hugetlbpage.c 25.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
B
Becky Bruce 已提交
2
 * PPC Huge TLB Page Support for Kernel.
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2003 David Gibson, IBM Corporation.
B
Becky Bruce 已提交
5
 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
L
Linus Torvalds 已提交
6 7 8 9 10 11
 *
 * Based on the IA-32 version:
 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
 */

#include <linux/mm.h>
12
#include <linux/io.h>
13
#include <linux/slab.h>
L
Linus Torvalds 已提交
14
#include <linux/hugetlb.h>
15
#include <linux/export.h>
B
Becky Bruce 已提交
16 17 18
#include <linux/of_fdt.h>
#include <linux/memblock.h>
#include <linux/bootmem.h>
19
#include <linux/moduleparam.h>
20 21
#include <linux/swap.h>
#include <linux/swapops.h>
22
#include <asm/pgtable.h>
L
Linus Torvalds 已提交
23 24
#include <asm/pgalloc.h>
#include <asm/tlb.h>
B
Becky Bruce 已提交
25
#include <asm/setup.h>
26 27 28
#include <asm/hugetlb.h>

#ifdef CONFIG_HUGETLB_PAGE
L
Linus Torvalds 已提交
29

30
#define PAGE_SHIFT_64K	16
31 32
#define PAGE_SHIFT_512K	19
#define PAGE_SHIFT_8M	23
33 34
#define PAGE_SHIFT_16M	24
#define PAGE_SHIFT_16G	34
35

B
Becky Bruce 已提交
36
unsigned int HPAGE_SHIFT;
37
EXPORT_SYMBOL(HPAGE_SHIFT);
38

B
Becky Bruce 已提交
39 40
/*
 * Tracks gpages after the device tree is scanned and before the
41 42 43 44
 * huge_boot_pages list is ready.  On non-Freescale implementations, this is
 * just used to track 16G pages and so is a single array.  FSL-based
 * implementations may have more than one gpage size, so we need multiple
 * arrays
B
Becky Bruce 已提交
45
 */
46
#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
B
Becky Bruce 已提交
47 48 49 50 51 52
#define MAX_NUMBER_GPAGES	128
struct psize_gpages {
	u64 gpage_list[MAX_NUMBER_GPAGES];
	unsigned int nr_gpages;
};
static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
53 54 55 56
#else
#define MAX_NUMBER_GPAGES	1024
static u64 gpage_freearray[MAX_NUMBER_GPAGES];
static unsigned nr_gpages;
B
Becky Bruce 已提交
57
#endif
58

59
#define hugepd_none(hpd)	(hpd_val(hpd) == 0)
60

61
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
62
{
63
	/* Only called for hugetlbfs pages, hence can ignore THP */
64
	return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL, NULL);
65 66
}

67
static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
68
			   unsigned long address, unsigned pdshift, unsigned pshift)
69
{
B
Becky Bruce 已提交
70 71 72
	struct kmem_cache *cachep;
	pte_t *new;
	int i;
73 74 75 76 77 78 79 80 81
	int num_hugepd;

	if (pshift >= pdshift) {
		cachep = hugepte_cache;
		num_hugepd = 1 << (pshift - pdshift);
	} else {
		cachep = PGT_CACHE(pdshift - pshift);
		num_hugepd = 1;
	}
B
Becky Bruce 已提交
82

83
	new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
84

85 86 87
	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);

88 89 90
	if (! new)
		return -ENOMEM;

91 92 93 94 95 96 97
	/*
	 * Make sure other cpus find the hugepd set only after a
	 * properly initialized page table is visible to them.
	 * For more details look for comment in __pte_alloc().
	 */
	smp_wmb();

98
	spin_lock(&mm->page_table_lock);
99

B
Becky Bruce 已提交
100 101 102 103 104 105 106 107 108
	/*
	 * We have multiple higher-level entries that point to the same
	 * actual pte location.  Fill in each as we go and backtrack on error.
	 * We need all of these so the DTLB pgtable walk code can find the
	 * right higher-level entry without knowing if it's a hugepage or not.
	 */
	for (i = 0; i < num_hugepd; i++, hpdp++) {
		if (unlikely(!hugepd_none(*hpdp)))
			break;
109
		else {
110
#ifdef CONFIG_PPC_BOOK3S_64
111 112
			*hpdp = __hugepd(__pa(new) |
					 (shift_to_mmu_psize(pshift) << 2));
113
#elif defined(CONFIG_PPC_8xx)
114 115 116
			*hpdp = __hugepd(__pa(new) |
					 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
					  _PMD_PAGE_512K) | _PMD_PRESENT);
117
#else
118
			/* We use the old format for PPC_FSL_BOOK3E */
119
			*hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
120
#endif
121
		}
B
Becky Bruce 已提交
122 123 124 125
	}
	/* If we bailed from the for loop early, an error occurred, clean up */
	if (i < num_hugepd) {
		for (i = i - 1 ; i >= 0; i--, hpdp--)
126
			*hpdp = __hugepd(0);
B
Becky Bruce 已提交
127 128
		kmem_cache_free(cachep, new);
	}
129 130 131 132
	spin_unlock(&mm->page_table_lock);
	return 0;
}

133 134 135 136
/*
 * These macros define how to determine which level of the page table holds
 * the hpdp.
 */
137
#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
138 139 140 141 142 143 144
#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
#define HUGEPD_PUD_SHIFT PUD_SHIFT
#else
#define HUGEPD_PGD_SHIFT PUD_SHIFT
#define HUGEPD_PUD_SHIFT PMD_SHIFT
#endif

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
/*
 * At this point we do the placement change only for BOOK3S 64. This would
 * possibly work on other subarchs.
 */
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
{
	pgd_t *pg;
	pud_t *pu;
	pmd_t *pm;
	hugepd_t *hpdp = NULL;
	unsigned pshift = __ffs(sz);
	unsigned pdshift = PGDIR_SHIFT;

	addr &= ~(sz-1);
	pg = pgd_offset(mm, addr);

161
#ifdef CONFIG_PPC_BOOK3S_64
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
	if (pshift == PGDIR_SHIFT)
		/* 16GB huge page */
		return (pte_t *) pg;
	else if (pshift > PUD_SHIFT)
		/*
		 * We need to use hugepd table
		 */
		hpdp = (hugepd_t *)pg;
	else {
		pdshift = PUD_SHIFT;
		pu = pud_alloc(mm, pg, addr);
		if (pshift == PUD_SHIFT)
			return (pte_t *)pu;
		else if (pshift > PMD_SHIFT)
			hpdp = (hugepd_t *)pu;
		else {
			pdshift = PMD_SHIFT;
			pm = pmd_alloc(mm, pu, addr);
			if (pshift == PMD_SHIFT)
				/* 16MB hugepage */
				return (pte_t *)pm;
			else
				hpdp = (hugepd_t *)pm;
		}
	}
#else
188
	if (pshift >= HUGEPD_PGD_SHIFT) {
189 190 191 192
		hpdp = (hugepd_t *)pg;
	} else {
		pdshift = PUD_SHIFT;
		pu = pud_alloc(mm, pg, addr);
193
		if (pshift >= HUGEPD_PUD_SHIFT) {
194 195 196 197 198 199 200
			hpdp = (hugepd_t *)pu;
		} else {
			pdshift = PMD_SHIFT;
			pm = pmd_alloc(mm, pu, addr);
			hpdp = (hugepd_t *)pm;
		}
	}
201
#endif
202 203 204 205 206 207 208 209
	if (!hpdp)
		return NULL;

	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));

	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
		return NULL;

210
	return hugepte_offset(*hpdp, addr, pdshift);
211 212
}

213
#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
214
/* Build list of addresses of gigantic pages.  This function is used in early
215
 * boot before the buddy allocator is setup.
216
 */
B
Becky Bruce 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
{
	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
	int i;

	if (addr == 0)
		return;

	gpage_freearray[idx].nr_gpages = number_of_pages;

	for (i = 0; i < number_of_pages; i++) {
		gpage_freearray[idx].gpage_list[i] = addr;
		addr += page_size;
	}
}

/*
 * Moves the gigantic page addresses from the temporary list to the
 * huge_boot_pages list.
 */
int alloc_bootmem_huge_page(struct hstate *hstate)
{
	struct huge_bootmem_page *m;
240
	int idx = shift_to_mmu_psize(huge_page_shift(hstate));
B
Becky Bruce 已提交
241 242 243 244 245 246 247 248 249 250
	int nr_gpages = gpage_freearray[idx].nr_gpages;

	if (nr_gpages == 0)
		return 0;

#ifdef CONFIG_HIGHMEM
	/*
	 * If gpages can be in highmem we can't use the trick of storing the
	 * data structure in the page; allocate space for this
	 */
251
	m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
B
Becky Bruce 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
#else
	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
#endif

	list_add(&m->list, &huge_boot_pages);
	gpage_freearray[idx].nr_gpages = nr_gpages;
	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
	m->hstate = hstate;

	return 1;
}
/*
 * Scan the command line hugepagesz= options for gigantic pages; store those in
 * a list that we use to allocate the memory once all options are parsed.
 */

unsigned long gpage_npages[MMU_PAGE_COUNT];

271
static int __init do_gpage_early_setup(char *param, char *val,
272
				       const char *unused, void *arg)
B
Becky Bruce 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
{
	static phys_addr_t size;
	unsigned long npages;

	/*
	 * The hugepagesz and hugepages cmdline options are interleaved.  We
	 * use the size variable to keep track of whether or not this was done
	 * properly and skip over instances where it is incorrect.  Other
	 * command-line parsing code will issue warnings, so we don't need to.
	 *
	 */
	if ((strcmp(param, "default_hugepagesz") == 0) ||
	    (strcmp(param, "hugepagesz") == 0)) {
		size = memparse(val, NULL);
	} else if (strcmp(param, "hugepages") == 0) {
		if (size != 0) {
			if (sscanf(val, "%lu", &npages) <= 0)
				npages = 0;
291 292
			if (npages > MAX_NUMBER_GPAGES) {
				pr_warn("MMU: %lu pages requested for page "
293
#ifdef CONFIG_PHYS_ADDR_T_64BIT
294
					"size %llu KB, limiting to "
295 296 297
#else
					"size %u KB, limiting to "
#endif
298 299 300 301
					__stringify(MAX_NUMBER_GPAGES) "\n",
					npages, size / 1024);
				npages = MAX_NUMBER_GPAGES;
			}
B
Becky Bruce 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
			size = 0;
		}
	}
	return 0;
}


/*
 * This function allocates physical space for pages that are larger than the
 * buddy allocator can handle.  We want to allocate these in highmem because
 * the amount of lowmem is limited.  This means that this function MUST be
 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
 * allocate to grab highmem.
 */
void __init reserve_hugetlb_gpages(void)
{
	static __initdata char cmdline[COMMAND_LINE_SIZE];
	phys_addr_t size, base;
	int i;

	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
324
	parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
325
			NULL, &do_gpage_early_setup);
B
Becky Bruce 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

	/*
	 * Walk gpage list in reverse, allocating larger page sizes first.
	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
	 * When we reach the point in the list where pages are no longer
	 * considered gpages, we're done.
	 */
	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
			continue;
		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
			break;

		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
		base = memblock_alloc_base(size * gpage_npages[i], size,
					   MEMBLOCK_ALLOC_ANYWHERE);
		add_gpage(base, size, gpage_npages[i]);
	}
}

346
#else /* !PPC_FSL_BOOK3E */
B
Becky Bruce 已提交
347 348

/* Build list of addresses of gigantic pages.  This function is used in early
349
 * boot before the buddy allocator is setup.
B
Becky Bruce 已提交
350 351
 */
void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
352 353 354 355 356 357 358 359 360 361 362
{
	if (!addr)
		return;
	while (number_of_pages > 0) {
		gpage_freearray[nr_gpages] = addr;
		nr_gpages++;
		number_of_pages--;
		addr += page_size;
	}
}

363
/* Moves the gigantic page addresses from the temporary list to the
364 365 366
 * huge_boot_pages list.
 */
int alloc_bootmem_huge_page(struct hstate *hstate)
367 368 369 370 371 372 373
{
	struct huge_bootmem_page *m;
	if (nr_gpages == 0)
		return 0;
	m = phys_to_virt(gpage_freearray[--nr_gpages]);
	gpage_freearray[nr_gpages] = 0;
	list_add(&m->list, &huge_boot_pages);
374
	m->hstate = hstate;
375 376
	return 1;
}
B
Becky Bruce 已提交
377
#endif
378

379
#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
B
Becky Bruce 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
#define HUGEPD_FREELIST_SIZE \
	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))

struct hugepd_freelist {
	struct rcu_head	rcu;
	unsigned int index;
	void *ptes[0];
};

static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);

static void hugepd_free_rcu_callback(struct rcu_head *head)
{
	struct hugepd_freelist *batch =
		container_of(head, struct hugepd_freelist, rcu);
	unsigned int i;

	for (i = 0; i < batch->index; i++)
		kmem_cache_free(hugepte_cache, batch->ptes[i]);

	free_page((unsigned long)batch);
}

static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
{
	struct hugepd_freelist **batchp;

407
	batchp = &get_cpu_var(hugepd_freelist_cur);
B
Becky Bruce 已提交
408 409 410 411 412

	if (atomic_read(&tlb->mm->mm_users) < 2 ||
	    cpumask_equal(mm_cpumask(tlb->mm),
			  cpumask_of(smp_processor_id()))) {
		kmem_cache_free(hugepte_cache, hugepte);
413
		put_cpu_var(hugepd_freelist_cur);
B
Becky Bruce 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426
		return;
	}

	if (*batchp == NULL) {
		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
		(*batchp)->index = 0;
	}

	(*batchp)->ptes[(*batchp)->index++] = hugepte;
	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
		*batchp = NULL;
	}
427
	put_cpu_var(hugepd_freelist_cur);
B
Becky Bruce 已提交
428
}
429 430
#else
static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
B
Becky Bruce 已提交
431 432
#endif

433 434 435
static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
			      unsigned long start, unsigned long end,
			      unsigned long floor, unsigned long ceiling)
436 437
{
	pte_t *hugepte = hugepd_page(*hpdp);
B
Becky Bruce 已提交
438 439
	int i;

440
	unsigned long pdmask = ~((1UL << pdshift) - 1);
B
Becky Bruce 已提交
441
	unsigned int num_hugepd = 1;
442
	unsigned int shift = hugepd_shift(*hpdp);
B
Becky Bruce 已提交
443

444
	/* Note: On fsl the hpdp may be the first of several */
445 446
	if (shift > pdshift)
		num_hugepd = 1 << (shift - pdshift);
447 448 449 450 451 452 453 454 455 456 457

	start &= pdmask;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= pdmask;
		if (! ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;
458

B
Becky Bruce 已提交
459
	for (i = 0; i < num_hugepd; i++, hpdp++)
460
		*hpdp = __hugepd(0);
B
Becky Bruce 已提交
461

462 463 464 465
	if (shift >= pdshift)
		hugepd_free(tlb, hugepte);
	else
		pgtable_free_tlb(tlb, hugepte, pdshift - shift);
466 467 468 469
}

static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				   unsigned long addr, unsigned long end,
470
				   unsigned long floor, unsigned long ceiling)
471 472 473 474 475 476 477
{
	pmd_t *pmd;
	unsigned long next;
	unsigned long start;

	start = addr;
	do {
478 479
		unsigned long more;

480
		pmd = pmd_offset(pud, addr);
481
		next = pmd_addr_end(addr, end);
482
		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
483 484 485 486 487
			/*
			 * if it is not hugepd pointer, we should already find
			 * it cleared.
			 */
			WARN_ON(!pmd_none_or_clear_bad(pmd));
488
			continue;
489
		}
490 491 492 493 494 495
		/*
		 * Increment next by the size of the huge mapping since
		 * there may be more than one entry at this level for a
		 * single hugepage, but all of them point to
		 * the same kmem cache that holds the hugepte.
		 */
496 497 498 499
		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
		if (more > next)
			next = more;

500 501
		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
				  addr, next, floor, ceiling);
502
	} while (addr = next, addr != end);
503 504 505 506 507 508 509 510

	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
511
	}
512 513
	if (end - 1 > ceiling - 1)
		return;
L
Linus Torvalds 已提交
514

515 516
	pmd = pmd_offset(pud, start);
	pud_clear(pud);
517
	pmd_free_tlb(tlb, pmd, start);
518
	mm_dec_nr_pmds(tlb->mm);
519 520 521 522 523 524 525 526 527 528 529 530
}

static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				   unsigned long addr, unsigned long end,
				   unsigned long floor, unsigned long ceiling)
{
	pud_t *pud;
	unsigned long next;
	unsigned long start;

	start = addr;
	do {
531
		pud = pud_offset(pgd, addr);
532
		next = pud_addr_end(addr, end);
533
		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
534 535
			if (pud_none_or_clear_bad(pud))
				continue;
536
			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
537
					       ceiling);
538
		} else {
539
			unsigned long more;
540 541 542 543 544 545
			/*
			 * Increment next by the size of the huge mapping since
			 * there may be more than one entry at this level for a
			 * single hugepage, but all of them point to
			 * the same kmem cache that holds the hugepte.
			 */
546 547 548 549
			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
			if (more > next)
				next = more;

550 551
			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
					  addr, next, floor, ceiling);
552
		}
553
	} while (addr = next, addr != end);
554 555 556 557 558 559 560 561 562 563 564 565 566 567

	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(pgd, start);
	pgd_clear(pgd);
568
	pud_free_tlb(tlb, pud, start);
569 570 571 572 573
}

/*
 * This function frees user-level page tables of a process.
 */
574
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
575 576 577 578 579 580 581
			    unsigned long addr, unsigned long end,
			    unsigned long floor, unsigned long ceiling)
{
	pgd_t *pgd;
	unsigned long next;

	/*
582 583 584 585 586 587 588 589 590 591
	 * Because there are a number of different possible pagetable
	 * layouts for hugepage ranges, we limit knowledge of how
	 * things should be laid out to the allocation path
	 * (huge_pte_alloc(), above).  Everything else works out the
	 * structure as it goes from information in the hugepd
	 * pointers.  That means that we can't here use the
	 * optimization used in the normal page free_pgd_range(), of
	 * checking whether we're actually covering a large enough
	 * range to have to do anything at the top level of the walk
	 * instead of at the bottom.
592
	 *
593 594 595
	 * To make sense of this, you should probably go read the big
	 * block comment at the top of the normal free_pgd_range(),
	 * too.
596 597 598 599
	 */

	do {
		next = pgd_addr_end(addr, end);
B
Becky Bruce 已提交
600
		pgd = pgd_offset(tlb->mm, addr);
601
		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
602 603 604 605
			if (pgd_none_or_clear_bad(pgd))
				continue;
			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
		} else {
606
			unsigned long more;
B
Becky Bruce 已提交
607 608
			/*
			 * Increment next by the size of the huge mapping since
609 610 611
			 * there may be more than one entry at the pgd level
			 * for a single hugepage, but all of them point to the
			 * same kmem cache that holds the hugepte.
B
Becky Bruce 已提交
612
			 */
613 614 615 616
			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
			if (more > next)
				next = more;

617 618
			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
					  addr, next, floor, ceiling);
619
		}
B
Becky Bruce 已提交
620
	} while (addr = next, addr != end);
L
Linus Torvalds 已提交
621 622
}

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
struct page *follow_huge_pd(struct vm_area_struct *vma,
			    unsigned long address, hugepd_t hpd,
			    int flags, int pdshift)
{
	pte_t *ptep;
	spinlock_t *ptl;
	struct page *page = NULL;
	unsigned long mask;
	int shift = hugepd_shift(hpd);
	struct mm_struct *mm = vma->vm_mm;

retry:
	ptl = &mm->page_table_lock;
	spin_lock(ptl);

	ptep = hugepte_offset(hpd, address, pdshift);
	if (pte_present(*ptep)) {
		mask = (1UL << shift) - 1;
		page = pte_page(*ptep);
		page += ((address & mask) >> PAGE_SHIFT);
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(*ptep)) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, ptep, ptl);
			goto retry;
		}
	}
	spin_unlock(ptl);
	return page;
}

D
David Gibson 已提交
656 657 658 659 660 661 662
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

663 664
int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
		unsigned long end, int write, struct page **pages, int *nr)
665 666
{
	pte_t *ptep;
667
	unsigned long sz = 1UL << hugepd_shift(hugepd);
D
David Gibson 已提交
668
	unsigned long next;
669 670 671

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
D
David Gibson 已提交
672
		next = hugepte_addr_end(addr, end, sz);
673 674
		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
			return 0;
D
David Gibson 已提交
675
	} while (ptep++, addr = next, addr != end);
676 677 678

	return 1;
}
L
Linus Torvalds 已提交
679

680
#ifdef CONFIG_PPC_MM_SLICES
L
Linus Torvalds 已提交
681 682 683 684
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
					unsigned long len, unsigned long pgoff,
					unsigned long flags)
{
685 686
	struct hstate *hstate = hstate_file(file);
	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
687

688 689 690
	if (radix_enabled())
		return radix__hugetlb_get_unmapped_area(file, addr, len,
						       pgoff, flags);
691
	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
L
Linus Torvalds 已提交
692
}
693
#endif
L
Linus Torvalds 已提交
694

695 696
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
697
#ifdef CONFIG_PPC_MM_SLICES
698
	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
699 700 701 702
	/* With radix we don't use slice, so derive it from vma*/
	if (!radix_enabled())
		return 1UL << mmu_psize_to_shift(psize);
#endif
B
Becky Bruce 已提交
703 704 705 706 707 708 709 710 711 712 713
	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	return huge_page_size(hstate_vma(vma));
}

static inline bool is_power_of_4(unsigned long x)
{
	if (is_power_of_2(x))
		return (__ilog2(x) % 2) ? false : true;
	return false;
714 715
}

716
static int __init add_huge_page_size(unsigned long long size)
717
{
718 719
	int shift = __ffs(size);
	int mmu_psize;
720

721
	/* Check that it is a page size supported by the hardware and
722
	 * that it fits within pagetable and slice limits. */
723 724
	if (size <= PAGE_SIZE)
		return -EINVAL;
725
#if defined(CONFIG_PPC_FSL_BOOK3E)
726
	if (!is_power_of_4(size))
B
Becky Bruce 已提交
727
		return -EINVAL;
728
#elif !defined(CONFIG_PPC_8xx)
729
	if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
730
		return -EINVAL;
B
Becky Bruce 已提交
731
#endif
732

733 734 735
	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
		return -EINVAL;

736 737 738 739 740 741 742 743 744 745
#ifdef CONFIG_PPC_BOOK3S_64
	/*
	 * We need to make sure that for different page sizes reported by
	 * firmware we only add hugetlb support for page sizes that can be
	 * supported by linux page table layout.
	 * For now we have
	 * Radix: 2M
	 * Hash: 16M and 16G
	 */
	if (radix_enabled()) {
746 747 748 749 750
		if (mmu_psize != MMU_PAGE_2M) {
			if (cpu_has_feature(CPU_FTR_POWER9_DD1) ||
			    (mmu_psize != MMU_PAGE_1G))
				return -EINVAL;
		}
751 752 753 754 755 756
	} else {
		if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
			return -EINVAL;
	}
#endif

757 758 759 760 761 762 763 764 765
	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);

	/* Return if huge page size has already been setup */
	if (size_to_hstate(size))
		return 0;

	hugetlb_add_hstate(shift - PAGE_SHIFT);

	return 0;
766 767 768 769 770 771 772 773
}

static int __init hugepage_setup_sz(char *str)
{
	unsigned long long size;

	size = memparse(str, &str);

774 775 776 777
	if (add_huge_page_size(size) != 0) {
		hugetlb_bad_size();
		pr_err("Invalid huge page size specified(%llu)\n", size);
	}
778 779 780 781 782

	return 1;
}
__setup("hugepagesz=", hugepage_setup_sz);

B
Becky Bruce 已提交
783 784 785 786 787
struct kmem_cache *hugepte_cache;
static int __init hugetlbpage_init(void)
{
	int psize;

788
#if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
789
	if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
790
		return -ENODEV;
791
#endif
792 793 794
	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
		unsigned shift;
		unsigned pdshift;
795

796 797
		if (!mmu_psize_defs[psize].shift)
			continue;
798

799 800 801 802 803
		shift = mmu_psize_to_shift(psize);

		if (add_huge_page_size(1ULL << shift) < 0)
			continue;

804
		if (shift < HUGEPD_PUD_SHIFT)
805
			pdshift = PMD_SHIFT;
806
		else if (shift < HUGEPD_PGD_SHIFT)
807 808 809
			pdshift = PUD_SHIFT;
		else
			pdshift = PGDIR_SHIFT;
810 811 812 813
		/*
		 * if we have pdshift and shift value same, we don't
		 * use pgt cache for hugepd.
		 */
814
		if (pdshift > shift)
815
			pgtable_cache_add(pdshift - shift, NULL);
816
#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
		else if (!hugepte_cache) {
			/*
			 * Create a kmem cache for hugeptes.  The bottom bits in
			 * the pte have size information encoded in them, so
			 * align them to allow this
			 */
			hugepte_cache = kmem_cache_create("hugepte-cache",
							  sizeof(pte_t),
							  HUGEPD_SHIFT_MASK + 1,
							  0, NULL);
			if (hugepte_cache == NULL)
				panic("%s: Unable to create kmem cache "
				      "for hugeptes\n", __func__);

		}
#endif
833
	}
834

835 836
#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
	/* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
837 838
	if (mmu_psize_defs[MMU_PAGE_4M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
839 840
	else if (mmu_psize_defs[MMU_PAGE_512K].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
841
#else
842 843 844 845 846 847 848
	/* Set default large page size. Currently, we pick 16M or 1M
	 * depending on what is available
	 */
	if (mmu_psize_defs[MMU_PAGE_16M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
849 850
	else if (mmu_psize_defs[MMU_PAGE_2M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
851
#endif
852 853
	return 0;
}
854

855
arch_initcall(hugetlbpage_init);
856 857 858 859

void flush_dcache_icache_hugepage(struct page *page)
{
	int i;
B
Becky Bruce 已提交
860
	void *start;
861 862 863

	BUG_ON(!PageCompound(page));

B
Becky Bruce 已提交
864 865 866 867
	for (i = 0; i < (1UL << compound_order(page)); i++) {
		if (!PageHighMem(page)) {
			__flush_dcache_icache(page_address(page+i));
		} else {
868
			start = kmap_atomic(page+i);
B
Becky Bruce 已提交
869
			__flush_dcache_icache(start);
870
			kunmap_atomic(start);
B
Becky Bruce 已提交
871 872
		}
	}
873
}
874 875 876 877 878 879 880

#endif /* CONFIG_HUGETLB_PAGE */

/*
 * We have 4 cases for pgds and pmds:
 * (1) invalid (all zeroes)
 * (2) pointer to next table, as normal; bottom 6 bits == 0
A
Aneesh Kumar K.V 已提交
881 882
 * (3) leaf pte for huge page _PAGE_PTE set
 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
883 884 885
 *
 * So long as we atomically load page table pointers we are safe against teardown,
 * we can follow the address down to the the page and take a ref on it.
886 887
 * This function need to be called with interrupts disabled. We use this variant
 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
888
 */
889

890
pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
891
				   bool *is_thp, unsigned *shift)
892
{
893 894 895
	pgd_t pgd, *pgdp;
	pud_t pud, *pudp;
	pmd_t pmd, *pmdp;
896 897 898 899 900 901 902
	pte_t *ret_pte;
	hugepd_t *hpdp = NULL;
	unsigned pdshift = PGDIR_SHIFT;

	if (shift)
		*shift = 0;

903 904 905
	if (is_thp)
		*is_thp = false;

906
	pgdp = pgdir + pgd_index(ea);
907
	pgd  = READ_ONCE(*pgdp);
908
	/*
909 910 911 912
	 * Always operate on the local stack value. This make sure the
	 * value don't get updated by a parallel THP split/collapse,
	 * page fault or a page unmap. The return pte_t * is still not
	 * stable. So should be checked there for above conditions.
913
	 */
914
	if (pgd_none(pgd))
915
		return NULL;
916 917
	else if (pgd_huge(pgd)) {
		ret_pte = (pte_t *) pgdp;
918
		goto out;
919
	} else if (is_hugepd(__hugepd(pgd_val(pgd))))
920
		hpdp = (hugepd_t *)&pgd;
921
	else {
922 923 924 925 926
		/*
		 * Even if we end up with an unmap, the pgtable will not
		 * be freed, because we do an rcu free and here we are
		 * irq disabled
		 */
927
		pdshift = PUD_SHIFT;
928
		pudp = pud_offset(&pgd, ea);
929
		pud  = READ_ONCE(*pudp);
930

931
		if (pud_none(pud))
932
			return NULL;
933 934
		else if (pud_huge(pud)) {
			ret_pte = (pte_t *) pudp;
935
			goto out;
936
		} else if (is_hugepd(__hugepd(pud_val(pud))))
937
			hpdp = (hugepd_t *)&pud;
938
		else {
939
			pdshift = PMD_SHIFT;
940
			pmdp = pmd_offset(&pud, ea);
941
			pmd  = READ_ONCE(*pmdp);
942 943 944 945
			/*
			 * A hugepage collapse is captured by pmd_none, because
			 * it mark the pmd none and do a hpte invalidate.
			 */
946
			if (pmd_none(pmd))
947
				return NULL;
948

949
			if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
950 951 952 953 954 955 956
				if (is_thp)
					*is_thp = true;
				ret_pte = (pte_t *) pmdp;
				goto out;
			}

			if (pmd_huge(pmd)) {
957
				ret_pte = (pte_t *) pmdp;
958
				goto out;
959
			} else if (is_hugepd(__hugepd(pmd_val(pmd))))
960
				hpdp = (hugepd_t *)&pmd;
961
			else
962
				return pte_offset_kernel(&pmd, ea);
963 964 965 966 967
		}
	}
	if (!hpdp)
		return NULL;

968
	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
969 970 971 972 973 974
	pdshift = hugepd_shift(*hpdp);
out:
	if (shift)
		*shift = pdshift;
	return ret_pte;
}
975
EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
976 977 978 979 980 981

int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
		unsigned long end, int write, struct page **pages, int *nr)
{
	unsigned long mask;
	unsigned long pte_end;
982
	struct page *head, *page;
983 984 985 986 987 988 989
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

990
	pte = READ_ONCE(*ptep);
991
	mask = _PAGE_PRESENT | _PAGE_READ;
992 993 994 995 996

	/*
	 * On some CPUs like the 8xx, _PAGE_RW hence _PAGE_WRITE is defined
	 * as 0 and _PAGE_RO has to be set when a page is not writable
	 */
997
	if (write)
998
		mask |= _PAGE_WRITE;
999 1000
	else
		mask |= _PAGE_RO;
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

	if ((pte_val(pte) & mask) != mask)
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	refs = 0;
	head = pte_page(pte);

	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
	do {
		VM_BUG_ON(compound_head(page) != head);
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

	if (!page_cache_add_speculative(head, refs)) {
		*nr -= refs;
		return 0;
	}

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
		/* Could be optimized better */
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

	return 1;
}