hugetlbpage.c 25.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
B
Becky Bruce 已提交
2
 * PPC Huge TLB Page Support for Kernel.
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2003 David Gibson, IBM Corporation.
B
Becky Bruce 已提交
5
 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
L
Linus Torvalds 已提交
6 7 8 9 10 11
 *
 * Based on the IA-32 version:
 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
 */

#include <linux/mm.h>
12
#include <linux/io.h>
13
#include <linux/slab.h>
L
Linus Torvalds 已提交
14
#include <linux/hugetlb.h>
15
#include <linux/export.h>
B
Becky Bruce 已提交
16 17 18
#include <linux/of_fdt.h>
#include <linux/memblock.h>
#include <linux/bootmem.h>
19
#include <linux/moduleparam.h>
20
#include <asm/pgtable.h>
L
Linus Torvalds 已提交
21 22
#include <asm/pgalloc.h>
#include <asm/tlb.h>
B
Becky Bruce 已提交
23
#include <asm/setup.h>
24 25 26
#include <asm/hugetlb.h>

#ifdef CONFIG_HUGETLB_PAGE
L
Linus Torvalds 已提交
27

28 29 30
#define PAGE_SHIFT_64K	16
#define PAGE_SHIFT_16M	24
#define PAGE_SHIFT_16G	34
31

B
Becky Bruce 已提交
32
unsigned int HPAGE_SHIFT;
33

B
Becky Bruce 已提交
34 35
/*
 * Tracks gpages after the device tree is scanned and before the
36 37 38 39
 * huge_boot_pages list is ready.  On non-Freescale implementations, this is
 * just used to track 16G pages and so is a single array.  FSL-based
 * implementations may have more than one gpage size, so we need multiple
 * arrays
B
Becky Bruce 已提交
40
 */
41
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
42 43 44 45 46 47
#define MAX_NUMBER_GPAGES	128
struct psize_gpages {
	u64 gpage_list[MAX_NUMBER_GPAGES];
	unsigned int nr_gpages;
};
static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
48 49 50 51
#else
#define MAX_NUMBER_GPAGES	1024
static u64 gpage_freearray[MAX_NUMBER_GPAGES];
static unsigned nr_gpages;
B
Becky Bruce 已提交
52
#endif
53

54 55 56 57
#define hugepd_none(hpd)	((hpd).pd == 0)

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
58
	/* Only called for hugetlbfs pages, hence can ignore THP */
59
	return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL, NULL);
60 61
}

62
static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
63
			   unsigned long address, unsigned pdshift, unsigned pshift)
64
{
B
Becky Bruce 已提交
65 66 67
	struct kmem_cache *cachep;
	pte_t *new;

68
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
69 70 71
	int i;
	int num_hugepd = 1 << (pshift - pdshift);
	cachep = hugepte_cache;
72 73
#else
	cachep = PGT_CACHE(pdshift - pshift);
B
Becky Bruce 已提交
74 75 76
#endif

	new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
77

78 79 80
	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);

81 82 83 84
	if (! new)
		return -ENOMEM;

	spin_lock(&mm->page_table_lock);
85
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
86 87 88 89 90 91 92 93 94 95
	/*
	 * We have multiple higher-level entries that point to the same
	 * actual pte location.  Fill in each as we go and backtrack on error.
	 * We need all of these so the DTLB pgtable walk code can find the
	 * right higher-level entry without knowing if it's a hugepage or not.
	 */
	for (i = 0; i < num_hugepd; i++, hpdp++) {
		if (unlikely(!hugepd_none(*hpdp)))
			break;
		else
96
			/* We use the old format for PPC_FSL_BOOK3E */
B
Becky Bruce 已提交
97 98 99 100 101 102 103 104
			hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
	}
	/* If we bailed from the for loop early, an error occurred, clean up */
	if (i < num_hugepd) {
		for (i = i - 1 ; i >= 0; i--, hpdp--)
			hpdp->pd = 0;
		kmem_cache_free(cachep, new);
	}
105 106 107
#else
	if (!hugepd_none(*hpdp))
		kmem_cache_free(cachep, new);
108 109
	else {
#ifdef CONFIG_PPC_BOOK3S_64
110
		hpdp->pd = __pa(new) | (shift_to_mmu_psize(pshift) << 2);
111
#else
112
		hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
113 114
#endif
	}
B
Becky Bruce 已提交
115
#endif
116 117 118 119
	spin_unlock(&mm->page_table_lock);
	return 0;
}

120 121 122 123 124 125 126 127 128 129 130 131
/*
 * These macros define how to determine which level of the page table holds
 * the hpdp.
 */
#ifdef CONFIG_PPC_FSL_BOOK3E
#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
#define HUGEPD_PUD_SHIFT PUD_SHIFT
#else
#define HUGEPD_PGD_SHIFT PUD_SHIFT
#define HUGEPD_PUD_SHIFT PMD_SHIFT
#endif

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#ifdef CONFIG_PPC_BOOK3S_64
/*
 * At this point we do the placement change only for BOOK3S 64. This would
 * possibly work on other subarchs.
 */
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
{
	pgd_t *pg;
	pud_t *pu;
	pmd_t *pm;
	hugepd_t *hpdp = NULL;
	unsigned pshift = __ffs(sz);
	unsigned pdshift = PGDIR_SHIFT;

	addr &= ~(sz-1);
	pg = pgd_offset(mm, addr);

	if (pshift == PGDIR_SHIFT)
		/* 16GB huge page */
		return (pte_t *) pg;
	else if (pshift > PUD_SHIFT)
		/*
		 * We need to use hugepd table
		 */
		hpdp = (hugepd_t *)pg;
	else {
		pdshift = PUD_SHIFT;
		pu = pud_alloc(mm, pg, addr);
		if (pshift == PUD_SHIFT)
			return (pte_t *)pu;
		else if (pshift > PMD_SHIFT)
			hpdp = (hugepd_t *)pu;
		else {
			pdshift = PMD_SHIFT;
			pm = pmd_alloc(mm, pu, addr);
			if (pshift == PMD_SHIFT)
				/* 16MB hugepage */
				return (pte_t *)pm;
			else
				hpdp = (hugepd_t *)pm;
		}
	}
	if (!hpdp)
		return NULL;

	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));

	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
		return NULL;

182
	return hugepte_offset(*hpdp, addr, pdshift);
183 184 185 186
}

#else

187
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
188
{
189 190 191 192 193 194 195 196 197 198
	pgd_t *pg;
	pud_t *pu;
	pmd_t *pm;
	hugepd_t *hpdp = NULL;
	unsigned pshift = __ffs(sz);
	unsigned pdshift = PGDIR_SHIFT;

	addr &= ~(sz-1);

	pg = pgd_offset(mm, addr);
199 200

	if (pshift >= HUGEPD_PGD_SHIFT) {
201 202 203 204
		hpdp = (hugepd_t *)pg;
	} else {
		pdshift = PUD_SHIFT;
		pu = pud_alloc(mm, pg, addr);
205
		if (pshift >= HUGEPD_PUD_SHIFT) {
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
			hpdp = (hugepd_t *)pu;
		} else {
			pdshift = PMD_SHIFT;
			pm = pmd_alloc(mm, pu, addr);
			hpdp = (hugepd_t *)pm;
		}
	}

	if (!hpdp)
		return NULL;

	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));

	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
		return NULL;

222
	return hugepte_offset(*hpdp, addr, pdshift);
223
}
224
#endif
225

226
#ifdef CONFIG_PPC_FSL_BOOK3E
227
/* Build list of addresses of gigantic pages.  This function is used in early
228
 * boot before the buddy allocator is setup.
229
 */
B
Becky Bruce 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
{
	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
	int i;

	if (addr == 0)
		return;

	gpage_freearray[idx].nr_gpages = number_of_pages;

	for (i = 0; i < number_of_pages; i++) {
		gpage_freearray[idx].gpage_list[i] = addr;
		addr += page_size;
	}
}

/*
 * Moves the gigantic page addresses from the temporary list to the
 * huge_boot_pages list.
 */
int alloc_bootmem_huge_page(struct hstate *hstate)
{
	struct huge_bootmem_page *m;
253
	int idx = shift_to_mmu_psize(huge_page_shift(hstate));
B
Becky Bruce 已提交
254 255 256 257 258 259 260 261 262 263
	int nr_gpages = gpage_freearray[idx].nr_gpages;

	if (nr_gpages == 0)
		return 0;

#ifdef CONFIG_HIGHMEM
	/*
	 * If gpages can be in highmem we can't use the trick of storing the
	 * data structure in the page; allocate space for this
	 */
264
	m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
B
Becky Bruce 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
#else
	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
#endif

	list_add(&m->list, &huge_boot_pages);
	gpage_freearray[idx].nr_gpages = nr_gpages;
	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
	m->hstate = hstate;

	return 1;
}
/*
 * Scan the command line hugepagesz= options for gigantic pages; store those in
 * a list that we use to allocate the memory once all options are parsed.
 */

unsigned long gpage_npages[MMU_PAGE_COUNT];

284
static int __init do_gpage_early_setup(char *param, char *val,
285
				       const char *unused, void *arg)
B
Becky Bruce 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
{
	static phys_addr_t size;
	unsigned long npages;

	/*
	 * The hugepagesz and hugepages cmdline options are interleaved.  We
	 * use the size variable to keep track of whether or not this was done
	 * properly and skip over instances where it is incorrect.  Other
	 * command-line parsing code will issue warnings, so we don't need to.
	 *
	 */
	if ((strcmp(param, "default_hugepagesz") == 0) ||
	    (strcmp(param, "hugepagesz") == 0)) {
		size = memparse(val, NULL);
	} else if (strcmp(param, "hugepages") == 0) {
		if (size != 0) {
			if (sscanf(val, "%lu", &npages) <= 0)
				npages = 0;
304 305 306 307 308 309 310
			if (npages > MAX_NUMBER_GPAGES) {
				pr_warn("MMU: %lu pages requested for page "
					"size %llu KB, limiting to "
					__stringify(MAX_NUMBER_GPAGES) "\n",
					npages, size / 1024);
				npages = MAX_NUMBER_GPAGES;
			}
B
Becky Bruce 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
			size = 0;
		}
	}
	return 0;
}


/*
 * This function allocates physical space for pages that are larger than the
 * buddy allocator can handle.  We want to allocate these in highmem because
 * the amount of lowmem is limited.  This means that this function MUST be
 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
 * allocate to grab highmem.
 */
void __init reserve_hugetlb_gpages(void)
{
	static __initdata char cmdline[COMMAND_LINE_SIZE];
	phys_addr_t size, base;
	int i;

	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
333
	parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
334
			NULL, &do_gpage_early_setup);
B
Becky Bruce 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

	/*
	 * Walk gpage list in reverse, allocating larger page sizes first.
	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
	 * When we reach the point in the list where pages are no longer
	 * considered gpages, we're done.
	 */
	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
			continue;
		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
			break;

		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
		base = memblock_alloc_base(size * gpage_npages[i], size,
					   MEMBLOCK_ALLOC_ANYWHERE);
		add_gpage(base, size, gpage_npages[i]);
	}
}

355
#else /* !PPC_FSL_BOOK3E */
B
Becky Bruce 已提交
356 357

/* Build list of addresses of gigantic pages.  This function is used in early
358
 * boot before the buddy allocator is setup.
B
Becky Bruce 已提交
359 360
 */
void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
361 362 363 364 365 366 367 368 369 370 371
{
	if (!addr)
		return;
	while (number_of_pages > 0) {
		gpage_freearray[nr_gpages] = addr;
		nr_gpages++;
		number_of_pages--;
		addr += page_size;
	}
}

372
/* Moves the gigantic page addresses from the temporary list to the
373 374 375
 * huge_boot_pages list.
 */
int alloc_bootmem_huge_page(struct hstate *hstate)
376 377 378 379 380 381 382
{
	struct huge_bootmem_page *m;
	if (nr_gpages == 0)
		return 0;
	m = phys_to_virt(gpage_freearray[--nr_gpages]);
	gpage_freearray[nr_gpages] = 0;
	list_add(&m->list, &huge_boot_pages);
383
	m->hstate = hstate;
384 385
	return 1;
}
B
Becky Bruce 已提交
386
#endif
387

388
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
#define HUGEPD_FREELIST_SIZE \
	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))

struct hugepd_freelist {
	struct rcu_head	rcu;
	unsigned int index;
	void *ptes[0];
};

static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);

static void hugepd_free_rcu_callback(struct rcu_head *head)
{
	struct hugepd_freelist *batch =
		container_of(head, struct hugepd_freelist, rcu);
	unsigned int i;

	for (i = 0; i < batch->index; i++)
		kmem_cache_free(hugepte_cache, batch->ptes[i]);

	free_page((unsigned long)batch);
}

static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
{
	struct hugepd_freelist **batchp;

416
	batchp = &get_cpu_var(hugepd_freelist_cur);
B
Becky Bruce 已提交
417 418 419 420 421

	if (atomic_read(&tlb->mm->mm_users) < 2 ||
	    cpumask_equal(mm_cpumask(tlb->mm),
			  cpumask_of(smp_processor_id()))) {
		kmem_cache_free(hugepte_cache, hugepte);
422
		put_cpu_var(hugepd_freelist_cur);
B
Becky Bruce 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435
		return;
	}

	if (*batchp == NULL) {
		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
		(*batchp)->index = 0;
	}

	(*batchp)->ptes[(*batchp)->index++] = hugepte;
	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
		*batchp = NULL;
	}
436
	put_cpu_var(hugepd_freelist_cur);
B
Becky Bruce 已提交
437 438 439
}
#endif

440 441 442
static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
			      unsigned long start, unsigned long end,
			      unsigned long floor, unsigned long ceiling)
443 444
{
	pte_t *hugepte = hugepd_page(*hpdp);
B
Becky Bruce 已提交
445 446
	int i;

447
	unsigned long pdmask = ~((1UL << pdshift) - 1);
B
Becky Bruce 已提交
448 449
	unsigned int num_hugepd = 1;

450 451
#ifdef CONFIG_PPC_FSL_BOOK3E
	/* Note: On fsl the hpdp may be the first of several */
B
Becky Bruce 已提交
452
	num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
453 454
#else
	unsigned int shift = hugepd_shift(*hpdp);
B
Becky Bruce 已提交
455
#endif
456 457 458 459 460 461 462 463 464 465 466

	start &= pdmask;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= pdmask;
		if (! ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;
467

B
Becky Bruce 已提交
468 469 470
	for (i = 0; i < num_hugepd; i++, hpdp++)
		hpdp->pd = 0;

471
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
472
	hugepd_free(tlb, hugepte);
473 474
#else
	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
B
Becky Bruce 已提交
475
#endif
476 477 478 479
}

static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				   unsigned long addr, unsigned long end,
480
				   unsigned long floor, unsigned long ceiling)
481 482 483 484 485 486 487
{
	pmd_t *pmd;
	unsigned long next;
	unsigned long start;

	start = addr;
	do {
488
		pmd = pmd_offset(pud, addr);
489
		next = pmd_addr_end(addr, end);
490
		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
491 492 493 494 495
			/*
			 * if it is not hugepd pointer, we should already find
			 * it cleared.
			 */
			WARN_ON(!pmd_none_or_clear_bad(pmd));
496
			continue;
497
		}
498 499 500 501 502 503 504 505 506
#ifdef CONFIG_PPC_FSL_BOOK3E
		/*
		 * Increment next by the size of the huge mapping since
		 * there may be more than one entry at this level for a
		 * single hugepage, but all of them point to
		 * the same kmem cache that holds the hugepte.
		 */
		next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
#endif
507 508
		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
				  addr, next, floor, ceiling);
509
	} while (addr = next, addr != end);
510 511 512 513 514 515 516 517

	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
518
	}
519 520
	if (end - 1 > ceiling - 1)
		return;
L
Linus Torvalds 已提交
521

522 523
	pmd = pmd_offset(pud, start);
	pud_clear(pud);
524
	pmd_free_tlb(tlb, pmd, start);
525
	mm_dec_nr_pmds(tlb->mm);
526 527 528 529 530 531 532 533 534 535 536 537
}

static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				   unsigned long addr, unsigned long end,
				   unsigned long floor, unsigned long ceiling)
{
	pud_t *pud;
	unsigned long next;
	unsigned long start;

	start = addr;
	do {
538
		pud = pud_offset(pgd, addr);
539
		next = pud_addr_end(addr, end);
540
		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
541 542
			if (pud_none_or_clear_bad(pud))
				continue;
543
			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
544
					       ceiling);
545
		} else {
546 547 548 549 550 551 552 553 554
#ifdef CONFIG_PPC_FSL_BOOK3E
			/*
			 * Increment next by the size of the huge mapping since
			 * there may be more than one entry at this level for a
			 * single hugepage, but all of them point to
			 * the same kmem cache that holds the hugepte.
			 */
			next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
#endif
555 556
			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
					  addr, next, floor, ceiling);
557
		}
558
	} while (addr = next, addr != end);
559 560 561 562 563 564 565 566 567 568 569 570 571 572

	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(pgd, start);
	pgd_clear(pgd);
573
	pud_free_tlb(tlb, pud, start);
574 575 576 577 578
}

/*
 * This function frees user-level page tables of a process.
 */
579
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
580 581 582 583 584 585 586
			    unsigned long addr, unsigned long end,
			    unsigned long floor, unsigned long ceiling)
{
	pgd_t *pgd;
	unsigned long next;

	/*
587 588 589 590 591 592 593 594 595 596
	 * Because there are a number of different possible pagetable
	 * layouts for hugepage ranges, we limit knowledge of how
	 * things should be laid out to the allocation path
	 * (huge_pte_alloc(), above).  Everything else works out the
	 * structure as it goes from information in the hugepd
	 * pointers.  That means that we can't here use the
	 * optimization used in the normal page free_pgd_range(), of
	 * checking whether we're actually covering a large enough
	 * range to have to do anything at the top level of the walk
	 * instead of at the bottom.
597
	 *
598 599 600
	 * To make sense of this, you should probably go read the big
	 * block comment at the top of the normal free_pgd_range(),
	 * too.
601 602 603 604
	 */

	do {
		next = pgd_addr_end(addr, end);
B
Becky Bruce 已提交
605
		pgd = pgd_offset(tlb->mm, addr);
606
		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
607 608 609 610
			if (pgd_none_or_clear_bad(pgd))
				continue;
			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
		} else {
611
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
612 613
			/*
			 * Increment next by the size of the huge mapping since
614 615 616
			 * there may be more than one entry at the pgd level
			 * for a single hugepage, but all of them point to the
			 * same kmem cache that holds the hugepte.
B
Becky Bruce 已提交
617 618 619
			 */
			next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
#endif
620 621
			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
					  addr, next, floor, ceiling);
622
		}
B
Becky Bruce 已提交
623
	} while (addr = next, addr != end);
L
Linus Torvalds 已提交
624 625
}

626 627 628 629
/*
 * We are holding mmap_sem, so a parallel huge page collapse cannot run.
 * To prevent hugepage split, disable irq.
 */
L
Linus Torvalds 已提交
630 631 632
struct page *
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
{
633
	bool is_thp;
634
	pte_t *ptep, pte;
635
	unsigned shift;
636
	unsigned long mask, flags;
637 638 639
	struct page *page = ERR_PTR(-EINVAL);

	local_irq_save(flags);
640
	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &is_thp, &shift);
641 642 643
	if (!ptep)
		goto no_page;
	pte = READ_ONCE(*ptep);
644
	/*
645
	 * Verify it is a huge page else bail.
646 647 648
	 * Transparent hugepages are handled by generic code. We can skip them
	 * here.
	 */
649
	if (!shift || is_thp)
650
		goto no_page;
L
Linus Torvalds 已提交
651

652 653 654
	if (!pte_present(pte)) {
		page = NULL;
		goto no_page;
655
	}
656
	mask = (1UL << shift) - 1;
657
	page = pte_page(pte);
658 659
	if (page)
		page += (address & mask) / PAGE_SIZE;
L
Linus Torvalds 已提交
660

661
no_page:
662
	local_irq_restore(flags);
L
Linus Torvalds 已提交
663 664 665 666 667 668 669 670 671 672 673
	return page;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	BUG();
	return NULL;
}

674 675 676 677 678 679 680 681
struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
		pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
682 683 684 685 686 687 688
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

689 690
int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
		unsigned long end, int write, struct page **pages, int *nr)
691 692
{
	pte_t *ptep;
693
	unsigned long sz = 1UL << hugepd_shift(hugepd);
D
David Gibson 已提交
694
	unsigned long next;
695 696 697

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
D
David Gibson 已提交
698
		next = hugepte_addr_end(addr, end, sz);
699 700
		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
			return 0;
D
David Gibson 已提交
701
	} while (ptep++, addr = next, addr != end);
702 703 704

	return 1;
}
L
Linus Torvalds 已提交
705

706
#ifdef CONFIG_PPC_MM_SLICES
L
Linus Torvalds 已提交
707 708 709 710
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
					unsigned long len, unsigned long pgoff,
					unsigned long flags)
{
711 712
	struct hstate *hstate = hstate_file(file);
	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
713

714 715 716
	if (radix_enabled())
		return radix__hugetlb_get_unmapped_area(file, addr, len,
						       pgoff, flags);
717
	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
L
Linus Torvalds 已提交
718
}
719
#endif
L
Linus Torvalds 已提交
720

721 722
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
723
#ifdef CONFIG_PPC_MM_SLICES
724
	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
725 726 727 728
	/* With radix we don't use slice, so derive it from vma*/
	if (!radix_enabled())
		return 1UL << mmu_psize_to_shift(psize);
#endif
B
Becky Bruce 已提交
729 730 731 732 733 734 735 736 737 738 739
	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	return huge_page_size(hstate_vma(vma));
}

static inline bool is_power_of_4(unsigned long x)
{
	if (is_power_of_2(x))
		return (__ilog2(x) % 2) ? false : true;
	return false;
740 741
}

742
static int __init add_huge_page_size(unsigned long long size)
743
{
744 745
	int shift = __ffs(size);
	int mmu_psize;
746

747
	/* Check that it is a page size supported by the hardware and
748
	 * that it fits within pagetable and slice limits. */
B
Becky Bruce 已提交
749 750 751 752
#ifdef CONFIG_PPC_FSL_BOOK3E
	if ((size < PAGE_SIZE) || !is_power_of_4(size))
		return -EINVAL;
#else
753 754 755
	if (!is_power_of_2(size)
	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
		return -EINVAL;
B
Becky Bruce 已提交
756
#endif
757

758 759 760 761 762 763 764 765 766 767 768 769
	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
		return -EINVAL;

	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);

	/* Return if huge page size has already been setup */
	if (size_to_hstate(size))
		return 0;

	hugetlb_add_hstate(shift - PAGE_SHIFT);

	return 0;
770 771 772 773 774 775 776 777
}

static int __init hugepage_setup_sz(char *str)
{
	unsigned long long size;

	size = memparse(str, &str);

778 779 780 781
	if (add_huge_page_size(size) != 0) {
		hugetlb_bad_size();
		pr_err("Invalid huge page size specified(%llu)\n", size);
	}
782 783 784 785 786

	return 1;
}
__setup("hugepagesz=", hugepage_setup_sz);

787
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
struct kmem_cache *hugepte_cache;
static int __init hugetlbpage_init(void)
{
	int psize;

	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
		unsigned shift;

		if (!mmu_psize_defs[psize].shift)
			continue;

		shift = mmu_psize_to_shift(psize);

		/* Don't treat normal page sizes as huge... */
		if (shift != PAGE_SHIFT)
			if (add_huge_page_size(1ULL << shift) < 0)
				continue;
	}

	/*
	 * Create a kmem cache for hugeptes.  The bottom bits in the pte have
	 * size information encoded in them, so align them to allow this
	 */
	hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
					   HUGEPD_SHIFT_MASK + 1, 0, NULL);
	if (hugepte_cache == NULL)
		panic("%s: Unable to create kmem cache for hugeptes\n",
		      __func__);

	/* Default hpage size = 4M */
	if (mmu_psize_defs[MMU_PAGE_4M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
	else
		panic("%s: Unable to set default huge page size\n", __func__);


	return 0;
}
#else
827 828
static int __init hugetlbpage_init(void)
{
829
	int psize;
830

831
	if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
832
		return -ENODEV;
833

834 835 836
	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
		unsigned shift;
		unsigned pdshift;
837

838 839
		if (!mmu_psize_defs[psize].shift)
			continue;
840

841 842 843 844 845 846 847 848 849 850 851
		shift = mmu_psize_to_shift(psize);

		if (add_huge_page_size(1ULL << shift) < 0)
			continue;

		if (shift < PMD_SHIFT)
			pdshift = PMD_SHIFT;
		else if (shift < PUD_SHIFT)
			pdshift = PUD_SHIFT;
		else
			pdshift = PGDIR_SHIFT;
852 853 854 855 856 857 858 859 860 861
		/*
		 * if we have pdshift and shift value same, we don't
		 * use pgt cache for hugepd.
		 */
		if (pdshift != shift) {
			pgtable_cache_add(pdshift - shift, NULL);
			if (!PGT_CACHE(pdshift - shift))
				panic("hugetlbpage_init(): could not create "
				      "pgtable cache for %d bit pagesize\n", shift);
		}
862
	}
863

864 865 866 867 868 869 870
	/* Set default large page size. Currently, we pick 16M or 1M
	 * depending on what is available
	 */
	if (mmu_psize_defs[MMU_PAGE_16M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
871 872 873
	else if (mmu_psize_defs[MMU_PAGE_2M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;

874

875 876
	return 0;
}
B
Becky Bruce 已提交
877
#endif
878
arch_initcall(hugetlbpage_init);
879 880 881 882

void flush_dcache_icache_hugepage(struct page *page)
{
	int i;
B
Becky Bruce 已提交
883
	void *start;
884 885 886

	BUG_ON(!PageCompound(page));

B
Becky Bruce 已提交
887 888 889 890
	for (i = 0; i < (1UL << compound_order(page)); i++) {
		if (!PageHighMem(page)) {
			__flush_dcache_icache(page_address(page+i));
		} else {
891
			start = kmap_atomic(page+i);
B
Becky Bruce 已提交
892
			__flush_dcache_icache(start);
893
			kunmap_atomic(start);
B
Becky Bruce 已提交
894 895
		}
	}
896
}
897 898 899 900 901 902 903

#endif /* CONFIG_HUGETLB_PAGE */

/*
 * We have 4 cases for pgds and pmds:
 * (1) invalid (all zeroes)
 * (2) pointer to next table, as normal; bottom 6 bits == 0
A
Aneesh Kumar K.V 已提交
904 905
 * (3) leaf pte for huge page _PAGE_PTE set
 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
906 907 908
 *
 * So long as we atomically load page table pointers we are safe against teardown,
 * we can follow the address down to the the page and take a ref on it.
909 910
 * This function need to be called with interrupts disabled. We use this variant
 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
911
 */
912

913
pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
914
				   bool *is_thp, unsigned *shift)
915
{
916 917 918
	pgd_t pgd, *pgdp;
	pud_t pud, *pudp;
	pmd_t pmd, *pmdp;
919 920 921 922 923 924 925
	pte_t *ret_pte;
	hugepd_t *hpdp = NULL;
	unsigned pdshift = PGDIR_SHIFT;

	if (shift)
		*shift = 0;

926 927 928
	if (is_thp)
		*is_thp = false;

929
	pgdp = pgdir + pgd_index(ea);
930
	pgd  = READ_ONCE(*pgdp);
931
	/*
932 933 934 935
	 * Always operate on the local stack value. This make sure the
	 * value don't get updated by a parallel THP split/collapse,
	 * page fault or a page unmap. The return pte_t * is still not
	 * stable. So should be checked there for above conditions.
936
	 */
937
	if (pgd_none(pgd))
938
		return NULL;
939 940
	else if (pgd_huge(pgd)) {
		ret_pte = (pte_t *) pgdp;
941
		goto out;
942
	} else if (is_hugepd(__hugepd(pgd_val(pgd))))
943
		hpdp = (hugepd_t *)&pgd;
944
	else {
945 946 947 948 949
		/*
		 * Even if we end up with an unmap, the pgtable will not
		 * be freed, because we do an rcu free and here we are
		 * irq disabled
		 */
950
		pdshift = PUD_SHIFT;
951
		pudp = pud_offset(&pgd, ea);
952
		pud  = READ_ONCE(*pudp);
953

954
		if (pud_none(pud))
955
			return NULL;
956 957
		else if (pud_huge(pud)) {
			ret_pte = (pte_t *) pudp;
958
			goto out;
959
		} else if (is_hugepd(__hugepd(pud_val(pud))))
960
			hpdp = (hugepd_t *)&pud;
961
		else {
962
			pdshift = PMD_SHIFT;
963
			pmdp = pmd_offset(&pud, ea);
964
			pmd  = READ_ONCE(*pmdp);
965 966 967 968
			/*
			 * A hugepage collapse is captured by pmd_none, because
			 * it mark the pmd none and do a hpte invalidate.
			 */
969
			if (pmd_none(pmd))
970
				return NULL;
971

972 973 974 975 976 977 978 979
			if (pmd_trans_huge(pmd)) {
				if (is_thp)
					*is_thp = true;
				ret_pte = (pte_t *) pmdp;
				goto out;
			}

			if (pmd_huge(pmd)) {
980
				ret_pte = (pte_t *) pmdp;
981
				goto out;
982
			} else if (is_hugepd(__hugepd(pmd_val(pmd))))
983
				hpdp = (hugepd_t *)&pmd;
984
			else
985
				return pte_offset_kernel(&pmd, ea);
986 987 988 989 990
		}
	}
	if (!hpdp)
		return NULL;

991
	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
992 993 994 995 996 997
	pdshift = hugepd_shift(*hpdp);
out:
	if (shift)
		*shift = pdshift;
	return ret_pte;
}
998
EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
999 1000 1001 1002 1003 1004

int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
		unsigned long end, int write, struct page **pages, int *nr)
{
	unsigned long mask;
	unsigned long pte_end;
1005
	struct page *head, *page;
1006 1007 1008 1009 1010 1011 1012
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

1013
	pte = READ_ONCE(*ptep);
1014
	mask = _PAGE_PRESENT | _PAGE_READ;
1015
	if (write)
1016
		mask |= _PAGE_WRITE;
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

	if ((pte_val(pte) & mask) != mask)
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	refs = 0;
	head = pte_page(pte);

	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
	do {
		VM_BUG_ON(compound_head(page) != head);
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

	if (!page_cache_add_speculative(head, refs)) {
		*nr -= refs;
		return 0;
	}

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
		/* Could be optimized better */
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

	return 1;
}