i915_gem_execbuffer.c 74.2 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/reservation.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13
#include <drm/i915_drm.h>
14

15 16
#include "display/intel_frontbuffer.h"

17
#include "gem/i915_gem_ioctls.h"
18
#include "gt/intel_context.h"
19
#include "gt/intel_gt.h"
20 21
#include "gt/intel_gt_pm.h"

22
#include "i915_gem_ioctls.h"
23
#include "i915_gem_clflush.h"
24
#include "i915_gem_context.h"
25 26 27
#include "i915_trace.h"
#include "intel_drv.h"

28 29 30 31 32 33
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
34

35 36 37 38 39 40
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
41 42 43 44
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
45
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
46
#define UPDATE			PIN_OFFSET_FIXED
47 48

#define BATCH_OFFSET_BIAS (256*1024)
49

50
#define __I915_EXEC_ILLEGAL_FLAGS \
51 52 53
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
54

55 56 57 58 59 60 61 62 63
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

215
struct i915_execbuffer {
216 217 218 219
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
220 221
	struct i915_vma **vma;
	unsigned int *flags;
222 223

	struct intel_engine_cs *engine; /** engine to queue the request to */
224 225
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
226 227
	struct i915_address_space *vm; /** GTT and vma for the request */

228
	struct i915_request *request; /** our request to build */
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
245
	struct reloc_cache {
246 247 248
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
249
		unsigned int gen; /** Cached value of INTEL_GEN */
250
		bool use_64bit_reloc : 1;
251 252 253
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
254

255
		struct i915_request *rq;
256 257
		u32 *rq_cmd;
		unsigned int rq_size;
258
	} reloc_cache;
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
274 275
};

276
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

297 298
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
299
	return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
300 301
}

302
static int eb_create(struct i915_execbuffer *eb)
303
{
304 305
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
306

307 308 309 310 311 312 313 314 315 316 317
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
318
		do {
319
			gfp_t flags;
320 321 322 323 324 325 326

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
327
			flags = GFP_KERNEL;
328 329 330
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

331
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
332
					      flags);
333 334 335 336
			if (eb->buckets)
				break;
		} while (--size);

337 338
		if (unlikely(!size))
			return -ENOMEM;
339

340
		eb->lut_size = size;
341
	} else {
342
		eb->lut_size = -eb->buffer_count;
343
	}
344

345
	return 0;
346 347
}

348 349
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
350 351
		 const struct i915_vma *vma,
		 unsigned int flags)
352 353 354 355 356 357 358
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

359
	if (flags & EXEC_OBJECT_PINNED &&
360 361 362
	    vma->node.start != entry->offset)
		return true;

363
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
364 365 366
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

367
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
368 369 370
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

371 372 373 374
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

375 376 377
	return false;
}

378
static inline bool
379
eb_pin_vma(struct i915_execbuffer *eb,
380
	   const struct drm_i915_gem_exec_object2 *entry,
381 382
	   struct i915_vma *vma)
{
383 384
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
385

386
	if (vma->node.size)
387
		pin_flags = vma->node.start;
388
	else
389
		pin_flags = entry->offset & PIN_OFFSET_MASK;
390

391 392 393
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
394

395 396
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
397

398
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
399
		if (unlikely(i915_vma_pin_fence(vma))) {
400
			i915_vma_unpin(vma);
401
			return false;
402 403
		}

404
		if (vma->fence)
405
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
406 407
	}

408 409
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
410 411
}

412
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
413
{
414
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
415

416
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
417
		__i915_vma_unpin_fence(vma);
418

419
	__i915_vma_unpin(vma);
420 421
}

422
static inline void
423
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
424
{
425
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
426
		return;
427

428 429
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
430 431
}

432 433 434 435
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
436
{
437 438
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
439

440 441 442 443 444 445 446 447
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
448
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
449 450 451 452 453 454 455 456
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
457 458
	}

459
	if (unlikely(vma->exec_flags)) {
460 461 462 463 464 465 466 467 468 469 470 471
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

472 473 474 475 476 477 478 479 480 481 482 483
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

484
	return 0;
485 486
}

487
static int
488 489 490
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
491
{
492
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
493 494 495 496 497 498 499 500
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
501 502
	}

503
	if (eb->lut_size > 0) {
504
		vma->exec_handle = entry->handle;
505
		hlist_add_head(&vma->exec_node,
506 507
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
508
	}
509

510 511 512 513 514 515 516 517 518
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
519
	eb->vma[i] = vma;
520
	eb->flags[i] = entry->flags;
521
	vma->exec_flags = &eb->flags[i];
522

523 524 525 526 527 528 529 530 531 532
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
533 534
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
535 536 537 538 539 540 541
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

542
	err = 0;
543
	if (eb_pin_vma(eb, entry, vma)) {
544 545 546 547
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
548 549 550 551 552 553
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
554 555
		if (unlikely(err))
			vma->exec_flags = NULL;
556 557 558 559 560 561 562 563 564 565
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

566 567 568 569 570
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
571 572 573 574 575 576 577 578 579

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
580 581 582
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
583 584
	int err;

585 586 587
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
588 589 590 591 592

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
593 594
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
595

596 597
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
598

599 600 601 602 603
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
604 605
	}

606 607 608
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
609 610 611 612 613 614 615 616
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

617
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
618
		err = i915_vma_pin_fence(vma);
619 620 621 622 623
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

624
		if (vma->fence)
625
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
626 627
	}

628 629
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
630

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
671 672
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
673

674 675
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
676 677
				continue;

678
			eb_unreserve_vma(vma, &eb->flags[i]);
679

680
			if (flags & EXEC_OBJECT_PINNED)
681
				/* Pinned must have their slot */
682
				list_add(&vma->exec_link, &eb->unbound);
683
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
684
				/* Map require the lowest 256MiB (aperture) */
685
				list_add_tail(&vma->exec_link, &eb->unbound);
686 687 688
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
				list_add(&vma->exec_link, &last);
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
709
}
710

711 712
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
713 714 715 716
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
717 718 719 720 721 722 723
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
724 725
	if (unlikely(!ctx))
		return -ENOENT;
726

727
	eb->gem_context = ctx;
728 729
	if (ctx->vm) {
		eb->vm = ctx->vm;
730 731 732 733
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
	} else {
		eb->vm = &eb->i915->ggtt.vm;
	}
734 735

	eb->context_flags = 0;
736
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
737 738 739 740 741
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
static struct i915_request *__eb_wait_for_ring(struct intel_ring *ring)
{
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &ring->request_list, ring_link) {
		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->ring_link == &ring->request_list)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int eb_wait_for_ring(const struct i915_execbuffer *eb)
{
	struct i915_request *rq;
	int ret = 0;

	/*
	 * Apply a light amount of backpressure to prevent excessive hogs
	 * from blocking waiting for space whilst holding struct_mutex and
	 * keeping all of their resources pinned.
	 */

782
	rq = __eb_wait_for_ring(eb->context->ring);
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
	if (rq) {
		mutex_unlock(&eb->i915->drm.struct_mutex);

		if (i915_request_wait(rq,
				      I915_WAIT_INTERRUPTIBLE,
				      MAX_SCHEDULE_TIMEOUT) < 0)
			ret = -EINTR;

		i915_request_put(rq);

		mutex_lock(&eb->i915->drm.struct_mutex);
	}

	return ret;
}

799
static int eb_lookup_vmas(struct i915_execbuffer *eb)
800
{
801
	struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
802
	struct drm_i915_gem_object *obj;
803
	unsigned int i, batch;
804
	int err;
805

806
	if (unlikely(i915_gem_context_is_banned(eb->gem_context)))
807 808
		return -EIO;

809 810
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
811

812 813
	batch = eb_batch_index(eb);

814 815 816 817 818 819
	mutex_lock(&eb->gem_context->mutex);
	if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
		err = -ENOENT;
		goto err_ctx;
	}

820 821
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
822
		struct i915_lut_handle *lut;
823
		struct i915_vma *vma;
824

825 826
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
827
			goto add_vma;
828

829
		obj = i915_gem_object_lookup(eb->file, handle);
830
		if (unlikely(!obj)) {
831
			err = -ENOENT;
832
			goto err_vma;
833 834
		}

835
		vma = i915_vma_instance(obj, eb->vm, NULL);
836
		if (IS_ERR(vma)) {
837
			err = PTR_ERR(vma);
838
			goto err_obj;
839 840
		}

841
		lut = i915_lut_handle_alloc();
842 843 844 845 846 847 848
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
849
			i915_lut_handle_free(lut);
850
			goto err_obj;
851
		}
852

853 854
		/* transfer ref to lut */
		if (!atomic_fetch_inc(&vma->open_count))
855
			i915_vma_reopen(vma);
856
		lut->handle = handle;
857 858 859 860 861
		lut->ctx = eb->gem_context;

		i915_gem_object_lock(obj);
		list_add(&lut->obj_link, &obj->lut_list);
		i915_gem_object_unlock(obj);
862

863
add_vma:
864
		err = eb_add_vma(eb, i, batch, vma);
865
		if (unlikely(err))
866
			goto err_vma;
867

868 869
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
870 871
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
872 873
	}

874 875
	mutex_unlock(&eb->gem_context->mutex);

876 877 878
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

879
err_obj:
880
	i915_gem_object_put(obj);
881 882
err_vma:
	eb->vma[i] = NULL;
883 884
err_ctx:
	mutex_unlock(&eb->gem_context->mutex);
885
	return err;
886 887
}

888
static struct i915_vma *
889
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
890
{
891 892
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
893
			return NULL;
894
		return eb->vma[handle];
895 896
	} else {
		struct hlist_head *head;
897
		struct i915_vma *vma;
898

899
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
900
		hlist_for_each_entry(vma, head, exec_node) {
901 902
			if (vma->exec_handle == handle)
				return vma;
903 904 905
		}
		return NULL;
	}
906 907
}

908
static void eb_release_vmas(const struct i915_execbuffer *eb)
909
{
910 911 912 913
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
914 915
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
916

917
		if (!vma)
918
			break;
919

920 921 922
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
923

924 925
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
926

927
		if (flags & __EXEC_OBJECT_HAS_REF)
928
			i915_vma_put(vma);
929
	}
930 931
}

932
static void eb_reset_vmas(const struct i915_execbuffer *eb)
933
{
934
	eb_release_vmas(eb);
935
	if (eb->lut_size > 0)
936 937
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
938 939
}

940
static void eb_destroy(const struct i915_execbuffer *eb)
941
{
942 943
	GEM_BUG_ON(eb->reloc_cache.rq);

944
	if (eb->lut_size > 0)
945
		kfree(eb->buckets);
946 947
}

948
static inline u64
949
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
950
		  const struct i915_vma *target)
951
{
952
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
953 954
}

955 956
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
957
{
958
	cache->page = -1;
959
	cache->vaddr = 0;
960
	/* Must be a variable in the struct to allow GCC to unroll. */
961
	cache->gen = INTEL_GEN(i915);
962
	cache->has_llc = HAS_LLC(i915);
963
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
964 965
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
966
	cache->node.allocated = false;
967 968
	cache->rq = NULL;
	cache->rq_size = 0;
969
}
970

971 972 973 974 975 976 977 978
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
979 980
}

981 982
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

983 984 985 986 987 988 989
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

990 991 992 993
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
994 995

	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
996
	i915_gem_object_unpin_map(cache->rq->batch->obj);
997

998
	intel_gt_chipset_flush(cache->rq->engine->gt);
999

1000
	i915_request_add(cache->rq);
1001 1002 1003
	cache->rq = NULL;
}

1004
static void reloc_cache_reset(struct reloc_cache *cache)
1005
{
1006
	void *vaddr;
1007

1008 1009 1010
	if (cache->rq)
		reloc_gpu_flush(cache);

1011 1012
	if (!cache->vaddr)
		return;
1013

1014 1015 1016 1017
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
1018

1019
		kunmap_atomic(vaddr);
1020
		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
1021
	} else {
1022
		wmb();
1023
		io_mapping_unmap_atomic((void __iomem *)vaddr);
1024
		if (cache->node.allocated) {
1025
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1026

1027 1028 1029
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
1030 1031 1032
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1033
		}
1034
	}
1035 1036 1037

	cache->vaddr = 0;
	cache->page = -1;
1038 1039 1040 1041
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
1042
			unsigned long page)
1043
{
1044 1045 1046 1047 1048 1049
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
1050
		int err;
1051

1052
		err = i915_gem_object_prepare_write(obj, &flushes);
1053 1054
		if (err)
			return ERR_PTR(err);
1055 1056 1057

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1058

1059 1060 1061 1062
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
1063 1064
	}

1065 1066
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1067
	cache->page = page;
1068

1069
	return vaddr;
1070 1071
}

1072 1073
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1074
			 unsigned long page)
1075
{
1076
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1077
	unsigned long offset;
1078
	void *vaddr;
1079

1080
	if (cache->vaddr) {
1081
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1082 1083
	} else {
		struct i915_vma *vma;
1084
		int err;
1085

1086
		if (use_cpu_reloc(cache, obj))
1087
			return NULL;
1088

1089
		i915_gem_object_lock(obj);
1090
		err = i915_gem_object_set_to_gtt_domain(obj, true);
1091
		i915_gem_object_unlock(obj);
1092 1093
		if (err)
			return ERR_PTR(err);
1094

1095
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1096 1097 1098
					       PIN_MAPPABLE |
					       PIN_NONBLOCK |
					       PIN_NONFAULT);
1099 1100
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1101
			err = drm_mm_insert_node_in_range
1102
				(&ggtt->vm.mm, &cache->node,
1103
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1104
				 0, ggtt->mappable_end,
1105
				 DRM_MM_INSERT_LOW);
1106
			if (err) /* no inactive aperture space, use cpu reloc */
1107
				return NULL;
1108
		} else {
1109 1110
			err = i915_vma_put_fence(vma);
			if (err) {
1111
				i915_vma_unpin(vma);
1112
				return ERR_PTR(err);
1113
			}
1114

1115 1116
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1117
		}
1118
	}
1119

1120 1121
	offset = cache->node.start;
	if (cache->node.allocated) {
1122
		wmb();
1123 1124 1125
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1126 1127
	} else {
		offset += page << PAGE_SHIFT;
1128 1129
	}

1130
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1131
							 offset);
1132 1133
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1134

1135
	return vaddr;
1136 1137
}

1138 1139
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1140
			 unsigned long page)
1141
{
1142
	void *vaddr;
1143

1144 1145 1146 1147 1148 1149 1150 1151
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1152 1153
	}

1154
	return vaddr;
1155 1156
}

1157
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1158
{
1159 1160 1161 1162 1163
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1164

1165
		*addr = value;
1166

1167 1168
		/*
		 * Writes to the same cacheline are serialised by the CPU
1169 1170 1171 1172 1173 1174 1175 1176 1177
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1178 1179
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1200 1201 1202 1203 1204 1205
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
1206
	struct i915_request *rq;
1207 1208 1209 1210 1211 1212 1213 1214 1215
	struct i915_vma *batch;
	u32 *cmd;
	int err;

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
1216 1217 1218
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1233
	rq = i915_request_create(eb->context);
1234 1235 1236 1237 1238
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1239
	err = reloc_move_to_gpu(rq, vma);
1240 1241 1242 1243 1244 1245 1246
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
1247
		goto skip_request;
1248

1249
	i915_vma_lock(batch);
1250
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1251
	err = i915_vma_move_to_active(batch, rq, 0);
1252
	i915_vma_unlock(batch);
1253 1254
	if (err)
		goto skip_request;
1255 1256

	rq->batch = batch;
1257
	i915_vma_unpin(batch);
1258 1259 1260 1261 1262 1263 1264 1265

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

1266 1267
skip_request:
	i915_request_skip(rq, err);
1268
err_request:
1269
	i915_request_add(rq);
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1290 1291 1292 1293
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1294 1295 1296
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1308 1309
static u64
relocate_entry(struct i915_vma *vma,
1310
	       const struct drm_i915_gem_relocation_entry *reloc,
1311 1312
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1313
{
1314
	u64 offset = reloc->offset;
1315 1316
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1317
	void *vaddr;
1318

1319 1320
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1321
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1322 1323 1324 1325 1326 1327 1328 1329 1330
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1331
		else
1332
			len = 3;
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1378
repeat:
1379
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1380 1381 1382 1383 1384
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1385
			eb->reloc_cache.vaddr);
1386 1387 1388 1389 1390 1391

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1392 1393
	}

1394
out:
1395
	return target->node.start | UPDATE;
1396 1397
}

1398 1399 1400 1401
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1402
{
1403
	struct i915_vma *target;
1404
	int err;
1405

1406
	/* we've already hold a reference to all valid objects */
1407 1408
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1409
		return -ENOENT;
1410

1411
	/* Validate that the target is in a valid r/w GPU domain */
1412
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1413
		DRM_DEBUG("reloc with multiple write domains: "
1414
			  "target %d offset %d "
1415
			  "read %08x write %08x",
1416
			  reloc->target_handle,
1417 1418 1419
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1420
		return -EINVAL;
1421
	}
1422 1423
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1424
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1425
			  "target %d offset %d "
1426
			  "read %08x write %08x",
1427
			  reloc->target_handle,
1428 1429 1430
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1431
		return -EINVAL;
1432 1433
	}

1434
	if (reloc->write_domain) {
1435
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1436

1437 1438 1439 1440 1441 1442 1443
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1444
		    IS_GEN(eb->i915, 6)) {
1445 1446 1447 1448 1449 1450
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1451
	}
1452

1453 1454
	/*
	 * If the relocation already has the right value in it, no
1455 1456
	 * more work needs to be done.
	 */
1457 1458
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1459
		return 0;
1460 1461

	/* Check that the relocation address is valid... */
1462
	if (unlikely(reloc->offset >
1463
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1464
		DRM_DEBUG("Relocation beyond object bounds: "
1465 1466 1467 1468
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1469
		return -EINVAL;
1470
	}
1471
	if (unlikely(reloc->offset & 3)) {
1472
		DRM_DEBUG("Relocation not 4-byte aligned: "
1473 1474 1475
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1476
		return -EINVAL;
1477 1478
	}

1479 1480 1481 1482 1483 1484
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1485
	 * out of our synchronisation.
1486
	 */
1487
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1488

1489
	/* and update the user's relocation entry */
1490
	return relocate_entry(vma, reloc, eb, target);
1491 1492
}

1493
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1494
{
1495
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1496 1497
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1498
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1499
	unsigned int remain;
1500

1501
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1502
	remain = entry->relocation_count;
1503 1504
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1505

1506 1507 1508 1509 1510
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1511
	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1512 1513 1514 1515 1516 1517 1518
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1519

1520 1521
		/*
		 * This is the fast path and we cannot handle a pagefault
1522 1523 1524 1525 1526 1527 1528
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1529
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1530
		pagefault_enable();
1531 1532
		if (unlikely(copied)) {
			remain = -EFAULT;
1533 1534
			goto out;
		}
1535

1536
		remain -= count;
1537
		do {
1538
			u64 offset = eb_relocate_entry(eb, vma, r);
1539

1540 1541 1542
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1543
				goto out;
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1567 1568 1569 1570
				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
					remain = -EFAULT;
					goto out;
				}
1571
			}
1572 1573 1574
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1575
out:
1576
	reloc_cache_reset(&eb->reloc_cache);
1577
	return remain;
1578 1579 1580
}

static int
1581
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1582
{
1583
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1584 1585 1586 1587
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1588 1589

	for (i = 0; i < entry->relocation_count; i++) {
1590
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1591

1592 1593 1594 1595
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1596
	}
1597 1598 1599 1600
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1601 1602
}

1603
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1604
{
1605 1606 1607
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1608

1609 1610 1611
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1612

1613 1614
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1615

1616 1617
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
1618
	if (!access_ok(addr, size))
1619
		return -EFAULT;
1620

1621 1622 1623 1624 1625
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1626
	}
1627
	return __get_user(c, end - 1);
1628
}
1629

1630
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1631
{
1632 1633 1634
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1635

1636 1637 1638 1639 1640 1641
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1642

1643 1644
		if (nreloc == 0)
			continue;
1645

1646 1647 1648
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1649

1650 1651
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1652

1653
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1654 1655 1656 1657
		if (!relocs) {
			err = -ENOMEM;
			goto err;
		}
1658

1659 1660 1661 1662 1663 1664 1665
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1666
					     (char __user *)urelocs + copied,
1667
					     len)) {
1668
end_user:
1669
				user_access_end();
1670
end:
1671 1672 1673 1674
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1675

1676 1677
			copied += len;
		} while (copied < size);
1678

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
1689
		if (!user_access_begin(urelocs, size))
1690
			goto end;
1691

1692 1693 1694 1695 1696
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();
1697

1698 1699
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1700

1701
	return 0;
1702

1703 1704 1705 1706 1707 1708 1709 1710
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1711 1712
}

1713
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1714
{
1715 1716
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1717

1718
	if (unlikely(i915_modparams.prefault_disable))
1719
		return 0;
1720

1721 1722
	for (i = 0; i < count; i++) {
		int err;
1723

1724 1725 1726 1727
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1728

1729
	return 0;
1730 1731
}

1732
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1733
{
1734
	struct drm_device *dev = &eb->i915->drm;
1735
	bool have_copy = false;
1736
	struct i915_vma *vma;
1737 1738 1739 1740 1741 1742 1743
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1744

1745
	/* We may process another execbuffer during the unlock... */
1746
	eb_reset_vmas(eb);
1747 1748
	mutex_unlock(&dev->struct_mutex);

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1770
	}
1771 1772 1773
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1774 1775
	}

1776 1777 1778
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1779 1780
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1781
		mutex_lock(&dev->struct_mutex);
1782
		goto out;
1783 1784
	}

1785
	/* reacquire the objects */
1786 1787
	err = eb_lookup_vmas(eb);
	if (err)
1788
		goto err;
1789

1790 1791
	GEM_BUG_ON(!eb->batch);

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1804 1805
	}

1806 1807
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1808 1809 1810 1811 1812 1813
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1835
	return err;
1836 1837
}

1838
static int eb_relocate(struct i915_execbuffer *eb)
1839
{
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1862
	struct ww_acquire_ctx acquire;
1863
	unsigned int i;
1864 1865 1866
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1867

1868
	for (i = 0; i < count; i++) {
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
		struct i915_vma *vma = eb->vma[i];

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (!err)
			continue;

		GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */

		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

				ww_mutex_unlock(&eb->vma[j]->resv->lock);

				swap(eb->flags[i], eb->flags[j]);
				swap(eb->vma[i],  eb->vma[j]);
				eb->vma[i]->exec_flags = &eb->flags[i];
			} while (--i);
			GEM_BUG_ON(vma != eb->vma[0]);
			vma->exec_flags = &eb->flags[0];

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1900 1901
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1902
		struct drm_i915_gem_object *obj = vma->obj;
1903

1904 1905
		assert_vma_held(vma);

1906
		if (flags & EXEC_OBJECT_CAPTURE) {
1907
			struct i915_capture_list *capture;
1908 1909

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1910 1911 1912 1913 1914
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1915 1916
		}

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1930
			if (i915_gem_clflush_object(obj, 0))
1931
				flags &= ~EXEC_OBJECT_ASYNC;
1932 1933
		}

1934 1935 1936 1937
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1938

1939 1940
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1941

1942
		i915_vma_unlock(vma);
1943

1944 1945 1946 1947
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1948
			i915_vma_put(vma);
1949
	}
1950 1951 1952 1953 1954
	ww_acquire_fini(&acquire);

	if (unlikely(err))
		goto err_skip;

1955
	eb->exec = NULL;
1956

1957
	/* Unconditionally flush any chipset caches (for streaming writes). */
1958
	intel_gt_chipset_flush(eb->engine->gt);
1959
	return 0;
1960 1961 1962 1963

err_skip:
	i915_request_skip(eb->request, err);
	return err;
1964 1965
}

1966
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1967
{
1968
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1969 1970
		return false;

C
Chris Wilson 已提交
1971
	/* Kernel clipping was a DRI1 misfeature */
1972 1973 1974 1975
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1988 1989
}

1990
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1991
{
1992 1993
	u32 *cs;
	int i;
1994

1995
	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1996 1997 1998
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1999

2000
	cs = intel_ring_begin(rq, 4 * 2 + 2);
2001 2002
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2003

2004
	*cs++ = MI_LOAD_REGISTER_IMM(4);
2005
	for (i = 0; i < 4; i++) {
2006 2007
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
2008
	}
2009
	*cs++ = MI_NOOP;
2010
	intel_ring_advance(rq, cs);
2011 2012 2013 2014

	return 0;
}

2015
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
2016 2017
{
	struct drm_i915_gem_object *shadow_batch_obj;
2018
	struct i915_vma *vma;
2019
	int err;
2020

2021 2022
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
2023
	if (IS_ERR(shadow_batch_obj))
2024
		return ERR_CAST(shadow_batch_obj);
2025

2026
	err = intel_engine_cmd_parser(eb->engine,
2027
				      eb->batch->obj,
2028
				      shadow_batch_obj,
2029 2030
				      eb->batch_start_offset,
				      eb->batch_len,
2031
				      is_master);
2032 2033
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
2034 2035
			vma = NULL;
		else
2036
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
2037 2038
		goto out;
	}
2039

C
Chris Wilson 已提交
2040 2041 2042
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
2043

2044 2045 2046 2047 2048
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
2049

C
Chris Wilson 已提交
2050
out:
C
Chris Wilson 已提交
2051
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
2052
	return vma;
2053
}
2054

2055
static void
2056
add_to_client(struct i915_request *rq, struct drm_file *file)
2057
{
2058 2059
	rq->file_priv = file->driver_priv;
	list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
2060 2061
}

2062
static int eb_submit(struct i915_execbuffer *eb)
2063
{
2064
	int err;
2065

2066 2067 2068
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2069

2070
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2071 2072 2073
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2074 2075
	}

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2088
	err = eb->engine->emit_bb_start(eb->request,
2089 2090 2091
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2092 2093 2094
					eb->batch_flags);
	if (err)
		return err;
2095

C
Chris Wilson 已提交
2096
	return 0;
2097 2098
}

2099
/*
2100
 * Find one BSD ring to dispatch the corresponding BSD command.
2101
 * The engine index is returned.
2102
 */
2103
static unsigned int
2104 2105
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2106 2107 2108
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2109
	/* Check whether the file_priv has already selected one ring. */
2110 2111 2112
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
2113

2114
	return file_priv->bsd_engine;
2115 2116
}

2117
static const enum intel_engine_id user_ring_map[] = {
2118 2119 2120 2121 2122
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2123 2124
};

2125
static int eb_pin_context(struct i915_execbuffer *eb, struct intel_context *ce)
2126
{
2127
	int err;
2128

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
	err = i915_terminally_wedged(eb->i915);
	if (err)
		return err;

	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2142 2143 2144
	err = intel_context_pin(ce);
	if (err)
		return err;
2145

2146
	eb->engine = ce->engine;
2147 2148 2149 2150 2151 2152 2153 2154
	eb->context = ce;
	return 0;
}

static void eb_unpin_context(struct i915_execbuffer *eb)
{
	intel_context_unpin(eb->context);
}
2155

2156 2157 2158 2159
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2160
{
2161
	struct drm_i915_private *i915 = eb->i915;
2162 2163
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2164 2165
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2166 2167
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2168
		return -1;
2169 2170
	}

2171
	if (user_ring_id == I915_EXEC_BSD && HAS_ENGINE(i915, VCS1)) {
2172 2173 2174
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2175
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2176 2177
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2178
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2179 2180 2181 2182
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2183
			return -1;
2184 2185
		}

2186
		return _VCS(bsd_idx);
2187 2188
	}

2189 2190 2191
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
		return -1;
2192 2193
	}

2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	return user_ring_map[user_ring_id];
}

static int
eb_select_engine(struct i915_execbuffer *eb,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2206 2207 2208 2209
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2210 2211 2212 2213 2214 2215 2216 2217 2218

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

	err = eb_pin_context(eb, ce);
	intel_context_put(ce);

	return err;
2219 2220
}

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2233
	const unsigned long nfences = args->num_cliprects;
2234 2235
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2236
	unsigned long n;
2237 2238 2239 2240 2241
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2242 2243 2244 2245 2246
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2247 2248 2249
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2250
	if (!access_ok(user, nfences * sizeof(*user)))
2251 2252
		return ERR_PTR(-EFAULT);

2253
	fences = kvmalloc_array(nfences, sizeof(*fences),
2254
				__GFP_NOWARN | GFP_KERNEL);
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2267 2268 2269 2270 2271
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2272 2273 2274 2275 2276 2277 2278
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2279 2280 2281
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2317
		fence = drm_syncobj_fence_get(syncobj);
2318 2319 2320
		if (!fence)
			return -EINVAL;

2321
		err = i915_request_await_dma_fence(eb->request, fence);
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2346
		drm_syncobj_replace_fence(syncobj, fence);
2347 2348 2349
	}
}

2350
static int
2351
i915_gem_do_execbuffer(struct drm_device *dev,
2352 2353
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2354 2355
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2356
{
2357
	struct i915_execbuffer eb;
2358
	struct dma_fence *in_fence = NULL;
2359
	struct dma_fence *exec_fence = NULL;
2360 2361
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2362
	int err;
2363

2364
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2365 2366
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2367

2368 2369 2370
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2371
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2372
		args->flags |= __EXEC_HAS_RELOC;
2373

2374
	eb.exec = exec;
2375 2376
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2377 2378
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2379
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2380 2381
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2382
	eb.buffer_count = args->buffer_count;
2383 2384 2385
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2386
	eb.batch_flags = 0;
2387
	if (args->flags & I915_EXEC_SECURE) {
2388
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2389 2390
		    return -EPERM;

2391
		eb.batch_flags |= I915_DISPATCH_SECURE;
2392
	}
2393
	if (args->flags & I915_EXEC_IS_PINNED)
2394
		eb.batch_flags |= I915_DISPATCH_PINNED;
2395

2396 2397
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2398 2399
		if (!in_fence)
			return -EINVAL;
2400 2401
	}

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
		if (in_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}

		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
		if (!exec_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}
	}

2415 2416 2417
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2418
			err = out_fence_fd;
2419
			goto err_exec_fence;
2420 2421 2422
		}
	}

2423 2424 2425 2426 2427
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2428

2429 2430 2431 2432
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2433 2434
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2435 2436 2437 2438 2439
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2440
	intel_gt_pm_get(eb.i915);
2441

2442 2443 2444
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2445

2446
	err = eb_select_engine(&eb, file, args);
2447 2448 2449
	if (unlikely(err))
		goto err_unlock;

2450 2451 2452 2453
	err = eb_wait_for_ring(&eb); /* may temporarily drop struct_mutex */
	if (unlikely(err))
		goto err_engine;

2454
	err = eb_relocate(&eb);
2455
	if (err) {
2456 2457 2458 2459 2460 2461 2462 2463 2464
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2465
	}
2466

2467
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2468
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2469 2470
		err = -EINVAL;
		goto err_vma;
2471
	}
2472 2473
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2474
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2475 2476
		err = -EINVAL;
		goto err_vma;
2477
	}
2478

2479
	if (eb_use_cmdparser(&eb)) {
2480 2481
		struct i915_vma *vma;

2482
		vma = eb_parse(&eb, drm_is_current_master(file));
2483
		if (IS_ERR(vma)) {
2484 2485
			err = PTR_ERR(vma);
			goto err_vma;
2486
		}
2487

2488
		if (vma) {
2489 2490 2491 2492 2493 2494 2495 2496 2497
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2498
			eb.batch_flags |= I915_DISPATCH_SECURE;
2499 2500
			eb.batch_start_offset = 0;
			eb.batch = vma;
2501
		}
2502 2503
	}

2504 2505
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2506

2507 2508
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2509
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2510
	 * hsw should have this fixed, but bdw mucks it up again. */
2511
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2512
		struct i915_vma *vma;
2513

2514 2515 2516 2517 2518 2519
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2520
		 *   so we don't really have issues with multiple objects not
2521 2522 2523
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2524
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2525
		if (IS_ERR(vma)) {
2526 2527
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2528
		}
2529

2530
		eb.batch = vma;
2531
	}
2532

2533 2534 2535
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2536
	/* Allocate a request for this batch buffer nice and early. */
2537
	eb.request = i915_request_create(eb.context);
2538
	if (IS_ERR(eb.request)) {
2539
		err = PTR_ERR(eb.request);
2540
		goto err_batch_unpin;
2541
	}
2542

2543
	if (in_fence) {
2544
		err = i915_request_await_dma_fence(eb.request, in_fence);
2545
		if (err < 0)
2546 2547 2548
			goto err_request;
	}

2549 2550 2551 2552 2553 2554 2555
	if (exec_fence) {
		err = i915_request_await_execution(eb.request, exec_fence,
						   eb.engine->bond_execute);
		if (err < 0)
			goto err_request;
	}

2556 2557 2558 2559 2560 2561
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2562
	if (out_fence_fd != -1) {
2563
		out_fence = sync_file_create(&eb.request->fence);
2564
		if (!out_fence) {
2565
			err = -ENOMEM;
2566 2567 2568 2569
			goto err_request;
		}
	}

2570 2571
	/*
	 * Whilst this request exists, batch_obj will be on the
2572 2573 2574 2575 2576
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2577
	eb.request->batch = eb.batch;
2578

2579
	trace_i915_request_queue(eb.request, eb.batch_flags);
2580
	err = eb_submit(&eb);
2581
err_request:
2582
	add_to_client(eb.request, file);
2583
	i915_request_add(eb.request);
2584

2585 2586 2587
	if (fences)
		signal_fence_array(&eb, fences);

2588
	if (out_fence) {
2589
		if (err == 0) {
2590
			fd_install(out_fence_fd, out_fence->file);
2591
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2592 2593 2594 2595 2596 2597
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2598

2599
err_batch_unpin:
2600
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2601
		i915_vma_unpin(eb.batch);
2602 2603 2604
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2605 2606
err_engine:
	eb_unpin_context(&eb);
2607
err_unlock:
2608
	mutex_unlock(&dev->struct_mutex);
2609
err_rpm:
2610 2611
	intel_gt_pm_put(eb.i915);
	i915_gem_context_put(eb.gem_context);
2612
err_destroy:
2613
	eb_destroy(&eb);
2614
err_out_fence:
2615 2616
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2617 2618
err_exec_fence:
	dma_fence_put(exec_fence);
2619
err_in_fence:
2620
	dma_fence_put(in_fence);
2621
	return err;
2622 2623
}

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2644 2645 2646 2647 2648
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2649 2650
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2651 2652 2653 2654 2655
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2656
	const size_t count = args->buffer_count;
2657 2658
	unsigned int i;
	int err;
2659

2660 2661
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2662 2663 2664
		return -EINVAL;
	}

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2679
	/* Copy in the exec list from userland */
2680
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2681
				   __GFP_NOWARN | GFP_KERNEL);
2682
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2683
				    __GFP_NOWARN | GFP_KERNEL);
2684
	if (exec_list == NULL || exec2_list == NULL) {
2685
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2686
			  args->buffer_count);
M
Michal Hocko 已提交
2687 2688
		kvfree(exec_list);
		kvfree(exec2_list);
2689 2690
		return -ENOMEM;
	}
2691
	err = copy_from_user(exec_list,
2692
			     u64_to_user_ptr(args->buffers_ptr),
2693
			     sizeof(*exec_list) * count);
2694
	if (err) {
2695
		DRM_DEBUG("copy %d exec entries failed %d\n",
2696
			  args->buffer_count, err);
M
Michal Hocko 已提交
2697 2698
		kvfree(exec_list);
		kvfree(exec2_list);
2699 2700 2701 2702 2703 2704 2705 2706 2707
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2708
		if (INTEL_GEN(to_i915(dev)) < 4)
2709 2710 2711 2712 2713
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2714
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2715
	if (exec2.flags & __EXEC_HAS_RELOC) {
2716
		struct drm_i915_gem_exec_object __user *user_exec_list =
2717
			u64_to_user_ptr(args->buffers_ptr);
2718

2719
		/* Copy the new buffer offsets back to the user's exec list. */
2720
		for (i = 0; i < args->buffer_count; i++) {
2721 2722 2723
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2724
			exec2_list[i].offset =
2725 2726 2727 2728 2729
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2730
				break;
2731 2732 2733
		}
	}

M
Michal Hocko 已提交
2734 2735
	kvfree(exec_list);
	kvfree(exec2_list);
2736
	return err;
2737 2738 2739
}

int
2740 2741
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2742 2743
{
	struct drm_i915_gem_execbuffer2 *args = data;
2744
	struct drm_i915_gem_exec_object2 *exec2_list;
2745
	struct drm_syncobj **fences = NULL;
2746
	const size_t count = args->buffer_count;
2747
	int err;
2748

2749 2750
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2751 2752 2753
		return -EINVAL;
	}

2754 2755 2756 2757
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2758
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2759
				    __GFP_NOWARN | GFP_KERNEL);
2760
	if (exec2_list == NULL) {
2761 2762
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2763 2764
		return -ENOMEM;
	}
2765 2766
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2767 2768
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2769
		kvfree(exec2_list);
2770 2771 2772
		return -EFAULT;
	}

2773 2774 2775 2776 2777 2778 2779 2780 2781
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2782 2783 2784 2785 2786 2787 2788 2789

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2790
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2791 2792
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2793

2794
		/* Copy the new buffer offsets back to the user's exec list. */
2795 2796 2797 2798 2799 2800 2801 2802
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2803
			goto end;
2804

2805
		for (i = 0; i < args->buffer_count; i++) {
2806 2807 2808
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2809
			exec2_list[i].offset =
2810 2811 2812 2813
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2814
		}
2815 2816
end_user:
		user_access_end();
2817
end:;
2818 2819
	}

2820
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2821
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2822
	kvfree(exec2_list);
2823
	return err;
2824
}