hugetlbpage.c 25.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
B
Becky Bruce 已提交
2
 * PPC Huge TLB Page Support for Kernel.
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2003 David Gibson, IBM Corporation.
B
Becky Bruce 已提交
5
 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
L
Linus Torvalds 已提交
6 7 8 9 10 11
 *
 * Based on the IA-32 version:
 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
 */

#include <linux/mm.h>
12
#include <linux/io.h>
13
#include <linux/slab.h>
L
Linus Torvalds 已提交
14
#include <linux/hugetlb.h>
15
#include <linux/export.h>
B
Becky Bruce 已提交
16 17 18
#include <linux/of_fdt.h>
#include <linux/memblock.h>
#include <linux/bootmem.h>
19
#include <linux/moduleparam.h>
20 21
#include <linux/swap.h>
#include <linux/swapops.h>
22
#include <asm/pgtable.h>
L
Linus Torvalds 已提交
23 24
#include <asm/pgalloc.h>
#include <asm/tlb.h>
B
Becky Bruce 已提交
25
#include <asm/setup.h>
26 27 28
#include <asm/hugetlb.h>

#ifdef CONFIG_HUGETLB_PAGE
L
Linus Torvalds 已提交
29

30
#define PAGE_SHIFT_64K	16
31 32
#define PAGE_SHIFT_512K	19
#define PAGE_SHIFT_8M	23
33 34
#define PAGE_SHIFT_16M	24
#define PAGE_SHIFT_16G	34
35

B
Becky Bruce 已提交
36
unsigned int HPAGE_SHIFT;
37

B
Becky Bruce 已提交
38 39
/*
 * Tracks gpages after the device tree is scanned and before the
40 41 42 43
 * huge_boot_pages list is ready.  On non-Freescale implementations, this is
 * just used to track 16G pages and so is a single array.  FSL-based
 * implementations may have more than one gpage size, so we need multiple
 * arrays
B
Becky Bruce 已提交
44
 */
45
#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
B
Becky Bruce 已提交
46 47 48 49 50 51
#define MAX_NUMBER_GPAGES	128
struct psize_gpages {
	u64 gpage_list[MAX_NUMBER_GPAGES];
	unsigned int nr_gpages;
};
static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
52 53 54 55
#else
#define MAX_NUMBER_GPAGES	1024
static u64 gpage_freearray[MAX_NUMBER_GPAGES];
static unsigned nr_gpages;
B
Becky Bruce 已提交
56
#endif
57

58
#define hugepd_none(hpd)	(hpd_val(hpd) == 0)
59 60 61

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
62
	/* Only called for hugetlbfs pages, hence can ignore THP */
63
	return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL, NULL);
64 65
}

66
static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
67
			   unsigned long address, unsigned pdshift, unsigned pshift)
68
{
B
Becky Bruce 已提交
69 70 71
	struct kmem_cache *cachep;
	pte_t *new;
	int i;
72 73 74 75 76 77 78 79 80
	int num_hugepd;

	if (pshift >= pdshift) {
		cachep = hugepte_cache;
		num_hugepd = 1 << (pshift - pdshift);
	} else {
		cachep = PGT_CACHE(pdshift - pshift);
		num_hugepd = 1;
	}
B
Becky Bruce 已提交
81

82
	new = kmem_cache_zalloc(cachep, GFP_KERNEL);
83

84 85 86
	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);

87 88 89
	if (! new)
		return -ENOMEM;

90 91 92 93 94 95 96
	/*
	 * Make sure other cpus find the hugepd set only after a
	 * properly initialized page table is visible to them.
	 * For more details look for comment in __pte_alloc().
	 */
	smp_wmb();

97
	spin_lock(&mm->page_table_lock);
98

B
Becky Bruce 已提交
99 100 101 102 103 104 105 106 107
	/*
	 * We have multiple higher-level entries that point to the same
	 * actual pte location.  Fill in each as we go and backtrack on error.
	 * We need all of these so the DTLB pgtable walk code can find the
	 * right higher-level entry without knowing if it's a hugepage or not.
	 */
	for (i = 0; i < num_hugepd; i++, hpdp++) {
		if (unlikely(!hugepd_none(*hpdp)))
			break;
108
		else {
109
#ifdef CONFIG_PPC_BOOK3S_64
110 111
			*hpdp = __hugepd(__pa(new) |
					 (shift_to_mmu_psize(pshift) << 2));
112
#elif defined(CONFIG_PPC_8xx)
113 114 115
			*hpdp = __hugepd(__pa(new) |
					 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
					  _PMD_PAGE_512K) | _PMD_PRESENT);
116
#else
117
			/* We use the old format for PPC_FSL_BOOK3E */
118
			*hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
119
#endif
120
		}
B
Becky Bruce 已提交
121 122 123 124
	}
	/* If we bailed from the for loop early, an error occurred, clean up */
	if (i < num_hugepd) {
		for (i = i - 1 ; i >= 0; i--, hpdp--)
125
			*hpdp = __hugepd(0);
B
Becky Bruce 已提交
126 127
		kmem_cache_free(cachep, new);
	}
128 129 130 131
	spin_unlock(&mm->page_table_lock);
	return 0;
}

132 133 134 135
/*
 * These macros define how to determine which level of the page table holds
 * the hpdp.
 */
136
#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
137 138 139 140 141 142 143
#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
#define HUGEPD_PUD_SHIFT PUD_SHIFT
#else
#define HUGEPD_PGD_SHIFT PUD_SHIFT
#define HUGEPD_PUD_SHIFT PMD_SHIFT
#endif

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * At this point we do the placement change only for BOOK3S 64. This would
 * possibly work on other subarchs.
 */
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
{
	pgd_t *pg;
	pud_t *pu;
	pmd_t *pm;
	hugepd_t *hpdp = NULL;
	unsigned pshift = __ffs(sz);
	unsigned pdshift = PGDIR_SHIFT;

	addr &= ~(sz-1);
	pg = pgd_offset(mm, addr);

160
#ifdef CONFIG_PPC_BOOK3S_64
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
	if (pshift == PGDIR_SHIFT)
		/* 16GB huge page */
		return (pte_t *) pg;
	else if (pshift > PUD_SHIFT)
		/*
		 * We need to use hugepd table
		 */
		hpdp = (hugepd_t *)pg;
	else {
		pdshift = PUD_SHIFT;
		pu = pud_alloc(mm, pg, addr);
		if (pshift == PUD_SHIFT)
			return (pte_t *)pu;
		else if (pshift > PMD_SHIFT)
			hpdp = (hugepd_t *)pu;
		else {
			pdshift = PMD_SHIFT;
			pm = pmd_alloc(mm, pu, addr);
			if (pshift == PMD_SHIFT)
				/* 16MB hugepage */
				return (pte_t *)pm;
			else
				hpdp = (hugepd_t *)pm;
		}
	}
#else
187
	if (pshift >= HUGEPD_PGD_SHIFT) {
188 189 190 191
		hpdp = (hugepd_t *)pg;
	} else {
		pdshift = PUD_SHIFT;
		pu = pud_alloc(mm, pg, addr);
192
		if (pshift >= HUGEPD_PUD_SHIFT) {
193 194 195 196 197 198 199
			hpdp = (hugepd_t *)pu;
		} else {
			pdshift = PMD_SHIFT;
			pm = pmd_alloc(mm, pu, addr);
			hpdp = (hugepd_t *)pm;
		}
	}
200
#endif
201 202 203 204 205 206 207 208
	if (!hpdp)
		return NULL;

	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));

	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
		return NULL;

209
	return hugepte_offset(*hpdp, addr, pdshift);
210 211
}

212
#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
213
/* Build list of addresses of gigantic pages.  This function is used in early
214
 * boot before the buddy allocator is setup.
215
 */
B
Becky Bruce 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
{
	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
	int i;

	if (addr == 0)
		return;

	gpage_freearray[idx].nr_gpages = number_of_pages;

	for (i = 0; i < number_of_pages; i++) {
		gpage_freearray[idx].gpage_list[i] = addr;
		addr += page_size;
	}
}

/*
 * Moves the gigantic page addresses from the temporary list to the
 * huge_boot_pages list.
 */
int alloc_bootmem_huge_page(struct hstate *hstate)
{
	struct huge_bootmem_page *m;
239
	int idx = shift_to_mmu_psize(huge_page_shift(hstate));
B
Becky Bruce 已提交
240 241 242 243 244 245 246 247 248 249
	int nr_gpages = gpage_freearray[idx].nr_gpages;

	if (nr_gpages == 0)
		return 0;

#ifdef CONFIG_HIGHMEM
	/*
	 * If gpages can be in highmem we can't use the trick of storing the
	 * data structure in the page; allocate space for this
	 */
250
	m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
B
Becky Bruce 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
#else
	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
#endif

	list_add(&m->list, &huge_boot_pages);
	gpage_freearray[idx].nr_gpages = nr_gpages;
	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
	m->hstate = hstate;

	return 1;
}
/*
 * Scan the command line hugepagesz= options for gigantic pages; store those in
 * a list that we use to allocate the memory once all options are parsed.
 */

unsigned long gpage_npages[MMU_PAGE_COUNT];

270
static int __init do_gpage_early_setup(char *param, char *val,
271
				       const char *unused, void *arg)
B
Becky Bruce 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
{
	static phys_addr_t size;
	unsigned long npages;

	/*
	 * The hugepagesz and hugepages cmdline options are interleaved.  We
	 * use the size variable to keep track of whether or not this was done
	 * properly and skip over instances where it is incorrect.  Other
	 * command-line parsing code will issue warnings, so we don't need to.
	 *
	 */
	if ((strcmp(param, "default_hugepagesz") == 0) ||
	    (strcmp(param, "hugepagesz") == 0)) {
		size = memparse(val, NULL);
	} else if (strcmp(param, "hugepages") == 0) {
		if (size != 0) {
			if (sscanf(val, "%lu", &npages) <= 0)
				npages = 0;
290 291
			if (npages > MAX_NUMBER_GPAGES) {
				pr_warn("MMU: %lu pages requested for page "
292
#ifdef CONFIG_PHYS_ADDR_T_64BIT
293
					"size %llu KB, limiting to "
294 295 296
#else
					"size %u KB, limiting to "
#endif
297 298 299 300
					__stringify(MAX_NUMBER_GPAGES) "\n",
					npages, size / 1024);
				npages = MAX_NUMBER_GPAGES;
			}
B
Becky Bruce 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
			size = 0;
		}
	}
	return 0;
}


/*
 * This function allocates physical space for pages that are larger than the
 * buddy allocator can handle.  We want to allocate these in highmem because
 * the amount of lowmem is limited.  This means that this function MUST be
 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
 * allocate to grab highmem.
 */
void __init reserve_hugetlb_gpages(void)
{
	static __initdata char cmdline[COMMAND_LINE_SIZE];
	phys_addr_t size, base;
	int i;

	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
323
	parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
324
			NULL, &do_gpage_early_setup);
B
Becky Bruce 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

	/*
	 * Walk gpage list in reverse, allocating larger page sizes first.
	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
	 * When we reach the point in the list where pages are no longer
	 * considered gpages, we're done.
	 */
	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
			continue;
		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
			break;

		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
		base = memblock_alloc_base(size * gpage_npages[i], size,
					   MEMBLOCK_ALLOC_ANYWHERE);
		add_gpage(base, size, gpage_npages[i]);
	}
}

345
#else /* !PPC_FSL_BOOK3E */
B
Becky Bruce 已提交
346 347

/* Build list of addresses of gigantic pages.  This function is used in early
348
 * boot before the buddy allocator is setup.
B
Becky Bruce 已提交
349 350
 */
void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
351 352 353 354 355 356 357 358 359 360 361
{
	if (!addr)
		return;
	while (number_of_pages > 0) {
		gpage_freearray[nr_gpages] = addr;
		nr_gpages++;
		number_of_pages--;
		addr += page_size;
	}
}

362
/* Moves the gigantic page addresses from the temporary list to the
363 364 365
 * huge_boot_pages list.
 */
int alloc_bootmem_huge_page(struct hstate *hstate)
366 367 368 369 370 371 372
{
	struct huge_bootmem_page *m;
	if (nr_gpages == 0)
		return 0;
	m = phys_to_virt(gpage_freearray[--nr_gpages]);
	gpage_freearray[nr_gpages] = 0;
	list_add(&m->list, &huge_boot_pages);
373
	m->hstate = hstate;
374 375
	return 1;
}
B
Becky Bruce 已提交
376
#endif
377

378
#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
B
Becky Bruce 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
#define HUGEPD_FREELIST_SIZE \
	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))

struct hugepd_freelist {
	struct rcu_head	rcu;
	unsigned int index;
	void *ptes[0];
};

static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);

static void hugepd_free_rcu_callback(struct rcu_head *head)
{
	struct hugepd_freelist *batch =
		container_of(head, struct hugepd_freelist, rcu);
	unsigned int i;

	for (i = 0; i < batch->index; i++)
		kmem_cache_free(hugepte_cache, batch->ptes[i]);

	free_page((unsigned long)batch);
}

static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
{
	struct hugepd_freelist **batchp;

406
	batchp = &get_cpu_var(hugepd_freelist_cur);
B
Becky Bruce 已提交
407 408 409 410 411

	if (atomic_read(&tlb->mm->mm_users) < 2 ||
	    cpumask_equal(mm_cpumask(tlb->mm),
			  cpumask_of(smp_processor_id()))) {
		kmem_cache_free(hugepte_cache, hugepte);
412
		put_cpu_var(hugepd_freelist_cur);
B
Becky Bruce 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425
		return;
	}

	if (*batchp == NULL) {
		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
		(*batchp)->index = 0;
	}

	(*batchp)->ptes[(*batchp)->index++] = hugepte;
	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
		*batchp = NULL;
	}
426
	put_cpu_var(hugepd_freelist_cur);
B
Becky Bruce 已提交
427
}
428 429
#else
static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
B
Becky Bruce 已提交
430 431
#endif

432 433 434
static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
			      unsigned long start, unsigned long end,
			      unsigned long floor, unsigned long ceiling)
435 436
{
	pte_t *hugepte = hugepd_page(*hpdp);
B
Becky Bruce 已提交
437 438
	int i;

439
	unsigned long pdmask = ~((1UL << pdshift) - 1);
B
Becky Bruce 已提交
440
	unsigned int num_hugepd = 1;
441
	unsigned int shift = hugepd_shift(*hpdp);
B
Becky Bruce 已提交
442

443
	/* Note: On fsl the hpdp may be the first of several */
444 445
	if (shift > pdshift)
		num_hugepd = 1 << (shift - pdshift);
446 447 448 449 450 451 452 453 454 455 456

	start &= pdmask;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= pdmask;
		if (! ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;
457

B
Becky Bruce 已提交
458
	for (i = 0; i < num_hugepd; i++, hpdp++)
459
		*hpdp = __hugepd(0);
B
Becky Bruce 已提交
460

461 462 463 464
	if (shift >= pdshift)
		hugepd_free(tlb, hugepte);
	else
		pgtable_free_tlb(tlb, hugepte, pdshift - shift);
465 466 467 468
}

static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				   unsigned long addr, unsigned long end,
469
				   unsigned long floor, unsigned long ceiling)
470 471 472 473 474 475 476
{
	pmd_t *pmd;
	unsigned long next;
	unsigned long start;

	start = addr;
	do {
477 478
		unsigned long more;

479
		pmd = pmd_offset(pud, addr);
480
		next = pmd_addr_end(addr, end);
481
		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
482 483 484 485 486
			/*
			 * if it is not hugepd pointer, we should already find
			 * it cleared.
			 */
			WARN_ON(!pmd_none_or_clear_bad(pmd));
487
			continue;
488
		}
489 490 491 492 493 494
		/*
		 * Increment next by the size of the huge mapping since
		 * there may be more than one entry at this level for a
		 * single hugepage, but all of them point to
		 * the same kmem cache that holds the hugepte.
		 */
495 496 497 498
		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
		if (more > next)
			next = more;

499 500
		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
				  addr, next, floor, ceiling);
501
	} while (addr = next, addr != end);
502 503 504 505 506 507 508 509

	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
510
	}
511 512
	if (end - 1 > ceiling - 1)
		return;
L
Linus Torvalds 已提交
513

514 515
	pmd = pmd_offset(pud, start);
	pud_clear(pud);
516
	pmd_free_tlb(tlb, pmd, start);
517
	mm_dec_nr_pmds(tlb->mm);
518 519 520 521 522 523 524 525 526 527 528 529
}

static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				   unsigned long addr, unsigned long end,
				   unsigned long floor, unsigned long ceiling)
{
	pud_t *pud;
	unsigned long next;
	unsigned long start;

	start = addr;
	do {
530
		pud = pud_offset(pgd, addr);
531
		next = pud_addr_end(addr, end);
532
		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
533 534
			if (pud_none_or_clear_bad(pud))
				continue;
535
			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
536
					       ceiling);
537
		} else {
538
			unsigned long more;
539 540 541 542 543 544
			/*
			 * Increment next by the size of the huge mapping since
			 * there may be more than one entry at this level for a
			 * single hugepage, but all of them point to
			 * the same kmem cache that holds the hugepte.
			 */
545 546 547 548
			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
			if (more > next)
				next = more;

549 550
			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
					  addr, next, floor, ceiling);
551
		}
552
	} while (addr = next, addr != end);
553 554 555 556 557 558 559 560 561 562 563 564 565 566

	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(pgd, start);
	pgd_clear(pgd);
567
	pud_free_tlb(tlb, pud, start);
568 569 570 571 572
}

/*
 * This function frees user-level page tables of a process.
 */
573
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
574 575 576 577 578 579 580
			    unsigned long addr, unsigned long end,
			    unsigned long floor, unsigned long ceiling)
{
	pgd_t *pgd;
	unsigned long next;

	/*
581 582 583 584 585 586 587 588 589 590
	 * Because there are a number of different possible pagetable
	 * layouts for hugepage ranges, we limit knowledge of how
	 * things should be laid out to the allocation path
	 * (huge_pte_alloc(), above).  Everything else works out the
	 * structure as it goes from information in the hugepd
	 * pointers.  That means that we can't here use the
	 * optimization used in the normal page free_pgd_range(), of
	 * checking whether we're actually covering a large enough
	 * range to have to do anything at the top level of the walk
	 * instead of at the bottom.
591
	 *
592 593 594
	 * To make sense of this, you should probably go read the big
	 * block comment at the top of the normal free_pgd_range(),
	 * too.
595 596 597 598
	 */

	do {
		next = pgd_addr_end(addr, end);
B
Becky Bruce 已提交
599
		pgd = pgd_offset(tlb->mm, addr);
600
		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
601 602 603 604
			if (pgd_none_or_clear_bad(pgd))
				continue;
			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
		} else {
605
			unsigned long more;
B
Becky Bruce 已提交
606 607
			/*
			 * Increment next by the size of the huge mapping since
608 609 610
			 * there may be more than one entry at the pgd level
			 * for a single hugepage, but all of them point to the
			 * same kmem cache that holds the hugepte.
B
Becky Bruce 已提交
611
			 */
612 613 614 615
			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
			if (more > next)
				next = more;

616 617
			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
					  addr, next, floor, ceiling);
618
		}
B
Becky Bruce 已提交
619
	} while (addr = next, addr != end);
L
Linus Torvalds 已提交
620 621
}

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
struct page *follow_huge_pd(struct vm_area_struct *vma,
			    unsigned long address, hugepd_t hpd,
			    int flags, int pdshift)
{
	pte_t *ptep;
	spinlock_t *ptl;
	struct page *page = NULL;
	unsigned long mask;
	int shift = hugepd_shift(hpd);
	struct mm_struct *mm = vma->vm_mm;

retry:
	ptl = &mm->page_table_lock;
	spin_lock(ptl);

	ptep = hugepte_offset(hpd, address, pdshift);
	if (pte_present(*ptep)) {
		mask = (1UL << shift) - 1;
		page = pte_page(*ptep);
		page += ((address & mask) >> PAGE_SHIFT);
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(*ptep)) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, ptep, ptl);
			goto retry;
		}
	}
	spin_unlock(ptl);
	return page;
}

D
David Gibson 已提交
655 656 657 658 659 660 661
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

662 663
int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
		unsigned long end, int write, struct page **pages, int *nr)
664 665
{
	pte_t *ptep;
666
	unsigned long sz = 1UL << hugepd_shift(hugepd);
D
David Gibson 已提交
667
	unsigned long next;
668 669 670

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
D
David Gibson 已提交
671
		next = hugepte_addr_end(addr, end, sz);
672 673
		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
			return 0;
D
David Gibson 已提交
674
	} while (ptep++, addr = next, addr != end);
675 676 677

	return 1;
}
L
Linus Torvalds 已提交
678

679
#ifdef CONFIG_PPC_MM_SLICES
L
Linus Torvalds 已提交
680 681 682 683
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
					unsigned long len, unsigned long pgoff,
					unsigned long flags)
{
684 685
	struct hstate *hstate = hstate_file(file);
	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
686

687 688 689
	if (radix_enabled())
		return radix__hugetlb_get_unmapped_area(file, addr, len,
						       pgoff, flags);
690
	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
L
Linus Torvalds 已提交
691
}
692
#endif
L
Linus Torvalds 已提交
693

694 695
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
696
#ifdef CONFIG_PPC_MM_SLICES
697
	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
698 699 700 701
	/* With radix we don't use slice, so derive it from vma*/
	if (!radix_enabled())
		return 1UL << mmu_psize_to_shift(psize);
#endif
B
Becky Bruce 已提交
702 703 704 705 706 707 708 709 710 711 712
	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	return huge_page_size(hstate_vma(vma));
}

static inline bool is_power_of_4(unsigned long x)
{
	if (is_power_of_2(x))
		return (__ilog2(x) % 2) ? false : true;
	return false;
713 714
}

715
static int __init add_huge_page_size(unsigned long long size)
716
{
717 718
	int shift = __ffs(size);
	int mmu_psize;
719

720
	/* Check that it is a page size supported by the hardware and
721
	 * that it fits within pagetable and slice limits. */
722 723
	if (size <= PAGE_SIZE)
		return -EINVAL;
724
#if defined(CONFIG_PPC_FSL_BOOK3E)
725
	if (!is_power_of_4(size))
B
Becky Bruce 已提交
726
		return -EINVAL;
727
#elif !defined(CONFIG_PPC_8xx)
728
	if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
729
		return -EINVAL;
B
Becky Bruce 已提交
730
#endif
731

732 733 734
	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
		return -EINVAL;

735 736 737 738 739 740 741 742 743 744
#ifdef CONFIG_PPC_BOOK3S_64
	/*
	 * We need to make sure that for different page sizes reported by
	 * firmware we only add hugetlb support for page sizes that can be
	 * supported by linux page table layout.
	 * For now we have
	 * Radix: 2M
	 * Hash: 16M and 16G
	 */
	if (radix_enabled()) {
745 746 747 748 749
		if (mmu_psize != MMU_PAGE_2M) {
			if (cpu_has_feature(CPU_FTR_POWER9_DD1) ||
			    (mmu_psize != MMU_PAGE_1G))
				return -EINVAL;
		}
750 751 752 753 754 755
	} else {
		if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
			return -EINVAL;
	}
#endif

756 757 758 759 760 761 762 763 764
	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);

	/* Return if huge page size has already been setup */
	if (size_to_hstate(size))
		return 0;

	hugetlb_add_hstate(shift - PAGE_SHIFT);

	return 0;
765 766 767 768 769 770 771 772
}

static int __init hugepage_setup_sz(char *str)
{
	unsigned long long size;

	size = memparse(str, &str);

773 774 775 776
	if (add_huge_page_size(size) != 0) {
		hugetlb_bad_size();
		pr_err("Invalid huge page size specified(%llu)\n", size);
	}
777 778 779 780 781

	return 1;
}
__setup("hugepagesz=", hugepage_setup_sz);

B
Becky Bruce 已提交
782 783 784 785 786
struct kmem_cache *hugepte_cache;
static int __init hugetlbpage_init(void)
{
	int psize;

787
#if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
788
	if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
789
		return -ENODEV;
790
#endif
791 792 793
	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
		unsigned shift;
		unsigned pdshift;
794

795 796
		if (!mmu_psize_defs[psize].shift)
			continue;
797

798 799 800 801 802
		shift = mmu_psize_to_shift(psize);

		if (add_huge_page_size(1ULL << shift) < 0)
			continue;

803
		if (shift < HUGEPD_PUD_SHIFT)
804
			pdshift = PMD_SHIFT;
805
		else if (shift < HUGEPD_PGD_SHIFT)
806 807 808
			pdshift = PUD_SHIFT;
		else
			pdshift = PGDIR_SHIFT;
809 810 811 812
		/*
		 * if we have pdshift and shift value same, we don't
		 * use pgt cache for hugepd.
		 */
813
		if (pdshift > shift)
814
			pgtable_cache_add(pdshift - shift, NULL);
815
#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
		else if (!hugepte_cache) {
			/*
			 * Create a kmem cache for hugeptes.  The bottom bits in
			 * the pte have size information encoded in them, so
			 * align them to allow this
			 */
			hugepte_cache = kmem_cache_create("hugepte-cache",
							  sizeof(pte_t),
							  HUGEPD_SHIFT_MASK + 1,
							  0, NULL);
			if (hugepte_cache == NULL)
				panic("%s: Unable to create kmem cache "
				      "for hugeptes\n", __func__);

		}
#endif
832
	}
833

834 835
#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
	/* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
836 837
	if (mmu_psize_defs[MMU_PAGE_4M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
838 839
	else if (mmu_psize_defs[MMU_PAGE_512K].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
840
#else
841 842 843 844 845 846 847
	/* Set default large page size. Currently, we pick 16M or 1M
	 * depending on what is available
	 */
	if (mmu_psize_defs[MMU_PAGE_16M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
848 849
	else if (mmu_psize_defs[MMU_PAGE_2M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
850
#endif
851 852
	return 0;
}
853

854
arch_initcall(hugetlbpage_init);
855 856 857 858

void flush_dcache_icache_hugepage(struct page *page)
{
	int i;
B
Becky Bruce 已提交
859
	void *start;
860 861 862

	BUG_ON(!PageCompound(page));

B
Becky Bruce 已提交
863 864 865 866
	for (i = 0; i < (1UL << compound_order(page)); i++) {
		if (!PageHighMem(page)) {
			__flush_dcache_icache(page_address(page+i));
		} else {
867
			start = kmap_atomic(page+i);
B
Becky Bruce 已提交
868
			__flush_dcache_icache(start);
869
			kunmap_atomic(start);
B
Becky Bruce 已提交
870 871
		}
	}
872
}
873 874 875 876 877 878 879

#endif /* CONFIG_HUGETLB_PAGE */

/*
 * We have 4 cases for pgds and pmds:
 * (1) invalid (all zeroes)
 * (2) pointer to next table, as normal; bottom 6 bits == 0
A
Aneesh Kumar K.V 已提交
880 881
 * (3) leaf pte for huge page _PAGE_PTE set
 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
882 883 884
 *
 * So long as we atomically load page table pointers we are safe against teardown,
 * we can follow the address down to the the page and take a ref on it.
885 886
 * This function need to be called with interrupts disabled. We use this variant
 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
887
 */
888

889
pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
890
				   bool *is_thp, unsigned *shift)
891
{
892 893 894
	pgd_t pgd, *pgdp;
	pud_t pud, *pudp;
	pmd_t pmd, *pmdp;
895 896 897 898 899 900 901
	pte_t *ret_pte;
	hugepd_t *hpdp = NULL;
	unsigned pdshift = PGDIR_SHIFT;

	if (shift)
		*shift = 0;

902 903 904
	if (is_thp)
		*is_thp = false;

905
	pgdp = pgdir + pgd_index(ea);
906
	pgd  = READ_ONCE(*pgdp);
907
	/*
908 909 910 911
	 * Always operate on the local stack value. This make sure the
	 * value don't get updated by a parallel THP split/collapse,
	 * page fault or a page unmap. The return pte_t * is still not
	 * stable. So should be checked there for above conditions.
912
	 */
913
	if (pgd_none(pgd))
914
		return NULL;
915 916
	else if (pgd_huge(pgd)) {
		ret_pte = (pte_t *) pgdp;
917
		goto out;
918
	} else if (is_hugepd(__hugepd(pgd_val(pgd))))
919
		hpdp = (hugepd_t *)&pgd;
920
	else {
921 922 923 924 925
		/*
		 * Even if we end up with an unmap, the pgtable will not
		 * be freed, because we do an rcu free and here we are
		 * irq disabled
		 */
926
		pdshift = PUD_SHIFT;
927
		pudp = pud_offset(&pgd, ea);
928
		pud  = READ_ONCE(*pudp);
929

930
		if (pud_none(pud))
931
			return NULL;
932 933
		else if (pud_huge(pud)) {
			ret_pte = (pte_t *) pudp;
934
			goto out;
935
		} else if (is_hugepd(__hugepd(pud_val(pud))))
936
			hpdp = (hugepd_t *)&pud;
937
		else {
938
			pdshift = PMD_SHIFT;
939
			pmdp = pmd_offset(&pud, ea);
940
			pmd  = READ_ONCE(*pmdp);
941 942 943 944
			/*
			 * A hugepage collapse is captured by pmd_none, because
			 * it mark the pmd none and do a hpte invalidate.
			 */
945
			if (pmd_none(pmd))
946
				return NULL;
947

948 949 950 951 952 953 954 955
			if (pmd_trans_huge(pmd)) {
				if (is_thp)
					*is_thp = true;
				ret_pte = (pte_t *) pmdp;
				goto out;
			}

			if (pmd_huge(pmd)) {
956
				ret_pte = (pte_t *) pmdp;
957
				goto out;
958
			} else if (is_hugepd(__hugepd(pmd_val(pmd))))
959
				hpdp = (hugepd_t *)&pmd;
960
			else
961
				return pte_offset_kernel(&pmd, ea);
962 963 964 965 966
		}
	}
	if (!hpdp)
		return NULL;

967
	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
968 969 970 971 972 973
	pdshift = hugepd_shift(*hpdp);
out:
	if (shift)
		*shift = pdshift;
	return ret_pte;
}
974
EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
975 976 977 978 979 980

int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
		unsigned long end, int write, struct page **pages, int *nr)
{
	unsigned long mask;
	unsigned long pte_end;
981
	struct page *head, *page;
982 983 984 985 986 987 988
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

989
	pte = READ_ONCE(*ptep);
990
	mask = _PAGE_PRESENT | _PAGE_READ;
991 992 993 994 995

	/*
	 * On some CPUs like the 8xx, _PAGE_RW hence _PAGE_WRITE is defined
	 * as 0 and _PAGE_RO has to be set when a page is not writable
	 */
996
	if (write)
997
		mask |= _PAGE_WRITE;
998 999
	else
		mask |= _PAGE_RO;
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

	if ((pte_val(pte) & mask) != mask)
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	refs = 0;
	head = pte_page(pte);

	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
	do {
		VM_BUG_ON(compound_head(page) != head);
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

	if (!page_cache_add_speculative(head, refs)) {
		*nr -= refs;
		return 0;
	}

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
		/* Could be optimized better */
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

	return 1;
}