULE;
	at24->nvmem_config.compat = true;
	at24->nvmem_config.base_dev = &client->dev;
763 764 765 766 767 768
	at24->nvmem_config.reg_read = at24_read;
	at24->nvmem_config.reg_write = at24_write;
	at24->nvmem_config.priv = at24;
	at24->nvmem_config.stride = 4;
	at24->nvmem_config.word_size = 1;
	at24->nvmem_config.size = chip.byte_len;
769 770 771 772 773 774 775

	at24->nvmem = nvmem_register(&at24->nvmem_config);

	if (IS_ERR(at24->nvmem)) {
		err = PTR_ERR(at24->nvmem);
		goto err_clients;
	}
776

777 778
	dev_info(&client->dev, "%u byte %s EEPROM, %s, %u bytes/write\n",
		chip.byte_len, client->name,
W
Wolfram Sang 已提交
779
		writable ? "writable" : "read-only", at24->write_max);
780 781 782 783 784 785
	if (use_smbus == I2C_SMBUS_WORD_DATA ||
	    use_smbus == I2C_SMBUS_BYTE_DATA) {
		dev_notice(&client->dev, "Falling back to %s reads, "
			   "performance will suffer\n", use_smbus ==
			   I2C_SMBUS_WORD_DATA ? "word" : "byte");
	}
786

787 788
	/* export data to kernel code */
	if (chip.setup)
789
		chip.setup(at24->nvmem, chip.context);
790

791 792 793 794 795 796 797 798 799 800
	return 0;

err_clients:
	for (i = 1; i < num_addresses; i++)
		if (at24->client[i])
			i2c_unregister_device(at24->client[i]);

	return err;
}

B
Bill Pemberton 已提交
801
static int at24_remove(struct i2c_client *client)
802 803 804 805 806
{
	struct at24_data *at24;
	int i;

	at24 = i2c_get_clientdata(client);
807 808

	nvmem_unregister(at24->nvmem);
809 810 811 812 813 814 815 816 817 818 819 820

	for (i = 1; i < at24->num_addresses; i++)
		i2c_unregister_device(at24->client[i]);

	return 0;
}

/*-------------------------------------------------------------------------*/

static struct i2c_driver at24_driver = {
	.driver = {
		.name = "at24",
821
		.acpi_match_table = ACPI_PTR(at24_acpi_ids),
822 823
	},
	.probe = at24_probe,
824
	.remove = at24_remove,
825 826 827 828 829
	.id_table = at24_ids,
};

static int __init at24_init(void)
{
830 831 832 833 834
	if (!io_limit) {
		pr_err("at24: io_limit must not be 0!\n");
		return -EINVAL;
	}

835 836 837 838 839 840 841 842 843 844 845 846 847 848
	io_limit = rounddown_pow_of_two(io_limit);
	return i2c_add_driver(&at24_driver);
}
module_init(at24_init);

static void __exit at24_exit(void)
{
	i2c_del_driver(&at24_driver);
}
module_exit(at24_exit);

MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
MODULE_AUTHOR("David Brownell and Wolfram Sang");
MODULE_LICENSE("GPL");