regmap.c 60.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/rbtree.h>
19
#include <linux/sched.h>
20

M
Mark Brown 已提交
21 22 23
#define CREATE_TRACE_POINTS
#include <trace/events/regmap.h>

24
#include "internal.h"
25

26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change);

38 39
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
40 41 42 43
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
44

45 46 47 48 49 50 51 52 53 54 55 56 57 58
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

59 60
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
61 62 63 64 65 66 67 68 69 70 71 72
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
73
EXPORT_SYMBOL_GPL(regmap_check_range_table);
74

75 76 77 78 79 80 81 82
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

83
	if (map->wr_table)
84
		return regmap_check_range_table(map, reg, map->wr_table);
85

86 87 88 89 90 91 92 93
	return true;
}

bool regmap_readable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

94 95 96
	if (map->format.format_write)
		return false;

97 98 99
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

100
	if (map->rd_table)
101
		return regmap_check_range_table(map, reg, map->rd_table);
102

103 104 105 106 107
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
108
	if (!regmap_readable(map, reg))
109 110 111 112 113
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

114
	if (map->volatile_table)
115
		return regmap_check_range_table(map, reg, map->volatile_table);
116

117 118 119 120
	if (map->cache_ops)
		return false;
	else
		return true;
121 122 123 124
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
125
	if (!regmap_readable(map, reg))
126 127 128 129 130
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

131
	if (map->precious_table)
132
		return regmap_check_range_table(map, reg, map->precious_table);
133

134 135 136
	return false;
}

137
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
138
	size_t num)
139 140 141 142 143 144 145 146 147 148
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

149 150 151 152 153 154 155 156
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

171 172 173 174 175 176 177 178 179 180
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

181
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
182 183 184
{
	u8 *b = buf;

185
	b[0] = val << shift;
186 187
}

188
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
189 190 191
{
	__be16 *b = buf;

192
	b[0] = cpu_to_be16(val << shift);
193 194
}

195 196 197 198 199 200 201
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
	__le16 *b = buf;

	b[0] = cpu_to_le16(val << shift);
}

202 203 204 205 206 207
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

208
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
209 210 211
{
	u8 *b = buf;

212 213
	val <<= shift;

214 215 216 217 218
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

219
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
220 221 222
{
	__be32 *b = buf;

223
	b[0] = cpu_to_be32(val << shift);
224 225
}

226 227 228 229 230 231 232
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
	__le32 *b = buf;

	b[0] = cpu_to_le32(val << shift);
}

233 234 235 236 237 238
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

239
static void regmap_parse_inplace_noop(void *buf)
240
{
241 242 243 244 245
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
246 247 248 249

	return b[0];
}

250 251 252 253 254 255 256
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

257 258 259 260 261 262 263
static unsigned int regmap_parse_16_le(const void *buf)
{
	const __le16 *b = buf;

	return le16_to_cpu(b[0]);
}

264
static void regmap_parse_16_be_inplace(void *buf)
265 266 267 268 269 270
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

271 272 273 274 275 276 277
static void regmap_parse_16_le_inplace(void *buf)
{
	__le16 *b = buf;

	b[0] = le16_to_cpu(b[0]);
}

278
static unsigned int regmap_parse_16_native(const void *buf)
279 280 281 282
{
	return *(u16 *)buf;
}

283
static unsigned int regmap_parse_24(const void *buf)
284
{
285
	const u8 *b = buf;
286 287 288 289 290 291 292
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

293 294 295 296 297 298 299
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

300 301 302 303 304 305 306
static unsigned int regmap_parse_32_le(const void *buf)
{
	const __le32 *b = buf;

	return le32_to_cpu(b[0]);
}

307
static void regmap_parse_32_be_inplace(void *buf)
308 309 310 311 312 313
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

314 315 316 317 318 319 320
static void regmap_parse_32_le_inplace(void *buf)
{
	__le32 *b = buf;

	b[0] = le32_to_cpu(b[0]);
}

321
static unsigned int regmap_parse_32_native(const void *buf)
322 323 324 325
{
	return *(u32 *)buf;
}

326
static void regmap_lock_mutex(void *__map)
327
{
328
	struct regmap *map = __map;
329 330 331
	mutex_lock(&map->mutex);
}

332
static void regmap_unlock_mutex(void *__map)
333
{
334
	struct regmap *map = __map;
335 336 337
	mutex_unlock(&map->mutex);
}

338
static void regmap_lock_spinlock(void *__map)
339
__acquires(&map->spinlock)
340
{
341
	struct regmap *map = __map;
342 343 344 345
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
346 347
}

348
static void regmap_unlock_spinlock(void *__map)
349
__releases(&map->spinlock)
350
{
351
	struct regmap *map = __map;
352
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
353 354
}

M
Mark Brown 已提交
355 356 357 358 359 360 361 362 363
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
			container_of(*new, struct regmap_range_node, node);

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
			container_of(node, struct regmap_range_node, node);

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

447 448 449 450 451
/**
 * regmap_init(): Initialise register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
452
 * @bus_context: Data passed to bus-specific callbacks
453 454 455 456 457 458 459 460
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer to
 * a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.
 */
struct regmap *regmap_init(struct device *dev,
			   const struct regmap_bus *bus,
461
			   void *bus_context,
462 463
			   const struct regmap_config *config)
{
464
	struct regmap *map;
465
	int ret = -EINVAL;
466
	enum regmap_endian reg_endian, val_endian;
467
	int i, j;
468

469
	if (!config)
470
		goto err;
471 472 473 474 475 476 477

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

478 479 480 481
	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
482
	} else {
483 484
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
485 486 487 488 489 490 491 492 493
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
		}
		map->lock_arg = map;
494
	}
495
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
496
	map->format.pad_bytes = config->pad_bits / 8;
497
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
498 499
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
500
	map->reg_shift = config->pad_bits % 8;
501 502 503 504
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
505
	map->use_single_rw = config->use_single_rw;
506
	map->can_multi_write = config->can_multi_write;
507 508
	map->dev = dev;
	map->bus = bus;
509
	map->bus_context = bus_context;
510
	map->max_register = config->max_register;
511 512 513 514
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
515 516 517
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
518
	map->precious_reg = config->precious_reg;
519
	map->cache_type = config->cache_type;
M
Mark Brown 已提交
520
	map->name = config->name;
521

522 523
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
524
	INIT_LIST_HEAD(&map->async_free);
525 526
	init_waitqueue_head(&map->async_waitq);

527 528 529
	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
530
	} else if (bus) {
531 532 533
		map->read_flag_mask = bus->read_flag_mask;
	}

534 535 536 537 538 539 540 541 542
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
	}
543

544 545 546 547 548 549 550 551 552 553 554 555
	reg_endian = config->reg_format_endian;
	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
		reg_endian = bus->reg_format_endian_default;
	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
		reg_endian = REGMAP_ENDIAN_BIG;

	val_endian = config->val_format_endian;
	if (val_endian == REGMAP_ENDIAN_DEFAULT)
		val_endian = bus->val_format_endian_default;
	if (val_endian == REGMAP_ENDIAN_DEFAULT)
		val_endian = REGMAP_ENDIAN_BIG;

556
	switch (config->reg_bits + map->reg_shift) {
557 558 559 560 561 562 563 564 565 566
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
			goto err_map;
		}
		break;

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
			goto err_map;
		}
		break;

587 588 589 590 591 592 593 594 595 596
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
			goto err_map;
		}
		break;

597 598 599 600 601
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
602 603 604 605 606 607 608 609 610 611
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
			goto err_map;
		}
612 613
		break;

614 615 616 617 618 619
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_reg = regmap_format_24;
		break;

620
	case 32:
621 622 623 624 625 626 627 628 629 630
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
			goto err_map;
		}
631 632
		break;

633 634 635 636
	default:
		goto err_map;
	}

637 638 639
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

640 641 642 643
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
644
		map->format.parse_inplace = regmap_parse_inplace_noop;
645 646
		break;
	case 16:
647 648 649 650
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
651
			map->format.parse_inplace = regmap_parse_16_be_inplace;
652
			break;
653 654 655 656 657
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
658 659 660 661 662 663 664
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
			goto err_map;
		}
665
		break;
666
	case 24:
667 668
		if (val_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
669 670 671
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
672
	case 32:
673 674 675 676
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
677
			map->format.parse_inplace = regmap_parse_32_be_inplace;
678
			break;
679 680 681 682 683
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
684 685 686 687 688 689 690
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
			goto err_map;
		}
691
		break;
692 693
	}

694 695 696 697
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
			goto err_map;
698
		map->use_single_rw = true;
699
	}
700

701 702 703 704
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
		goto err_map;

705
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
706 707
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
708
		goto err_map;
709 710
	}

711 712
	if (map->format.format_write) {
		map->defer_caching = false;
713
		map->reg_write = _regmap_bus_formatted_write;
714 715
	} else if (map->format.format_val) {
		map->defer_caching = true;
716
		map->reg_write = _regmap_bus_raw_write;
717 718 719
	}

skip_format_initialization:
720

721
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
722
	for (i = 0; i < config->num_ranges; i++) {
723 724 725 726
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
727 728 729
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
730
			goto err_range;
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
750 751 752

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
753
		for (j = 0; j < config->num_ranges; j++) {
754 755 756 757 758
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

759 760 761 762
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

763 764
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
765 766 767
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
768 769 770 771 772
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
773 774 775
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
776 777 778 779 780 781 782 783 784 785
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

786
		new->map = map;
M
Mark Brown 已提交
787
		new->name = range_cfg->name;
788 789 790 791 792 793 794 795
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
796
		if (!_regmap_range_add(map, new)) {
797
			dev_err(map->dev, "Failed to add range %d\n", i);
798 799 800 801 802 803 804 805 806 807 808 809 810
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
811

812
	ret = regcache_init(map, config);
813
	if (ret != 0)
814 815
		goto err_range;

816
	if (dev) {
817 818 819
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
820
	}
M
Mark Brown 已提交
821

822 823
	return map;

824
err_regcache:
M
Mark Brown 已提交
825
	regcache_exit(map);
826 827
err_range:
	regmap_range_exit(map);
828
	kfree(map->work_buf);
829 830 831 832 833 834 835
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(regmap_init);

836 837 838 839 840 841 842 843 844 845
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

/**
 * devm_regmap_init(): Initialise managed register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
846
 * @bus_context: Data passed to bus-specific callbacks
847 848 849 850 851 852 853 854 855
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.  The
 * map will be automatically freed by the device management code.
 */
struct regmap *devm_regmap_init(struct device *dev,
				const struct regmap_bus *bus,
856
				void *bus_context,
857 858 859 860 861 862 863 864
				const struct regmap_config *config)
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

865
	regmap = regmap_init(dev, bus, bus_context, config);
866 867 868 869 870 871 872 873 874 875 876
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
EXPORT_SYMBOL_GPL(devm_regmap_init);

877 878 879 880 881 882 883 884
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	int field_bits = reg_field.msb - reg_field.lsb + 1;
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
885 886
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
}

/**
 * devm_regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
 * devm_regmap_field_free(): Free register field allocated using
 * devm_regmap_field_alloc. Usally drivers need not call this function,
 * as the memory allocated via devm will be freed as per device-driver
 * life-cyle.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
 * regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

968 969 970 971 972 973 974 975 976 977
/**
 * regmap_reinit_cache(): Reinitialise the current register cache
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
978 979 980
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
981 982 983 984
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
985
	regmap_debugfs_exit(map);
986 987 988 989 990 991 992 993

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

994
	regmap_debugfs_init(map, config->name);
995

996 997 998
	map->cache_bypass = false;
	map->cache_only = false;

999
	return regcache_init(map, config);
1000
}
1001
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1002

1003 1004 1005 1006 1007
/**
 * regmap_exit(): Free a previously allocated register map
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1008 1009
	struct regmap_async *async;

1010
	regcache_exit(map);
1011
	regmap_debugfs_exit(map);
1012
	regmap_range_exit(map);
1013
	if (map->bus && map->bus->free_context)
1014
		map->bus->free_context(map->bus_context);
1015
	kfree(map->work_buf);
M
Mark Brown 已提交
1016 1017 1018 1019 1020 1021 1022 1023
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1024 1025 1026 1027
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
 * dev_get_regmap(): Obtain the regmap (if any) for a device
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

1066
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1067
			       struct regmap_range_node *range,
1068 1069 1070 1071 1072 1073 1074 1075
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1076 1077
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1078

1079 1080 1081 1082
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1083

1084 1085 1086 1087
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1088

1089 1090 1091 1092 1093 1094 1095 1096
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1097

1098 1099 1100 1101
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
					  &page_chg);
1102

1103
		map->work_buf = orig_work_buf;
1104

1105
		if (ret != 0)
1106
			return ret;
1107 1108
	}

1109 1110
	*reg = range->window_start + win_offset;

1111 1112 1113
	return 0;
}

1114
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1115
		      const void *val, size_t val_len)
1116
{
1117
	struct regmap_range_node *range;
1118
	unsigned long flags;
1119
	u8 *u8 = map->work_buf;
1120 1121
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1122 1123 1124
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1125 1126
	int i;

1127
	WARN_ON(!map->bus);
1128

1129 1130 1131
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1132 1133
			if (!map->writeable_reg(map->dev,
						reg + (i * map->reg_stride)))
1134
				return -EINVAL;
1135

1136 1137 1138 1139
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1140
			ival = map->format.parse_val(val + (i * val_bytes));
1141 1142
			ret = regcache_write(map, reg + (i * map->reg_stride),
					     ival);
1143 1144
			if (ret) {
				dev_err(map->dev,
1145
					"Error in caching of register: %x ret: %d\n",
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1156 1157
	range = _regmap_range_lookup(map, reg);
	if (range) {
1158 1159 1160 1161 1162 1163
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1164
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1165 1166
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1167
						map->format.val_bytes);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1182
		if (ret != 0)
1183 1184
			return ret;
	}
1185

1186
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1187

1188 1189
	u8[0] |= map->write_flag_mask;

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1200
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1201
		struct regmap_async *async;
1202

1203 1204
		trace_regmap_async_write_start(map->dev, reg, val_len);

M
Mark Brown 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1248 1249 1250 1251 1252 1253

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1254
			list_move(&async->list, &map->async_free);
1255 1256
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1257 1258

		return ret;
1259 1260
	}

M
Mark Brown 已提交
1261 1262 1263
	trace_regmap_hw_write_start(map->dev, reg,
				    val_len / map->format.val_bytes);

1264 1265 1266 1267
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1268
	if (val == work_val)
1269
		ret = map->bus->write(map->bus_context, map->work_buf,
1270 1271 1272
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1273
	else if (map->bus->gather_write)
1274
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1275 1276
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1277 1278
					     val, val_len);

1279
	/* If that didn't work fall back on linearising by hand. */
1280
	if (ret == -ENOTSUPP) {
1281 1282
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1283 1284 1285 1286
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1287 1288
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1289
		ret = map->bus->write(map->bus_context, buf, len);
1290 1291 1292 1293

		kfree(buf);
	}

M
Mark Brown 已提交
1294 1295 1296
	trace_regmap_hw_write_done(map->dev, reg,
				   val_len / map->format.val_bytes);

1297 1298 1299
	return ret;
}

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
	return map->bus && map->format.format_val && map->format.format_reg;
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1311 1312 1313 1314 1315 1316 1317
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1318
	WARN_ON(!map->bus || !map->format.format_write);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

	trace_regmap_hw_write_start(map->dev, reg, 1);

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

	trace_regmap_hw_write_done(map->dev, reg, 1);

	return ret;
}

static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1344
	WARN_ON(!map->bus || !map->format.format_val);
1345 1346 1347 1348 1349 1350 1351

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1352
				 map->format.val_bytes);
1353 1354
}

1355 1356 1357 1358 1359
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1360 1361
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1362
{
M
Mark Brown 已提交
1363
	int ret;
1364
	void *context = _regmap_map_get_context(map);
1365

1366 1367 1368
	if (!regmap_writeable(map, reg))
		return -EIO;

1369
	if (!map->cache_bypass && !map->defer_caching) {
1370 1371 1372
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1373 1374
		if (map->cache_only) {
			map->cache_dirty = true;
1375
			return 0;
1376
		}
1377 1378
	}

1379 1380 1381 1382 1383
#ifdef LOG_DEVICE
	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

M
Mark Brown 已提交
1384 1385
	trace_regmap_reg_write(map->dev, reg, val);

1386
	return map->reg_write(context, reg, val);
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
}

/**
 * regmap_write(): Write a value to a single register
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1403 1404 1405
	if (reg % map->reg_stride)
		return -EINVAL;

1406
	map->lock(map->lock_arg);
1407 1408 1409

	ret = _regmap_write(map, reg, val);

1410
	map->unlock(map->lock_arg);
1411 1412 1413 1414 1415

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
/**
 * regmap_write_async(): Write a value to a single register asynchronously
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
/**
 * regmap_raw_write(): Write raw values to one or more registers
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1468
	if (!regmap_can_raw_write(map))
1469
		return -EINVAL;
1470 1471 1472
	if (val_len % map->format.val_bytes)
		return -EINVAL;

1473
	map->lock(map->lock_arg);
1474

1475
	ret = _regmap_raw_write(map, reg, val, val_len);
1476

1477
	map->unlock(map->lock_arg);
1478 1479 1480 1481 1482

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
/**
 * regmap_field_write(): Write a value to a single register field
 *
 * @field: Register field to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_write(struct regmap_field *field, unsigned int val)
{
	return regmap_update_bits(field->regmap, field->reg,
				field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_write);

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
/**
 * regmap_field_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
{
	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap, field->reg,
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_update_bits);

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
/**
 * regmap_fields_write(): Write a value to a single register field with port ID
 *
 * @field: Register field to write to
 * @id: port ID
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_write(struct regmap_field *field, unsigned int id,
			unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_write);

/**
 * regmap_fields_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
			      unsigned int mask, unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_update_bits);

1567 1568 1569 1570 1571 1572 1573 1574 1575
/*
 * regmap_bulk_write(): Write multiple registers to the device
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1576
 * data to the device either in single transfer or multiple transfer.
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;

1587
	if (map->bus && !map->format.parse_inplace)
1588
		return -EINVAL;
1589 1590
	if (reg % map->reg_stride)
		return -EINVAL;
1591

1592 1593 1594 1595 1596
	/*
	 * Some devices don't support bulk write, for
	 * them we have a series of single write operations.
	 */
	if (!map->bus || map->use_single_rw) {
1597
		map->lock(map->lock_arg);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
1620

1621 1622 1623 1624 1625
			ret = _regmap_write(map, reg + (i * map->reg_stride),
					ival);
			if (ret != 0)
				goto out;
		}
1626 1627
out:
		map->unlock(map->lock_arg);
1628
	} else {
1629 1630
		void *wval;

1631 1632 1633
		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
		if (!wval) {
			dev_err(map->dev, "Error in memory allocation\n");
1634
			return -ENOMEM;
1635 1636
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1637
			map->format.parse_inplace(wval + i);
1638

1639
		map->lock(map->lock_arg);
1640
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1641
		map->unlock(map->lock_arg);
1642 1643

		kfree(wval);
1644
	}
1645 1646 1647 1648
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
 * relative. The page register has been written if that was neccessary.
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
				       const struct reg_default *regs,
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		int val = regs[i].def;
		trace_regmap_hw_write_start(map->dev, reg, 1);
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		trace_regmap_hw_write_done(map->dev, reg, 1);
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
					       struct reg_default *regs,
					       size_t num_regs)
{
	int ret;
	int i, n;
	struct reg_default *base;
	unsigned int this_page;
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
	 * chops the set each time the page changes
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
				base += n;
				n = 0;
			}
			ret = _regmap_select_page(map, &base[n].reg, range, 1);
			if (ret != 0)
				return ret;
		}
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

1753 1754
static int _regmap_multi_reg_write(struct regmap *map,
				   const struct reg_default *regs,
1755
				   size_t num_regs)
1756
{
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
			if (reg % map->reg_stride)
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
1800 1801

	for (i = 0; i < num_regs; i++) {
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
		range = _regmap_range_lookup(map, reg);
		if (range) {
			size_t len = sizeof(struct reg_default)*num_regs;
			struct reg_default *base = kmemdup(regs, len,
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

1815 1816 1817
			return ret;
		}
	}
1818
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1819 1820
}

1821 1822 1823
/*
 * regmap_multi_reg_write(): Write multiple registers to the device
 *
1824 1825
 * where the set of register,value pairs are supplied in any order,
 * possibly not all in a single range.
1826 1827 1828 1829 1830
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
1831 1832 1833 1834 1835
 * The 'normal' block write mode will send ultimately send data on the
 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
1836
 *
1837 1838
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
1839
 */
1840 1841
int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
			   int num_regs)
1842
{
1843
	int ret;
1844 1845 1846

	map->lock(map->lock_arg);

1847 1848
	ret = _regmap_multi_reg_write(map, regs, num_regs);

1849 1850 1851 1852 1853 1854
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

1855 1856 1857 1858
/*
 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
 *                                    device but not the cache
 *
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
 * where the set of register are supplied in any order
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
1872 1873 1874
int regmap_multi_reg_write_bypassed(struct regmap *map,
				    const struct reg_default *regs,
				    int num_regs)
1875
{
1876 1877
	int ret;
	bool bypass;
1878 1879 1880

	map->lock(map->lock_arg);

1881 1882 1883 1884 1885 1886 1887
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

1888 1889 1890 1891
	map->unlock(map->lock_arg);

	return ret;
}
1892
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1893

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
/**
 * regmap_raw_write_async(): Write raw values to one or more registers
 *                           asynchronously
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

1928 1929 1930 1931 1932
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
1933 1934 1935 1936 1937 1938 1939

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

1940 1941 1942
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
1943
	struct regmap_range_node *range;
1944 1945 1946
	u8 *u8 = map->work_buf;
	int ret;

1947
	WARN_ON(!map->bus);
1948

1949 1950 1951 1952
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
1953
		if (ret != 0)
1954 1955
			return ret;
	}
1956

1957
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1958 1959

	/*
1960
	 * Some buses or devices flag reads by setting the high bits in the
1961 1962 1963 1964
	 * register addresss; since it's always the high bits for all
	 * current formats we can do this here rather than in
	 * formatting.  This may break if we get interesting formats.
	 */
1965
	u8[0] |= map->read_flag_mask;
1966

M
Mark Brown 已提交
1967 1968 1969
	trace_regmap_hw_read_start(map->dev, reg,
				   val_len / map->format.val_bytes);

1970
	ret = map->bus->read(map->bus_context, map->work_buf,
1971
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
1972
			     val, val_len);
1973

M
Mark Brown 已提交
1974 1975 1976 1977
	trace_regmap_hw_read_done(map->dev, reg,
				  val_len / map->format.val_bytes);

	return ret;
1978 1979
}

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

1996 1997 1998 1999
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2000 2001
	void *context = _regmap_map_get_context(map);

2002
	WARN_ON(!map->reg_read);
2003

2004 2005 2006 2007 2008 2009 2010 2011 2012
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2013 2014 2015
	if (!regmap_readable(map, reg))
		return -EIO;

2016
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2017
	if (ret == 0) {
2018 2019 2020 2021 2022
#ifdef LOG_DEVICE
		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

M
Mark Brown 已提交
2023
		trace_regmap_reg_read(map->dev, reg, *val);
2024

2025 2026 2027
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2028

2029 2030 2031 2032 2033 2034
	return ret;
}

/**
 * regmap_read(): Read a value from a single register
 *
2035
 * @map: Register map to read from
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2046 2047 2048
	if (reg % map->reg_stride)
		return -EINVAL;

2049
	map->lock(map->lock_arg);
2050 2051 2052

	ret = _regmap_read(map, reg, val);

2053
	map->unlock(map->lock_arg);
2054 2055 2056 2057 2058 2059 2060 2061

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
 * regmap_raw_read(): Read raw data from the device
 *
2062
 * @map: Register map to read from
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2073 2074 2075 2076
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2077

2078 2079
	if (!map->bus)
		return -EINVAL;
2080 2081
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2082 2083
	if (reg % map->reg_stride)
		return -EINVAL;
2084

2085
	map->lock(map->lock_arg);
2086

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2097 2098
			ret = _regmap_read(map, reg + (i * map->reg_stride),
					   &v);
2099 2100 2101
			if (ret != 0)
				goto out;

2102
			map->format.format_val(val + (i * val_bytes), v, 0);
2103 2104
		}
	}
2105

2106
 out:
2107
	map->unlock(map->lock_arg);
2108 2109 2110 2111 2112

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
/**
 * regmap_field_read(): Read a value to a single register field
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
/**
 * regmap_fields_read(): Read a value to a single register field with port ID
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2171 2172 2173
/**
 * regmap_bulk_read(): Read multiple registers from the device
 *
2174
 * @map: Register map to read from
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2187
	bool vol = regmap_volatile_range(map, reg, val_count);
2188

2189 2190
	if (reg % map->reg_stride)
		return -EINVAL;
2191

2192
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
		if (map->use_single_rw) {
			for (i = 0; i < val_count; i++) {
				ret = regmap_raw_read(map,
						reg + (i * map->reg_stride),
						val + (i * val_bytes),
						val_bytes);
				if (ret != 0)
					return ret;
			}
		} else {
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
		}
2212 2213

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2214
			map->format.parse_inplace(val + i);
2215 2216
	} else {
		for (i = 0; i < val_count; i++) {
2217
			unsigned int ival;
2218
			ret = regmap_read(map, reg + (i * map->reg_stride),
2219
					  &ival);
2220 2221
			if (ret != 0)
				return ret;
2222
			memcpy(val + (i * val_bytes), &ival, val_bytes);
2223 2224
		}
	}
2225 2226 2227 2228 2229

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

2230 2231 2232
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change)
2233 2234
{
	int ret;
2235
	unsigned int tmp, orig;
2236

2237
	ret = _regmap_read(map, reg, &orig);
2238
	if (ret != 0)
2239
		return ret;
2240

2241
	tmp = orig & ~mask;
2242 2243
	tmp |= val & mask;

2244
	if (tmp != orig) {
2245
		ret = _regmap_write(map, reg, tmp);
2246 2247
		if (change)
			*change = true;
2248
	} else {
2249 2250
		if (change)
			*change = false;
2251
	}
2252 2253 2254

	return ret;
}
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268

/**
 * regmap_update_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits(struct regmap *map, unsigned int reg,
		       unsigned int mask, unsigned int val)
{
2269 2270
	int ret;

2271
	map->lock(map->lock_arg);
2272
	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2273
	map->unlock(map->lock_arg);
2274 2275

	return ret;
2276
}
2277
EXPORT_SYMBOL_GPL(regmap_update_bits);
2278

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
/**
 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
 *                           map asynchronously
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_async(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

2303
	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2304 2305 2306 2307 2308 2309 2310 2311 2312

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_async);

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
/**
 * regmap_update_bits_check: Perform a read/modify/write cycle on the
 *                           register map and report if updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val,
			     bool *change)
{
2329 2330
	int ret;

2331
	map->lock(map->lock_arg);
2332
	ret = _regmap_update_bits(map, reg, mask, val, change);
2333
	map->unlock(map->lock_arg);
2334
	return ret;
2335 2336 2337
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check);

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
/**
 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
 *                                 register map asynchronously and report if
 *                                 updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
				   unsigned int mask, unsigned int val,
				   bool *change)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_update_bits(map, reg, mask, val, change);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);

2375 2376 2377 2378 2379
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2380 2381
	trace_regmap_async_io_complete(map->dev);

2382
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
2383
	list_move(&async->list, &map->async_free);
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2394
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
 * regmap_async_complete: Ensure all asynchronous I/O has completed.
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2422
	if (!map->bus || !map->bus->async_write)
2423 2424
		return 0;

2425 2426
	trace_regmap_async_complete_start(map->dev);

2427 2428 2429 2430 2431 2432 2433
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2434 2435
	trace_regmap_async_complete_done(map->dev);

2436 2437
	return ret;
}
2438
EXPORT_SYMBOL_GPL(regmap_async_complete);
2439

M
Mark Brown 已提交
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
/**
 * regmap_register_patch: Register and apply register updates to be applied
 *                        on device initialistion
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
2453 2454 2455
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
2456 2457 2458 2459
 */
int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
			  int num_regs)
{
2460
	struct reg_default *p;
2461
	int ret;
M
Mark Brown 已提交
2462 2463
	bool bypass;

2464 2465 2466 2467
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2468 2469 2470 2471 2472 2473 2474
	p = krealloc(map->patch,
		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
2475
	} else {
2476
		return -ENOMEM;
M
Mark Brown 已提交
2477 2478
	}

2479
	map->lock(map->lock_arg);
M
Mark Brown 已提交
2480 2481 2482 2483

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2484
	map->async = true;
M
Mark Brown 已提交
2485

2486 2487 2488
	ret = _regmap_multi_reg_write(map, regs, num_regs);
	if (ret != 0)
		goto out;
M
Mark Brown 已提交
2489 2490

out:
2491
	map->async = false;
M
Mark Brown 已提交
2492 2493
	map->cache_bypass = bypass;

2494
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
2495

2496 2497
	regmap_async_complete(map);

M
Mark Brown 已提交
2498 2499 2500 2501
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2502
/*
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
 * regmap_get_val_bytes(): Report the size of a register value
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

N
Nenghua Cao 已提交
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

2529 2530 2531 2532 2533 2534 2535
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);