gaudi.c 254.5 KB
Newer Older
1 2 3 4 5 6 7 8
// SPDX-License-Identifier: GPL-2.0

/*
 * Copyright 2016-2020 HabanaLabs, Ltd.
 * All Rights Reserved.
 */

#include "gaudiP.h"
9 10 11 12 13 14
#include "../include/hw_ip/mmu/mmu_general.h"
#include "../include/hw_ip/mmu/mmu_v1_1.h"
#include "../include/gaudi/gaudi_masks.h"
#include "../include/gaudi/gaudi_fw_if.h"
#include "../include/gaudi/gaudi_reg_map.h"
#include "../include/gaudi/gaudi_async_ids_map_extended.h"
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/firmware.h>
#include <linux/hwmon.h>
#include <linux/iommu.h>
#include <linux/seq_file.h>

/*
 * Gaudi security scheme:
 *
 * 1. Host is protected by:
 *        - Range registers
 *        - MMU
 *
 * 2. DDR is protected by:
 *        - Range registers (protect the first 512MB)
 *
 * 3. Configuration is protected by:
 *        - Range registers
 *        - Protection bits
 *
 * MMU is always enabled.
 *
39
 * QMAN DMA channels 0,1 (PCI DMAN):
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 *     - DMA is not secured.
 *     - PQ and CQ are secured.
 *     - CP is secured: The driver needs to parse CB but WREG should be allowed
 *                      because of TDMA (tensor DMA). Hence, WREG is always not
 *                      secured.
 *
 * When the driver needs to use DMA it will check that Gaudi is idle, set DMA
 * channel 0 to be secured, execute the DMA and change it back to not secured.
 * Currently, the driver doesn't use the DMA while there are compute jobs
 * running.
 *
 * The current use cases for the driver to use the DMA are:
 *     - Clear SRAM on context switch (happens on context switch when device is
 *       idle)
 *     - MMU page tables area clear (happens on init)
 *
56
 * QMAN DMA 2-7, TPC, MME, NIC:
57 58 59 60 61 62 63 64 65 66 67
 * PQ is secured and is located on the Host (HBM CON TPC3 bug)
 * CQ, CP and the engine are not secured
 *
 */

#define GAUDI_BOOT_FIT_FILE	"habanalabs/gaudi/gaudi-boot-fit.itb"
#define GAUDI_LINUX_FW_FILE	"habanalabs/gaudi/gaudi-fit.itb"
#define GAUDI_TPC_FW_FILE	"habanalabs/gaudi/gaudi_tpc.bin"

#define GAUDI_DMA_POOL_BLK_SIZE		0x100 /* 256 bytes */

68
#define GAUDI_RESET_TIMEOUT_MSEC	2000		/* 2000ms */
69 70 71 72 73 74 75 76 77 78 79
#define GAUDI_RESET_WAIT_MSEC		1		/* 1ms */
#define GAUDI_CPU_RESET_WAIT_MSEC	200		/* 200ms */
#define GAUDI_TEST_QUEUE_WAIT_USEC	100000		/* 100ms */

#define GAUDI_PLDM_RESET_WAIT_MSEC	1000		/* 1s */
#define GAUDI_PLDM_HRESET_TIMEOUT_MSEC	20000		/* 20s */
#define GAUDI_PLDM_TEST_QUEUE_WAIT_USEC	1000000		/* 1s */
#define GAUDI_PLDM_MMU_TIMEOUT_USEC	(MMU_CONFIG_TIMEOUT_USEC * 100)
#define GAUDI_PLDM_QMAN0_TIMEOUT_USEC	(HL_DEVICE_TIMEOUT_USEC * 30)
#define GAUDI_PLDM_TPC_KERNEL_WAIT_USEC	(HL_DEVICE_TIMEOUT_USEC * 30)
#define GAUDI_BOOT_FIT_REQ_TIMEOUT_USEC	1000000		/* 1s */
80
#define GAUDI_MSG_TO_CPU_TIMEOUT_USEC	4000000		/* 4s */
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

#define GAUDI_QMAN0_FENCE_VAL		0x72E91AB9

#define GAUDI_MAX_STRING_LEN		20

#define GAUDI_CB_POOL_CB_CNT		512
#define GAUDI_CB_POOL_CB_SIZE		0x20000 /* 128KB */

#define GAUDI_ALLOC_CPU_MEM_RETRY_CNT	3

#define GAUDI_NUM_OF_TPC_INTR_CAUSE	20

#define GAUDI_NUM_OF_QM_ERR_CAUSE	16

#define GAUDI_NUM_OF_QM_ARB_ERR_CAUSE	3

97
#define GAUDI_ARB_WDT_TIMEOUT		0x1000000
98

99 100 101 102 103
#define GAUDI_CLK_GATE_DEBUGFS_MASK	(\
		BIT(GAUDI_ENGINE_ID_MME_0) |\
		BIT(GAUDI_ENGINE_ID_MME_2) |\
		GENMASK_ULL(GAUDI_ENGINE_ID_TPC_7, GAUDI_ENGINE_ID_TPC_0))

104 105
#define HBM_SCRUBBING_TIMEOUT_US	1000000 /* 1s */

106 107
#define GAUDI_PLL_MAX 10

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/*
 * this enum kept here for compatibility with old FW (in which each asic has
 * unique PLL numbering
 */
enum gaudi_pll_index {
	GAUDI_CPU_PLL = 0,
	GAUDI_PCI_PLL,
	GAUDI_SRAM_PLL,
	GAUDI_HBM_PLL,
	GAUDI_NIC_PLL,
	GAUDI_DMA_PLL,
	GAUDI_MESH_PLL,
	GAUDI_MME_PLL,
	GAUDI_TPC_PLL,
	GAUDI_IF_PLL,
};

static enum pll_index gaudi_pll_map[PLL_MAX] = {
	[CPU_PLL] = GAUDI_CPU_PLL,
	[PCI_PLL] = GAUDI_PCI_PLL,
	[SRAM_PLL] = GAUDI_SRAM_PLL,
	[HBM_PLL] = GAUDI_HBM_PLL,
	[NIC_PLL] = GAUDI_NIC_PLL,
	[DMA_PLL] = GAUDI_DMA_PLL,
	[MESH_PLL] = GAUDI_MESH_PLL,
	[MME_PLL] = GAUDI_MME_PLL,
	[TPC_PLL] = GAUDI_TPC_PLL,
	[IF_PLL] = GAUDI_IF_PLL,
};

138 139 140 141 142 143 144 145
static const char gaudi_irq_name[GAUDI_MSI_ENTRIES][GAUDI_MAX_STRING_LEN] = {
		"gaudi cq 0_0", "gaudi cq 0_1", "gaudi cq 0_2", "gaudi cq 0_3",
		"gaudi cq 1_0", "gaudi cq 1_1", "gaudi cq 1_2", "gaudi cq 1_3",
		"gaudi cq 5_0", "gaudi cq 5_1", "gaudi cq 5_2", "gaudi cq 5_3",
		"gaudi cpu eq"
};

static const u8 gaudi_dma_assignment[GAUDI_DMA_MAX] = {
146 147 148 149 150
	[GAUDI_PCI_DMA_1] = GAUDI_ENGINE_ID_DMA_0,
	[GAUDI_PCI_DMA_2] = GAUDI_ENGINE_ID_DMA_1,
	[GAUDI_HBM_DMA_1] = GAUDI_ENGINE_ID_DMA_2,
	[GAUDI_HBM_DMA_2] = GAUDI_ENGINE_ID_DMA_3,
	[GAUDI_HBM_DMA_3] = GAUDI_ENGINE_ID_DMA_4,
151 152 153
	[GAUDI_HBM_DMA_4] = GAUDI_ENGINE_ID_DMA_5,
	[GAUDI_HBM_DMA_5] = GAUDI_ENGINE_ID_DMA_6,
	[GAUDI_HBM_DMA_6] = GAUDI_ENGINE_ID_DMA_7
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
};

static const u8 gaudi_cq_assignment[NUMBER_OF_CMPLT_QUEUES] = {
	[0] = GAUDI_QUEUE_ID_DMA_0_0,
	[1] = GAUDI_QUEUE_ID_DMA_0_1,
	[2] = GAUDI_QUEUE_ID_DMA_0_2,
	[3] = GAUDI_QUEUE_ID_DMA_0_3,
	[4] = GAUDI_QUEUE_ID_DMA_1_0,
	[5] = GAUDI_QUEUE_ID_DMA_1_1,
	[6] = GAUDI_QUEUE_ID_DMA_1_2,
	[7] = GAUDI_QUEUE_ID_DMA_1_3,
};

static const u16 gaudi_packet_sizes[MAX_PACKET_ID] = {
	[PACKET_WREG_32]	= sizeof(struct packet_wreg32),
	[PACKET_WREG_BULK]	= sizeof(struct packet_wreg_bulk),
	[PACKET_MSG_LONG]	= sizeof(struct packet_msg_long),
	[PACKET_MSG_SHORT]	= sizeof(struct packet_msg_short),
	[PACKET_CP_DMA]		= sizeof(struct packet_cp_dma),
	[PACKET_REPEAT]		= sizeof(struct packet_repeat),
	[PACKET_MSG_PROT]	= sizeof(struct packet_msg_prot),
	[PACKET_FENCE]		= sizeof(struct packet_fence),
	[PACKET_LIN_DMA]	= sizeof(struct packet_lin_dma),
	[PACKET_NOP]		= sizeof(struct packet_nop),
	[PACKET_STOP]		= sizeof(struct packet_stop),
	[PACKET_ARB_POINT]	= sizeof(struct packet_arb_point),
	[PACKET_WAIT]		= sizeof(struct packet_wait),
	[PACKET_LOAD_AND_EXE]	= sizeof(struct packet_load_and_exe)
};

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
static inline bool validate_packet_id(enum packet_id id)
{
	switch (id) {
	case PACKET_WREG_32:
	case PACKET_WREG_BULK:
	case PACKET_MSG_LONG:
	case PACKET_MSG_SHORT:
	case PACKET_CP_DMA:
	case PACKET_REPEAT:
	case PACKET_MSG_PROT:
	case PACKET_FENCE:
	case PACKET_LIN_DMA:
	case PACKET_NOP:
	case PACKET_STOP:
	case PACKET_ARB_POINT:
	case PACKET_WAIT:
	case PACKET_LOAD_AND_EXE:
		return true;
	default:
		return false;
	}
}

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
static const char * const
gaudi_tpc_interrupts_cause[GAUDI_NUM_OF_TPC_INTR_CAUSE] = {
	"tpc_address_exceed_slm",
	"tpc_div_by_0",
	"tpc_spu_mac_overflow",
	"tpc_spu_addsub_overflow",
	"tpc_spu_abs_overflow",
	"tpc_spu_fp_dst_nan_inf",
	"tpc_spu_fp_dst_denorm",
	"tpc_vpu_mac_overflow",
	"tpc_vpu_addsub_overflow",
	"tpc_vpu_abs_overflow",
	"tpc_vpu_fp_dst_nan_inf",
	"tpc_vpu_fp_dst_denorm",
	"tpc_assertions",
	"tpc_illegal_instruction",
	"tpc_pc_wrap_around",
	"tpc_qm_sw_err",
	"tpc_hbw_rresp_err",
	"tpc_hbw_bresp_err",
	"tpc_lbw_rresp_err",
	"tpc_lbw_bresp_err"
};

static const char * const
gaudi_qman_error_cause[GAUDI_NUM_OF_QM_ERR_CAUSE] = {
	"PQ AXI HBW error",
	"CQ AXI HBW error",
	"CP AXI HBW error",
	"CP error due to undefined OPCODE",
	"CP encountered STOP OPCODE",
	"CP AXI LBW error",
	"CP WRREG32 or WRBULK returned error",
	"N/A",
	"FENCE 0 inc over max value and clipped",
	"FENCE 1 inc over max value and clipped",
	"FENCE 2 inc over max value and clipped",
	"FENCE 3 inc over max value and clipped",
	"FENCE 0 dec under min value and clipped",
	"FENCE 1 dec under min value and clipped",
	"FENCE 2 dec under min value and clipped",
	"FENCE 3 dec under min value and clipped"
};

static const char * const
gaudi_qman_arb_error_cause[GAUDI_NUM_OF_QM_ARB_ERR_CAUSE] = {
	"Choice push while full error",
	"Choice Q watchdog error",
	"MSG AXI LBW returned with error"
};

258 259 260 261 262 263
enum gaudi_sm_sei_cause {
	GAUDI_SM_SEI_SO_OVERFLOW,
	GAUDI_SM_SEI_LBW_4B_UNALIGNED,
	GAUDI_SM_SEI_AXI_RESPONSE_ERR
};

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static enum hl_queue_type gaudi_queue_type[GAUDI_QUEUE_ID_SIZE] = {
	QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_0_0 */
	QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_0_1 */
	QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_0_2 */
	QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_0_3 */
	QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_1_0 */
	QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_1_1 */
	QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_1_2 */
	QUEUE_TYPE_EXT, /* GAUDI_QUEUE_ID_DMA_1_3 */
	QUEUE_TYPE_CPU, /* GAUDI_QUEUE_ID_CPU_PQ */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_2_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_2_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_2_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_2_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_3_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_3_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_3_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_3_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_4_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_4_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_4_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_4_3 */
286 287 288 289
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_5_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_5_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_5_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_5_3 */
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_6_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_6_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_6_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_6_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_7_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_7_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_7_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_DMA_7_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_0_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_0_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_0_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_0_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_1_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_1_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_1_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_MME_1_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_0_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_0_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_0_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_0_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_1_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_1_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_1_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_1_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_2_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_2_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_2_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_2_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_3_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_3_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_3_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_3_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_4_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_4_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_4_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_4_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_5_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_5_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_5_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_5_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_6_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_6_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_6_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_6_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_7_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_7_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_7_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_TPC_7_3 */
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_0_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_0_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_0_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_0_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_1_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_1_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_1_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_1_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_2_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_2_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_2_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_2_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_3_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_3_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_3_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_3_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_4_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_4_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_4_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_4_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_5_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_5_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_5_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_5_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_6_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_6_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_6_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_6_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_7_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_7_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_7_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_7_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_8_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_8_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_8_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_8_3 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_9_0 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_9_1 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_9_2 */
	QUEUE_TYPE_INT, /* GAUDI_QUEUE_ID_NIC_9_3 */
378 379
};

380 381 382 383 384 385 386
struct ecc_info_extract_params {
	u64 block_address;
	u32 num_memories;
	bool derr;
	bool disable_clock_gating;
};

387 388 389 390 391 392
static int gaudi_mmu_update_asid_hop0_addr(struct hl_device *hdev, u32 asid,
								u64 phys_addr);
static int gaudi_send_job_on_qman0(struct hl_device *hdev,
					struct hl_cs_job *job);
static int gaudi_memset_device_memory(struct hl_device *hdev, u64 addr,
					u32 size, u64 val);
393 394 395 396
static int gaudi_memset_registers(struct hl_device *hdev, u64 reg_base,
					u32 num_regs, u32 val);
static int gaudi_schedule_register_memset(struct hl_device *hdev,
		u32 hw_queue_id, u64 reg_base, u32 num_regs, u32 val);
397 398 399
static int gaudi_run_tpc_kernel(struct hl_device *hdev, u64 tpc_kernel,
				u32 tpc_id);
static int gaudi_mmu_clear_pgt_range(struct hl_device *hdev);
400
static int gaudi_cpucp_info_get(struct hl_device *hdev);
401 402
static void gaudi_disable_clock_gating(struct hl_device *hdev);
static void gaudi_mmu_prepare(struct hl_device *hdev, u32 asid);
403
static u32 gaudi_gen_signal_cb(struct hl_device *hdev, void *data, u16 sob_id,
404
				u32 size, bool eb);
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
static u32 gaudi_gen_wait_cb(struct hl_device *hdev,
				struct hl_gen_wait_properties *prop);

static inline enum hl_collective_mode
get_collective_mode(struct hl_device *hdev, u32 queue_id)
{
	if (gaudi_queue_type[queue_id] == QUEUE_TYPE_EXT)
		return HL_COLLECTIVE_MASTER;

	if (queue_id >= GAUDI_QUEUE_ID_DMA_5_0 &&
			queue_id <= GAUDI_QUEUE_ID_DMA_5_3)
		return HL_COLLECTIVE_SLAVE;

	if (queue_id >= GAUDI_QUEUE_ID_TPC_7_0 &&
			queue_id <= GAUDI_QUEUE_ID_TPC_7_3)
		return HL_COLLECTIVE_SLAVE;

	if (queue_id >= GAUDI_QUEUE_ID_NIC_0_0 &&
			queue_id <= GAUDI_QUEUE_ID_NIC_9_3)
		return HL_COLLECTIVE_SLAVE;

	return HL_COLLECTIVE_NOT_SUPPORTED;
}
428

429 430 431 432 433 434 435 436 437 438 439 440 441
static inline void set_default_power_values(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;

	if (hdev->card_type == cpucp_card_type_pmc) {
		prop->max_power_default = MAX_POWER_DEFAULT_PMC;
		prop->dc_power_default = DC_POWER_DEFAULT_PMC;
	} else {
		prop->max_power_default = MAX_POWER_DEFAULT_PCI;
		prop->dc_power_default = DC_POWER_DEFAULT_PCI;
	}
}

442 443 444
static int gaudi_get_fixed_properties(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
445
	u32 num_sync_stream_queues = 0;
446 447
	int i;

448 449 450 451
	prop->max_queues = GAUDI_QUEUE_ID_SIZE;
	prop->hw_queues_props = kcalloc(prop->max_queues,
			sizeof(struct hw_queue_properties),
			GFP_KERNEL);
452

453 454 455 456
	if (!prop->hw_queues_props)
		return -ENOMEM;

	for (i = 0 ; i < prop->max_queues ; i++) {
457 458 459
		if (gaudi_queue_type[i] == QUEUE_TYPE_EXT) {
			prop->hw_queues_props[i].type = QUEUE_TYPE_EXT;
			prop->hw_queues_props[i].driver_only = 0;
460
			prop->hw_queues_props[i].supports_sync_stream = 1;
461 462
			prop->hw_queues_props[i].cb_alloc_flags =
				CB_ALLOC_KERNEL;
463
			num_sync_stream_queues++;
464 465 466
		} else if (gaudi_queue_type[i] == QUEUE_TYPE_CPU) {
			prop->hw_queues_props[i].type = QUEUE_TYPE_CPU;
			prop->hw_queues_props[i].driver_only = 1;
467
			prop->hw_queues_props[i].supports_sync_stream = 0;
468 469
			prop->hw_queues_props[i].cb_alloc_flags =
				CB_ALLOC_KERNEL;
470 471 472
		} else if (gaudi_queue_type[i] == QUEUE_TYPE_INT) {
			prop->hw_queues_props[i].type = QUEUE_TYPE_INT;
			prop->hw_queues_props[i].driver_only = 0;
473 474 475
			prop->hw_queues_props[i].supports_sync_stream = 0;
			prop->hw_queues_props[i].cb_alloc_flags =
				CB_ALLOC_USER;
476

477
		}
478 479
		prop->hw_queues_props[i].collective_mode =
						get_collective_mode(hdev, i);
480 481 482
	}

	prop->completion_queues_count = NUMBER_OF_CMPLT_QUEUES;
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	prop->collective_first_sob = 0;
	prop->collective_first_mon = 0;

	/* 2 SOBs per internal queue stream are reserved for collective */
	prop->sync_stream_first_sob =
			ALIGN(NUMBER_OF_SOBS_IN_GRP, HL_MAX_SOBS_PER_MONITOR)
			* QMAN_STREAMS * HL_RSVD_SOBS;

	/* 1 monitor per internal queue stream are reserved for collective
	 * 2 monitors per external queue stream are reserved for collective
	 */
	prop->sync_stream_first_mon =
			(NUMBER_OF_COLLECTIVE_QUEUES * QMAN_STREAMS) +
			(NUMBER_OF_EXT_HW_QUEUES * 2);

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
	prop->dram_base_address = DRAM_PHYS_BASE;
	prop->dram_size = GAUDI_HBM_SIZE_32GB;
	prop->dram_end_address = prop->dram_base_address +
					prop->dram_size;
	prop->dram_user_base_address = DRAM_BASE_ADDR_USER;

	prop->sram_base_address = SRAM_BASE_ADDR;
	prop->sram_size = SRAM_SIZE;
	prop->sram_end_address = prop->sram_base_address +
					prop->sram_size;
	prop->sram_user_base_address = prop->sram_base_address +
					SRAM_USER_BASE_OFFSET;

	prop->mmu_pgt_addr = MMU_PAGE_TABLES_ADDR;
	if (hdev->pldm)
		prop->mmu_pgt_size = 0x800000; /* 8MB */
	else
		prop->mmu_pgt_size = MMU_PAGE_TABLES_SIZE;
	prop->mmu_pte_size = HL_PTE_SIZE;
	prop->mmu_hop_table_size = HOP_TABLE_SIZE;
	prop->mmu_hop0_tables_total_size = HOP0_TABLES_TOTAL_SIZE;
	prop->dram_page_size = PAGE_SIZE_2MB;
520
	prop->dram_supports_virtual_memory = false;
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

	prop->pmmu.hop0_shift = HOP0_SHIFT;
	prop->pmmu.hop1_shift = HOP1_SHIFT;
	prop->pmmu.hop2_shift = HOP2_SHIFT;
	prop->pmmu.hop3_shift = HOP3_SHIFT;
	prop->pmmu.hop4_shift = HOP4_SHIFT;
	prop->pmmu.hop0_mask = HOP0_MASK;
	prop->pmmu.hop1_mask = HOP1_MASK;
	prop->pmmu.hop2_mask = HOP2_MASK;
	prop->pmmu.hop3_mask = HOP3_MASK;
	prop->pmmu.hop4_mask = HOP4_MASK;
	prop->pmmu.start_addr = VA_HOST_SPACE_START;
	prop->pmmu.end_addr =
			(VA_HOST_SPACE_START + VA_HOST_SPACE_SIZE / 2) - 1;
	prop->pmmu.page_size = PAGE_SIZE_4KB;
536
	prop->pmmu.num_hops = MMU_ARCH_5_HOPS;
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

	/* PMMU and HPMMU are the same except of page size */
	memcpy(&prop->pmmu_huge, &prop->pmmu, sizeof(prop->pmmu));
	prop->pmmu_huge.page_size = PAGE_SIZE_2MB;

	/* shifts and masks are the same in PMMU and DMMU */
	memcpy(&prop->dmmu, &prop->pmmu, sizeof(prop->pmmu));
	prop->dmmu.start_addr = (VA_HOST_SPACE_START + VA_HOST_SPACE_SIZE / 2);
	prop->dmmu.end_addr = VA_HOST_SPACE_END;
	prop->dmmu.page_size = PAGE_SIZE_2MB;

	prop->cfg_size = CFG_SIZE;
	prop->max_asid = MAX_ASID;
	prop->num_of_events = GAUDI_EVENT_SIZE;
	prop->tpc_enabled_mask = TPC_ENABLED_MASK;

553
	set_default_power_values(hdev);
554 555 556 557 558 559 560

	prop->cb_pool_cb_cnt = GAUDI_CB_POOL_CB_CNT;
	prop->cb_pool_cb_size = GAUDI_CB_POOL_CB_SIZE;

	prop->pcie_dbi_base_address = mmPCIE_DBI_BASE;
	prop->pcie_aux_dbi_reg_addr = CFG_BASE + mmPCIE_AUX_DBI;

561
	strncpy(prop->cpucp_info.card_name, GAUDI_DEFAULT_CARD_NAME,
562 563
					CARD_NAME_MAX_LEN);

564 565
	prop->max_pending_cs = GAUDI_MAX_PENDING_CS;

566
	prop->first_available_user_sob[HL_GAUDI_WS_DCORE] =
567 568
			prop->sync_stream_first_sob +
			(num_sync_stream_queues * HL_RSVD_SOBS);
569
	prop->first_available_user_mon[HL_GAUDI_WS_DCORE] =
570 571
			prop->sync_stream_first_mon +
			(num_sync_stream_queues * HL_RSVD_MONS);
572

573 574
	prop->first_available_user_msix_interrupt = USHRT_MAX;

575 576 577
	for (i = 0 ; i < HL_MAX_DCORES ; i++)
		prop->first_available_cq[i] = USHRT_MAX;

578
	prop->fw_security_status_valid = false;
579
	prop->hard_reset_done_by_fw = false;
580

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	return 0;
}

static int gaudi_pci_bars_map(struct hl_device *hdev)
{
	static const char * const name[] = {"SRAM", "CFG", "HBM"};
	bool is_wc[3] = {false, false, true};
	int rc;

	rc = hl_pci_bars_map(hdev, name, is_wc);
	if (rc)
		return rc;

	hdev->rmmio = hdev->pcie_bar[CFG_BAR_ID] +
			(CFG_BASE - SPI_FLASH_BASE_ADDR);

	return 0;
}

static u64 gaudi_set_hbm_bar_base(struct hl_device *hdev, u64 addr)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
O
Ofir Bitton 已提交
603
	struct hl_inbound_pci_region pci_region;
604 605 606 607 608 609 610
	u64 old_addr = addr;
	int rc;

	if ((gaudi) && (gaudi->hbm_bar_cur_addr == addr))
		return old_addr;

	/* Inbound Region 2 - Bar 4 - Point to HBM */
O
Ofir Bitton 已提交
611 612 613 614
	pci_region.mode = PCI_BAR_MATCH_MODE;
	pci_region.bar = HBM_BAR_ID;
	pci_region.addr = addr;
	rc = hl_pci_set_inbound_region(hdev, 2, &pci_region);
615 616 617 618 619 620 621 622 623 624 625 626 627
	if (rc)
		return U64_MAX;

	if (gaudi) {
		old_addr = gaudi->hbm_bar_cur_addr;
		gaudi->hbm_bar_cur_addr = addr;
	}

	return old_addr;
}

static int gaudi_init_iatu(struct hl_device *hdev)
{
O
Ofir Bitton 已提交
628 629 630 631
	struct hl_inbound_pci_region inbound_region;
	struct hl_outbound_pci_region outbound_region;
	int rc;

632 633 634 635 636
	if (hdev->asic_prop.iatu_done_by_fw) {
		hdev->asic_funcs->set_dma_mask_from_fw(hdev);
		return 0;
	}

O
Ofir Bitton 已提交
637 638 639 640 641 642 643
	/* Inbound Region 0 - Bar 0 - Point to SRAM + CFG */
	inbound_region.mode = PCI_BAR_MATCH_MODE;
	inbound_region.bar = SRAM_BAR_ID;
	inbound_region.addr = SRAM_BASE_ADDR;
	rc = hl_pci_set_inbound_region(hdev, 0, &inbound_region);
	if (rc)
		goto done;
644 645

	/* Inbound Region 1 - Bar 2 - Point to SPI FLASH */
O
Ofir Bitton 已提交
646 647 648 649 650 651
	inbound_region.mode = PCI_BAR_MATCH_MODE;
	inbound_region.bar = CFG_BAR_ID;
	inbound_region.addr = SPI_FLASH_BASE_ADDR;
	rc = hl_pci_set_inbound_region(hdev, 1, &inbound_region);
	if (rc)
		goto done;
652

O
Ofir Bitton 已提交
653 654 655 656 657
	/* Inbound Region 2 - Bar 4 - Point to HBM */
	inbound_region.mode = PCI_BAR_MATCH_MODE;
	inbound_region.bar = HBM_BAR_ID;
	inbound_region.addr = DRAM_PHYS_BASE;
	rc = hl_pci_set_inbound_region(hdev, 2, &inbound_region);
658
	if (rc)
O
Ofir Bitton 已提交
659 660 661 662 663 664 665 666
		goto done;

	hdev->asic_funcs->set_dma_mask_from_fw(hdev);

	/* Outbound Region 0 - Point to Host */
	outbound_region.addr = HOST_PHYS_BASE;
	outbound_region.size = HOST_PHYS_SIZE;
	rc = hl_pci_set_outbound_region(hdev, &outbound_region);
667

O
Ofir Bitton 已提交
668 669
done:
	return rc;
670 671
}

672 673 674 675 676
static enum hl_device_hw_state gaudi_get_hw_state(struct hl_device *hdev)
{
	return RREG32(mmHW_STATE);
}

677 678 679 680
static int gaudi_early_init(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct pci_dev *pdev = hdev->pdev;
681
	u32 fw_boot_status;
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
	int rc;

	rc = gaudi_get_fixed_properties(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed to get fixed properties\n");
		return rc;
	}

	/* Check BAR sizes */
	if (pci_resource_len(pdev, SRAM_BAR_ID) != SRAM_BAR_SIZE) {
		dev_err(hdev->dev,
			"Not " HL_NAME "? BAR %d size %llu, expecting %llu\n",
			SRAM_BAR_ID,
			(unsigned long long) pci_resource_len(pdev,
							SRAM_BAR_ID),
			SRAM_BAR_SIZE);
698 699
		rc = -ENODEV;
		goto free_queue_props;
700 701 702 703 704 705 706 707 708
	}

	if (pci_resource_len(pdev, CFG_BAR_ID) != CFG_BAR_SIZE) {
		dev_err(hdev->dev,
			"Not " HL_NAME "? BAR %d size %llu, expecting %llu\n",
			CFG_BAR_ID,
			(unsigned long long) pci_resource_len(pdev,
								CFG_BAR_ID),
			CFG_BAR_SIZE);
709 710
		rc = -ENODEV;
		goto free_queue_props;
711 712 713 714
	}

	prop->dram_pci_bar_size = pci_resource_len(pdev, HBM_BAR_ID);

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
	/* If FW security is enabled at this point it means no access to ELBI */
	if (!hdev->asic_prop.fw_security_disabled) {
		hdev->asic_prop.iatu_done_by_fw = true;
		goto pci_init;
	}

	rc = hl_pci_elbi_read(hdev, CFG_BASE + mmCPU_BOOT_DEV_STS0,
				&fw_boot_status);
	if (rc)
		goto free_queue_props;

	/* Check whether FW is configuring iATU */
	if ((fw_boot_status & CPU_BOOT_DEV_STS0_ENABLED) &&
			(fw_boot_status & CPU_BOOT_DEV_STS0_FW_IATU_CONF_EN))
		hdev->asic_prop.iatu_done_by_fw = true;

pci_init:
732
	rc = hl_pci_init(hdev);
733
	if (rc)
734
		goto free_queue_props;
735

736 737 738 739 740 741 742 743 744 745 746 747
	/* Before continuing in the initialization, we need to read the preboot
	 * version to determine whether we run with a security-enabled firmware
	 */
	rc = hl_fw_read_preboot_status(hdev, mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS,
			mmCPU_BOOT_DEV_STS0, mmCPU_BOOT_ERR0,
			GAUDI_BOOT_FIT_REQ_TIMEOUT_USEC);
	if (rc) {
		if (hdev->reset_on_preboot_fail)
			hdev->asic_funcs->hw_fini(hdev, true);
		goto pci_fini;
	}

748 749 750 751 752 753
	if (gaudi_get_hw_state(hdev) == HL_DEVICE_HW_STATE_DIRTY) {
		dev_info(hdev->dev,
			"H/W state is dirty, must reset before initializing\n");
		hdev->asic_funcs->hw_fini(hdev, true);
	}

754
	return 0;
755

756 757
pci_fini:
	hl_pci_fini(hdev);
758 759 760
free_queue_props:
	kfree(hdev->asic_prop.hw_queues_props);
	return rc;
761 762 763 764
}

static int gaudi_early_fini(struct hl_device *hdev)
{
765
	kfree(hdev->asic_prop.hw_queues_props);
766 767 768 769 770 771
	hl_pci_fini(hdev);

	return 0;
}

/**
772
 * gaudi_fetch_psoc_frequency - Fetch PSOC frequency values
773 774 775 776
 *
 * @hdev: pointer to hl_device structure
 *
 */
777
static int gaudi_fetch_psoc_frequency(struct hl_device *hdev)
778
{
779 780 781 782
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	u32 nr = 0, nf = 0, od = 0, div_fctr = 0, pll_clk, div_sel;
	u16 pll_freq_arr[HL_PLL_NUM_OUTPUTS], freq;
	int rc;
783

784
	if (hdev->asic_prop.fw_security_disabled) {
785
		/* Backward compatibility */
786 787 788 789 790
		div_fctr = RREG32(mmPSOC_CPU_PLL_DIV_FACTOR_2);
		div_sel = RREG32(mmPSOC_CPU_PLL_DIV_SEL_2);
		nr = RREG32(mmPSOC_CPU_PLL_NR);
		nf = RREG32(mmPSOC_CPU_PLL_NF);
		od = RREG32(mmPSOC_CPU_PLL_OD);
791

792
		if (div_sel == DIV_SEL_REF_CLK ||
793
				div_sel == DIV_SEL_DIVIDED_REF) {
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
			if (div_sel == DIV_SEL_REF_CLK)
				freq = PLL_REF_CLK;
			else
				freq = PLL_REF_CLK / (div_fctr + 1);
		} else if (div_sel == DIV_SEL_PLL_CLK ||
			div_sel == DIV_SEL_DIVIDED_PLL) {
			pll_clk = PLL_REF_CLK * (nf + 1) /
					((nr + 1) * (od + 1));
			if (div_sel == DIV_SEL_PLL_CLK)
				freq = pll_clk;
			else
				freq = pll_clk / (div_fctr + 1);
		} else {
			dev_warn(hdev->dev,
				"Received invalid div select value: %d",
				div_sel);
			freq = 0;
811
		}
812
	} else {
813
		rc = hl_fw_cpucp_pll_info_get(hdev, CPU_PLL, pll_freq_arr);
814

815 816
		if (rc)
			return rc;
817

818 819
		freq = pll_freq_arr[2];
	}
820

821 822 823 824 825
	prop->psoc_timestamp_frequency = freq;
	prop->psoc_pci_pll_nr = nr;
	prop->psoc_pci_pll_nf = nf;
	prop->psoc_pci_pll_od = od;
	prop->psoc_pci_pll_div_factor = div_fctr;
826 827

	return 0;
828 829 830 831 832 833 834 835 836 837 838 839 840 841
}

static int _gaudi_init_tpc_mem(struct hl_device *hdev,
		dma_addr_t tpc_kernel_src_addr, u32 tpc_kernel_size)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct packet_lin_dma *init_tpc_mem_pkt;
	struct hl_cs_job *job;
	struct hl_cb *cb;
	u64 dst_addr;
	u32 cb_size, ctl;
	u8 tpc_id;
	int rc;

842
	cb = hl_cb_kernel_create(hdev, PAGE_SIZE, false);
843 844 845
	if (!cb)
		return -EFAULT;

846
	init_tpc_mem_pkt = cb->kernel_address;
847 848 849 850 851
	cb_size = sizeof(*init_tpc_mem_pkt);
	memset(init_tpc_mem_pkt, 0, cb_size);

	init_tpc_mem_pkt->tsize = cpu_to_le32(tpc_kernel_size);

852 853 854 855
	ctl = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_LIN_DMA);
	ctl |= FIELD_PREP(GAUDI_PKT_LIN_DMA_CTL_LIN_MASK, 1);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873

	init_tpc_mem_pkt->ctl = cpu_to_le32(ctl);

	init_tpc_mem_pkt->src_addr = cpu_to_le64(tpc_kernel_src_addr);
	dst_addr = (prop->sram_user_base_address &
			GAUDI_PKT_LIN_DMA_DST_ADDR_MASK) >>
			GAUDI_PKT_LIN_DMA_DST_ADDR_SHIFT;
	init_tpc_mem_pkt->dst_addr |= cpu_to_le64(dst_addr);

	job = hl_cs_allocate_job(hdev, QUEUE_TYPE_EXT, true);
	if (!job) {
		dev_err(hdev->dev, "Failed to allocate a new job\n");
		rc = -ENOMEM;
		goto release_cb;
	}

	job->id = 0;
	job->user_cb = cb;
874
	atomic_inc(&job->user_cb->cs_cnt);
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	job->user_cb_size = cb_size;
	job->hw_queue_id = GAUDI_QUEUE_ID_DMA_0_0;
	job->patched_cb = job->user_cb;
	job->job_cb_size = job->user_cb_size + sizeof(struct packet_msg_prot);

	hl_debugfs_add_job(hdev, job);

	rc = gaudi_send_job_on_qman0(hdev, job);

	if (rc)
		goto free_job;

	for (tpc_id = 0 ; tpc_id < TPC_NUMBER_OF_ENGINES ; tpc_id++) {
		rc = gaudi_run_tpc_kernel(hdev, dst_addr, tpc_id);
		if (rc)
			break;
	}

free_job:
	hl_userptr_delete_list(hdev, &job->userptr_list);
	hl_debugfs_remove_job(hdev, job);
	kfree(job);
897
	atomic_dec(&cb->cs_cnt);
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919

release_cb:
	hl_cb_put(cb);
	hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT);

	return rc;
}

/*
 * gaudi_init_tpc_mem() - Initialize TPC memories.
 * @hdev: Pointer to hl_device structure.
 *
 * Copy TPC kernel fw from firmware file and run it to initialize TPC memories.
 *
 * Return: 0 for success, negative value for error.
 */
static int gaudi_init_tpc_mem(struct hl_device *hdev)
{
	const struct firmware *fw;
	size_t fw_size;
	void *cpu_addr;
	dma_addr_t dma_handle;
920
	int rc, count = 5;
921

922
again:
923
	rc = request_firmware(&fw, GAUDI_TPC_FW_FILE, hdev->dev);
924 925 926 927 928
	if (rc == -EINTR && count-- > 0) {
		msleep(50);
		goto again;
	}

929
	if (rc) {
930
		dev_err(hdev->dev, "Failed to load firmware file %s\n",
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
				GAUDI_TPC_FW_FILE);
		goto out;
	}

	fw_size = fw->size;
	cpu_addr = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, fw_size,
			&dma_handle, GFP_KERNEL | __GFP_ZERO);
	if (!cpu_addr) {
		dev_err(hdev->dev,
			"Failed to allocate %zu of dma memory for TPC kernel\n",
			fw_size);
		rc = -ENOMEM;
		goto out;
	}

	memcpy(cpu_addr, fw->data, fw_size);

	rc = _gaudi_init_tpc_mem(hdev, dma_handle, fw_size);

	hdev->asic_funcs->asic_dma_free_coherent(hdev, fw->size, cpu_addr,
			dma_handle);

out:
	release_firmware(fw);
	return rc;
}

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
static void gaudi_collective_map_sobs(struct hl_device *hdev, u32 stream)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	struct gaudi_collective_properties *prop = &gaudi->collective_props;
	struct hl_hw_queue *q;
	u32 i, sob_id, sob_group_id, queue_id;

	/* Iterate through SOB groups and assign a SOB for each slave queue */
	sob_group_id =
		stream * HL_RSVD_SOBS + prop->curr_sob_group_idx[stream];
	sob_id = prop->hw_sob_group[sob_group_id].base_sob_id;

	queue_id = GAUDI_QUEUE_ID_NIC_0_0 + stream;
	for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++) {
		q = &hdev->kernel_queues[queue_id + (4 * i)];
		q->sync_stream_prop.collective_sob_id = sob_id + i;
	}

	/* Both DMA5 and TPC7 use the same resources since only a single
	 * engine need to participate in the reduction process
	 */
	queue_id = GAUDI_QUEUE_ID_DMA_5_0 + stream;
	q = &hdev->kernel_queues[queue_id];
	q->sync_stream_prop.collective_sob_id =
			sob_id + NIC_NUMBER_OF_ENGINES;

	queue_id = GAUDI_QUEUE_ID_TPC_7_0 + stream;
	q = &hdev->kernel_queues[queue_id];
	q->sync_stream_prop.collective_sob_id =
			sob_id + NIC_NUMBER_OF_ENGINES;
}

static void gaudi_sob_group_hw_reset(struct kref *ref)
{
	struct gaudi_hw_sob_group *hw_sob_group =
		container_of(ref, struct gaudi_hw_sob_group, kref);
	struct hl_device *hdev = hw_sob_group->hdev;
995 996
	u64 base_addr;
	int rc;
997

998 999 1000 1001 1002 1003 1004 1005
	base_addr = CFG_BASE + mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0 +
			hw_sob_group->base_sob_id * 4;
	rc = gaudi_schedule_register_memset(hdev, hw_sob_group->queue_id,
			base_addr, NUMBER_OF_SOBS_IN_GRP, 0);
	if (rc)
		dev_err(hdev->dev,
			"failed resetting sob group - sob base %u, count %u",
			hw_sob_group->base_sob_id, NUMBER_OF_SOBS_IN_GRP);
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

	kref_init(&hw_sob_group->kref);
}

static void gaudi_sob_group_reset_error(struct kref *ref)
{
	struct gaudi_hw_sob_group *hw_sob_group =
		container_of(ref, struct gaudi_hw_sob_group, kref);
	struct hl_device *hdev = hw_sob_group->hdev;

	dev_crit(hdev->dev,
		"SOB release shouldn't be called here, base_sob_id: %d\n",
		hw_sob_group->base_sob_id);
}

static int gaudi_collective_init(struct hl_device *hdev)
{
	u32 i, master_monitor_sobs, sob_id, reserved_sobs_per_group;
	struct gaudi_collective_properties *prop;
	struct gaudi_device *gaudi;

	gaudi = hdev->asic_specific;
	prop = &gaudi->collective_props;
	sob_id = hdev->asic_prop.collective_first_sob;

	/* First sob in group must be aligned to HL_MAX_SOBS_PER_MONITOR */
	reserved_sobs_per_group =
		ALIGN(NUMBER_OF_SOBS_IN_GRP, HL_MAX_SOBS_PER_MONITOR);

	/* Init SOB groups */
	for (i = 0 ; i < NUM_SOB_GROUPS; i++) {
		prop->hw_sob_group[i].hdev = hdev;
		prop->hw_sob_group[i].base_sob_id = sob_id;
		sob_id += reserved_sobs_per_group;
		gaudi_sob_group_hw_reset(&prop->hw_sob_group[i].kref);
	}

	for (i = 0 ; i < QMAN_STREAMS; i++) {
		prop->next_sob_group_val[i] = 1;
		prop->curr_sob_group_idx[i] = 0;
		gaudi_collective_map_sobs(hdev, i);
	}

	prop->mstr_sob_mask[0] = 0;
	master_monitor_sobs = HL_MAX_SOBS_PER_MONITOR;
	for (i = 0 ; i < master_monitor_sobs ; i++)
		if (gaudi->hw_cap_initialized & BIT(HW_CAP_NIC_SHIFT + i))
			prop->mstr_sob_mask[0] |= BIT(i);

	prop->mstr_sob_mask[1] = 0;
	master_monitor_sobs =
		NIC_NUMBER_OF_ENGINES - HL_MAX_SOBS_PER_MONITOR;
	for (i = 0 ; i < master_monitor_sobs; i++) {
		if (gaudi->hw_cap_initialized & BIT(HW_CAP_NIC_SHIFT + i))
			prop->mstr_sob_mask[1] |= BIT(i);
	}

	/* Set collective engine bit */
	prop->mstr_sob_mask[1] |= BIT(i);

	return 0;
}

static void gaudi_reset_sob_group(struct hl_device *hdev, u16 sob_group)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	struct gaudi_collective_properties *cprop = &gaudi->collective_props;

	kref_put(&cprop->hw_sob_group[sob_group].kref,
					gaudi_sob_group_hw_reset);
}

static void gaudi_collective_master_init_job(struct hl_device *hdev,
		struct hl_cs_job *job, u32 stream, u32 sob_group_offset)
{
	u32 master_sob_base, master_monitor, queue_id, cb_size = 0;
	struct gaudi_collective_properties *cprop;
	struct hl_gen_wait_properties wait_prop;
	struct hl_sync_stream_properties *prop;
	struct gaudi_device *gaudi;

	gaudi = hdev->asic_specific;
	cprop = &gaudi->collective_props;
	queue_id = job->hw_queue_id;
	prop = &hdev->kernel_queues[queue_id].sync_stream_prop;

	master_sob_base =
		cprop->hw_sob_group[sob_group_offset].base_sob_id;
	master_monitor = prop->collective_mstr_mon_id[0];

1096 1097
	cprop->hw_sob_group[sob_group_offset].queue_id = queue_id;

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
	dev_dbg(hdev->dev,
		"Generate master wait CBs, sob %d (mask %#x), val:0x%x, mon %u, q %d\n",
		master_sob_base, cprop->mstr_sob_mask[0],
		cprop->next_sob_group_val[stream],
		master_monitor, queue_id);

	wait_prop.data = (void *) job->patched_cb;
	wait_prop.sob_base = master_sob_base;
	wait_prop.sob_mask = cprop->mstr_sob_mask[0];
	wait_prop.sob_val = cprop->next_sob_group_val[stream];
	wait_prop.mon_id = master_monitor;
	wait_prop.q_idx = queue_id;
	wait_prop.size = cb_size;
	cb_size += gaudi_gen_wait_cb(hdev, &wait_prop);

	master_sob_base += HL_MAX_SOBS_PER_MONITOR;
	master_monitor = prop->collective_mstr_mon_id[1];

	dev_dbg(hdev->dev,
		"Generate master wait CBs, sob %d (mask %#x), val:0x%x, mon %u, q %d\n",
		master_sob_base, cprop->mstr_sob_mask[1],
		cprop->next_sob_group_val[stream],
		master_monitor, queue_id);

	wait_prop.sob_base = master_sob_base;
	wait_prop.sob_mask = cprop->mstr_sob_mask[1];
	wait_prop.mon_id = master_monitor;
	wait_prop.size = cb_size;
	cb_size += gaudi_gen_wait_cb(hdev, &wait_prop);
}

static void gaudi_collective_slave_init_job(struct hl_device *hdev,
		struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
1131
{
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	struct hl_gen_wait_properties wait_prop;
	struct hl_sync_stream_properties *prop;
	u32 queue_id, cb_size = 0;

	queue_id = job->hw_queue_id;
	prop = &hdev->kernel_queues[queue_id].sync_stream_prop;

	/* Add to wait CBs using slave monitor */
	wait_prop.data = (void *) job->user_cb;
	wait_prop.sob_base = cs_cmpl->hw_sob->sob_id;
	wait_prop.sob_mask = 0x1;
	wait_prop.sob_val = cs_cmpl->sob_val;
	wait_prop.mon_id = prop->collective_slave_mon_id;
	wait_prop.q_idx = queue_id;
	wait_prop.size = cb_size;

	dev_dbg(hdev->dev,
		"Generate slave wait CB, sob %d, val:0x%x, mon %d, q %d\n",
		cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val,
		prop->collective_slave_mon_id, queue_id);

	cb_size += gaudi_gen_wait_cb(hdev, &wait_prop);

	dev_dbg(hdev->dev,
		"generate signal CB, sob_id: %d, sob val: 1, q_idx: %d\n",
		prop->collective_sob_id, queue_id);
1158

1159
	cb_size += gaudi_gen_signal_cb(hdev, job->user_cb,
1160
			prop->collective_sob_id, cb_size, false);
1161 1162 1163 1164
}

static void gaudi_collective_wait_init_cs(struct hl_cs *cs)
{
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	struct hl_cs_compl *signal_cs_cmpl =
		container_of(cs->signal_fence, struct hl_cs_compl, base_fence);
	struct hl_cs_compl *cs_cmpl =
		container_of(cs->fence, struct hl_cs_compl, base_fence);
	struct gaudi_collective_properties *cprop;
	u32 stream, queue_id, sob_group_offset;
	struct gaudi_device *gaudi;
	struct hl_device *hdev;
	struct hl_cs_job *job;
	struct hl_ctx *ctx;

	ctx = cs->ctx;
	hdev = ctx->hdev;
	gaudi = hdev->asic_specific;
	cprop = &gaudi->collective_props;

	/* copy the SOB id and value of the signal CS */
	cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob;
	cs_cmpl->sob_val = signal_cs_cmpl->sob_val;

	/* Calculate the stream from collective master queue (1st job) */
	job = list_first_entry(&cs->job_list, struct hl_cs_job, cs_node);
	stream = job->hw_queue_id % 4;
	sob_group_offset =
		stream * HL_RSVD_SOBS + cprop->curr_sob_group_idx[stream];

	list_for_each_entry(job, &cs->job_list, cs_node) {
		queue_id = job->hw_queue_id;

		if (hdev->kernel_queues[queue_id].collective_mode ==
				HL_COLLECTIVE_MASTER)
			gaudi_collective_master_init_job(hdev, job, stream,
						sob_group_offset);
		else
			gaudi_collective_slave_init_job(hdev, job, cs_cmpl);
	}

	cs_cmpl->sob_group = sob_group_offset;

	/* Handle sob group kref and wraparound */
	kref_get(&cprop->hw_sob_group[sob_group_offset].kref);
	cprop->next_sob_group_val[stream]++;
1207

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	if (cprop->next_sob_group_val[stream] == HL_MAX_SOB_VAL) {
		/*
		 * Decrement as we reached the max value.
		 * The release function won't be called here as we've
		 * just incremented the refcount.
		 */
		kref_put(&cprop->hw_sob_group[sob_group_offset].kref,
				gaudi_sob_group_reset_error);
		cprop->next_sob_group_val[stream] = 1;
		/* only two SOBs are currently in use */
		cprop->curr_sob_group_idx[stream] =
			(cprop->curr_sob_group_idx[stream] + 1) &
							(HL_RSVD_SOBS - 1);

		gaudi_collective_map_sobs(hdev, stream);

		dev_dbg(hdev->dev, "switched to SOB group %d, stream: %d\n",
				cprop->curr_sob_group_idx[stream], stream);
	}

	/* Increment kref since all slave queues are now waiting on it */
	kref_get(&cs_cmpl->hw_sob->kref);
	/*
	 * Must put the signal fence after the SOB refcnt increment so
	 * the SOB refcnt won't turn 0 and reset the SOB before the
	 * wait CS was submitted.
	 */
	mb();
	hl_fence_put(cs->signal_fence);
	cs->signal_fence = NULL;
}

static int gaudi_collective_wait_create_job(struct hl_device *hdev,
		struct hl_ctx *ctx, struct hl_cs *cs,
		enum hl_collective_mode mode, u32 queue_id, u32 wait_queue_id)
{
	struct hw_queue_properties *hw_queue_prop;
	struct hl_cs_counters_atomic *cntr;
	struct hl_cs_job *job;
	struct hl_cb *cb;
	u32 cb_size;
	bool patched_cb;

	cntr = &hdev->aggregated_cs_counters;

	if (mode == HL_COLLECTIVE_MASTER) {
		/* CB size of collective master queue contains
		 * 4 msg short packets for monitor 1 configuration
		 * 1 fence packet
		 * 4 msg short packets for monitor 2 configuration
		 * 1 fence packet
		 * 2 msg prot packets for completion and MSI-X
		 */
		cb_size = sizeof(struct packet_msg_short) * 8 +
				sizeof(struct packet_fence) * 2 +
				sizeof(struct packet_msg_prot) * 2;
		patched_cb = true;
	} else {
		/* CB size of collective slave queues contains
		 * 4 msg short packets for monitor configuration
		 * 1 fence packet
		 * 1 additional msg short packet for sob signal
		 */
		cb_size = sizeof(struct packet_msg_short) * 5 +
				sizeof(struct packet_fence);
		patched_cb = false;
	}

	hw_queue_prop = &hdev->asic_prop.hw_queues_props[queue_id];
	job = hl_cs_allocate_job(hdev, hw_queue_prop->type, true);
	if (!job) {
1279
		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1280 1281 1282 1283 1284 1285 1286 1287 1288
		atomic64_inc(&cntr->out_of_mem_drop_cnt);
		dev_err(hdev->dev, "Failed to allocate a new job\n");
		return -ENOMEM;
	}

	/* Allocate internal mapped CB for non patched CBs */
	cb = hl_cb_kernel_create(hdev, cb_size,
			hdev->mmu_enable && !patched_cb);
	if (!cb) {
1289
		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1290 1291 1292 1293 1294 1295 1296 1297
		atomic64_inc(&cntr->out_of_mem_drop_cnt);
		kfree(job);
		return -EFAULT;
	}

	job->id = 0;
	job->cs = cs;
	job->user_cb = cb;
1298
	atomic_inc(&job->user_cb->cs_cnt);
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	job->user_cb_size = cb_size;
	job->hw_queue_id = queue_id;

	/*
	 * No need in parsing, user CB is the patched CB.
	 * We call hl_cb_destroy() out of two reasons - we don't need
	 * the CB in the CB idr anymore and to decrement its refcount as
	 * it was incremented inside hl_cb_kernel_create().
	 */
	if (patched_cb)
		job->patched_cb = job->user_cb;
	else
		job->patched_cb = NULL;

	job->job_cb_size = job->user_cb_size;
	hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT);

	/* increment refcount as for external queues we get completion */
	if (hw_queue_prop->type == QUEUE_TYPE_EXT)
		cs_get(cs);

	cs->jobs_in_queue_cnt[job->hw_queue_id]++;

	list_add_tail(&job->cs_node, &cs->job_list);

	hl_debugfs_add_job(hdev, job);

	return 0;
1327 1328 1329 1330 1331 1332
}

static int gaudi_collective_wait_create_jobs(struct hl_device *hdev,
		struct hl_ctx *ctx, struct hl_cs *cs, u32 wait_queue_id,
		u32 collective_engine_id)
{
1333 1334 1335 1336 1337
	struct gaudi_device *gaudi = hdev->asic_specific;
	struct hw_queue_properties *hw_queue_prop;
	u32 queue_id, collective_queue, num_jobs;
	u32 stream, nic_queue, nic_idx = 0;
	bool skip;
1338
	int i, rc = 0;
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362

	/* Verify wait queue id is configured as master */
	hw_queue_prop = &hdev->asic_prop.hw_queues_props[wait_queue_id];
	if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) {
		dev_err(hdev->dev,
			"Queue %d is not configured as collective master\n",
			wait_queue_id);
		return -EINVAL;
	}

	/* Verify engine id is supported */
	if (collective_engine_id != GAUDI_ENGINE_ID_DMA_5 &&
			collective_engine_id != GAUDI_ENGINE_ID_TPC_7) {
		dev_err(hdev->dev,
			"Collective wait does not support engine %u\n",
			collective_engine_id);
		return -EINVAL;
	}

	stream = wait_queue_id % 4;

	if (collective_engine_id == GAUDI_ENGINE_ID_DMA_5)
		collective_queue = GAUDI_QUEUE_ID_DMA_5_0 + stream;
	else
1363
		collective_queue = GAUDI_QUEUE_ID_TPC_7_0 + stream;
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

	num_jobs = NUMBER_OF_SOBS_IN_GRP + 1;
	nic_queue = GAUDI_QUEUE_ID_NIC_0_0 + stream;

	/* First job goes to the collective master queue, it will wait for
	 * the collective slave queues to finish execution.
	 * The synchronization is done using two monitors:
	 * First monitor for NICs 0-7, second monitor for NICs 8-9 and the
	 * reduction engine (DMA5/TPC7).
	 *
	 * Rest of the jobs goes to the collective slave queues which will
	 * all wait for the user to signal sob 'cs_cmpl->sob_val'.
	 */
	for (i = 0 ; i < num_jobs ; i++) {
		if (i == 0) {
			queue_id = wait_queue_id;
			rc = gaudi_collective_wait_create_job(hdev, ctx, cs,
				HL_COLLECTIVE_MASTER, queue_id, wait_queue_id);
		} else {
			if (nic_idx < NIC_NUMBER_OF_ENGINES) {
				if (gaudi->hw_cap_initialized &
					BIT(HW_CAP_NIC_SHIFT + nic_idx))
					skip = false;
				else
					skip = true;

				queue_id = nic_queue;
				nic_queue += 4;
				nic_idx++;

				if (skip)
					continue;
			} else {
				queue_id = collective_queue;
			}

			rc = gaudi_collective_wait_create_job(hdev, ctx, cs,
				HL_COLLECTIVE_SLAVE, queue_id, wait_queue_id);
		}

		if (rc)
			return rc;
	}

	return rc;
1409 1410
}

1411 1412 1413 1414 1415
static int gaudi_late_init(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	int rc;

1416
	rc = gaudi->cpucp_info_get(hdev);
1417
	if (rc) {
1418
		dev_err(hdev->dev, "Failed to get cpucp info\n");
1419 1420 1421
		return rc;
	}

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	if ((hdev->card_type == cpucp_card_type_pci) &&
			(hdev->nic_ports_mask & 0x3)) {
		dev_info(hdev->dev,
			"PCI card detected, only 8 ports are enabled\n");
		hdev->nic_ports_mask &= ~0x3;

		/* Stop and disable unused NIC QMANs */
		WREG32(mmNIC0_QM0_GLBL_CFG1, NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
					NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
					NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);

		WREG32(mmNIC0_QM1_GLBL_CFG1, NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
					NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
					NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);

		WREG32(mmNIC0_QM0_GLBL_CFG0, 0);
		WREG32(mmNIC0_QM1_GLBL_CFG0, 0);

		gaudi->hw_cap_initialized &= ~(HW_CAP_NIC0 | HW_CAP_NIC1);
	}

1443
	rc = hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_ENABLE_PCI_ACCESS);
1444 1445 1446 1447 1448
	if (rc) {
		dev_err(hdev->dev, "Failed to enable PCI access from CPU\n");
		return rc;
	}

1449 1450 1451 1452 1453
	rc = gaudi_fetch_psoc_frequency(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed to fetch psoc frequency\n");
		goto disable_pci_access;
	}
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

	rc = gaudi_mmu_clear_pgt_range(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed to clear MMU page tables range\n");
		goto disable_pci_access;
	}

	rc = gaudi_init_tpc_mem(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed to initialize TPC memories\n");
		goto disable_pci_access;
	}

1467 1468 1469 1470 1471 1472
	rc = gaudi_collective_init(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed to init collective\n");
		goto disable_pci_access;
	}

1473 1474 1475
	return 0;

disable_pci_access:
1476
	hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS);
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

	return rc;
}

static void gaudi_late_fini(struct hl_device *hdev)
{
	const struct hwmon_channel_info **channel_info_arr;
	int i = 0;

	if (!hdev->hl_chip_info->info)
		return;

	channel_info_arr = hdev->hl_chip_info->info;

	while (channel_info_arr[i]) {
		kfree(channel_info_arr[i]->config);
		kfree(channel_info_arr[i]);
		i++;
	}

	kfree(channel_info_arr);

	hdev->hl_chip_info->info = NULL;
}

static int gaudi_alloc_cpu_accessible_dma_mem(struct hl_device *hdev)
{
	dma_addr_t dma_addr_arr[GAUDI_ALLOC_CPU_MEM_RETRY_CNT] = {}, end_addr;
	void *virt_addr_arr[GAUDI_ALLOC_CPU_MEM_RETRY_CNT] = {};
	int i, j, rc = 0;

	/*
	 * The device CPU works with 40-bits addresses, while bit 39 must be set
	 * to '1' when accessing the host.
	 * Bits 49:39 of the full host address are saved for a later
	 * configuration of the HW to perform extension to 50 bits.
	 * Because there is a single HW register that holds the extension bits,
	 * these bits must be identical in all allocated range.
	 */

	for (i = 0 ; i < GAUDI_ALLOC_CPU_MEM_RETRY_CNT ; i++) {
		virt_addr_arr[i] =
			hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
						HL_CPU_ACCESSIBLE_MEM_SIZE,
						&dma_addr_arr[i],
						GFP_KERNEL | __GFP_ZERO);
		if (!virt_addr_arr[i]) {
			rc = -ENOMEM;
			goto free_dma_mem_arr;
		}

		end_addr = dma_addr_arr[i] + HL_CPU_ACCESSIBLE_MEM_SIZE - 1;
		if (GAUDI_CPU_PCI_MSB_ADDR(dma_addr_arr[i]) ==
				GAUDI_CPU_PCI_MSB_ADDR(end_addr))
			break;
	}

	if (i == GAUDI_ALLOC_CPU_MEM_RETRY_CNT) {
		dev_err(hdev->dev,
			"MSB of CPU accessible DMA memory are not identical in all range\n");
		rc = -EFAULT;
		goto free_dma_mem_arr;
	}

	hdev->cpu_accessible_dma_mem = virt_addr_arr[i];
	hdev->cpu_accessible_dma_address = dma_addr_arr[i];
	hdev->cpu_pci_msb_addr =
		GAUDI_CPU_PCI_MSB_ADDR(hdev->cpu_accessible_dma_address);

1546 1547
	if (hdev->asic_prop.fw_security_disabled)
		GAUDI_PCI_TO_CPU_ADDR(hdev->cpu_accessible_dma_address);
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587

free_dma_mem_arr:
	for (j = 0 ; j < i ; j++)
		hdev->asic_funcs->asic_dma_free_coherent(hdev,
						HL_CPU_ACCESSIBLE_MEM_SIZE,
						virt_addr_arr[j],
						dma_addr_arr[j]);

	return rc;
}

static void gaudi_free_internal_qmans_pq_mem(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	struct gaudi_internal_qman_info *q;
	u32 i;

	for (i = 0 ; i < GAUDI_QUEUE_ID_SIZE ; i++) {
		q = &gaudi->internal_qmans[i];
		if (!q->pq_kernel_addr)
			continue;
		hdev->asic_funcs->asic_dma_free_coherent(hdev, q->pq_size,
							q->pq_kernel_addr,
							q->pq_dma_addr);
	}
}

static int gaudi_alloc_internal_qmans_pq_mem(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	struct gaudi_internal_qman_info *q;
	int rc, i;

	for (i = 0 ; i < GAUDI_QUEUE_ID_SIZE ; i++) {
		if (gaudi_queue_type[i] != QUEUE_TYPE_INT)
			continue;

		q = &gaudi->internal_qmans[i];

		switch (i) {
1588
		case GAUDI_QUEUE_ID_DMA_2_0 ... GAUDI_QUEUE_ID_DMA_7_3:
1589 1590 1591 1592 1593 1594 1595 1596
			q->pq_size = HBM_DMA_QMAN_SIZE_IN_BYTES;
			break;
		case GAUDI_QUEUE_ID_MME_0_0 ... GAUDI_QUEUE_ID_MME_1_3:
			q->pq_size = MME_QMAN_SIZE_IN_BYTES;
			break;
		case GAUDI_QUEUE_ID_TPC_0_0 ... GAUDI_QUEUE_ID_TPC_7_3:
			q->pq_size = TPC_QMAN_SIZE_IN_BYTES;
			break;
1597 1598 1599
		case GAUDI_QUEUE_ID_NIC_0_0 ... GAUDI_QUEUE_ID_NIC_9_3:
			q->pq_size = NIC_QMAN_SIZE_IN_BYTES;
			break;
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
		default:
			dev_err(hdev->dev, "Bad internal queue index %d", i);
			rc = -EINVAL;
			goto free_internal_qmans_pq_mem;
		}

		q->pq_kernel_addr = hdev->asic_funcs->asic_dma_alloc_coherent(
						hdev, q->pq_size,
						&q->pq_dma_addr,
						GFP_KERNEL | __GFP_ZERO);
		if (!q->pq_kernel_addr) {
			rc = -ENOMEM;
			goto free_internal_qmans_pq_mem;
		}
	}

	return 0;

free_internal_qmans_pq_mem:
	gaudi_free_internal_qmans_pq_mem(hdev);
	return rc;
}

static int gaudi_sw_init(struct hl_device *hdev)
{
	struct gaudi_device *gaudi;
1626
	u32 i, event_id = 0;
1627 1628 1629 1630 1631 1632 1633
	int rc;

	/* Allocate device structure */
	gaudi = kzalloc(sizeof(*gaudi), GFP_KERNEL);
	if (!gaudi)
		return -ENOMEM;

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	for (i = 0 ; i < ARRAY_SIZE(gaudi_irq_map_table) ; i++) {
		if (gaudi_irq_map_table[i].valid) {
			if (event_id == GAUDI_EVENT_SIZE) {
				dev_err(hdev->dev,
					"Event array exceeds the limit of %u events\n",
					GAUDI_EVENT_SIZE);
				rc = -EINVAL;
				goto free_gaudi_device;
			}

			gaudi->events[event_id++] =
					gaudi_irq_map_table[i].fc_id;
		}
	}

1649
	gaudi->cpucp_info_get = gaudi_cpucp_info_get;
1650 1651 1652 1653 1654

	gaudi->max_freq_value = GAUDI_MAX_CLK_FREQ;

	hdev->asic_specific = gaudi;

1655 1656 1657
	/* store legacy PLL map */
	hdev->legacy_pll_map = gaudi_pll_map;

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	/* Create DMA pool for small allocations */
	hdev->dma_pool = dma_pool_create(dev_name(hdev->dev),
			&hdev->pdev->dev, GAUDI_DMA_POOL_BLK_SIZE, 8, 0);
	if (!hdev->dma_pool) {
		dev_err(hdev->dev, "failed to create DMA pool\n");
		rc = -ENOMEM;
		goto free_gaudi_device;
	}

	rc = gaudi_alloc_cpu_accessible_dma_mem(hdev);
	if (rc)
		goto free_dma_pool;

	hdev->cpu_accessible_dma_pool = gen_pool_create(ilog2(32), -1);
	if (!hdev->cpu_accessible_dma_pool) {
		dev_err(hdev->dev,
			"Failed to create CPU accessible DMA pool\n");
		rc = -ENOMEM;
		goto free_cpu_dma_mem;
	}

	rc = gen_pool_add(hdev->cpu_accessible_dma_pool,
				(uintptr_t) hdev->cpu_accessible_dma_mem,
				HL_CPU_ACCESSIBLE_MEM_SIZE, -1);
	if (rc) {
		dev_err(hdev->dev,
			"Failed to add memory to CPU accessible DMA pool\n");
		rc = -EFAULT;
		goto free_cpu_accessible_dma_pool;
	}

	rc = gaudi_alloc_internal_qmans_pq_mem(hdev);
	if (rc)
		goto free_cpu_accessible_dma_pool;

	spin_lock_init(&gaudi->hw_queues_lock);
	mutex_init(&gaudi->clk_gate_mutex);

	hdev->supports_sync_stream = true;
	hdev->supports_coresight = true;
1698
	hdev->supports_staged_submission = true;
1699 1700 1701 1702 1703 1704

	return 0;

free_cpu_accessible_dma_pool:
	gen_pool_destroy(hdev->cpu_accessible_dma_pool);
free_cpu_dma_mem:
1705 1706 1707
	if (hdev->asic_prop.fw_security_disabled)
		GAUDI_CPU_TO_PCI_ADDR(hdev->cpu_accessible_dma_address,
					hdev->cpu_pci_msb_addr);
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	hdev->asic_funcs->asic_dma_free_coherent(hdev,
			HL_CPU_ACCESSIBLE_MEM_SIZE,
			hdev->cpu_accessible_dma_mem,
			hdev->cpu_accessible_dma_address);
free_dma_pool:
	dma_pool_destroy(hdev->dma_pool);
free_gaudi_device:
	kfree(gaudi);
	return rc;
}

static int gaudi_sw_fini(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	gaudi_free_internal_qmans_pq_mem(hdev);

	gen_pool_destroy(hdev->cpu_accessible_dma_pool);

1727 1728
	if (hdev->asic_prop.fw_security_disabled)
		GAUDI_CPU_TO_PCI_ADDR(hdev->cpu_accessible_dma_address,
1729
					hdev->cpu_pci_msb_addr);
1730

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	hdev->asic_funcs->asic_dma_free_coherent(hdev,
			HL_CPU_ACCESSIBLE_MEM_SIZE,
			hdev->cpu_accessible_dma_mem,
			hdev->cpu_accessible_dma_address);

	dma_pool_destroy(hdev->dma_pool);

	mutex_destroy(&gaudi->clk_gate_mutex);

	kfree(gaudi);

	return 0;
}

static irqreturn_t gaudi_irq_handler_single(int irq, void *arg)
{
	struct hl_device *hdev = arg;
	int i;

	if (hdev->disabled)
		return IRQ_HANDLED;

	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
		hl_irq_handler_cq(irq, &hdev->completion_queue[i]);

	hl_irq_handler_eq(irq, &hdev->event_queue);

	return IRQ_HANDLED;
}

/*
 * For backward compatibility, new MSI interrupts should be set after the
 * existing CPU and NIC interrupts.
 */
static int gaudi_pci_irq_vector(struct hl_device *hdev, unsigned int nr,
				bool cpu_eq)
{
	int msi_vec;

	if ((nr != GAUDI_EVENT_QUEUE_MSI_IDX) && (cpu_eq))
		dev_crit(hdev->dev, "CPU EQ must use IRQ %d\n",
				GAUDI_EVENT_QUEUE_MSI_IDX);

	msi_vec = ((nr < GAUDI_EVENT_QUEUE_MSI_IDX) || (cpu_eq)) ? nr :
			(nr + NIC_NUMBER_OF_ENGINES + 1);

	return pci_irq_vector(hdev->pdev, msi_vec);
}

static int gaudi_enable_msi_single(struct hl_device *hdev)
{
	int rc, irq;

1784
	dev_dbg(hdev->dev, "Working in single MSI IRQ mode\n");
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835

	irq = gaudi_pci_irq_vector(hdev, 0, false);
	rc = request_irq(irq, gaudi_irq_handler_single, 0,
			"gaudi single msi", hdev);
	if (rc)
		dev_err(hdev->dev,
			"Failed to request single MSI IRQ\n");

	return rc;
}

static int gaudi_enable_msi_multi(struct hl_device *hdev)
{
	int cq_cnt = hdev->asic_prop.completion_queues_count;
	int rc, i, irq_cnt_init, irq;

	for (i = 0, irq_cnt_init = 0 ; i < cq_cnt ; i++, irq_cnt_init++) {
		irq = gaudi_pci_irq_vector(hdev, i, false);
		rc = request_irq(irq, hl_irq_handler_cq, 0, gaudi_irq_name[i],
				&hdev->completion_queue[i]);
		if (rc) {
			dev_err(hdev->dev, "Failed to request IRQ %d", irq);
			goto free_irqs;
		}
	}

	irq = gaudi_pci_irq_vector(hdev, GAUDI_EVENT_QUEUE_MSI_IDX, true);
	rc = request_irq(irq, hl_irq_handler_eq, 0, gaudi_irq_name[cq_cnt],
				&hdev->event_queue);
	if (rc) {
		dev_err(hdev->dev, "Failed to request IRQ %d", irq);
		goto free_irqs;
	}

	return 0;

free_irqs:
	for (i = 0 ; i < irq_cnt_init ; i++)
		free_irq(gaudi_pci_irq_vector(hdev, i, false),
				&hdev->completion_queue[i]);
	return rc;
}

static int gaudi_enable_msi(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	int rc;

	if (gaudi->hw_cap_initialized & HW_CAP_MSI)
		return 0;

1836
	rc = pci_alloc_irq_vectors(hdev->pdev, 1, 1, PCI_IRQ_MSI);
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
	if (rc < 0) {
		dev_err(hdev->dev, "MSI: Failed to enable support %d\n", rc);
		return rc;
	}

	if (rc < NUMBER_OF_INTERRUPTS) {
		gaudi->multi_msi_mode = false;
		rc = gaudi_enable_msi_single(hdev);
	} else {
		gaudi->multi_msi_mode = true;
		rc = gaudi_enable_msi_multi(hdev);
	}

	if (rc)
		goto free_pci_irq_vectors;

	gaudi->hw_cap_initialized |= HW_CAP_MSI;

	return 0;

free_pci_irq_vectors:
	pci_free_irq_vectors(hdev->pdev);
	return rc;
}

static void gaudi_sync_irqs(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	int i, cq_cnt = hdev->asic_prop.completion_queues_count;

	if (!(gaudi->hw_cap_initialized & HW_CAP_MSI))
		return;

	/* Wait for all pending IRQs to be finished */
	if (gaudi->multi_msi_mode) {
		for (i = 0 ; i < cq_cnt ; i++)
			synchronize_irq(gaudi_pci_irq_vector(hdev, i, false));

		synchronize_irq(gaudi_pci_irq_vector(hdev,
						GAUDI_EVENT_QUEUE_MSI_IDX,
						true));
	} else {
		synchronize_irq(gaudi_pci_irq_vector(hdev, 0, false));
	}
}

static void gaudi_disable_msi(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	int i, irq, cq_cnt = hdev->asic_prop.completion_queues_count;

	if (!(gaudi->hw_cap_initialized & HW_CAP_MSI))
		return;

	gaudi_sync_irqs(hdev);

	if (gaudi->multi_msi_mode) {
		irq = gaudi_pci_irq_vector(hdev, GAUDI_EVENT_QUEUE_MSI_IDX,
						true);
		free_irq(irq, &hdev->event_queue);

		for (i = 0 ; i < cq_cnt ; i++) {
			irq = gaudi_pci_irq_vector(hdev, i, false);
			free_irq(irq, &hdev->completion_queue[i]);
		}
	} else {
		free_irq(gaudi_pci_irq_vector(hdev, 0, false), hdev);
	}

	pci_free_irq_vectors(hdev->pdev);

	gaudi->hw_cap_initialized &= ~HW_CAP_MSI;
}

static void gaudi_init_scrambler_sram(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

1915 1916 1917 1918 1919 1920 1921 1922
	if (!hdev->asic_prop.fw_security_disabled)
		return;

	if (hdev->asic_prop.fw_security_status_valid &&
			(hdev->asic_prop.fw_app_security_map &
					CPU_BOOT_DEV_STS0_SRAM_SCR_EN))
		return;

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
	if (gaudi->hw_cap_initialized & HW_CAP_SRAM_SCRAMBLER)
		return;

	if (!hdev->sram_scrambler_enable)
		return;

	WREG32(mmNIF_RTR_CTRL_0_SCRAM_SRAM_EN,
			1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_1_SCRAM_SRAM_EN,
			1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_2_SCRAM_SRAM_EN,
			1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_3_SCRAM_SRAM_EN,
			1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_4_SCRAM_SRAM_EN,
			1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_5_SCRAM_SRAM_EN,
			1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_6_SCRAM_SRAM_EN,
			1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_7_SCRAM_SRAM_EN,
			1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);

	WREG32(mmSIF_RTR_CTRL_0_SCRAM_SRAM_EN,
			1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_1_SCRAM_SRAM_EN,
			1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_2_SCRAM_SRAM_EN,
			1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_3_SCRAM_SRAM_EN,
			1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_4_SCRAM_SRAM_EN,
			1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_5_SCRAM_SRAM_EN,
			1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_6_SCRAM_SRAM_EN,
			1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_7_SCRAM_SRAM_EN,
			1 << IF_RTR_CTRL_SCRAM_SRAM_EN_VAL_SHIFT);

	WREG32(mmDMA_IF_E_N_DOWN_CH0_SCRAM_SRAM_EN,
			1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_E_N_DOWN_CH1_SCRAM_SRAM_EN,
			1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_E_S_DOWN_CH0_SCRAM_SRAM_EN,
			1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_E_S_DOWN_CH1_SCRAM_SRAM_EN,
			1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_W_N_DOWN_CH0_SCRAM_SRAM_EN,
			1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_W_N_DOWN_CH1_SCRAM_SRAM_EN,
			1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_W_S_DOWN_CH0_SCRAM_SRAM_EN,
			1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_W_S_DOWN_CH1_SCRAM_SRAM_EN,
			1 << DMA_IF_DOWN_CHX_SCRAM_SRAM_EN_VAL_SHIFT);

	gaudi->hw_cap_initialized |= HW_CAP_SRAM_SCRAMBLER;
}

static void gaudi_init_scrambler_hbm(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

1987 1988 1989 1990 1991 1992 1993 1994
	if (!hdev->asic_prop.fw_security_disabled)
		return;

	if (hdev->asic_prop.fw_security_status_valid &&
			(hdev->asic_prop.fw_boot_cpu_security_map &
					CPU_BOOT_DEV_STS0_DRAM_SCR_EN))
		return;

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
	if (gaudi->hw_cap_initialized & HW_CAP_HBM_SCRAMBLER)
		return;

	if (!hdev->dram_scrambler_enable)
		return;

	WREG32(mmNIF_RTR_CTRL_0_SCRAM_HBM_EN,
			1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_1_SCRAM_HBM_EN,
			1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_2_SCRAM_HBM_EN,
			1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_3_SCRAM_HBM_EN,
			1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_4_SCRAM_HBM_EN,
			1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_5_SCRAM_HBM_EN,
			1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_6_SCRAM_HBM_EN,
			1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_7_SCRAM_HBM_EN,
			1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);

	WREG32(mmSIF_RTR_CTRL_0_SCRAM_HBM_EN,
			1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_1_SCRAM_HBM_EN,
			1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_2_SCRAM_HBM_EN,
			1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_3_SCRAM_HBM_EN,
			1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_4_SCRAM_HBM_EN,
			1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_5_SCRAM_HBM_EN,
			1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_6_SCRAM_HBM_EN,
			1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_7_SCRAM_HBM_EN,
			1 << IF_RTR_CTRL_SCRAM_HBM_EN_VAL_SHIFT);

	WREG32(mmDMA_IF_E_N_DOWN_CH0_SCRAM_HBM_EN,
			1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_E_N_DOWN_CH1_SCRAM_HBM_EN,
			1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_E_S_DOWN_CH0_SCRAM_HBM_EN,
			1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_E_S_DOWN_CH1_SCRAM_HBM_EN,
			1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_W_N_DOWN_CH0_SCRAM_HBM_EN,
			1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_W_N_DOWN_CH1_SCRAM_HBM_EN,
			1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_W_S_DOWN_CH0_SCRAM_HBM_EN,
			1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_W_S_DOWN_CH1_SCRAM_HBM_EN,
			1 << DMA_IF_DOWN_CHX_SCRAM_HBM_EN_VAL_SHIFT);

	gaudi->hw_cap_initialized |= HW_CAP_HBM_SCRAMBLER;
}

static void gaudi_init_e2e(struct hl_device *hdev)
{
2057 2058 2059 2060 2061 2062 2063 2064
	if (!hdev->asic_prop.fw_security_disabled)
		return;

	if (hdev->asic_prop.fw_security_status_valid &&
			(hdev->asic_prop.fw_boot_cpu_security_map &
					CPU_BOOT_DEV_STS0_E2E_CRED_EN))
		return;

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	WREG32(mmSIF_RTR_CTRL_0_E2E_HBM_WR_SIZE, 247 >> 3);
	WREG32(mmSIF_RTR_CTRL_0_E2E_HBM_RD_SIZE, 785 >> 3);
	WREG32(mmSIF_RTR_CTRL_0_E2E_PCI_WR_SIZE, 49);
	WREG32(mmSIF_RTR_CTRL_0_E2E_PCI_RD_SIZE, 101);

	WREG32(mmSIF_RTR_CTRL_1_E2E_HBM_WR_SIZE, 275 >> 3);
	WREG32(mmSIF_RTR_CTRL_1_E2E_HBM_RD_SIZE, 614 >> 3);
	WREG32(mmSIF_RTR_CTRL_1_E2E_PCI_WR_SIZE, 1);
	WREG32(mmSIF_RTR_CTRL_1_E2E_PCI_RD_SIZE, 39);

	WREG32(mmSIF_RTR_CTRL_2_E2E_HBM_WR_SIZE, 1);
	WREG32(mmSIF_RTR_CTRL_2_E2E_HBM_RD_SIZE, 1);
	WREG32(mmSIF_RTR_CTRL_2_E2E_PCI_WR_SIZE, 1);
	WREG32(mmSIF_RTR_CTRL_2_E2E_PCI_RD_SIZE, 32);

	WREG32(mmSIF_RTR_CTRL_3_E2E_HBM_WR_SIZE, 176 >> 3);
	WREG32(mmSIF_RTR_CTRL_3_E2E_HBM_RD_SIZE, 32 >> 3);
	WREG32(mmSIF_RTR_CTRL_3_E2E_PCI_WR_SIZE, 19);
	WREG32(mmSIF_RTR_CTRL_3_E2E_PCI_RD_SIZE, 32);

	WREG32(mmSIF_RTR_CTRL_4_E2E_HBM_WR_SIZE, 176 >> 3);
	WREG32(mmSIF_RTR_CTRL_4_E2E_HBM_RD_SIZE, 32 >> 3);
	WREG32(mmSIF_RTR_CTRL_4_E2E_PCI_WR_SIZE, 19);
	WREG32(mmSIF_RTR_CTRL_4_E2E_PCI_RD_SIZE, 32);

	WREG32(mmSIF_RTR_CTRL_5_E2E_HBM_WR_SIZE, 1);
	WREG32(mmSIF_RTR_CTRL_5_E2E_HBM_RD_SIZE, 1);
	WREG32(mmSIF_RTR_CTRL_5_E2E_PCI_WR_SIZE, 1);
	WREG32(mmSIF_RTR_CTRL_5_E2E_PCI_RD_SIZE, 32);

	WREG32(mmSIF_RTR_CTRL_6_E2E_HBM_WR_SIZE, 275 >> 3);
	WREG32(mmSIF_RTR_CTRL_6_E2E_HBM_RD_SIZE, 614 >> 3);
	WREG32(mmSIF_RTR_CTRL_6_E2E_PCI_WR_SIZE, 1);
	WREG32(mmSIF_RTR_CTRL_6_E2E_PCI_RD_SIZE, 39);

	WREG32(mmSIF_RTR_CTRL_7_E2E_HBM_WR_SIZE, 297 >> 3);
	WREG32(mmSIF_RTR_CTRL_7_E2E_HBM_RD_SIZE, 908 >> 3);
	WREG32(mmSIF_RTR_CTRL_7_E2E_PCI_WR_SIZE, 19);
	WREG32(mmSIF_RTR_CTRL_7_E2E_PCI_RD_SIZE, 19);

	WREG32(mmNIF_RTR_CTRL_0_E2E_HBM_WR_SIZE, 318 >> 3);
	WREG32(mmNIF_RTR_CTRL_0_E2E_HBM_RD_SIZE, 956 >> 3);
	WREG32(mmNIF_RTR_CTRL_0_E2E_PCI_WR_SIZE, 79);
	WREG32(mmNIF_RTR_CTRL_0_E2E_PCI_RD_SIZE, 163);

	WREG32(mmNIF_RTR_CTRL_1_E2E_HBM_WR_SIZE, 275 >> 3);
	WREG32(mmNIF_RTR_CTRL_1_E2E_HBM_RD_SIZE, 614 >> 3);
	WREG32(mmNIF_RTR_CTRL_1_E2E_PCI_WR_SIZE, 1);
	WREG32(mmNIF_RTR_CTRL_1_E2E_PCI_RD_SIZE, 39);

	WREG32(mmNIF_RTR_CTRL_2_E2E_HBM_WR_SIZE, 1);
	WREG32(mmNIF_RTR_CTRL_2_E2E_HBM_RD_SIZE, 1);
	WREG32(mmNIF_RTR_CTRL_2_E2E_PCI_WR_SIZE, 1);
	WREG32(mmNIF_RTR_CTRL_2_E2E_PCI_RD_SIZE, 32);

	WREG32(mmNIF_RTR_CTRL_3_E2E_HBM_WR_SIZE, 176 >> 3);
	WREG32(mmNIF_RTR_CTRL_3_E2E_HBM_RD_SIZE, 32 >> 3);
	WREG32(mmNIF_RTR_CTRL_3_E2E_PCI_WR_SIZE, 19);
	WREG32(mmNIF_RTR_CTRL_3_E2E_PCI_RD_SIZE, 32);

	WREG32(mmNIF_RTR_CTRL_4_E2E_HBM_WR_SIZE, 176 >> 3);
	WREG32(mmNIF_RTR_CTRL_4_E2E_HBM_RD_SIZE, 32 >> 3);
	WREG32(mmNIF_RTR_CTRL_4_E2E_PCI_WR_SIZE, 19);
	WREG32(mmNIF_RTR_CTRL_4_E2E_PCI_RD_SIZE, 32);

	WREG32(mmNIF_RTR_CTRL_5_E2E_HBM_WR_SIZE, 1);
	WREG32(mmNIF_RTR_CTRL_5_E2E_HBM_RD_SIZE, 1);
	WREG32(mmNIF_RTR_CTRL_5_E2E_PCI_WR_SIZE, 1);
	WREG32(mmNIF_RTR_CTRL_5_E2E_PCI_RD_SIZE, 32);

	WREG32(mmNIF_RTR_CTRL_6_E2E_HBM_WR_SIZE, 275 >> 3);
	WREG32(mmNIF_RTR_CTRL_6_E2E_HBM_RD_SIZE, 614 >> 3);
	WREG32(mmNIF_RTR_CTRL_6_E2E_PCI_WR_SIZE, 1);
	WREG32(mmNIF_RTR_CTRL_6_E2E_PCI_RD_SIZE, 39);

	WREG32(mmNIF_RTR_CTRL_7_E2E_HBM_WR_SIZE, 318 >> 3);
	WREG32(mmNIF_RTR_CTRL_7_E2E_HBM_RD_SIZE, 956 >> 3);
	WREG32(mmNIF_RTR_CTRL_7_E2E_PCI_WR_SIZE, 79);
	WREG32(mmNIF_RTR_CTRL_7_E2E_PCI_RD_SIZE, 79);

	WREG32(mmDMA_IF_E_N_DOWN_CH0_E2E_HBM_WR_SIZE, 344 >> 3);
	WREG32(mmDMA_IF_E_N_DOWN_CH0_E2E_HBM_RD_SIZE, 1000 >> 3);
	WREG32(mmDMA_IF_E_N_DOWN_CH0_E2E_PCI_WR_SIZE, 162);
	WREG32(mmDMA_IF_E_N_DOWN_CH0_E2E_PCI_RD_SIZE, 338);

	WREG32(mmDMA_IF_E_N_DOWN_CH1_E2E_HBM_WR_SIZE, 344 >> 3);
	WREG32(mmDMA_IF_E_N_DOWN_CH1_E2E_HBM_RD_SIZE, 1000 >> 3);
	WREG32(mmDMA_IF_E_N_DOWN_CH1_E2E_PCI_WR_SIZE, 162);
	WREG32(mmDMA_IF_E_N_DOWN_CH1_E2E_PCI_RD_SIZE, 338);

	WREG32(mmDMA_IF_E_S_DOWN_CH0_E2E_HBM_WR_SIZE, 344 >> 3);
	WREG32(mmDMA_IF_E_S_DOWN_CH0_E2E_HBM_RD_SIZE, 1000 >> 3);
	WREG32(mmDMA_IF_E_S_DOWN_CH0_E2E_PCI_WR_SIZE, 162);
	WREG32(mmDMA_IF_E_S_DOWN_CH0_E2E_PCI_RD_SIZE, 338);

	WREG32(mmDMA_IF_E_S_DOWN_CH1_E2E_HBM_WR_SIZE, 344 >> 3);
	WREG32(mmDMA_IF_E_S_DOWN_CH1_E2E_HBM_RD_SIZE, 1000 >> 3);
	WREG32(mmDMA_IF_E_S_DOWN_CH1_E2E_PCI_WR_SIZE, 162);
	WREG32(mmDMA_IF_E_S_DOWN_CH1_E2E_PCI_RD_SIZE, 338);

	WREG32(mmDMA_IF_W_N_DOWN_CH0_E2E_HBM_WR_SIZE, 344 >> 3);
	WREG32(mmDMA_IF_W_N_DOWN_CH0_E2E_HBM_RD_SIZE, 1000 >> 3);
	WREG32(mmDMA_IF_W_N_DOWN_CH0_E2E_PCI_WR_SIZE, 162);
	WREG32(mmDMA_IF_W_N_DOWN_CH0_E2E_PCI_RD_SIZE, 338);

	WREG32(mmDMA_IF_W_N_DOWN_CH1_E2E_HBM_WR_SIZE, 344 >> 3);
	WREG32(mmDMA_IF_W_N_DOWN_CH1_E2E_HBM_RD_SIZE, 1000 >> 3);
	WREG32(mmDMA_IF_W_N_DOWN_CH1_E2E_PCI_WR_SIZE, 162);
	WREG32(mmDMA_IF_W_N_DOWN_CH1_E2E_PCI_RD_SIZE, 338);

	WREG32(mmDMA_IF_W_S_DOWN_CH0_E2E_HBM_WR_SIZE, 344 >> 3);
	WREG32(mmDMA_IF_W_S_DOWN_CH0_E2E_HBM_RD_SIZE, 1000 >> 3);
	WREG32(mmDMA_IF_W_S_DOWN_CH0_E2E_PCI_WR_SIZE, 162);
	WREG32(mmDMA_IF_W_S_DOWN_CH0_E2E_PCI_RD_SIZE, 338);

	WREG32(mmDMA_IF_W_S_DOWN_CH1_E2E_HBM_WR_SIZE, 344 >> 3);
	WREG32(mmDMA_IF_W_S_DOWN_CH1_E2E_HBM_RD_SIZE, 1000 >> 3);
	WREG32(mmDMA_IF_W_S_DOWN_CH1_E2E_PCI_WR_SIZE, 162);
	WREG32(mmDMA_IF_W_S_DOWN_CH1_E2E_PCI_RD_SIZE, 338);

	if (!hdev->dram_scrambler_enable) {
		WREG32(mmSIF_RTR_CTRL_0_NL_HBM_SEL_0, 0x21);
		WREG32(mmSIF_RTR_CTRL_0_NL_HBM_SEL_1, 0x22);
		WREG32(mmSIF_RTR_CTRL_0_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmSIF_RTR_CTRL_0_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmSIF_RTR_CTRL_1_NL_HBM_SEL_0, 0x21);
		WREG32(mmSIF_RTR_CTRL_1_NL_HBM_SEL_1, 0x22);
		WREG32(mmSIF_RTR_CTRL_1_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmSIF_RTR_CTRL_1_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmSIF_RTR_CTRL_2_NL_HBM_SEL_0, 0x21);
		WREG32(mmSIF_RTR_CTRL_2_NL_HBM_SEL_1, 0x22);
		WREG32(mmSIF_RTR_CTRL_2_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmSIF_RTR_CTRL_2_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmSIF_RTR_CTRL_3_NL_HBM_SEL_0, 0x21);
		WREG32(mmSIF_RTR_CTRL_3_NL_HBM_SEL_1, 0x22);
		WREG32(mmSIF_RTR_CTRL_3_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmSIF_RTR_CTRL_3_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmSIF_RTR_CTRL_4_NL_HBM_SEL_0, 0x21);
		WREG32(mmSIF_RTR_CTRL_4_NL_HBM_SEL_1, 0x22);
		WREG32(mmSIF_RTR_CTRL_4_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmSIF_RTR_CTRL_4_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmSIF_RTR_CTRL_5_NL_HBM_SEL_0, 0x21);
		WREG32(mmSIF_RTR_CTRL_5_NL_HBM_SEL_1, 0x22);
		WREG32(mmSIF_RTR_CTRL_5_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmSIF_RTR_CTRL_5_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmSIF_RTR_CTRL_6_NL_HBM_SEL_0, 0x21);
		WREG32(mmSIF_RTR_CTRL_6_NL_HBM_SEL_1, 0x22);
		WREG32(mmSIF_RTR_CTRL_6_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmSIF_RTR_CTRL_6_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmSIF_RTR_CTRL_7_NL_HBM_SEL_0, 0x21);
		WREG32(mmSIF_RTR_CTRL_7_NL_HBM_SEL_1, 0x22);
		WREG32(mmSIF_RTR_CTRL_7_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmSIF_RTR_CTRL_7_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmNIF_RTR_CTRL_0_NL_HBM_SEL_0, 0x21);
		WREG32(mmNIF_RTR_CTRL_0_NL_HBM_SEL_1, 0x22);
		WREG32(mmNIF_RTR_CTRL_0_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmNIF_RTR_CTRL_0_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmNIF_RTR_CTRL_1_NL_HBM_SEL_0, 0x21);
		WREG32(mmNIF_RTR_CTRL_1_NL_HBM_SEL_1, 0x22);
		WREG32(mmNIF_RTR_CTRL_1_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmNIF_RTR_CTRL_1_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmNIF_RTR_CTRL_2_NL_HBM_SEL_0, 0x21);
		WREG32(mmNIF_RTR_CTRL_2_NL_HBM_SEL_1, 0x22);
		WREG32(mmNIF_RTR_CTRL_2_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmNIF_RTR_CTRL_2_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmNIF_RTR_CTRL_3_NL_HBM_SEL_0, 0x21);
		WREG32(mmNIF_RTR_CTRL_3_NL_HBM_SEL_1, 0x22);
		WREG32(mmNIF_RTR_CTRL_3_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmNIF_RTR_CTRL_3_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmNIF_RTR_CTRL_4_NL_HBM_SEL_0, 0x21);
		WREG32(mmNIF_RTR_CTRL_4_NL_HBM_SEL_1, 0x22);
		WREG32(mmNIF_RTR_CTRL_4_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmNIF_RTR_CTRL_4_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmNIF_RTR_CTRL_5_NL_HBM_SEL_0, 0x21);
		WREG32(mmNIF_RTR_CTRL_5_NL_HBM_SEL_1, 0x22);
		WREG32(mmNIF_RTR_CTRL_5_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmNIF_RTR_CTRL_5_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmNIF_RTR_CTRL_6_NL_HBM_SEL_0, 0x21);
		WREG32(mmNIF_RTR_CTRL_6_NL_HBM_SEL_1, 0x22);
		WREG32(mmNIF_RTR_CTRL_6_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmNIF_RTR_CTRL_6_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmNIF_RTR_CTRL_7_NL_HBM_SEL_0, 0x21);
		WREG32(mmNIF_RTR_CTRL_7_NL_HBM_SEL_1, 0x22);
		WREG32(mmNIF_RTR_CTRL_7_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmNIF_RTR_CTRL_7_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmDMA_IF_E_N_DOWN_CH0_NL_HBM_SEL_0, 0x21);
		WREG32(mmDMA_IF_E_N_DOWN_CH0_NL_HBM_SEL_1, 0x22);
		WREG32(mmDMA_IF_E_N_DOWN_CH0_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmDMA_IF_E_N_DOWN_CH0_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmDMA_IF_E_N_DOWN_CH1_NL_HBM_SEL_0, 0x21);
		WREG32(mmDMA_IF_E_N_DOWN_CH1_NL_HBM_SEL_1, 0x22);
		WREG32(mmDMA_IF_E_N_DOWN_CH1_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmDMA_IF_E_N_DOWN_CH1_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmDMA_IF_E_S_DOWN_CH0_NL_HBM_SEL_0, 0x21);
		WREG32(mmDMA_IF_E_S_DOWN_CH0_NL_HBM_SEL_1, 0x22);
		WREG32(mmDMA_IF_E_S_DOWN_CH0_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmDMA_IF_E_S_DOWN_CH0_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmDMA_IF_E_S_DOWN_CH1_NL_HBM_SEL_0, 0x21);
		WREG32(mmDMA_IF_E_S_DOWN_CH1_NL_HBM_SEL_1, 0x22);
		WREG32(mmDMA_IF_E_S_DOWN_CH1_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmDMA_IF_E_S_DOWN_CH1_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmDMA_IF_W_N_DOWN_CH0_NL_HBM_SEL_0, 0x21);
		WREG32(mmDMA_IF_W_N_DOWN_CH0_NL_HBM_SEL_1, 0x22);
		WREG32(mmDMA_IF_W_N_DOWN_CH0_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmDMA_IF_W_N_DOWN_CH0_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmDMA_IF_W_N_DOWN_CH1_NL_HBM_SEL_0, 0x21);
		WREG32(mmDMA_IF_W_N_DOWN_CH1_NL_HBM_SEL_1, 0x22);
		WREG32(mmDMA_IF_W_N_DOWN_CH1_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmDMA_IF_W_N_DOWN_CH1_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmDMA_IF_W_S_DOWN_CH0_NL_HBM_SEL_0, 0x21);
		WREG32(mmDMA_IF_W_S_DOWN_CH0_NL_HBM_SEL_1, 0x22);
		WREG32(mmDMA_IF_W_S_DOWN_CH0_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmDMA_IF_W_S_DOWN_CH0_NL_HBM_PC_SEL_3, 0x20);

		WREG32(mmDMA_IF_W_S_DOWN_CH1_NL_HBM_SEL_0, 0x21);
		WREG32(mmDMA_IF_W_S_DOWN_CH1_NL_HBM_SEL_1, 0x22);
		WREG32(mmDMA_IF_W_S_DOWN_CH1_NL_HBM_OFFSET_18, 0x1F);
		WREG32(mmDMA_IF_W_S_DOWN_CH1_NL_HBM_PC_SEL_3, 0x20);
	}

	WREG32(mmSIF_RTR_CTRL_0_E2E_HBM_EN,
			1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_0_E2E_PCI_EN,
			1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmSIF_RTR_CTRL_1_E2E_HBM_EN,
			1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_1_E2E_PCI_EN,
			1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmSIF_RTR_CTRL_2_E2E_HBM_EN,
			1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_2_E2E_PCI_EN,
			1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmSIF_RTR_CTRL_3_E2E_HBM_EN,
			1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_3_E2E_PCI_EN,
			1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmSIF_RTR_CTRL_4_E2E_HBM_EN,
			1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_4_E2E_PCI_EN,
			1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmSIF_RTR_CTRL_5_E2E_HBM_EN,
			1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_5_E2E_PCI_EN,
			1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmSIF_RTR_CTRL_6_E2E_HBM_EN,
			1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_6_E2E_PCI_EN,
			1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmSIF_RTR_CTRL_7_E2E_HBM_EN,
			1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmSIF_RTR_CTRL_7_E2E_PCI_EN,
			1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmNIF_RTR_CTRL_0_E2E_HBM_EN,
			1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_0_E2E_PCI_EN,
			1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmNIF_RTR_CTRL_1_E2E_HBM_EN,
			1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_1_E2E_PCI_EN,
			1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmNIF_RTR_CTRL_2_E2E_HBM_EN,
			1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_2_E2E_PCI_EN,
			1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmNIF_RTR_CTRL_3_E2E_HBM_EN,
			1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_3_E2E_PCI_EN,
			1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmNIF_RTR_CTRL_4_E2E_HBM_EN,
			1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_4_E2E_PCI_EN,
			1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmNIF_RTR_CTRL_5_E2E_HBM_EN,
			1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_5_E2E_PCI_EN,
			1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmNIF_RTR_CTRL_6_E2E_HBM_EN,
			1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_6_E2E_PCI_EN,
			1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmNIF_RTR_CTRL_7_E2E_HBM_EN,
			1 << IF_RTR_CTRL_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmNIF_RTR_CTRL_7_E2E_PCI_EN,
			1 << IF_RTR_CTRL_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmDMA_IF_E_N_DOWN_CH0_E2E_HBM_EN,
			1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_E_N_DOWN_CH0_E2E_PCI_EN,
			1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmDMA_IF_E_N_DOWN_CH1_E2E_HBM_EN,
			1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_E_N_DOWN_CH1_E2E_PCI_EN,
			1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmDMA_IF_E_S_DOWN_CH0_E2E_HBM_EN,
			1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_E_S_DOWN_CH0_E2E_PCI_EN,
			1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmDMA_IF_E_S_DOWN_CH1_E2E_HBM_EN,
			1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_E_S_DOWN_CH1_E2E_PCI_EN,
			1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmDMA_IF_W_N_DOWN_CH0_E2E_HBM_EN,
			1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_W_N_DOWN_CH0_E2E_PCI_EN,
			1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmDMA_IF_W_N_DOWN_CH1_E2E_HBM_EN,
			1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_W_N_DOWN_CH1_E2E_PCI_EN,
			1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmDMA_IF_W_S_DOWN_CH0_E2E_HBM_EN,
			1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_W_S_DOWN_CH0_E2E_PCI_EN,
			1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT);

	WREG32(mmDMA_IF_W_S_DOWN_CH1_E2E_HBM_EN,
			1 << DMA_IF_DOWN_CHX_E2E_HBM_EN_VAL_SHIFT);
	WREG32(mmDMA_IF_W_S_DOWN_CH1_E2E_PCI_EN,
			1 << DMA_IF_DOWN_CHX_E2E_PCI_EN_VAL_SHIFT);
}

static void gaudi_init_hbm_cred(struct hl_device *hdev)
{
	uint32_t hbm0_wr, hbm1_wr, hbm0_rd, hbm1_rd;

2432 2433 2434 2435 2436 2437 2438 2439
	if (!hdev->asic_prop.fw_security_disabled)
		return;

	if (hdev->asic_prop.fw_security_status_valid &&
			(hdev->asic_prop.fw_boot_cpu_security_map &
					CPU_BOOT_DEV_STS0_HBM_CRED_EN))
		return;

2440 2441
	hbm0_wr = 0x33333333;
	hbm0_rd = 0x77777777;
2442
	hbm1_wr = 0x55555555;
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
	hbm1_rd = 0xDDDDDDDD;

	WREG32(mmDMA_IF_E_N_HBM0_WR_CRED_CNT, hbm0_wr);
	WREG32(mmDMA_IF_E_N_HBM1_WR_CRED_CNT, hbm1_wr);
	WREG32(mmDMA_IF_E_N_HBM0_RD_CRED_CNT, hbm0_rd);
	WREG32(mmDMA_IF_E_N_HBM1_RD_CRED_CNT, hbm1_rd);

	WREG32(mmDMA_IF_E_S_HBM0_WR_CRED_CNT, hbm0_wr);
	WREG32(mmDMA_IF_E_S_HBM1_WR_CRED_CNT, hbm1_wr);
	WREG32(mmDMA_IF_E_S_HBM0_RD_CRED_CNT, hbm0_rd);
	WREG32(mmDMA_IF_E_S_HBM1_RD_CRED_CNT, hbm1_rd);

	WREG32(mmDMA_IF_W_N_HBM0_WR_CRED_CNT, hbm0_wr);
	WREG32(mmDMA_IF_W_N_HBM1_WR_CRED_CNT, hbm1_wr);
	WREG32(mmDMA_IF_W_N_HBM0_RD_CRED_CNT, hbm0_rd);
	WREG32(mmDMA_IF_W_N_HBM1_RD_CRED_CNT, hbm1_rd);

	WREG32(mmDMA_IF_W_S_HBM0_WR_CRED_CNT, hbm0_wr);
	WREG32(mmDMA_IF_W_S_HBM1_WR_CRED_CNT, hbm1_wr);
	WREG32(mmDMA_IF_W_S_HBM0_RD_CRED_CNT, hbm0_rd);
	WREG32(mmDMA_IF_W_S_HBM1_RD_CRED_CNT, hbm1_rd);

	WREG32(mmDMA_IF_E_N_HBM_CRED_EN_0,
			(1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) |
			(1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT));
	WREG32(mmDMA_IF_E_S_HBM_CRED_EN_0,
			(1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) |
			(1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT));
	WREG32(mmDMA_IF_W_N_HBM_CRED_EN_0,
			(1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) |
			(1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT));
	WREG32(mmDMA_IF_W_S_HBM_CRED_EN_0,
			(1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) |
			(1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT));

	WREG32(mmDMA_IF_E_N_HBM_CRED_EN_1,
			(1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) |
			(1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT));
	WREG32(mmDMA_IF_E_S_HBM_CRED_EN_1,
			(1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) |
			(1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT));
	WREG32(mmDMA_IF_W_N_HBM_CRED_EN_1,
			(1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) |
			(1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT));
	WREG32(mmDMA_IF_W_S_HBM_CRED_EN_1,
			(1 << DMA_IF_HBM_CRED_EN_READ_CREDIT_EN_SHIFT) |
			(1 << DMA_IF_HBM_CRED_EN_WRITE_CREDIT_EN_SHIFT));
}

static void gaudi_init_golden_registers(struct hl_device *hdev)
{
	u32 tpc_offset;
	int tpc_id, i;

	gaudi_init_e2e(hdev);
	gaudi_init_hbm_cred(hdev);

	for (tpc_id = 0, tpc_offset = 0;
				tpc_id < TPC_NUMBER_OF_ENGINES;
				tpc_id++, tpc_offset += TPC_CFG_OFFSET) {
		/* Mask all arithmetic interrupts from TPC */
		WREG32(mmTPC0_CFG_TPC_INTR_MASK + tpc_offset, 0x8FFF);
		/* Set 16 cache lines */
		WREG32_FIELD(TPC0_CFG_MSS_CONFIG, tpc_offset,
				ICACHE_FETCH_LINE_NUM, 2);
	}

	/* Make sure 1st 128 bytes in SRAM are 0 for Tensor DMA */
	for (i = 0 ; i < 128 ; i += 8)
		writeq(0, hdev->pcie_bar[SRAM_BAR_ID] + i);

	WREG32(mmMME0_CTRL_EUS_ROLLUP_CNT_ADD, 3);
	WREG32(mmMME1_CTRL_EUS_ROLLUP_CNT_ADD, 3);
	WREG32(mmMME2_CTRL_EUS_ROLLUP_CNT_ADD, 3);
	WREG32(mmMME3_CTRL_EUS_ROLLUP_CNT_ADD, 3);
}

static void gaudi_init_pci_dma_qman(struct hl_device *hdev, int dma_id,
					int qman_id, dma_addr_t qman_pq_addr)
{
	u32 mtr_base_en_lo, mtr_base_en_hi, mtr_base_ws_lo, mtr_base_ws_hi;
	u32 so_base_en_lo, so_base_en_hi, so_base_ws_lo, so_base_ws_hi;
	u32 q_off, dma_qm_offset;
	u32 dma_qm_err_cfg;

	dma_qm_offset = dma_id * DMA_QMAN_OFFSET;

	mtr_base_en_lo = lower_32_bits(CFG_BASE +
				mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
	mtr_base_en_hi = upper_32_bits(CFG_BASE +
				mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
	so_base_en_lo = lower_32_bits(CFG_BASE +
				mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
	so_base_en_hi = upper_32_bits(CFG_BASE +
				mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
	mtr_base_ws_lo = lower_32_bits(CFG_BASE +
				mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
	mtr_base_ws_hi = upper_32_bits(CFG_BASE +
				mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
	so_base_ws_lo = lower_32_bits(CFG_BASE +
				mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
	so_base_ws_hi = upper_32_bits(CFG_BASE +
				mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);

	q_off = dma_qm_offset + qman_id * 4;

	WREG32(mmDMA0_QM_PQ_BASE_LO_0 + q_off, lower_32_bits(qman_pq_addr));
	WREG32(mmDMA0_QM_PQ_BASE_HI_0 + q_off, upper_32_bits(qman_pq_addr));

	WREG32(mmDMA0_QM_PQ_SIZE_0 + q_off, ilog2(HL_QUEUE_LENGTH));
	WREG32(mmDMA0_QM_PQ_PI_0 + q_off, 0);
	WREG32(mmDMA0_QM_PQ_CI_0 + q_off, 0);

2556 2557 2558 2559 2560
	WREG32(mmDMA0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off, QMAN_LDMA_SIZE_OFFSET);
	WREG32(mmDMA0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off,
							QMAN_LDMA_SRC_OFFSET);
	WREG32(mmDMA0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off,
							QMAN_LDMA_DST_OFFSET);
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570

	WREG32(mmDMA0_QM_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_en_lo);
	WREG32(mmDMA0_QM_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_en_hi);
	WREG32(mmDMA0_QM_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_en_lo);
	WREG32(mmDMA0_QM_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_en_hi);
	WREG32(mmDMA0_QM_CP_MSG_BASE2_ADDR_LO_0 + q_off, mtr_base_ws_lo);
	WREG32(mmDMA0_QM_CP_MSG_BASE2_ADDR_HI_0 + q_off, mtr_base_ws_hi);
	WREG32(mmDMA0_QM_CP_MSG_BASE3_ADDR_LO_0 + q_off, so_base_ws_lo);
	WREG32(mmDMA0_QM_CP_MSG_BASE3_ADDR_HI_0 + q_off, so_base_ws_hi);

2571 2572
	WREG32(mmDMA0_QM_CP_BARRIER_CFG_0 + q_off, 0x100);

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
	/* The following configuration is needed only once per QMAN */
	if (qman_id == 0) {
		/* Configure RAZWI IRQ */
		dma_qm_err_cfg = PCI_DMA_QMAN_GLBL_ERR_CFG_MSG_EN_MASK;
		if (hdev->stop_on_err) {
			dma_qm_err_cfg |=
				PCI_DMA_QMAN_GLBL_ERR_CFG_STOP_ON_ERR_EN_MASK;
		}

		WREG32(mmDMA0_QM_GLBL_ERR_CFG + dma_qm_offset, dma_qm_err_cfg);
		WREG32(mmDMA0_QM_GLBL_ERR_ADDR_LO + dma_qm_offset,
			lower_32_bits(CFG_BASE +
					mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR));
		WREG32(mmDMA0_QM_GLBL_ERR_ADDR_HI + dma_qm_offset,
			upper_32_bits(CFG_BASE +
					mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR));
		WREG32(mmDMA0_QM_GLBL_ERR_WDATA + dma_qm_offset,
			gaudi_irq_map_table[GAUDI_EVENT_DMA0_QM].cpu_id +
									dma_id);

		WREG32(mmDMA0_QM_ARB_ERR_MSG_EN + dma_qm_offset,
				QM_ARB_ERR_MSG_EN_MASK);

		/* Increase ARB WDT to support streams architecture */
		WREG32(mmDMA0_QM_ARB_SLV_CHOISE_WDT + dma_qm_offset,
				GAUDI_ARB_WDT_TIMEOUT);

		WREG32(mmDMA0_QM_GLBL_PROT + dma_qm_offset,
				QMAN_EXTERNAL_MAKE_TRUSTED);

		WREG32(mmDMA0_QM_GLBL_CFG1 + dma_qm_offset, 0);
	}
}

static void gaudi_init_dma_core(struct hl_device *hdev, int dma_id)
{
	u32 dma_offset = dma_id * DMA_CORE_OFFSET;
	u32 dma_err_cfg = 1 << DMA0_CORE_ERR_CFG_ERR_MSG_EN_SHIFT;

	/* Set to maximum possible according to physical size */
	WREG32(mmDMA0_CORE_RD_MAX_OUTSTAND + dma_offset, 0);
	WREG32(mmDMA0_CORE_RD_MAX_SIZE + dma_offset, 0);

2616 2617 2618
	/* WA for H/W bug H3-2116 */
	WREG32(mmDMA0_CORE_LBW_MAX_OUTSTAND + dma_offset, 15);

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
	/* STOP_ON bit implies no completion to operation in case of RAZWI */
	if (hdev->stop_on_err)
		dma_err_cfg |= 1 << DMA0_CORE_ERR_CFG_STOP_ON_ERR_SHIFT;

	WREG32(mmDMA0_CORE_ERR_CFG + dma_offset, dma_err_cfg);
	WREG32(mmDMA0_CORE_ERRMSG_ADDR_LO + dma_offset,
		lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR));
	WREG32(mmDMA0_CORE_ERRMSG_ADDR_HI + dma_offset,
		upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR));
	WREG32(mmDMA0_CORE_ERRMSG_WDATA + dma_offset,
		gaudi_irq_map_table[GAUDI_EVENT_DMA0_CORE].cpu_id + dma_id);
	WREG32(mmDMA0_CORE_PROT + dma_offset,
			1 << DMA0_CORE_PROT_ERR_VAL_SHIFT);
	/* If the channel is secured, it should be in MMU bypass mode */
	WREG32(mmDMA0_CORE_SECURE_PROPS + dma_offset,
			1 << DMA0_CORE_SECURE_PROPS_MMBP_SHIFT);
	WREG32(mmDMA0_CORE_CFG_0 + dma_offset, 1 << DMA0_CORE_CFG_0_EN_SHIFT);
}

static void gaudi_enable_qman(struct hl_device *hdev, int dma_id,
				u32 enable_mask)
{
	u32 dma_qm_offset = dma_id * DMA_QMAN_OFFSET;

	WREG32(mmDMA0_QM_GLBL_CFG0 + dma_qm_offset, enable_mask);
}

static void gaudi_init_pci_dma_qmans(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	struct hl_hw_queue *q;
	int i, j, dma_id, cpu_skip, nic_skip, cq_id = 0, q_idx, msi_vec = 0;

	if (gaudi->hw_cap_initialized & HW_CAP_PCI_DMA)
		return;

	for (i = 0 ; i < PCI_DMA_NUMBER_OF_CHNLS ; i++) {
		dma_id = gaudi_dma_assignment[i];
		/*
		 * For queues after the CPU Q need to add 1 to get the correct
		 * queue. In addition, need to add the CPU EQ and NIC IRQs in
		 * order to get the correct MSI register.
		 */
		if (dma_id > 1) {
			cpu_skip = 1;
			nic_skip = NIC_NUMBER_OF_ENGINES;
		} else {
			cpu_skip = 0;
			nic_skip = 0;
		}

		for (j = 0 ; j < QMAN_STREAMS ; j++) {
			q_idx = 4 * dma_id + j + cpu_skip;
			q = &hdev->kernel_queues[q_idx];
			q->cq_id = cq_id++;
			q->msi_vec = nic_skip + cpu_skip + msi_vec++;
			gaudi_init_pci_dma_qman(hdev, dma_id, j,
						q->bus_address);
		}

		gaudi_init_dma_core(hdev, dma_id);

		gaudi_enable_qman(hdev, dma_id, PCI_DMA_QMAN_ENABLE);
	}

	gaudi->hw_cap_initialized |= HW_CAP_PCI_DMA;
}

static void gaudi_init_hbm_dma_qman(struct hl_device *hdev, int dma_id,
					int qman_id, u64 qman_base_addr)
{
2690 2691
	u32 mtr_base_en_lo, mtr_base_en_hi, mtr_base_ws_lo, mtr_base_ws_hi;
	u32 so_base_en_lo, so_base_en_hi, so_base_ws_lo, so_base_ws_hi;
2692 2693 2694 2695 2696
	u32 q_off, dma_qm_offset;
	u32 dma_qm_err_cfg;

	dma_qm_offset = dma_id * DMA_QMAN_OFFSET;

2697 2698 2699
	mtr_base_en_lo = lower_32_bits(CFG_BASE +
			mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
	mtr_base_en_hi = upper_32_bits(CFG_BASE +
2700
				mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
2701
	so_base_en_lo = lower_32_bits(CFG_BASE +
2702
				mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
2703
	so_base_en_hi = upper_32_bits(CFG_BASE +
2704
				mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
2705 2706 2707 2708 2709 2710 2711 2712
	mtr_base_ws_lo = lower_32_bits(CFG_BASE +
				mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
	mtr_base_ws_hi = upper_32_bits(CFG_BASE +
				mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
	so_base_ws_lo = lower_32_bits(CFG_BASE +
				mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
	so_base_ws_hi = upper_32_bits(CFG_BASE +
				mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725

	q_off = dma_qm_offset + qman_id * 4;

	if (qman_id < 4) {
		WREG32(mmDMA0_QM_PQ_BASE_LO_0 + q_off,
					lower_32_bits(qman_base_addr));
		WREG32(mmDMA0_QM_PQ_BASE_HI_0 + q_off,
					upper_32_bits(qman_base_addr));

		WREG32(mmDMA0_QM_PQ_SIZE_0 + q_off, ilog2(HBM_DMA_QMAN_LENGTH));
		WREG32(mmDMA0_QM_PQ_PI_0 + q_off, 0);
		WREG32(mmDMA0_QM_PQ_CI_0 + q_off, 0);

2726 2727 2728 2729 2730 2731
		WREG32(mmDMA0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off,
							QMAN_CPDMA_SIZE_OFFSET);
		WREG32(mmDMA0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off,
							QMAN_CPDMA_SRC_OFFSET);
		WREG32(mmDMA0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off,
							QMAN_CPDMA_DST_OFFSET);
2732
	} else {
2733 2734 2735 2736 2737
		WREG32(mmDMA0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off,
							QMAN_LDMA_SIZE_OFFSET);
		WREG32(mmDMA0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off,
							QMAN_LDMA_SRC_OFFSET);
		WREG32(mmDMA0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off,
2738
							QMAN_LDMA_DST_OFFSET);
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769

		/* Configure RAZWI IRQ */
		dma_qm_err_cfg = HBM_DMA_QMAN_GLBL_ERR_CFG_MSG_EN_MASK;
		if (hdev->stop_on_err) {
			dma_qm_err_cfg |=
				HBM_DMA_QMAN_GLBL_ERR_CFG_STOP_ON_ERR_EN_MASK;
		}
		WREG32(mmDMA0_QM_GLBL_ERR_CFG + dma_qm_offset, dma_qm_err_cfg);

		WREG32(mmDMA0_QM_GLBL_ERR_ADDR_LO + dma_qm_offset,
			lower_32_bits(CFG_BASE +
					mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR));
		WREG32(mmDMA0_QM_GLBL_ERR_ADDR_HI + dma_qm_offset,
			upper_32_bits(CFG_BASE +
					mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR));
		WREG32(mmDMA0_QM_GLBL_ERR_WDATA + dma_qm_offset,
			gaudi_irq_map_table[GAUDI_EVENT_DMA0_QM].cpu_id +
									dma_id);

		WREG32(mmDMA0_QM_ARB_ERR_MSG_EN + dma_qm_offset,
				QM_ARB_ERR_MSG_EN_MASK);

		/* Increase ARB WDT to support streams architecture */
		WREG32(mmDMA0_QM_ARB_SLV_CHOISE_WDT + dma_qm_offset,
				GAUDI_ARB_WDT_TIMEOUT);

		WREG32(mmDMA0_QM_GLBL_CFG1 + dma_qm_offset, 0);
		WREG32(mmDMA0_QM_GLBL_PROT + dma_qm_offset,
				QMAN_INTERNAL_MAKE_TRUSTED);
	}

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
	WREG32(mmDMA0_QM_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_en_lo);
	WREG32(mmDMA0_QM_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_en_hi);
	WREG32(mmDMA0_QM_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_en_lo);
	WREG32(mmDMA0_QM_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_en_hi);

	/* Configure DMA5 CP_MSG_BASE 2/3 for sync stream collective */
	if (gaudi_dma_assignment[dma_id] == GAUDI_ENGINE_ID_DMA_5) {
		WREG32(mmDMA0_QM_CP_MSG_BASE2_ADDR_LO_0 + q_off,
				mtr_base_ws_lo);
		WREG32(mmDMA0_QM_CP_MSG_BASE2_ADDR_HI_0 + q_off,
				mtr_base_ws_hi);
		WREG32(mmDMA0_QM_CP_MSG_BASE3_ADDR_LO_0 + q_off,
				so_base_ws_lo);
		WREG32(mmDMA0_QM_CP_MSG_BASE3_ADDR_HI_0 + q_off,
				so_base_ws_hi);
	}
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
}

static void gaudi_init_hbm_dma_qmans(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	struct gaudi_internal_qman_info *q;
	u64 qman_base_addr;
	int i, j, dma_id, internal_q_index;

	if (gaudi->hw_cap_initialized & HW_CAP_HBM_DMA)
		return;

	for (i = 0 ; i < HBM_DMA_NUMBER_OF_CHNLS ; i++) {
		dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_1 + i];

		for (j = 0 ; j < QMAN_STREAMS ; j++) {
			 /*
			  * Add the CPU queue in order to get the correct queue
			  * number as all internal queue are placed after it
			  */
			internal_q_index = dma_id * QMAN_STREAMS + j + 1;

			q = &gaudi->internal_qmans[internal_q_index];
			qman_base_addr = (u64) q->pq_dma_addr;
			gaudi_init_hbm_dma_qman(hdev, dma_id, j,
						qman_base_addr);
		}

		/* Initializing lower CP for HBM DMA QMAN */
		gaudi_init_hbm_dma_qman(hdev, dma_id, 4, 0);

		gaudi_init_dma_core(hdev, dma_id);

		gaudi_enable_qman(hdev, dma_id, HBM_DMA_QMAN_ENABLE);
	}

	gaudi->hw_cap_initialized |= HW_CAP_HBM_DMA;
}

static void gaudi_init_mme_qman(struct hl_device *hdev, u32 mme_offset,
					int qman_id, u64 qman_base_addr)
{
	u32 mtr_base_lo, mtr_base_hi;
	u32 so_base_lo, so_base_hi;
	u32 q_off, mme_id;
	u32 mme_qm_err_cfg;

	mtr_base_lo = lower_32_bits(CFG_BASE +
				mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
	mtr_base_hi = upper_32_bits(CFG_BASE +
				mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
	so_base_lo = lower_32_bits(CFG_BASE +
				mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
	so_base_hi = upper_32_bits(CFG_BASE +
				mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);

	q_off = mme_offset + qman_id * 4;

	if (qman_id < 4) {
		WREG32(mmMME0_QM_PQ_BASE_LO_0 + q_off,
					lower_32_bits(qman_base_addr));
		WREG32(mmMME0_QM_PQ_BASE_HI_0 + q_off,
					upper_32_bits(qman_base_addr));

		WREG32(mmMME0_QM_PQ_SIZE_0 + q_off, ilog2(MME_QMAN_LENGTH));
		WREG32(mmMME0_QM_PQ_PI_0 + q_off, 0);
		WREG32(mmMME0_QM_PQ_CI_0 + q_off, 0);

2854 2855 2856 2857 2858 2859
		WREG32(mmMME0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off,
							QMAN_CPDMA_SIZE_OFFSET);
		WREG32(mmMME0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off,
							QMAN_CPDMA_SRC_OFFSET);
		WREG32(mmMME0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off,
							QMAN_CPDMA_DST_OFFSET);
2860
	} else {
2861 2862 2863 2864 2865 2866
		WREG32(mmMME0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off,
							QMAN_LDMA_SIZE_OFFSET);
		WREG32(mmMME0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off,
							QMAN_LDMA_SRC_OFFSET);
		WREG32(mmMME0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off,
							QMAN_LDMA_DST_OFFSET);
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947

		/* Configure RAZWI IRQ */
		mme_id = mme_offset /
				(mmMME1_QM_GLBL_CFG0 - mmMME0_QM_GLBL_CFG0);

		mme_qm_err_cfg = MME_QMAN_GLBL_ERR_CFG_MSG_EN_MASK;
		if (hdev->stop_on_err) {
			mme_qm_err_cfg |=
				MME_QMAN_GLBL_ERR_CFG_STOP_ON_ERR_EN_MASK;
		}
		WREG32(mmMME0_QM_GLBL_ERR_CFG + mme_offset, mme_qm_err_cfg);
		WREG32(mmMME0_QM_GLBL_ERR_ADDR_LO + mme_offset,
			lower_32_bits(CFG_BASE +
					mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR));
		WREG32(mmMME0_QM_GLBL_ERR_ADDR_HI + mme_offset,
			upper_32_bits(CFG_BASE +
					mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR));
		WREG32(mmMME0_QM_GLBL_ERR_WDATA + mme_offset,
			gaudi_irq_map_table[GAUDI_EVENT_MME0_QM].cpu_id +
									mme_id);

		WREG32(mmMME0_QM_ARB_ERR_MSG_EN + mme_offset,
				QM_ARB_ERR_MSG_EN_MASK);

		/* Increase ARB WDT to support streams architecture */
		WREG32(mmMME0_QM_ARB_SLV_CHOISE_WDT + mme_offset,
				GAUDI_ARB_WDT_TIMEOUT);

		WREG32(mmMME0_QM_GLBL_CFG1 + mme_offset, 0);
		WREG32(mmMME0_QM_GLBL_PROT + mme_offset,
				QMAN_INTERNAL_MAKE_TRUSTED);
	}

	WREG32(mmMME0_QM_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_lo);
	WREG32(mmMME0_QM_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_hi);
	WREG32(mmMME0_QM_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_lo);
	WREG32(mmMME0_QM_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_hi);
}

static void gaudi_init_mme_qmans(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	struct gaudi_internal_qman_info *q;
	u64 qman_base_addr;
	u32 mme_offset;
	int i, internal_q_index;

	if (gaudi->hw_cap_initialized & HW_CAP_MME)
		return;

	/*
	 * map GAUDI_QUEUE_ID_MME_0_X to the N_W_MME (mmMME2_QM_BASE)
	 * and GAUDI_QUEUE_ID_MME_1_X to the S_W_MME (mmMME0_QM_BASE)
	 */

	mme_offset = mmMME2_QM_GLBL_CFG0 - mmMME0_QM_GLBL_CFG0;

	for (i = 0 ; i < MME_NUMBER_OF_QMANS ; i++) {
		internal_q_index = GAUDI_QUEUE_ID_MME_0_0 + i;
		q = &gaudi->internal_qmans[internal_q_index];
		qman_base_addr = (u64) q->pq_dma_addr;
		gaudi_init_mme_qman(hdev, mme_offset, (i & 0x3),
					qman_base_addr);
		if (i == 3)
			mme_offset = 0;
	}

	/* Initializing lower CP for MME QMANs */
	mme_offset = mmMME2_QM_GLBL_CFG0 - mmMME0_QM_GLBL_CFG0;
	gaudi_init_mme_qman(hdev, mme_offset, 4, 0);
	gaudi_init_mme_qman(hdev, 0, 4, 0);

	WREG32(mmMME2_QM_GLBL_CFG0, QMAN_MME_ENABLE);
	WREG32(mmMME0_QM_GLBL_CFG0, QMAN_MME_ENABLE);

	gaudi->hw_cap_initialized |= HW_CAP_MME;
}

static void gaudi_init_tpc_qman(struct hl_device *hdev, u32 tpc_offset,
				int qman_id, u64 qman_base_addr)
{
2948 2949
	u32 mtr_base_en_lo, mtr_base_en_hi, mtr_base_ws_lo, mtr_base_ws_hi;
	u32 so_base_en_lo, so_base_en_hi, so_base_ws_lo, so_base_ws_hi;
2950 2951 2952
	u32 q_off, tpc_id;
	u32 tpc_qm_err_cfg;

2953 2954 2955
	mtr_base_en_lo = lower_32_bits(CFG_BASE +
			mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
	mtr_base_en_hi = upper_32_bits(CFG_BASE +
2956
				mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
2957
	so_base_en_lo = lower_32_bits(CFG_BASE +
2958
				mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
2959
	so_base_en_hi = upper_32_bits(CFG_BASE +
2960
				mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
2961 2962 2963 2964 2965 2966 2967 2968
	mtr_base_ws_lo = lower_32_bits(CFG_BASE +
				mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
	mtr_base_ws_hi = upper_32_bits(CFG_BASE +
				mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
	so_base_ws_lo = lower_32_bits(CFG_BASE +
				mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
	so_base_ws_hi = upper_32_bits(CFG_BASE +
				mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
2969 2970 2971

	q_off = tpc_offset + qman_id * 4;

2972 2973 2974
	tpc_id = tpc_offset /
			(mmTPC1_QM_GLBL_CFG0 - mmTPC0_QM_GLBL_CFG0);

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
	if (qman_id < 4) {
		WREG32(mmTPC0_QM_PQ_BASE_LO_0 + q_off,
					lower_32_bits(qman_base_addr));
		WREG32(mmTPC0_QM_PQ_BASE_HI_0 + q_off,
					upper_32_bits(qman_base_addr));

		WREG32(mmTPC0_QM_PQ_SIZE_0 + q_off, ilog2(TPC_QMAN_LENGTH));
		WREG32(mmTPC0_QM_PQ_PI_0 + q_off, 0);
		WREG32(mmTPC0_QM_PQ_CI_0 + q_off, 0);

2985 2986 2987 2988 2989 2990
		WREG32(mmTPC0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off,
							QMAN_CPDMA_SIZE_OFFSET);
		WREG32(mmTPC0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off,
							QMAN_CPDMA_SRC_OFFSET);
		WREG32(mmTPC0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off,
							QMAN_CPDMA_DST_OFFSET);
2991
	} else {
2992 2993 2994 2995 2996 2997
		WREG32(mmTPC0_QM_CP_LDMA_TSIZE_OFFSET_0 + q_off,
							QMAN_LDMA_SIZE_OFFSET);
		WREG32(mmTPC0_QM_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off,
							QMAN_LDMA_SRC_OFFSET);
		WREG32(mmTPC0_QM_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off,
							QMAN_LDMA_DST_OFFSET);
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028

		/* Configure RAZWI IRQ */
		tpc_qm_err_cfg = TPC_QMAN_GLBL_ERR_CFG_MSG_EN_MASK;
		if (hdev->stop_on_err) {
			tpc_qm_err_cfg |=
				TPC_QMAN_GLBL_ERR_CFG_STOP_ON_ERR_EN_MASK;
		}

		WREG32(mmTPC0_QM_GLBL_ERR_CFG + tpc_offset, tpc_qm_err_cfg);
		WREG32(mmTPC0_QM_GLBL_ERR_ADDR_LO + tpc_offset,
			lower_32_bits(CFG_BASE +
				mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR));
		WREG32(mmTPC0_QM_GLBL_ERR_ADDR_HI + tpc_offset,
			upper_32_bits(CFG_BASE +
				mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR));
		WREG32(mmTPC0_QM_GLBL_ERR_WDATA + tpc_offset,
			gaudi_irq_map_table[GAUDI_EVENT_TPC0_QM].cpu_id +
									tpc_id);

		WREG32(mmTPC0_QM_ARB_ERR_MSG_EN + tpc_offset,
				QM_ARB_ERR_MSG_EN_MASK);

		/* Increase ARB WDT to support streams architecture */
		WREG32(mmTPC0_QM_ARB_SLV_CHOISE_WDT + tpc_offset,
				GAUDI_ARB_WDT_TIMEOUT);

		WREG32(mmTPC0_QM_GLBL_CFG1 + tpc_offset, 0);
		WREG32(mmTPC0_QM_GLBL_PROT + tpc_offset,
				QMAN_INTERNAL_MAKE_TRUSTED);
	}

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
	WREG32(mmTPC0_QM_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_en_lo);
	WREG32(mmTPC0_QM_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_en_hi);
	WREG32(mmTPC0_QM_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_en_lo);
	WREG32(mmTPC0_QM_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_en_hi);

	/* Configure TPC7 CP_MSG_BASE 2/3 for sync stream collective */
	if (tpc_id == 6) {
		WREG32(mmTPC0_QM_CP_MSG_BASE2_ADDR_LO_0 + q_off,
				mtr_base_ws_lo);
		WREG32(mmTPC0_QM_CP_MSG_BASE2_ADDR_HI_0 + q_off,
				mtr_base_ws_hi);
		WREG32(mmTPC0_QM_CP_MSG_BASE3_ADDR_LO_0 + q_off,
				so_base_ws_lo);
		WREG32(mmTPC0_QM_CP_MSG_BASE3_ADDR_HI_0 + q_off,
				so_base_ws_hi);
	}
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
}

static void gaudi_init_tpc_qmans(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	struct gaudi_internal_qman_info *q;
	u64 qman_base_addr;
	u32 so_base_hi, tpc_offset = 0;
	u32 tpc_delta = mmTPC1_CFG_SM_BASE_ADDRESS_HIGH -
			mmTPC0_CFG_SM_BASE_ADDRESS_HIGH;
	int i, tpc_id, internal_q_index;

	if (gaudi->hw_cap_initialized & HW_CAP_TPC_MASK)
		return;

	so_base_hi = upper_32_bits(CFG_BASE +
				mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);

	for (tpc_id = 0 ; tpc_id < TPC_NUMBER_OF_ENGINES ; tpc_id++) {
		for (i = 0 ; i < QMAN_STREAMS ; i++) {
			internal_q_index = GAUDI_QUEUE_ID_TPC_0_0 +
						tpc_id * QMAN_STREAMS + i;
			q = &gaudi->internal_qmans[internal_q_index];
			qman_base_addr = (u64) q->pq_dma_addr;
			gaudi_init_tpc_qman(hdev, tpc_offset, i,
						qman_base_addr);

			if (i == 3) {
				/* Initializing lower CP for TPC QMAN */
				gaudi_init_tpc_qman(hdev, tpc_offset, 4, 0);

				/* Enable the QMAN and TPC channel */
				WREG32(mmTPC0_QM_GLBL_CFG0 + tpc_offset,
						QMAN_TPC_ENABLE);
			}
		}

		WREG32(mmTPC0_CFG_SM_BASE_ADDRESS_HIGH + tpc_id * tpc_delta,
				so_base_hi);

		tpc_offset += mmTPC1_QM_GLBL_CFG0 - mmTPC0_QM_GLBL_CFG0;

3087 3088
		gaudi->hw_cap_initialized |=
				FIELD_PREP(HW_CAP_TPC_MASK, 1 << tpc_id);
3089 3090 3091
	}
}

3092 3093 3094
static void gaudi_init_nic_qman(struct hl_device *hdev, u32 nic_offset,
				int qman_id, u64 qman_base_addr, int nic_id)
{
3095 3096
	u32 mtr_base_en_lo, mtr_base_en_hi, mtr_base_ws_lo, mtr_base_ws_hi;
	u32 so_base_en_lo, so_base_en_hi, so_base_ws_lo, so_base_ws_hi;
3097 3098 3099
	u32 q_off;
	u32 nic_qm_err_cfg;

3100 3101 3102
	mtr_base_en_lo = lower_32_bits(CFG_BASE +
			mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
	mtr_base_en_hi = upper_32_bits(CFG_BASE +
3103
				mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
3104
	so_base_en_lo = lower_32_bits(CFG_BASE +
3105
				mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
3106
	so_base_en_hi = upper_32_bits(CFG_BASE +
3107
				mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
3108 3109 3110 3111 3112 3113 3114 3115
	mtr_base_ws_lo = lower_32_bits(CFG_BASE +
				mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
	mtr_base_ws_hi = upper_32_bits(CFG_BASE +
				mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
	so_base_ws_lo = lower_32_bits(CFG_BASE +
				mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
	so_base_ws_hi = upper_32_bits(CFG_BASE +
				mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125

	q_off = nic_offset + qman_id * 4;

	WREG32(mmNIC0_QM0_PQ_BASE_LO_0 + q_off, lower_32_bits(qman_base_addr));
	WREG32(mmNIC0_QM0_PQ_BASE_HI_0 + q_off, upper_32_bits(qman_base_addr));

	WREG32(mmNIC0_QM0_PQ_SIZE_0 + q_off, ilog2(NIC_QMAN_LENGTH));
	WREG32(mmNIC0_QM0_PQ_PI_0 + q_off, 0);
	WREG32(mmNIC0_QM0_PQ_CI_0 + q_off, 0);

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
	WREG32(mmNIC0_QM0_CP_LDMA_TSIZE_OFFSET_0 + q_off,
							QMAN_LDMA_SIZE_OFFSET);
	WREG32(mmNIC0_QM0_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off,
							QMAN_LDMA_SRC_OFFSET);
	WREG32(mmNIC0_QM0_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off,
							QMAN_LDMA_DST_OFFSET);

	WREG32(mmNIC0_QM0_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_en_lo);
	WREG32(mmNIC0_QM0_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_en_hi);
	WREG32(mmNIC0_QM0_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_en_lo);
	WREG32(mmNIC0_QM0_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_en_hi);
3137

3138 3139 3140 3141 3142
	/* Configure NIC CP_MSG_BASE 2/3 for sync stream collective */
	WREG32(mmNIC0_QM0_CP_MSG_BASE2_ADDR_LO_0 + q_off, mtr_base_ws_lo);
	WREG32(mmNIC0_QM0_CP_MSG_BASE2_ADDR_HI_0 + q_off, mtr_base_ws_hi);
	WREG32(mmNIC0_QM0_CP_MSG_BASE3_ADDR_LO_0 + q_off, so_base_ws_lo);
	WREG32(mmNIC0_QM0_CP_MSG_BASE3_ADDR_HI_0 + q_off, so_base_ws_hi);
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227

	if (qman_id == 0) {
		/* Configure RAZWI IRQ */
		nic_qm_err_cfg = NIC_QMAN_GLBL_ERR_CFG_MSG_EN_MASK;
		if (hdev->stop_on_err) {
			nic_qm_err_cfg |=
				NIC_QMAN_GLBL_ERR_CFG_STOP_ON_ERR_EN_MASK;
		}

		WREG32(mmNIC0_QM0_GLBL_ERR_CFG + nic_offset, nic_qm_err_cfg);
		WREG32(mmNIC0_QM0_GLBL_ERR_ADDR_LO + nic_offset,
			lower_32_bits(CFG_BASE +
				mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR));
		WREG32(mmNIC0_QM0_GLBL_ERR_ADDR_HI + nic_offset,
			upper_32_bits(CFG_BASE +
				mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR));
		WREG32(mmNIC0_QM0_GLBL_ERR_WDATA + nic_offset,
			gaudi_irq_map_table[GAUDI_EVENT_NIC0_QM0].cpu_id +
									nic_id);

		WREG32(mmNIC0_QM0_ARB_ERR_MSG_EN + nic_offset,
				QM_ARB_ERR_MSG_EN_MASK);

		/* Increase ARB WDT to support streams architecture */
		WREG32(mmNIC0_QM0_ARB_SLV_CHOISE_WDT + nic_offset,
				GAUDI_ARB_WDT_TIMEOUT);

		WREG32(mmNIC0_QM0_GLBL_CFG1 + nic_offset, 0);
		WREG32(mmNIC0_QM0_GLBL_PROT + nic_offset,
				QMAN_INTERNAL_MAKE_TRUSTED);
	}
}

static void gaudi_init_nic_qmans(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	struct gaudi_internal_qman_info *q;
	u64 qman_base_addr;
	u32 nic_offset = 0;
	u32 nic_delta_between_qmans =
			mmNIC0_QM1_GLBL_CFG0 - mmNIC0_QM0_GLBL_CFG0;
	u32 nic_delta_between_nics =
			mmNIC1_QM0_GLBL_CFG0 - mmNIC0_QM0_GLBL_CFG0;
	int i, nic_id, internal_q_index;

	if (!hdev->nic_ports_mask)
		return;

	if (gaudi->hw_cap_initialized & HW_CAP_NIC_MASK)
		return;

	dev_dbg(hdev->dev, "Initializing NIC QMANs\n");

	for (nic_id = 0 ; nic_id < NIC_NUMBER_OF_ENGINES ; nic_id++) {
		if (!(hdev->nic_ports_mask & (1 << nic_id))) {
			nic_offset += nic_delta_between_qmans;
			if (nic_id & 1) {
				nic_offset -= (nic_delta_between_qmans * 2);
				nic_offset += nic_delta_between_nics;
			}
			continue;
		}

		for (i = 0 ; i < QMAN_STREAMS ; i++) {
			internal_q_index = GAUDI_QUEUE_ID_NIC_0_0 +
						nic_id * QMAN_STREAMS + i;
			q = &gaudi->internal_qmans[internal_q_index];
			qman_base_addr = (u64) q->pq_dma_addr;
			gaudi_init_nic_qman(hdev, nic_offset, (i & 0x3),
						qman_base_addr, nic_id);
		}

		/* Enable the QMAN */
		WREG32(mmNIC0_QM0_GLBL_CFG0 + nic_offset, NIC_QMAN_ENABLE);

		nic_offset += nic_delta_between_qmans;
		if (nic_id & 1) {
			nic_offset -= (nic_delta_between_qmans * 2);
			nic_offset += nic_delta_between_nics;
		}

		gaudi->hw_cap_initialized |= 1 << (HW_CAP_NIC_SHIFT + nic_id);
	}
}

3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
static void gaudi_disable_pci_dma_qmans(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	if (!(gaudi->hw_cap_initialized & HW_CAP_PCI_DMA))
		return;

	WREG32(mmDMA0_QM_GLBL_CFG0, 0);
	WREG32(mmDMA1_QM_GLBL_CFG0, 0);
	WREG32(mmDMA5_QM_GLBL_CFG0, 0);
}

static void gaudi_disable_hbm_dma_qmans(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	if (!(gaudi->hw_cap_initialized & HW_CAP_HBM_DMA))
		return;

	WREG32(mmDMA2_QM_GLBL_CFG0, 0);
	WREG32(mmDMA3_QM_GLBL_CFG0, 0);
	WREG32(mmDMA4_QM_GLBL_CFG0, 0);
	WREG32(mmDMA6_QM_GLBL_CFG0, 0);
	WREG32(mmDMA7_QM_GLBL_CFG0, 0);
}

static void gaudi_disable_mme_qmans(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	if (!(gaudi->hw_cap_initialized & HW_CAP_MME))
		return;

	WREG32(mmMME2_QM_GLBL_CFG0, 0);
	WREG32(mmMME0_QM_GLBL_CFG0, 0);
}

static void gaudi_disable_tpc_qmans(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	u32 tpc_offset = 0;
	int tpc_id;

	if (!(gaudi->hw_cap_initialized & HW_CAP_TPC_MASK))
		return;

	for (tpc_id = 0 ; tpc_id < TPC_NUMBER_OF_ENGINES ; tpc_id++) {
		WREG32(mmTPC0_QM_GLBL_CFG0 + tpc_offset, 0);
		tpc_offset += mmTPC1_QM_GLBL_CFG0 - mmTPC0_QM_GLBL_CFG0;
	}
}

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
static void gaudi_disable_nic_qmans(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	u32 nic_mask, nic_offset = 0;
	u32 nic_delta_between_qmans =
			mmNIC0_QM1_GLBL_CFG0 - mmNIC0_QM0_GLBL_CFG0;
	u32 nic_delta_between_nics =
			mmNIC1_QM0_GLBL_CFG0 - mmNIC0_QM0_GLBL_CFG0;
	int nic_id;

	for (nic_id = 0 ; nic_id < NIC_NUMBER_OF_ENGINES ; nic_id++) {
		nic_mask = 1 << (HW_CAP_NIC_SHIFT + nic_id);

		if (gaudi->hw_cap_initialized & nic_mask)
			WREG32(mmNIC0_QM0_GLBL_CFG0 + nic_offset, 0);

		nic_offset += nic_delta_between_qmans;
		if (nic_id & 1) {
			nic_offset -= (nic_delta_between_qmans * 2);
			nic_offset += nic_delta_between_nics;
		}
	}
}

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
static void gaudi_stop_pci_dma_qmans(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	if (!(gaudi->hw_cap_initialized & HW_CAP_PCI_DMA))
		return;

	/* Stop upper CPs of QMANs 0.0 to 1.3 and 5.0 to 5.3 */
	WREG32(mmDMA0_QM_GLBL_CFG1, 0xF << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT);
	WREG32(mmDMA1_QM_GLBL_CFG1, 0xF << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT);
	WREG32(mmDMA5_QM_GLBL_CFG1, 0xF << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT);
}

static void gaudi_stop_hbm_dma_qmans(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	if (!(gaudi->hw_cap_initialized & HW_CAP_HBM_DMA))
		return;

	/* Stop CPs of HBM DMA QMANs */

	WREG32(mmDMA2_QM_GLBL_CFG1, 0x1F << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT);
	WREG32(mmDMA3_QM_GLBL_CFG1, 0x1F << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT);
	WREG32(mmDMA4_QM_GLBL_CFG1, 0x1F << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT);
	WREG32(mmDMA6_QM_GLBL_CFG1, 0x1F << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT);
	WREG32(mmDMA7_QM_GLBL_CFG1, 0x1F << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT);
}

static void gaudi_stop_mme_qmans(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	if (!(gaudi->hw_cap_initialized & HW_CAP_MME))
		return;

	/* Stop CPs of MME QMANs */
	WREG32(mmMME2_QM_GLBL_CFG1, 0x1F << MME0_QM_GLBL_CFG1_CP_STOP_SHIFT);
	WREG32(mmMME0_QM_GLBL_CFG1, 0x1F << MME0_QM_GLBL_CFG1_CP_STOP_SHIFT);
}

static void gaudi_stop_tpc_qmans(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	if (!(gaudi->hw_cap_initialized & HW_CAP_TPC_MASK))
		return;

	WREG32(mmTPC0_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT);
	WREG32(mmTPC1_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT);
	WREG32(mmTPC2_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT);
	WREG32(mmTPC3_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT);
	WREG32(mmTPC4_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT);
	WREG32(mmTPC5_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT);
	WREG32(mmTPC6_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT);
	WREG32(mmTPC7_QM_GLBL_CFG1, 0x1F << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT);
}

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
static void gaudi_stop_nic_qmans(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	/* Stop upper CPs of QMANs */

	if (gaudi->hw_cap_initialized & HW_CAP_NIC0)
		WREG32(mmNIC0_QM0_GLBL_CFG1,
				NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
				NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
				NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);

	if (gaudi->hw_cap_initialized & HW_CAP_NIC1)
		WREG32(mmNIC0_QM1_GLBL_CFG1,
				NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
				NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
				NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);

	if (gaudi->hw_cap_initialized & HW_CAP_NIC2)
		WREG32(mmNIC1_QM0_GLBL_CFG1,
				NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
				NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
				NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);

	if (gaudi->hw_cap_initialized & HW_CAP_NIC3)
		WREG32(mmNIC1_QM1_GLBL_CFG1,
				NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
				NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
				NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);

	if (gaudi->hw_cap_initialized & HW_CAP_NIC4)
		WREG32(mmNIC2_QM0_GLBL_CFG1,
				NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
				NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
				NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);

	if (gaudi->hw_cap_initialized & HW_CAP_NIC5)
		WREG32(mmNIC2_QM1_GLBL_CFG1,
				NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
				NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
				NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);

	if (gaudi->hw_cap_initialized & HW_CAP_NIC6)
		WREG32(mmNIC3_QM0_GLBL_CFG1,
				NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
				NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
				NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);

	if (gaudi->hw_cap_initialized & HW_CAP_NIC7)
		WREG32(mmNIC3_QM1_GLBL_CFG1,
				NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
				NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
				NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);

	if (gaudi->hw_cap_initialized & HW_CAP_NIC8)
		WREG32(mmNIC4_QM0_GLBL_CFG1,
				NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
				NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
				NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);

	if (gaudi->hw_cap_initialized & HW_CAP_NIC9)
		WREG32(mmNIC4_QM1_GLBL_CFG1,
				NIC0_QM0_GLBL_CFG1_PQF_STOP_MASK |
				NIC0_QM0_GLBL_CFG1_CQF_STOP_MASK |
				NIC0_QM0_GLBL_CFG1_CP_STOP_MASK);
}

3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
static void gaudi_pci_dma_stall(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	if (!(gaudi->hw_cap_initialized & HW_CAP_PCI_DMA))
		return;

	WREG32(mmDMA0_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT);
	WREG32(mmDMA1_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT);
	WREG32(mmDMA5_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT);
}

static void gaudi_hbm_dma_stall(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	if (!(gaudi->hw_cap_initialized & HW_CAP_HBM_DMA))
		return;

	WREG32(mmDMA2_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT);
	WREG32(mmDMA3_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT);
	WREG32(mmDMA4_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT);
	WREG32(mmDMA6_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT);
	WREG32(mmDMA7_CORE_CFG_1, 1 << DMA0_CORE_CFG_1_HALT_SHIFT);
}

static void gaudi_mme_stall(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	if (!(gaudi->hw_cap_initialized & HW_CAP_MME))
		return;

	/* WA for H3-1800 bug: do ACC and SBAB writes twice */
	WREG32(mmMME0_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT);
	WREG32(mmMME0_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT);
	WREG32(mmMME0_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT);
	WREG32(mmMME0_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT);
	WREG32(mmMME1_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT);
	WREG32(mmMME1_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT);
	WREG32(mmMME1_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT);
	WREG32(mmMME1_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT);
	WREG32(mmMME2_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT);
	WREG32(mmMME2_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT);
	WREG32(mmMME2_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT);
	WREG32(mmMME2_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT);
	WREG32(mmMME3_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT);
	WREG32(mmMME3_ACC_ACC_STALL, 1 << MME_ACC_ACC_STALL_R_SHIFT);
	WREG32(mmMME3_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT);
	WREG32(mmMME3_SBAB_SB_STALL, 1 << MME_SBAB_SB_STALL_R_SHIFT);
}

static void gaudi_tpc_stall(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	if (!(gaudi->hw_cap_initialized & HW_CAP_TPC_MASK))
		return;

	WREG32(mmTPC0_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT);
	WREG32(mmTPC1_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT);
	WREG32(mmTPC2_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT);
	WREG32(mmTPC3_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT);
	WREG32(mmTPC4_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT);
	WREG32(mmTPC5_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT);
	WREG32(mmTPC6_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT);
	WREG32(mmTPC7_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT);
}

3498
static void gaudi_set_clock_gating(struct hl_device *hdev)
3499 3500 3501
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	u32 qman_offset;
3502
	bool enable;
3503 3504 3505 3506 3507 3508 3509 3510
	int i;

	/* In case we are during debug session, don't enable the clock gate
	 * as it may interfere
	 */
	if (hdev->in_debug)
		return;

3511 3512 3513
	if (!hdev->asic_prop.fw_security_disabled)
		return;

3514
	for (i = GAUDI_PCI_DMA_1, qman_offset = 0 ; i < GAUDI_HBM_DMA_1 ; i++) {
3515 3516
		enable = !!(hdev->clock_gating_mask &
				(BIT_ULL(gaudi_dma_assignment[i])));
3517

3518
		qman_offset = gaudi_dma_assignment[i] * DMA_QMAN_OFFSET;
3519 3520
		WREG32(mmDMA0_QM_CGM_CFG1 + qman_offset,
				enable ? QMAN_CGM1_PWR_GATE_EN : 0);
3521
		WREG32(mmDMA0_QM_CGM_CFG + qman_offset,
3522
				enable ? QMAN_UPPER_CP_CGM_PWR_GATE_EN : 0);
3523 3524
	}

3525
	for (i = GAUDI_HBM_DMA_1 ; i < GAUDI_DMA_MAX ; i++) {
3526 3527
		enable = !!(hdev->clock_gating_mask &
				(BIT_ULL(gaudi_dma_assignment[i])));
3528

3529 3530 3531 3532 3533 3534
		/* GC sends work to DMA engine through Upper CP in DMA5 so
		 * we need to not enable clock gating in that DMA
		 */
		if (i == GAUDI_HBM_DMA_4)
			enable = 0;

3535
		qman_offset = gaudi_dma_assignment[i] * DMA_QMAN_OFFSET;
3536 3537
		WREG32(mmDMA0_QM_CGM_CFG1 + qman_offset,
				enable ? QMAN_CGM1_PWR_GATE_EN : 0);
3538
		WREG32(mmDMA0_QM_CGM_CFG + qman_offset,
3539
				enable ? QMAN_COMMON_CP_CGM_PWR_GATE_EN : 0);
3540 3541
	}

3542 3543 3544
	enable = !!(hdev->clock_gating_mask & (BIT_ULL(GAUDI_ENGINE_ID_MME_0)));
	WREG32(mmMME0_QM_CGM_CFG1, enable ? QMAN_CGM1_PWR_GATE_EN : 0);
	WREG32(mmMME0_QM_CGM_CFG, enable ? QMAN_COMMON_CP_CGM_PWR_GATE_EN : 0);
3545

3546 3547 3548
	enable = !!(hdev->clock_gating_mask & (BIT_ULL(GAUDI_ENGINE_ID_MME_2)));
	WREG32(mmMME2_QM_CGM_CFG1, enable ? QMAN_CGM1_PWR_GATE_EN : 0);
	WREG32(mmMME2_QM_CGM_CFG, enable ? QMAN_COMMON_CP_CGM_PWR_GATE_EN : 0);
3549 3550

	for (i = 0, qman_offset = 0 ; i < TPC_NUMBER_OF_ENGINES ; i++) {
3551 3552
		enable = !!(hdev->clock_gating_mask &
				(BIT_ULL(GAUDI_ENGINE_ID_TPC_0 + i)));
3553

3554
		WREG32(mmTPC0_QM_CGM_CFG1 + qman_offset,
3555
				enable ? QMAN_CGM1_PWR_GATE_EN : 0);
3556
		WREG32(mmTPC0_QM_CGM_CFG + qman_offset,
3557
				enable ? QMAN_COMMON_CP_CGM_PWR_GATE_EN : 0);
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570

		qman_offset += TPC_QMAN_OFFSET;
	}

	gaudi->hw_cap_initialized |= HW_CAP_CLK_GATE;
}

static void gaudi_disable_clock_gating(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	u32 qman_offset;
	int i;

3571
	if (!hdev->asic_prop.fw_security_disabled)
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
		return;

	for (i = 0, qman_offset = 0 ; i < DMA_NUMBER_OF_CHANNELS ; i++) {
		WREG32(mmDMA0_QM_CGM_CFG + qman_offset, 0);
		WREG32(mmDMA0_QM_CGM_CFG1 + qman_offset, 0);

		qman_offset += (mmDMA1_QM_CGM_CFG - mmDMA0_QM_CGM_CFG);
	}

	WREG32(mmMME0_QM_CGM_CFG, 0);
	WREG32(mmMME0_QM_CGM_CFG1, 0);
	WREG32(mmMME2_QM_CGM_CFG, 0);
	WREG32(mmMME2_QM_CGM_CFG1, 0);

	for (i = 0, qman_offset = 0 ; i < TPC_NUMBER_OF_ENGINES ; i++) {
		WREG32(mmTPC0_QM_CGM_CFG + qman_offset, 0);
		WREG32(mmTPC0_QM_CGM_CFG1 + qman_offset, 0);

		qman_offset += (mmTPC1_QM_CGM_CFG - mmTPC0_QM_CGM_CFG);
	}

	gaudi->hw_cap_initialized &= ~(HW_CAP_CLK_GATE);
}

static void gaudi_enable_timestamp(struct hl_device *hdev)
{
	/* Disable the timestamp counter */
	WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE, 0);

	/* Zero the lower/upper parts of the 64-bit counter */
	WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE + 0xC, 0);
	WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE + 0x8, 0);

	/* Enable the counter */
	WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE, 1);
}

static void gaudi_disable_timestamp(struct hl_device *hdev)
{
	/* Disable the timestamp counter */
	WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE, 0);
}

static void gaudi_halt_engines(struct hl_device *hdev, bool hard_reset)
{
3617
	u32 wait_timeout_ms;
3618 3619 3620 3621

	dev_info(hdev->dev,
		"Halting compute engines and disabling interrupts\n");

3622
	if (hdev->pldm)
3623
		wait_timeout_ms = GAUDI_PLDM_RESET_WAIT_MSEC;
3624
	else
3625 3626
		wait_timeout_ms = GAUDI_RESET_WAIT_MSEC;

3627
	gaudi_stop_nic_qmans(hdev);
3628 3629 3630 3631 3632
	gaudi_stop_mme_qmans(hdev);
	gaudi_stop_tpc_qmans(hdev);
	gaudi_stop_hbm_dma_qmans(hdev);
	gaudi_stop_pci_dma_qmans(hdev);

3633
	hdev->asic_funcs->disable_clock_gating(hdev);
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643

	msleep(wait_timeout_ms);

	gaudi_pci_dma_stall(hdev);
	gaudi_hbm_dma_stall(hdev);
	gaudi_tpc_stall(hdev);
	gaudi_mme_stall(hdev);

	msleep(wait_timeout_ms);

3644
	gaudi_disable_nic_qmans(hdev);
3645 3646 3647 3648 3649 3650 3651
	gaudi_disable_mme_qmans(hdev);
	gaudi_disable_tpc_qmans(hdev);
	gaudi_disable_hbm_dma_qmans(hdev);
	gaudi_disable_pci_dma_qmans(hdev);

	gaudi_disable_timestamp(hdev);

3652
	gaudi_disable_msi(hdev);
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
}

static int gaudi_mmu_init(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct gaudi_device *gaudi = hdev->asic_specific;
	u64 hop0_addr;
	int rc, i;

	if (!hdev->mmu_enable)
		return 0;

	if (gaudi->hw_cap_initialized & HW_CAP_MMU)
		return 0;

	for (i = 0 ; i < prop->max_asid ; i++) {
		hop0_addr = prop->mmu_pgt_addr +
				(i * prop->mmu_hop_table_size);

		rc = gaudi_mmu_update_asid_hop0_addr(hdev, i, hop0_addr);
		if (rc) {
			dev_err(hdev->dev,
				"failed to set hop0 addr for asid %d\n", i);
			goto err;
		}
	}

	/* init MMU cache manage page */
	WREG32(mmSTLB_CACHE_INV_BASE_39_8, MMU_CACHE_MNG_ADDR >> 8);
	WREG32(mmSTLB_CACHE_INV_BASE_49_40, MMU_CACHE_MNG_ADDR >> 40);

3684
	hdev->asic_funcs->mmu_invalidate_cache(hdev, true, 0);
3685 3686 3687 3688 3689 3690 3691

	WREG32(mmMMU_UP_MMU_ENABLE, 1);
	WREG32(mmMMU_UP_SPI_MASK, 0xF);

	WREG32(mmSTLB_HOP_CONFIGURATION,
			hdev->mmu_huge_page_opt ? 0x30440 : 0x40440);

3692 3693 3694 3695 3696 3697
	/*
	 * The H/W expects the first PI after init to be 1. After wraparound
	 * we'll write 0.
	 */
	gaudi->mmu_cache_inv_pi = 1;

3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
	gaudi->hw_cap_initialized |= HW_CAP_MMU;

	return 0;

err:
	return rc;
}

static int gaudi_load_firmware_to_device(struct hl_device *hdev)
{
	void __iomem *dst;

	/* HBM scrambler must be initialized before pushing F/W to HBM */
	gaudi_init_scrambler_hbm(hdev);

	dst = hdev->pcie_bar[HBM_BAR_ID] + LINUX_FW_OFFSET;

O
Ofir Bitton 已提交
3715
	return hl_fw_load_fw_to_device(hdev, GAUDI_LINUX_FW_FILE, dst, 0, 0);
3716 3717 3718 3719 3720 3721 3722 3723
}

static int gaudi_load_boot_fit_to_device(struct hl_device *hdev)
{
	void __iomem *dst;

	dst = hdev->pcie_bar[SRAM_BAR_ID] + BOOT_FIT_SRAM_OFFSET;

O
Ofir Bitton 已提交
3724
	return hl_fw_load_fw_to_device(hdev, GAUDI_BOOT_FIT_FILE, dst, 0, 0);
3725 3726
}

3727
static int gaudi_read_device_fw_version(struct hl_device *hdev,
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
					enum hl_fw_component fwc)
{
	const char *name;
	u32 ver_off;
	char *dest;

	switch (fwc) {
	case FW_COMP_UBOOT:
		ver_off = RREG32(mmUBOOT_VER_OFFSET);
		dest = hdev->asic_prop.uboot_ver;
		name = "U-Boot";
		break;
	case FW_COMP_PREBOOT:
		ver_off = RREG32(mmPREBOOT_VER_OFFSET);
		dest = hdev->asic_prop.preboot_ver;
		name = "Preboot";
		break;
	default:
		dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc);
3747
		return -EIO;
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
	}

	ver_off &= ~((u32)SRAM_BASE_ADDR);

	if (ver_off < SRAM_SIZE - VERSION_MAX_LEN) {
		memcpy_fromio(dest, hdev->pcie_bar[SRAM_BAR_ID] + ver_off,
							VERSION_MAX_LEN);
	} else {
		dev_err(hdev->dev, "%s version offset (0x%x) is above SRAM\n",
								name, ver_off);
		strcpy(dest, "unavailable");
3759
		return -EIO;
3760
	}
3761 3762

	return 0;
3763 3764 3765 3766 3767 3768 3769
}

static int gaudi_init_cpu(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	int rc;

3770
	if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU))
3771 3772 3773 3774 3775 3776 3777 3778 3779
		return 0;

	if (gaudi->hw_cap_initialized & HW_CAP_CPU)
		return 0;

	/*
	 * The device CPU works with 40 bits addresses.
	 * This register sets the extension to 50 bits.
	 */
3780 3781
	if (hdev->asic_prop.fw_security_disabled)
		WREG32(mmCPU_IF_CPU_MSB_ADDR, hdev->cpu_pci_msb_addr);
3782 3783 3784 3785

	rc = hl_fw_init_cpu(hdev, mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS,
			mmPSOC_GLOBAL_CONF_KMD_MSG_TO_CPU,
			mmCPU_CMD_STATUS_TO_HOST,
3786
			mmCPU_BOOT_DEV_STS0, mmCPU_BOOT_ERR0,
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
			!hdev->bmc_enable, GAUDI_CPU_TIMEOUT_USEC,
			GAUDI_BOOT_FIT_REQ_TIMEOUT_USEC);

	if (rc)
		return rc;

	gaudi->hw_cap_initialized |= HW_CAP_CPU;

	return 0;
}

static int gaudi_init_cpu_queues(struct hl_device *hdev, u32 cpu_timeout)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
3801
	struct asic_fixed_properties *prop = &hdev->asic_prop;
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
	struct hl_eq *eq;
	u32 status;
	struct hl_hw_queue *cpu_pq =
			&hdev->kernel_queues[GAUDI_QUEUE_ID_CPU_PQ];
	int err;

	if (!hdev->cpu_queues_enable)
		return 0;

	if (gaudi->hw_cap_initialized & HW_CAP_CPU_Q)
		return 0;

	eq = &hdev->event_queue;

	WREG32(mmCPU_IF_PQ_BASE_ADDR_LOW, lower_32_bits(cpu_pq->bus_address));
	WREG32(mmCPU_IF_PQ_BASE_ADDR_HIGH, upper_32_bits(cpu_pq->bus_address));

	WREG32(mmCPU_IF_EQ_BASE_ADDR_LOW, lower_32_bits(eq->bus_address));
	WREG32(mmCPU_IF_EQ_BASE_ADDR_HIGH, upper_32_bits(eq->bus_address));

	WREG32(mmCPU_IF_CQ_BASE_ADDR_LOW,
			lower_32_bits(hdev->cpu_accessible_dma_address));
	WREG32(mmCPU_IF_CQ_BASE_ADDR_HIGH,
			upper_32_bits(hdev->cpu_accessible_dma_address));

	WREG32(mmCPU_IF_PQ_LENGTH, HL_QUEUE_SIZE_IN_BYTES);
	WREG32(mmCPU_IF_EQ_LENGTH, HL_EQ_SIZE_IN_BYTES);
	WREG32(mmCPU_IF_CQ_LENGTH, HL_CPU_ACCESSIBLE_MEM_SIZE);

	/* Used for EQ CI */
	WREG32(mmCPU_IF_EQ_RD_OFFS, 0);

	WREG32(mmCPU_IF_PF_PQ_PI, 0);

	if (gaudi->multi_msi_mode)
		WREG32(mmCPU_IF_QUEUE_INIT, PQ_INIT_STATUS_READY_FOR_CP);
	else
		WREG32(mmCPU_IF_QUEUE_INIT,
			PQ_INIT_STATUS_READY_FOR_CP_SINGLE_MSI);

	WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR, GAUDI_EVENT_PI_UPDATE);

	err = hl_poll_timeout(
		hdev,
		mmCPU_IF_QUEUE_INIT,
		status,
		(status == PQ_INIT_STATUS_READY_FOR_HOST),
		1000,
		cpu_timeout);

	if (err) {
		dev_err(hdev->dev,
O
Oded Gabbay 已提交
3854
			"Failed to communicate with Device CPU (CPU-CP timeout)\n");
3855 3856 3857
		return -EIO;
	}

3858 3859 3860 3861
	/* update FW application security bits */
	if (prop->fw_security_status_valid)
		prop->fw_app_security_map = RREG32(mmCPU_BOOT_DEV_STS0);

3862 3863 3864 3865 3866 3867 3868
	gaudi->hw_cap_initialized |= HW_CAP_CPU_Q;
	return 0;
}

static void gaudi_pre_hw_init(struct hl_device *hdev)
{
	/* Perform read from the device to make sure device is up */
3869
	RREG32(mmHW_STATE);
3870

3871 3872 3873 3874 3875 3876 3877
	if (hdev->asic_prop.fw_security_disabled) {
		/* Set the access through PCI bars (Linux driver only) as
		 * secured
		 */
		WREG32(mmPCIE_WRAP_LBW_PROT_OVR,
				(PCIE_WRAP_LBW_PROT_OVR_RD_EN_MASK |
				PCIE_WRAP_LBW_PROT_OVR_WR_EN_MASK));
3878

3879 3880 3881 3882 3883
		/* Perform read to flush the waiting writes to ensure
		 * configuration was set in the device
		 */
		RREG32(mmPCIE_WRAP_LBW_PROT_OVR);
	}
3884

3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
	/*
	 * Let's mark in the H/W that we have reached this point. We check
	 * this value in the reset_before_init function to understand whether
	 * we need to reset the chip before doing H/W init. This register is
	 * cleared by the H/W upon H/W reset
	 */
	WREG32(mmHW_STATE, HL_DEVICE_HW_STATE_DIRTY);
}

static int gaudi_hw_init(struct hl_device *hdev)
{
	int rc;

	gaudi_pre_hw_init(hdev);

	gaudi_init_pci_dma_qmans(hdev);

	gaudi_init_hbm_dma_qmans(hdev);

	rc = gaudi_init_cpu(hdev);
	if (rc) {
		dev_err(hdev->dev, "failed to initialize CPU\n");
		return rc;
	}

3910 3911 3912 3913 3914 3915 3916
	/* In case the clock gating was enabled in preboot we need to disable
	 * it here before touching the MME/TPC registers.
	 * There is no need to take clk gating mutex because when this function
	 * runs, no other relevant code can run
	 */
	hdev->asic_funcs->disable_clock_gating(hdev);

3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
	/* SRAM scrambler must be initialized after CPU is running from HBM */
	gaudi_init_scrambler_sram(hdev);

	/* This is here just in case we are working without CPU */
	gaudi_init_scrambler_hbm(hdev);

	gaudi_init_golden_registers(hdev);

	rc = gaudi_mmu_init(hdev);
	if (rc)
		return rc;

3929 3930
	gaudi_init_security(hdev);

3931 3932 3933 3934
	gaudi_init_mme_qmans(hdev);

	gaudi_init_tpc_qmans(hdev);

3935 3936
	gaudi_init_nic_qmans(hdev);

3937
	hdev->asic_funcs->set_clock_gating(hdev);
3938 3939 3940

	gaudi_enable_timestamp(hdev);

3941
	/* MSI must be enabled before CPU queues and NIC are initialized */
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
	rc = gaudi_enable_msi(hdev);
	if (rc)
		goto disable_queues;

	/* must be called after MSI was enabled */
	rc = gaudi_init_cpu_queues(hdev, GAUDI_CPU_TIMEOUT_USEC);
	if (rc) {
		dev_err(hdev->dev, "failed to initialize CPU H/W queues %d\n",
			rc);
		goto disable_msi;
	}

	/* Perform read from the device to flush all configuration */
3955
	RREG32(mmHW_STATE);
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970

	return 0;

disable_msi:
	gaudi_disable_msi(hdev);
disable_queues:
	gaudi_disable_mme_qmans(hdev);
	gaudi_disable_pci_dma_qmans(hdev);

	return rc;
}

static void gaudi_hw_fini(struct hl_device *hdev, bool hard_reset)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
3971
	u32 status, reset_timeout_ms, cpu_timeout_ms;
3972

3973 3974 3975
	if (!hard_reset) {
		dev_err(hdev->dev, "GAUDI doesn't support soft-reset\n");
		return;
3976 3977
	}

3978
	if (hdev->pldm) {
3979
		reset_timeout_ms = GAUDI_PLDM_HRESET_TIMEOUT_MSEC;
3980 3981
		cpu_timeout_ms = GAUDI_PLDM_RESET_WAIT_MSEC;
	} else {
3982
		reset_timeout_ms = GAUDI_RESET_TIMEOUT_MSEC;
3983 3984 3985 3986 3987 3988
		cpu_timeout_ms = GAUDI_CPU_RESET_WAIT_MSEC;
	}

	/* Set device to handle FLR by H/W as we will put the device CPU to
	 * halt mode
	 */
3989 3990
	if (hdev->asic_prop.fw_security_disabled &&
				!hdev->asic_prop.hard_reset_done_by_fw)
3991
		WREG32(mmPCIE_AUX_FLR_CTRL, (PCIE_AUX_FLR_CTRL_HW_CTRL_MASK |
3992 3993 3994 3995 3996
					PCIE_AUX_FLR_CTRL_INT_MASK_MASK));

	/* I don't know what is the state of the CPU so make sure it is
	 * stopped in any means necessary
	 */
3997 3998 3999 4000
	if (hdev->asic_prop.hard_reset_done_by_fw)
		WREG32(mmPSOC_GLOBAL_CONF_KMD_MSG_TO_CPU, KMD_MSG_RST_DEV);
	else
		WREG32(mmPSOC_GLOBAL_CONF_KMD_MSG_TO_CPU, KMD_MSG_GOTO_WFE);
4001

4002 4003
	WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR, GAUDI_EVENT_HALT_MACHINE);

4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
	if (hdev->asic_prop.fw_security_disabled &&
				!hdev->asic_prop.hard_reset_done_by_fw) {

		/* Configure the reset registers. Must be done as early as
		 * possible in case we fail during H/W initialization
		 */
		WREG32(mmPSOC_GLOBAL_CONF_SOFT_RST_CFG_H,
						(CFG_RST_H_DMA_MASK |
						CFG_RST_H_MME_MASK |
						CFG_RST_H_SM_MASK |
						CFG_RST_H_TPC_7_MASK));

		WREG32(mmPSOC_GLOBAL_CONF_SOFT_RST_CFG_L, CFG_RST_L_TPC_MASK);

		WREG32(mmPSOC_GLOBAL_CONF_SW_ALL_RST_CFG_H,
						(CFG_RST_H_HBM_MASK |
						CFG_RST_H_TPC_7_MASK |
						CFG_RST_H_NIC_MASK |
						CFG_RST_H_SM_MASK |
						CFG_RST_H_DMA_MASK |
						CFG_RST_H_MME_MASK |
						CFG_RST_H_CPU_MASK |
						CFG_RST_H_MMU_MASK));

		WREG32(mmPSOC_GLOBAL_CONF_SW_ALL_RST_CFG_L,
						(CFG_RST_L_IF_MASK |
						CFG_RST_L_PSOC_MASK |
						CFG_RST_L_TPC_MASK));

4033
		msleep(cpu_timeout_ms);
4034

4035 4036
		/* Tell ASIC not to re-initialize PCIe */
		WREG32(mmPREBOOT_PCIE_EN, LKD_HARD_RESET_MAGIC);
4037

4038 4039 4040
		/* Restart BTL/BLR upon hard-reset */
		if (hdev->asic_prop.fw_security_disabled)
			WREG32(mmPSOC_GLOBAL_CONF_BOOT_SEQ_RE_START, 1);
4041

4042
		WREG32(mmPSOC_GLOBAL_CONF_SW_ALL_RST,
4043
			1 << PSOC_GLOBAL_CONF_SW_ALL_RST_IND_SHIFT);
4044

4045 4046 4047 4048 4049 4050 4051 4052
		dev_info(hdev->dev,
			"Issued HARD reset command, going to wait %dms\n",
			reset_timeout_ms);
	} else {
		dev_info(hdev->dev,
			"Firmware performs HARD reset, going to wait %dms\n",
			reset_timeout_ms);
	}
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065

	/*
	 * After hard reset, we can't poll the BTM_FSM register because the PSOC
	 * itself is in reset. Need to wait until the reset is deasserted
	 */
	msleep(reset_timeout_ms);

	status = RREG32(mmPSOC_GLOBAL_CONF_BTM_FSM);
	if (status & PSOC_GLOBAL_CONF_BTM_FSM_STATE_MASK)
		dev_err(hdev->dev,
			"Timeout while waiting for device to reset 0x%x\n",
			status);

4066 4067 4068 4069 4070 4071 4072 4073 4074
	if (gaudi) {
		gaudi->hw_cap_initialized &= ~(HW_CAP_CPU | HW_CAP_CPU_Q |
				HW_CAP_HBM | HW_CAP_PCI_DMA |
				HW_CAP_MME | HW_CAP_TPC_MASK |
				HW_CAP_HBM_DMA | HW_CAP_PLL |
				HW_CAP_NIC_MASK | HW_CAP_MMU |
				HW_CAP_SRAM_SCRAMBLER |
				HW_CAP_HBM_SCRAMBLER |
				HW_CAP_CLK_GATE);
4075

4076 4077
		memset(gaudi->events_stat, 0, sizeof(gaudi->events_stat));
	}
4078 4079 4080 4081 4082 4083
}

static int gaudi_suspend(struct hl_device *hdev)
{
	int rc;

4084
	rc = hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS);
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
	if (rc)
		dev_err(hdev->dev, "Failed to disable PCI access from CPU\n");

	return rc;
}

static int gaudi_resume(struct hl_device *hdev)
{
	return gaudi_init_iatu(hdev);
}

static int gaudi_cb_mmap(struct hl_device *hdev, struct vm_area_struct *vma,
4097
			void *cpu_addr, dma_addr_t dma_addr, size_t size)
4098 4099 4100 4101 4102 4103
{
	int rc;

	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP |
			VM_DONTCOPY | VM_NORESERVE;

4104 4105
	rc = dma_mmap_coherent(hdev->dev, vma, cpu_addr,
				(dma_addr - HOST_PHYS_BASE), size);
4106
	if (rc)
4107
		dev_err(hdev->dev, "dma_mmap_coherent error %d", rc);
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155

	return rc;
}

static void gaudi_ring_doorbell(struct hl_device *hdev, u32 hw_queue_id, u32 pi)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	u32 db_reg_offset, db_value, dma_qm_offset, q_off;
	int dma_id;
	bool invalid_queue = false;

	switch (hw_queue_id) {
	case GAUDI_QUEUE_ID_DMA_0_0...GAUDI_QUEUE_ID_DMA_0_3:
		dma_id = gaudi_dma_assignment[GAUDI_PCI_DMA_1];
		dma_qm_offset = dma_id * DMA_QMAN_OFFSET;
		q_off = dma_qm_offset + (hw_queue_id & 0x3) * 4;
		db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off;
		break;

	case GAUDI_QUEUE_ID_DMA_1_0...GAUDI_QUEUE_ID_DMA_1_3:
		dma_id = gaudi_dma_assignment[GAUDI_PCI_DMA_2];
		dma_qm_offset = dma_id * DMA_QMAN_OFFSET;
		q_off = dma_qm_offset + (hw_queue_id & 0x3) * 4;
		db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off;
		break;

	case GAUDI_QUEUE_ID_DMA_2_0...GAUDI_QUEUE_ID_DMA_2_3:
		dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_1];
		dma_qm_offset = dma_id * DMA_QMAN_OFFSET;
		q_off = dma_qm_offset + ((hw_queue_id - 1) & 0x3) * 4;
		db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off;
		break;

	case GAUDI_QUEUE_ID_DMA_3_0...GAUDI_QUEUE_ID_DMA_3_3:
		dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_2];
		dma_qm_offset = dma_id * DMA_QMAN_OFFSET;
		q_off = dma_qm_offset + ((hw_queue_id - 1) & 0x3) * 4;
		db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off;
		break;

	case GAUDI_QUEUE_ID_DMA_4_0...GAUDI_QUEUE_ID_DMA_4_3:
		dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_3];
		dma_qm_offset = dma_id * DMA_QMAN_OFFSET;
		q_off = dma_qm_offset + ((hw_queue_id - 1) & 0x3) * 4;
		db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off;
		break;

	case GAUDI_QUEUE_ID_DMA_5_0...GAUDI_QUEUE_ID_DMA_5_3:
4156
		dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_4];
4157 4158 4159 4160 4161 4162
		dma_qm_offset = dma_id * DMA_QMAN_OFFSET;
		q_off = dma_qm_offset + ((hw_queue_id - 1) & 0x3) * 4;
		db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off;
		break;

	case GAUDI_QUEUE_ID_DMA_6_0...GAUDI_QUEUE_ID_DMA_6_3:
4163
		dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_5];
4164 4165 4166 4167 4168 4169
		dma_qm_offset = dma_id * DMA_QMAN_OFFSET;
		q_off = dma_qm_offset + ((hw_queue_id - 1) & 0x3) * 4;
		db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off;
		break;

	case GAUDI_QUEUE_ID_DMA_7_0...GAUDI_QUEUE_ID_DMA_7_3:
4170
		dma_id = gaudi_dma_assignment[GAUDI_HBM_DMA_6];
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
		dma_qm_offset = dma_id * DMA_QMAN_OFFSET;
		q_off = dma_qm_offset + ((hw_queue_id - 1) & 0x3) * 4;
		db_reg_offset = mmDMA0_QM_PQ_PI_0 + q_off;
		break;

	case GAUDI_QUEUE_ID_CPU_PQ:
		if (gaudi->hw_cap_initialized & HW_CAP_CPU_Q)
			db_reg_offset = mmCPU_IF_PF_PQ_PI;
		else
			invalid_queue = true;
		break;

	case GAUDI_QUEUE_ID_MME_0_0:
		db_reg_offset = mmMME2_QM_PQ_PI_0;
		break;

	case GAUDI_QUEUE_ID_MME_0_1:
		db_reg_offset = mmMME2_QM_PQ_PI_1;
		break;

	case GAUDI_QUEUE_ID_MME_0_2:
		db_reg_offset = mmMME2_QM_PQ_PI_2;
		break;

	case GAUDI_QUEUE_ID_MME_0_3:
		db_reg_offset = mmMME2_QM_PQ_PI_3;
		break;

	case GAUDI_QUEUE_ID_MME_1_0:
		db_reg_offset = mmMME0_QM_PQ_PI_0;
		break;

	case GAUDI_QUEUE_ID_MME_1_1:
		db_reg_offset = mmMME0_QM_PQ_PI_1;
		break;

	case GAUDI_QUEUE_ID_MME_1_2:
		db_reg_offset = mmMME0_QM_PQ_PI_2;
		break;

	case GAUDI_QUEUE_ID_MME_1_3:
		db_reg_offset = mmMME0_QM_PQ_PI_3;
		break;

	case GAUDI_QUEUE_ID_TPC_0_0:
		db_reg_offset = mmTPC0_QM_PQ_PI_0;
		break;

	case GAUDI_QUEUE_ID_TPC_0_1:
		db_reg_offset = mmTPC0_QM_PQ_PI_1;
		break;

	case GAUDI_QUEUE_ID_TPC_0_2:
		db_reg_offset = mmTPC0_QM_PQ_PI_2;
		break;

	case GAUDI_QUEUE_ID_TPC_0_3:
		db_reg_offset = mmTPC0_QM_PQ_PI_3;
		break;

	case GAUDI_QUEUE_ID_TPC_1_0:
		db_reg_offset = mmTPC1_QM_PQ_PI_0;
		break;

	case GAUDI_QUEUE_ID_TPC_1_1:
		db_reg_offset = mmTPC1_QM_PQ_PI_1;
		break;

	case GAUDI_QUEUE_ID_TPC_1_2:
		db_reg_offset = mmTPC1_QM_PQ_PI_2;
		break;

	case GAUDI_QUEUE_ID_TPC_1_3:
		db_reg_offset = mmTPC1_QM_PQ_PI_3;
		break;

	case GAUDI_QUEUE_ID_TPC_2_0:
		db_reg_offset = mmTPC2_QM_PQ_PI_0;
		break;

	case GAUDI_QUEUE_ID_TPC_2_1:
		db_reg_offset = mmTPC2_QM_PQ_PI_1;
		break;

	case GAUDI_QUEUE_ID_TPC_2_2:
		db_reg_offset = mmTPC2_QM_PQ_PI_2;
		break;

	case GAUDI_QUEUE_ID_TPC_2_3:
		db_reg_offset = mmTPC2_QM_PQ_PI_3;
		break;

	case GAUDI_QUEUE_ID_TPC_3_0:
		db_reg_offset = mmTPC3_QM_PQ_PI_0;
		break;

	case GAUDI_QUEUE_ID_TPC_3_1:
		db_reg_offset = mmTPC3_QM_PQ_PI_1;
		break;

	case GAUDI_QUEUE_ID_TPC_3_2:
		db_reg_offset = mmTPC3_QM_PQ_PI_2;
		break;

	case GAUDI_QUEUE_ID_TPC_3_3:
		db_reg_offset = mmTPC3_QM_PQ_PI_3;
		break;

	case GAUDI_QUEUE_ID_TPC_4_0:
		db_reg_offset = mmTPC4_QM_PQ_PI_0;
		break;

	case GAUDI_QUEUE_ID_TPC_4_1:
		db_reg_offset = mmTPC4_QM_PQ_PI_1;
		break;

	case GAUDI_QUEUE_ID_TPC_4_2:
		db_reg_offset = mmTPC4_QM_PQ_PI_2;
		break;

	case GAUDI_QUEUE_ID_TPC_4_3:
		db_reg_offset = mmTPC4_QM_PQ_PI_3;
		break;

	case GAUDI_QUEUE_ID_TPC_5_0:
		db_reg_offset = mmTPC5_QM_PQ_PI_0;
		break;

	case GAUDI_QUEUE_ID_TPC_5_1:
		db_reg_offset = mmTPC5_QM_PQ_PI_1;
		break;

	case GAUDI_QUEUE_ID_TPC_5_2:
		db_reg_offset = mmTPC5_QM_PQ_PI_2;
		break;

	case GAUDI_QUEUE_ID_TPC_5_3:
		db_reg_offset = mmTPC5_QM_PQ_PI_3;
		break;

	case GAUDI_QUEUE_ID_TPC_6_0:
		db_reg_offset = mmTPC6_QM_PQ_PI_0;
		break;

	case GAUDI_QUEUE_ID_TPC_6_1:
		db_reg_offset = mmTPC6_QM_PQ_PI_1;
		break;

	case GAUDI_QUEUE_ID_TPC_6_2:
		db_reg_offset = mmTPC6_QM_PQ_PI_2;
		break;

	case GAUDI_QUEUE_ID_TPC_6_3:
		db_reg_offset = mmTPC6_QM_PQ_PI_3;
		break;

	case GAUDI_QUEUE_ID_TPC_7_0:
		db_reg_offset = mmTPC7_QM_PQ_PI_0;
		break;

	case GAUDI_QUEUE_ID_TPC_7_1:
		db_reg_offset = mmTPC7_QM_PQ_PI_1;
		break;

	case GAUDI_QUEUE_ID_TPC_7_2:
		db_reg_offset = mmTPC7_QM_PQ_PI_2;
		break;

	case GAUDI_QUEUE_ID_TPC_7_3:
		db_reg_offset = mmTPC7_QM_PQ_PI_3;
		break;

4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
	case GAUDI_QUEUE_ID_NIC_0_0:
		db_reg_offset = mmNIC0_QM0_PQ_PI_0;
		break;

	case GAUDI_QUEUE_ID_NIC_0_1:
		db_reg_offset = mmNIC0_QM0_PQ_PI_1;
		break;

	case GAUDI_QUEUE_ID_NIC_0_2:
		db_reg_offset = mmNIC0_QM0_PQ_PI_2;
		break;

	case GAUDI_QUEUE_ID_NIC_0_3:
		db_reg_offset = mmNIC0_QM0_PQ_PI_3;
		break;

	case GAUDI_QUEUE_ID_NIC_1_0:
		db_reg_offset = mmNIC0_QM1_PQ_PI_0;
		break;

	case GAUDI_QUEUE_ID_NIC_1_1:
		db_reg_offset = mmNIC0_QM1_PQ_PI_1;
		break;

	case GAUDI_QUEUE_ID_NIC_1_2:
		db_reg_offset = mmNIC0_QM1_PQ_PI_2;
		break;

	case GAUDI_QUEUE_ID_NIC_1_3:
		db_reg_offset = mmNIC0_QM1_PQ_PI_3;
		break;

	case GAUDI_QUEUE_ID_NIC_2_0:
		db_reg_offset = mmNIC1_QM0_PQ_PI_0;
		break;

	case GAUDI_QUEUE_ID_NIC_2_1:
		db_reg_offset = mmNIC1_QM0_PQ_PI_1;
		break;

	case GAUDI_QUEUE_ID_NIC_2_2:
		db_reg_offset = mmNIC1_QM0_PQ_PI_2;
		break;

	case GAUDI_QUEUE_ID_NIC_2_3:
		db_reg_offset = mmNIC1_QM0_PQ_PI_3;
		break;

	case GAUDI_QUEUE_ID_NIC_3_0:
		db_reg_offset = mmNIC1_QM1_PQ_PI_0;
		break;

	case GAUDI_QUEUE_ID_NIC_3_1:
		db_reg_offset = mmNIC1_QM1_PQ_PI_1;
		break;

	case GAUDI_QUEUE_ID_NIC_3_2:
		db_reg_offset = mmNIC1_QM1_PQ_PI_2;
		break;

	case GAUDI_QUEUE_ID_NIC_3_3:
		db_reg_offset = mmNIC1_QM1_PQ_PI_3;
		break;

	case GAUDI_QUEUE_ID_NIC_4_0:
		db_reg_offset = mmNIC2_QM0_PQ_PI_0;
		break;

	case GAUDI_QUEUE_ID_NIC_4_1:
		db_reg_offset = mmNIC2_QM0_PQ_PI_1;
		break;

	case GAUDI_QUEUE_ID_NIC_4_2:
		db_reg_offset = mmNIC2_QM0_PQ_PI_2;
		break;

	case GAUDI_QUEUE_ID_NIC_4_3:
		db_reg_offset = mmNIC2_QM0_PQ_PI_3;
		break;

	case GAUDI_QUEUE_ID_NIC_5_0:
		db_reg_offset = mmNIC2_QM1_PQ_PI_0;
		break;

	case GAUDI_QUEUE_ID_NIC_5_1:
		db_reg_offset = mmNIC2_QM1_PQ_PI_1;
		break;

	case GAUDI_QUEUE_ID_NIC_5_2:
		db_reg_offset = mmNIC2_QM1_PQ_PI_2;
		break;

	case GAUDI_QUEUE_ID_NIC_5_3:
		db_reg_offset = mmNIC2_QM1_PQ_PI_3;
		break;

	case GAUDI_QUEUE_ID_NIC_6_0:
		db_reg_offset = mmNIC3_QM0_PQ_PI_0;
		break;

	case GAUDI_QUEUE_ID_NIC_6_1:
		db_reg_offset = mmNIC3_QM0_PQ_PI_1;
		break;

	case GAUDI_QUEUE_ID_NIC_6_2:
		db_reg_offset = mmNIC3_QM0_PQ_PI_2;
		break;

	case GAUDI_QUEUE_ID_NIC_6_3:
		db_reg_offset = mmNIC3_QM0_PQ_PI_3;
		break;

	case GAUDI_QUEUE_ID_NIC_7_0:
		db_reg_offset = mmNIC3_QM1_PQ_PI_0;
		break;

	case GAUDI_QUEUE_ID_NIC_7_1:
		db_reg_offset = mmNIC3_QM1_PQ_PI_1;
		break;

	case GAUDI_QUEUE_ID_NIC_7_2:
		db_reg_offset = mmNIC3_QM1_PQ_PI_2;
		break;

	case GAUDI_QUEUE_ID_NIC_7_3:
		db_reg_offset = mmNIC3_QM1_PQ_PI_3;
		break;

	case GAUDI_QUEUE_ID_NIC_8_0:
		db_reg_offset = mmNIC4_QM0_PQ_PI_0;
		break;

	case GAUDI_QUEUE_ID_NIC_8_1:
		db_reg_offset = mmNIC4_QM0_PQ_PI_1;
		break;

	case GAUDI_QUEUE_ID_NIC_8_2:
		db_reg_offset = mmNIC4_QM0_PQ_PI_2;
		break;

	case GAUDI_QUEUE_ID_NIC_8_3:
		db_reg_offset = mmNIC4_QM0_PQ_PI_3;
		break;

	case GAUDI_QUEUE_ID_NIC_9_0:
		db_reg_offset = mmNIC4_QM1_PQ_PI_0;
		break;

	case GAUDI_QUEUE_ID_NIC_9_1:
		db_reg_offset = mmNIC4_QM1_PQ_PI_1;
		break;

	case GAUDI_QUEUE_ID_NIC_9_2:
		db_reg_offset = mmNIC4_QM1_PQ_PI_2;
		break;

	case GAUDI_QUEUE_ID_NIC_9_3:
		db_reg_offset = mmNIC4_QM1_PQ_PI_3;
		break;

4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
	default:
		invalid_queue = true;
	}

	if (invalid_queue) {
		/* Should never get here */
		dev_err(hdev->dev, "h/w queue %d is invalid. Can't set pi\n",
			hw_queue_id);
		return;
	}

	db_value = pi;

	/* ring the doorbell */
	WREG32(db_reg_offset, db_value);

4519 4520 4521
	if (hw_queue_id == GAUDI_QUEUE_ID_CPU_PQ) {
		/* make sure device CPU will read latest data from host */
		mb();
4522 4523
		WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR,
				GAUDI_EVENT_PI_UPDATE);
4524
	}
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
}

static void gaudi_pqe_write(struct hl_device *hdev, __le64 *pqe,
				struct hl_bd *bd)
{
	__le64 *pbd = (__le64 *) bd;

	/* The QMANs are on the host memory so a simple copy suffice */
	pqe[0] = pbd[0];
	pqe[1] = pbd[1];
}

static void *gaudi_dma_alloc_coherent(struct hl_device *hdev, size_t size,
					dma_addr_t *dma_handle, gfp_t flags)
{
	void *kernel_addr = dma_alloc_coherent(&hdev->pdev->dev, size,
						dma_handle, flags);

	/* Shift to the device's base physical address of host memory */
	if (kernel_addr)
		*dma_handle += HOST_PHYS_BASE;

	return kernel_addr;
}

static void gaudi_dma_free_coherent(struct hl_device *hdev, size_t size,
		void *cpu_addr, dma_addr_t dma_handle)
{
	/* Cancel the device's base physical address of host memory */
	dma_addr_t fixed_dma_handle = dma_handle - HOST_PHYS_BASE;

	dma_free_coherent(&hdev->pdev->dev, size, cpu_addr, fixed_dma_handle);
}

4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
static int gaudi_hbm_scrubbing(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	u64  cur_addr = DRAM_BASE_ADDR_USER;
	u32 val;
	u32 chunk_size;
	int rc, dma_id;

	while (cur_addr < prop->dram_end_address) {
		for (dma_id = 0 ; dma_id < DMA_NUMBER_OF_CHANNELS ; dma_id++) {
			u32 dma_offset = dma_id * DMA_CORE_OFFSET;

			chunk_size =
			min((u64)SZ_2G, prop->dram_end_address - cur_addr);

			dev_dbg(hdev->dev,
				"Doing HBM scrubbing for 0x%09llx - 0x%09llx\n",
				cur_addr, cur_addr + chunk_size);

			WREG32(mmDMA0_CORE_SRC_BASE_LO + dma_offset, 0);
			WREG32(mmDMA0_CORE_SRC_BASE_HI + dma_offset, 0);
			WREG32(mmDMA0_CORE_DST_BASE_LO + dma_offset,
						lower_32_bits(cur_addr));
			WREG32(mmDMA0_CORE_DST_BASE_HI + dma_offset,
						upper_32_bits(cur_addr));
			WREG32(mmDMA0_CORE_DST_TSIZE_0 + dma_offset,
					chunk_size);
			WREG32(mmDMA0_CORE_COMMIT + dma_offset,
					((1 << DMA0_CORE_COMMIT_LIN_SHIFT) |
					(1 << DMA0_CORE_COMMIT_MEM_SET_SHIFT)));

			cur_addr += chunk_size;

			if (cur_addr == prop->dram_end_address)
				break;
		}

		for (dma_id = 0 ; dma_id < DMA_NUMBER_OF_CHANNELS ; dma_id++) {
			u32 dma_offset = dma_id * DMA_CORE_OFFSET;

			rc = hl_poll_timeout(
				hdev,
				mmDMA0_CORE_STS0 + dma_offset,
				val,
				((val & DMA0_CORE_STS0_BUSY_MASK) == 0),
				1000,
				HBM_SCRUBBING_TIMEOUT_US);

			if (rc) {
				dev_err(hdev->dev,
					"DMA Timeout during HBM scrubbing of DMA #%d\n",
					dma_id);
				return -EIO;
			}
		}
	}

	return 0;
}

static int gaudi_scrub_device_mem(struct hl_device *hdev, u64 addr, u64 size)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct gaudi_device *gaudi = hdev->asic_specific;
	int rc = 0;
	u64 val = 0;

	if (!hdev->memory_scrub)
		return 0;

	if (!addr && !size) {
		/* Wait till device is idle */
		rc = hl_poll_timeout(
				hdev,
				mmDMA0_CORE_STS0/* dummy */,
				val/* dummy */,
4635 4636
				(hdev->asic_funcs->is_device_idle(hdev, NULL,
						0, NULL)),
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
						1000,
						HBM_SCRUBBING_TIMEOUT_US);
		if (rc) {
			dev_err(hdev->dev, "waiting for idle timeout\n");
			return -EIO;
		}

		/* Scrub SRAM */
		addr = prop->sram_user_base_address;
		size = hdev->pldm ? 0x10000 :
				(prop->sram_size - SRAM_USER_BASE_OFFSET);
		val = 0x7777777777777777ull;

		rc = gaudi_memset_device_memory(hdev, addr, size, val);
		if (rc) {
			dev_err(hdev->dev,
				"Failed to clear SRAM in mem scrub all\n");
			return rc;
		}

		mutex_lock(&gaudi->clk_gate_mutex);
		hdev->asic_funcs->disable_clock_gating(hdev);

		/* Scrub HBM using all DMA channels in parallel */
		rc = gaudi_hbm_scrubbing(hdev);
		if (rc)
			dev_err(hdev->dev,
				"Failed to clear HBM in mem scrub all\n");

		hdev->asic_funcs->set_clock_gating(hdev);
		mutex_unlock(&gaudi->clk_gate_mutex);
	}

	return rc;
}

4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
static void *gaudi_get_int_queue_base(struct hl_device *hdev,
				u32 queue_id, dma_addr_t *dma_handle,
				u16 *queue_len)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	struct gaudi_internal_qman_info *q;

	if (queue_id >= GAUDI_QUEUE_ID_SIZE ||
			gaudi_queue_type[queue_id] != QUEUE_TYPE_INT) {
		dev_err(hdev->dev, "Got invalid queue id %d\n", queue_id);
		return NULL;
	}

	q = &gaudi->internal_qmans[queue_id];
	*dma_handle = q->pq_dma_addr;
	*queue_len = q->pq_size / QMAN_PQ_ENTRY_SIZE;

	return q->pq_kernel_addr;
}

static int gaudi_send_cpu_message(struct hl_device *hdev, u32 *msg,
4694
				u16 len, u32 timeout, u64 *result)
4695 4696 4697 4698 4699 4700 4701 4702 4703
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	if (!(gaudi->hw_cap_initialized & HW_CAP_CPU_Q)) {
		if (result)
			*result = 0;
		return 0;
	}

4704 4705 4706
	if (!timeout)
		timeout = GAUDI_MSG_TO_CPU_TIMEOUT_USEC;

4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
	return hl_fw_send_cpu_message(hdev, GAUDI_QUEUE_ID_CPU_PQ, msg, len,
						timeout, result);
}

static int gaudi_test_queue(struct hl_device *hdev, u32 hw_queue_id)
{
	struct packet_msg_prot *fence_pkt;
	dma_addr_t pkt_dma_addr;
	u32 fence_val, tmp, timeout_usec;
	dma_addr_t fence_dma_addr;
	u32 *fence_ptr;
	int rc;

	if (hdev->pldm)
		timeout_usec = GAUDI_PLDM_TEST_QUEUE_WAIT_USEC;
	else
		timeout_usec = GAUDI_TEST_QUEUE_WAIT_USEC;

	fence_val = GAUDI_QMAN0_FENCE_VAL;

	fence_ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, 4, GFP_KERNEL,
							&fence_dma_addr);
	if (!fence_ptr) {
		dev_err(hdev->dev,
4731 4732
			"Failed to allocate memory for H/W queue %d testing\n",
			hw_queue_id);
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
		return -ENOMEM;
	}

	*fence_ptr = 0;

	fence_pkt = hdev->asic_funcs->asic_dma_pool_zalloc(hdev,
					sizeof(struct packet_msg_prot),
					GFP_KERNEL, &pkt_dma_addr);
	if (!fence_pkt) {
		dev_err(hdev->dev,
4743 4744
			"Failed to allocate packet for H/W queue %d testing\n",
			hw_queue_id);
4745 4746 4747 4748
		rc = -ENOMEM;
		goto free_fence_ptr;
	}

4749 4750 4751 4752
	tmp = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_PROT);
	tmp |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 1);
	tmp |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);

4753 4754 4755 4756 4757 4758 4759 4760 4761
	fence_pkt->ctl = cpu_to_le32(tmp);
	fence_pkt->value = cpu_to_le32(fence_val);
	fence_pkt->addr = cpu_to_le64(fence_dma_addr);

	rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id,
					sizeof(struct packet_msg_prot),
					pkt_dma_addr);
	if (rc) {
		dev_err(hdev->dev,
4762 4763
			"Failed to send fence packet to H/W queue %d\n",
			hw_queue_id);
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
		goto free_pkt;
	}

	rc = hl_poll_timeout_memory(hdev, fence_ptr, tmp, (tmp == fence_val),
					1000, timeout_usec, true);

	hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id);

	if (rc == -ETIMEDOUT) {
		dev_err(hdev->dev,
			"H/W queue %d test failed (scratch(0x%08llX) == 0x%08X)\n",
			hw_queue_id, (unsigned long long) fence_dma_addr, tmp);
		rc = -EIO;
	}

free_pkt:
	hdev->asic_funcs->asic_dma_pool_free(hdev, (void *) fence_pkt,
					pkt_dma_addr);
free_fence_ptr:
	hdev->asic_funcs->asic_dma_pool_free(hdev, (void *) fence_ptr,
					fence_dma_addr);
	return rc;
}

static int gaudi_test_cpu_queue(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	/*
	 * check capability here as send_cpu_message() won't update the result
	 * value if no capability
	 */
	if (!(gaudi->hw_cap_initialized & HW_CAP_CPU_Q))
		return 0;

	return hl_fw_test_cpu_queue(hdev);
}

static int gaudi_test_queues(struct hl_device *hdev)
{
	int i, rc, ret_val = 0;

4806
	for (i = 0 ; i < hdev->asic_prop.max_queues ; i++) {
4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
		if (hdev->asic_prop.hw_queues_props[i].type == QUEUE_TYPE_EXT) {
			rc = gaudi_test_queue(hdev, i);
			if (rc)
				ret_val = -EINVAL;
		}
	}

	rc = gaudi_test_cpu_queue(hdev);
	if (rc)
		ret_val = -EINVAL;

	return ret_val;
}

static void *gaudi_dma_pool_zalloc(struct hl_device *hdev, size_t size,
		gfp_t mem_flags, dma_addr_t *dma_handle)
{
	void *kernel_addr;

	if (size > GAUDI_DMA_POOL_BLK_SIZE)
		return NULL;

	kernel_addr = dma_pool_zalloc(hdev->dma_pool, mem_flags, dma_handle);

	/* Shift to the device's base physical address of host memory */
	if (kernel_addr)
		*dma_handle += HOST_PHYS_BASE;

	return kernel_addr;
}

static void gaudi_dma_pool_free(struct hl_device *hdev, void *vaddr,
			dma_addr_t dma_addr)
{
	/* Cancel the device's base physical address of host memory */
	dma_addr_t fixed_dma_addr = dma_addr - HOST_PHYS_BASE;

	dma_pool_free(hdev->dma_pool, vaddr, fixed_dma_addr);
}

static void *gaudi_cpu_accessible_dma_pool_alloc(struct hl_device *hdev,
					size_t size, dma_addr_t *dma_handle)
{
	return hl_fw_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle);
}

static void gaudi_cpu_accessible_dma_pool_free(struct hl_device *hdev,
						size_t size, void *vaddr)
{
	hl_fw_cpu_accessible_dma_pool_free(hdev, size, vaddr);
}

static int gaudi_dma_map_sg(struct hl_device *hdev, struct scatterlist *sgl,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	if (!dma_map_sg(&hdev->pdev->dev, sgl, nents, dir))
		return -ENOMEM;

	/* Shift to the device's base physical address of host memory */
	for_each_sg(sgl, sg, nents, i)
		sg->dma_address += HOST_PHYS_BASE;

	return 0;
}

static void gaudi_dma_unmap_sg(struct hl_device *hdev, struct scatterlist *sgl,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	/* Cancel the device's base physical address of host memory */
	for_each_sg(sgl, sg, nents, i)
		sg->dma_address -= HOST_PHYS_BASE;

	dma_unmap_sg(&hdev->pdev->dev, sgl, nents, dir);
}

static u32 gaudi_get_dma_desc_list_size(struct hl_device *hdev,
					struct sg_table *sgt)
{
	struct scatterlist *sg, *sg_next_iter;
	u32 count, dma_desc_cnt;
	u64 len, len_next;
	dma_addr_t addr, addr_next;

	dma_desc_cnt = 0;

	for_each_sg(sgt->sgl, sg, sgt->nents, count) {

		len = sg_dma_len(sg);
		addr = sg_dma_address(sg);

		if (len == 0)
			break;

		while ((count + 1) < sgt->nents) {
			sg_next_iter = sg_next(sg);
			len_next = sg_dma_len(sg_next_iter);
			addr_next = sg_dma_address(sg_next_iter);

			if (len_next == 0)
				break;

			if ((addr + len == addr_next) &&
				(len + len_next <= DMA_MAX_TRANSFER_SIZE)) {
				len += len_next;
				count++;
				sg = sg_next_iter;
			} else {
				break;
			}
		}

		dma_desc_cnt++;
	}

	return dma_desc_cnt * sizeof(struct packet_lin_dma);
}

static int gaudi_pin_memory_before_cs(struct hl_device *hdev,
				struct hl_cs_parser *parser,
				struct packet_lin_dma *user_dma_pkt,
				u64 addr, enum dma_data_direction dir)
{
	struct hl_userptr *userptr;
	int rc;

	if (hl_userptr_is_pinned(hdev, addr, le32_to_cpu(user_dma_pkt->tsize),
			parser->job_userptr_list, &userptr))
		goto already_pinned;

4942
	userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045
	if (!userptr)
		return -ENOMEM;

	rc = hl_pin_host_memory(hdev, addr, le32_to_cpu(user_dma_pkt->tsize),
				userptr);
	if (rc)
		goto free_userptr;

	list_add_tail(&userptr->job_node, parser->job_userptr_list);

	rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl,
					userptr->sgt->nents, dir);
	if (rc) {
		dev_err(hdev->dev, "failed to map sgt with DMA region\n");
		goto unpin_memory;
	}

	userptr->dma_mapped = true;
	userptr->dir = dir;

already_pinned:
	parser->patched_cb_size +=
			gaudi_get_dma_desc_list_size(hdev, userptr->sgt);

	return 0;

unpin_memory:
	hl_unpin_host_memory(hdev, userptr);
free_userptr:
	kfree(userptr);
	return rc;
}

static int gaudi_validate_dma_pkt_host(struct hl_device *hdev,
				struct hl_cs_parser *parser,
				struct packet_lin_dma *user_dma_pkt,
				bool src_in_host)
{
	enum dma_data_direction dir;
	bool skip_host_mem_pin = false, user_memset;
	u64 addr;
	int rc = 0;

	user_memset = (le32_to_cpu(user_dma_pkt->ctl) &
			GAUDI_PKT_LIN_DMA_CTL_MEMSET_MASK) >>
			GAUDI_PKT_LIN_DMA_CTL_MEMSET_SHIFT;

	if (src_in_host) {
		if (user_memset)
			skip_host_mem_pin = true;

		dev_dbg(hdev->dev, "DMA direction is HOST --> DEVICE\n");
		dir = DMA_TO_DEVICE;
		addr = le64_to_cpu(user_dma_pkt->src_addr);
	} else {
		dev_dbg(hdev->dev, "DMA direction is DEVICE --> HOST\n");
		dir = DMA_FROM_DEVICE;
		addr = (le64_to_cpu(user_dma_pkt->dst_addr) &
				GAUDI_PKT_LIN_DMA_DST_ADDR_MASK) >>
				GAUDI_PKT_LIN_DMA_DST_ADDR_SHIFT;
	}

	if (skip_host_mem_pin)
		parser->patched_cb_size += sizeof(*user_dma_pkt);
	else
		rc = gaudi_pin_memory_before_cs(hdev, parser, user_dma_pkt,
						addr, dir);

	return rc;
}

static int gaudi_validate_dma_pkt_no_mmu(struct hl_device *hdev,
				struct hl_cs_parser *parser,
				struct packet_lin_dma *user_dma_pkt)
{
	bool src_in_host = false;
	u64 dst_addr = (le64_to_cpu(user_dma_pkt->dst_addr) &
			GAUDI_PKT_LIN_DMA_DST_ADDR_MASK) >>
			GAUDI_PKT_LIN_DMA_DST_ADDR_SHIFT;

	dev_dbg(hdev->dev, "DMA packet details:\n");
	dev_dbg(hdev->dev, "source == 0x%llx\n",
				le64_to_cpu(user_dma_pkt->src_addr));
	dev_dbg(hdev->dev, "destination == 0x%llx\n", dst_addr);
	dev_dbg(hdev->dev, "size == %u\n", le32_to_cpu(user_dma_pkt->tsize));

	/*
	 * Special handling for DMA with size 0. Bypass all validations
	 * because no transactions will be done except for WR_COMP, which
	 * is not a security issue
	 */
	if (!le32_to_cpu(user_dma_pkt->tsize)) {
		parser->patched_cb_size += sizeof(*user_dma_pkt);
		return 0;
	}

	if (parser->hw_queue_id <= GAUDI_QUEUE_ID_DMA_0_3)
		src_in_host = true;

	return gaudi_validate_dma_pkt_host(hdev, parser, user_dma_pkt,
						src_in_host);
}

5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
static int gaudi_validate_load_and_exe_pkt(struct hl_device *hdev,
					struct hl_cs_parser *parser,
					struct packet_load_and_exe *user_pkt)
{
	u32 cfg;

	cfg = le32_to_cpu(user_pkt->cfg);

	if (cfg & GAUDI_PKT_LOAD_AND_EXE_CFG_DST_MASK) {
		dev_err(hdev->dev,
			"User not allowed to use Load and Execute\n");
		return -EPERM;
	}

	parser->patched_cb_size += sizeof(struct packet_load_and_exe);

	return 0;
}

5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
static int gaudi_validate_cb(struct hl_device *hdev,
			struct hl_cs_parser *parser, bool is_mmu)
{
	u32 cb_parsed_length = 0;
	int rc = 0;

	parser->patched_cb_size = 0;

	/* cb_user_size is more than 0 so loop will always be executed */
	while (cb_parsed_length < parser->user_cb_size) {
		enum packet_id pkt_id;
		u16 pkt_size;
		struct gaudi_packet *user_pkt;

5079
		user_pkt = parser->user_cb->kernel_address + cb_parsed_length;
5080 5081 5082 5083 5084 5085

		pkt_id = (enum packet_id) (
				(le64_to_cpu(user_pkt->header) &
				PACKET_HEADER_PACKET_ID_MASK) >>
					PACKET_HEADER_PACKET_ID_SHIFT);

5086 5087 5088 5089 5090 5091
		if (!validate_packet_id(pkt_id)) {
			dev_err(hdev->dev, "Invalid packet id %u\n", pkt_id);
			rc = -EINVAL;
			break;
		}

5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
		pkt_size = gaudi_packet_sizes[pkt_id];
		cb_parsed_length += pkt_size;
		if (cb_parsed_length > parser->user_cb_size) {
			dev_err(hdev->dev,
				"packet 0x%x is out of CB boundary\n", pkt_id);
			rc = -EINVAL;
			break;
		}

		switch (pkt_id) {
		case PACKET_MSG_PROT:
			dev_err(hdev->dev,
				"User not allowed to use MSG_PROT\n");
			rc = -EPERM;
			break;

		case PACKET_CP_DMA:
			dev_err(hdev->dev, "User not allowed to use CP_DMA\n");
			rc = -EPERM;
			break;

		case PACKET_STOP:
			dev_err(hdev->dev, "User not allowed to use STOP\n");
			rc = -EPERM;
			break;

5118 5119 5120 5121 5122 5123
		case PACKET_WREG_BULK:
			dev_err(hdev->dev,
				"User not allowed to use WREG_BULK\n");
			rc = -EPERM;
			break;

5124 5125 5126 5127 5128
		case PACKET_LOAD_AND_EXE:
			rc = gaudi_validate_load_and_exe_pkt(hdev, parser,
				(struct packet_load_and_exe *) user_pkt);
			break;

5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
		case PACKET_LIN_DMA:
			parser->contains_dma_pkt = true;
			if (is_mmu)
				parser->patched_cb_size += pkt_size;
			else
				rc = gaudi_validate_dma_pkt_no_mmu(hdev, parser,
					(struct packet_lin_dma *) user_pkt);
			break;

		case PACKET_WREG_32:
		case PACKET_MSG_LONG:
		case PACKET_MSG_SHORT:
		case PACKET_REPEAT:
		case PACKET_FENCE:
		case PACKET_NOP:
		case PACKET_ARB_POINT:
			parser->patched_cb_size += pkt_size;
			break;

		default:
			dev_err(hdev->dev, "Invalid packet header 0x%x\n",
				pkt_id);
			rc = -EINVAL;
			break;
		}

		if (rc)
			break;
	}

	/*
	 * The new CB should have space at the end for two MSG_PROT packets:
	 * 1. A packet that will act as a completion packet
	 * 2. A packet that will generate MSI-X interrupt
	 */
5164 5165
	if (parser->completion)
		parser->patched_cb_size += sizeof(struct packet_msg_prot) * 2;
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302

	return rc;
}

static int gaudi_patch_dma_packet(struct hl_device *hdev,
				struct hl_cs_parser *parser,
				struct packet_lin_dma *user_dma_pkt,
				struct packet_lin_dma *new_dma_pkt,
				u32 *new_dma_pkt_size)
{
	struct hl_userptr *userptr;
	struct scatterlist *sg, *sg_next_iter;
	u32 count, dma_desc_cnt, user_wrcomp_en_mask, ctl;
	u64 len, len_next;
	dma_addr_t dma_addr, dma_addr_next;
	u64 device_memory_addr, addr;
	enum dma_data_direction dir;
	struct sg_table *sgt;
	bool src_in_host = false;
	bool skip_host_mem_pin = false;
	bool user_memset;

	ctl = le32_to_cpu(user_dma_pkt->ctl);

	if (parser->hw_queue_id <= GAUDI_QUEUE_ID_DMA_0_3)
		src_in_host = true;

	user_memset = (ctl & GAUDI_PKT_LIN_DMA_CTL_MEMSET_MASK) >>
			GAUDI_PKT_LIN_DMA_CTL_MEMSET_SHIFT;

	if (src_in_host) {
		addr = le64_to_cpu(user_dma_pkt->src_addr);
		device_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr);
		dir = DMA_TO_DEVICE;
		if (user_memset)
			skip_host_mem_pin = true;
	} else {
		addr = le64_to_cpu(user_dma_pkt->dst_addr);
		device_memory_addr = le64_to_cpu(user_dma_pkt->src_addr);
		dir = DMA_FROM_DEVICE;
	}

	if ((!skip_host_mem_pin) &&
		(!hl_userptr_is_pinned(hdev, addr,
					le32_to_cpu(user_dma_pkt->tsize),
					parser->job_userptr_list, &userptr))) {
		dev_err(hdev->dev, "Userptr 0x%llx + 0x%x NOT mapped\n",
				addr, user_dma_pkt->tsize);
		return -EFAULT;
	}

	if ((user_memset) && (dir == DMA_TO_DEVICE)) {
		memcpy(new_dma_pkt, user_dma_pkt, sizeof(*user_dma_pkt));
		*new_dma_pkt_size = sizeof(*user_dma_pkt);
		return 0;
	}

	user_wrcomp_en_mask = ctl & GAUDI_PKT_LIN_DMA_CTL_WRCOMP_EN_MASK;

	sgt = userptr->sgt;
	dma_desc_cnt = 0;

	for_each_sg(sgt->sgl, sg, sgt->nents, count) {
		len = sg_dma_len(sg);
		dma_addr = sg_dma_address(sg);

		if (len == 0)
			break;

		while ((count + 1) < sgt->nents) {
			sg_next_iter = sg_next(sg);
			len_next = sg_dma_len(sg_next_iter);
			dma_addr_next = sg_dma_address(sg_next_iter);

			if (len_next == 0)
				break;

			if ((dma_addr + len == dma_addr_next) &&
				(len + len_next <= DMA_MAX_TRANSFER_SIZE)) {
				len += len_next;
				count++;
				sg = sg_next_iter;
			} else {
				break;
			}
		}

		ctl = le32_to_cpu(user_dma_pkt->ctl);
		if (likely(dma_desc_cnt))
			ctl &= ~GAUDI_PKT_CTL_EB_MASK;
		ctl &= ~GAUDI_PKT_LIN_DMA_CTL_WRCOMP_EN_MASK;
		new_dma_pkt->ctl = cpu_to_le32(ctl);
		new_dma_pkt->tsize = cpu_to_le32(len);

		if (dir == DMA_TO_DEVICE) {
			new_dma_pkt->src_addr = cpu_to_le64(dma_addr);
			new_dma_pkt->dst_addr = cpu_to_le64(device_memory_addr);
		} else {
			new_dma_pkt->src_addr = cpu_to_le64(device_memory_addr);
			new_dma_pkt->dst_addr = cpu_to_le64(dma_addr);
		}

		if (!user_memset)
			device_memory_addr += len;
		dma_desc_cnt++;
		new_dma_pkt++;
	}

	if (!dma_desc_cnt) {
		dev_err(hdev->dev,
			"Error of 0 SG entries when patching DMA packet\n");
		return -EFAULT;
	}

	/* Fix the last dma packet - wrcomp must be as user set it */
	new_dma_pkt--;
	new_dma_pkt->ctl |= cpu_to_le32(user_wrcomp_en_mask);

	*new_dma_pkt_size = dma_desc_cnt * sizeof(struct packet_lin_dma);

	return 0;
}

static int gaudi_patch_cb(struct hl_device *hdev,
				struct hl_cs_parser *parser)
{
	u32 cb_parsed_length = 0;
	u32 cb_patched_cur_length = 0;
	int rc = 0;

	/* cb_user_size is more than 0 so loop will always be executed */
	while (cb_parsed_length < parser->user_cb_size) {
		enum packet_id pkt_id;
		u16 pkt_size;
		u32 new_pkt_size = 0;
		struct gaudi_packet *user_pkt, *kernel_pkt;

5303 5304 5305
		user_pkt = parser->user_cb->kernel_address + cb_parsed_length;
		kernel_pkt = parser->patched_cb->kernel_address +
					cb_patched_cur_length;
5306 5307 5308 5309 5310 5311

		pkt_id = (enum packet_id) (
				(le64_to_cpu(user_pkt->header) &
				PACKET_HEADER_PACKET_ID_MASK) >>
					PACKET_HEADER_PACKET_ID_SHIFT);

5312 5313 5314 5315 5316 5317
		if (!validate_packet_id(pkt_id)) {
			dev_err(hdev->dev, "Invalid packet id %u\n", pkt_id);
			rc = -EINVAL;
			break;
		}

5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
		pkt_size = gaudi_packet_sizes[pkt_id];
		cb_parsed_length += pkt_size;
		if (cb_parsed_length > parser->user_cb_size) {
			dev_err(hdev->dev,
				"packet 0x%x is out of CB boundary\n", pkt_id);
			rc = -EINVAL;
			break;
		}

		switch (pkt_id) {
		case PACKET_LIN_DMA:
			rc = gaudi_patch_dma_packet(hdev, parser,
					(struct packet_lin_dma *) user_pkt,
					(struct packet_lin_dma *) kernel_pkt,
					&new_pkt_size);
			cb_patched_cur_length += new_pkt_size;
			break;

		case PACKET_MSG_PROT:
			dev_err(hdev->dev,
				"User not allowed to use MSG_PROT\n");
			rc = -EPERM;
			break;

		case PACKET_CP_DMA:
			dev_err(hdev->dev, "User not allowed to use CP_DMA\n");
			rc = -EPERM;
			break;

		case PACKET_STOP:
			dev_err(hdev->dev, "User not allowed to use STOP\n");
			rc = -EPERM;
			break;

		case PACKET_WREG_32:
		case PACKET_WREG_BULK:
		case PACKET_MSG_LONG:
		case PACKET_MSG_SHORT:
		case PACKET_REPEAT:
		case PACKET_FENCE:
		case PACKET_NOP:
		case PACKET_ARB_POINT:
		case PACKET_LOAD_AND_EXE:
			memcpy(kernel_pkt, user_pkt, pkt_size);
			cb_patched_cur_length += pkt_size;
			break;

		default:
			dev_err(hdev->dev, "Invalid packet header 0x%x\n",
				pkt_id);
			rc = -EINVAL;
			break;
		}

		if (rc)
			break;
	}

	return rc;
}

static int gaudi_parse_cb_mmu(struct hl_device *hdev,
		struct hl_cs_parser *parser)
{
	u64 patched_cb_handle;
	u32 patched_cb_size;
	struct hl_cb *user_cb;
	int rc;

	/*
	 * The new CB should have space at the end for two MSG_PROT pkt:
	 * 1. A packet that will act as a completion packet
	 * 2. A packet that will generate MSI interrupt
	 */
5392 5393 5394 5395 5396
	if (parser->completion)
		parser->patched_cb_size = parser->user_cb_size +
				sizeof(struct packet_msg_prot) * 2;
	else
		parser->patched_cb_size = parser->user_cb_size;
5397

5398
	rc = hl_cb_create(hdev, &hdev->kernel_cb_mgr, hdev->kernel_ctx,
5399
				parser->patched_cb_size, false, false,
5400
				&patched_cb_handle);
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411

	if (rc) {
		dev_err(hdev->dev,
			"Failed to allocate patched CB for DMA CS %d\n",
			rc);
		return rc;
	}

	patched_cb_handle >>= PAGE_SHIFT;
	parser->patched_cb = hl_cb_get(hdev, &hdev->kernel_cb_mgr,
				(u32) patched_cb_handle);
5412
	/* hl_cb_get should never fail */
5413
	if (!parser->patched_cb) {
5414 5415
		dev_crit(hdev->dev, "DMA CB handle invalid 0x%x\n",
			(u32) patched_cb_handle);
5416 5417 5418 5419 5420 5421 5422 5423
		rc = -EFAULT;
		goto out;
	}

	/*
	 * The check that parser->user_cb_size <= parser->user_cb->size was done
	 * in validate_queue_index().
	 */
5424 5425
	memcpy(parser->patched_cb->kernel_address,
		parser->user_cb->kernel_address,
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
		parser->user_cb_size);

	patched_cb_size = parser->patched_cb_size;

	/* Validate patched CB instead of user CB */
	user_cb = parser->user_cb;
	parser->user_cb = parser->patched_cb;
	rc = gaudi_validate_cb(hdev, parser, true);
	parser->user_cb = user_cb;

	if (rc) {
		hl_cb_put(parser->patched_cb);
		goto out;
	}

	if (patched_cb_size != parser->patched_cb_size) {
		dev_err(hdev->dev, "user CB size mismatch\n");
		hl_cb_put(parser->patched_cb);
		rc = -EINVAL;
		goto out;
	}

out:
	/*
	 * Always call cb destroy here because we still have 1 reference
	 * to it by calling cb_get earlier. After the job will be completed,
	 * cb_put will release it, but here we want to remove it from the
	 * idr
	 */
	hl_cb_destroy(hdev, &hdev->kernel_cb_mgr,
					patched_cb_handle << PAGE_SHIFT);

	return rc;
}

static int gaudi_parse_cb_no_mmu(struct hl_device *hdev,
		struct hl_cs_parser *parser)
{
	u64 patched_cb_handle;
	int rc;

	rc = gaudi_validate_cb(hdev, parser, false);

	if (rc)
		goto free_userptr;

5472
	rc = hl_cb_create(hdev, &hdev->kernel_cb_mgr, hdev->kernel_ctx,
5473
				parser->patched_cb_size, false, false,
5474
				&patched_cb_handle);
5475 5476 5477 5478 5479 5480 5481 5482 5483
	if (rc) {
		dev_err(hdev->dev,
			"Failed to allocate patched CB for DMA CS %d\n", rc);
		goto free_userptr;
	}

	patched_cb_handle >>= PAGE_SHIFT;
	parser->patched_cb = hl_cb_get(hdev, &hdev->kernel_cb_mgr,
				(u32) patched_cb_handle);
5484
	/* hl_cb_get should never fail here */
5485
	if (!parser->patched_cb) {
5486 5487
		dev_crit(hdev->dev, "DMA CB handle invalid 0x%x\n",
				(u32) patched_cb_handle);
5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516
		rc = -EFAULT;
		goto out;
	}

	rc = gaudi_patch_cb(hdev, parser);

	if (rc)
		hl_cb_put(parser->patched_cb);

out:
	/*
	 * Always call cb destroy here because we still have 1 reference
	 * to it by calling cb_get earlier. After the job will be completed,
	 * cb_put will release it, but here we want to remove it from the
	 * idr
	 */
	hl_cb_destroy(hdev, &hdev->kernel_cb_mgr,
				patched_cb_handle << PAGE_SHIFT);

free_userptr:
	if (rc)
		hl_userptr_delete_list(hdev, parser->job_userptr_list);
	return rc;
}

static int gaudi_parse_cb_no_ext_queue(struct hl_device *hdev,
					struct hl_cs_parser *parser)
{
	struct asic_fixed_properties *asic_prop = &hdev->asic_prop;
5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
	struct gaudi_device *gaudi = hdev->asic_specific;
	u32 nic_mask_q_id = 1 << (HW_CAP_NIC_SHIFT +
		((parser->hw_queue_id - GAUDI_QUEUE_ID_NIC_0_0) >> 2));

	if ((parser->hw_queue_id >= GAUDI_QUEUE_ID_NIC_0_0) &&
			(parser->hw_queue_id <= GAUDI_QUEUE_ID_NIC_9_3) &&
			(!(gaudi->hw_cap_initialized & nic_mask_q_id))) {
		dev_err(hdev->dev, "h/w queue %d is disabled\n",
				parser->hw_queue_id);
		return -EINVAL;
	}
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569

	/* For internal queue jobs just check if CB address is valid */
	if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb,
					parser->user_cb_size,
					asic_prop->sram_user_base_address,
					asic_prop->sram_end_address))
		return 0;

	if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb,
					parser->user_cb_size,
					asic_prop->dram_user_base_address,
					asic_prop->dram_end_address))
		return 0;

	/* PMMU and HPMMU addresses are equal, check only one of them */
	if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb,
					parser->user_cb_size,
					asic_prop->pmmu.start_addr,
					asic_prop->pmmu.end_addr))
		return 0;

	dev_err(hdev->dev,
		"CB address 0x%px + 0x%x for internal QMAN is not valid\n",
		parser->user_cb, parser->user_cb_size);

	return -EFAULT;
}

static int gaudi_cs_parser(struct hl_device *hdev, struct hl_cs_parser *parser)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	if (parser->queue_type == QUEUE_TYPE_INT)
		return gaudi_parse_cb_no_ext_queue(hdev, parser);

	if (gaudi->hw_cap_initialized & HW_CAP_MMU)
		return gaudi_parse_cb_mmu(hdev, parser);
	else
		return gaudi_parse_cb_no_mmu(hdev, parser);
}

static void gaudi_add_end_of_cb_packets(struct hl_device *hdev,
5570
					void *kernel_address, u32 len,
5571 5572 5573 5574 5575 5576 5577
					u64 cq_addr, u32 cq_val, u32 msi_vec,
					bool eb)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	struct packet_msg_prot *cq_pkt;
	u32 tmp;

5578
	cq_pkt = kernel_address + len - (sizeof(struct packet_msg_prot) * 2);
5579

5580 5581
	tmp = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_PROT);
	tmp |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);
5582 5583

	if (eb)
5584
		tmp |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 1);
5585 5586 5587 5588 5589 5590 5591

	cq_pkt->ctl = cpu_to_le32(tmp);
	cq_pkt->value = cpu_to_le32(cq_val);
	cq_pkt->addr = cpu_to_le64(cq_addr);

	cq_pkt++;

5592 5593
	tmp = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_PROT);
	tmp |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612
	cq_pkt->ctl = cpu_to_le32(tmp);
	cq_pkt->value = cpu_to_le32(1);

	if (!gaudi->multi_msi_mode)
		msi_vec = 0;

	cq_pkt->addr = cpu_to_le64(CFG_BASE + mmPCIE_MSI_INTR_0 + msi_vec * 4);
}

static void gaudi_update_eq_ci(struct hl_device *hdev, u32 val)
{
	WREG32(mmCPU_IF_EQ_RD_OFFS, val);
}

static int gaudi_memset_device_memory(struct hl_device *hdev, u64 addr,
					u32 size, u64 val)
{
	struct packet_lin_dma *lin_dma_pkt;
	struct hl_cs_job *job;
5613
	u32 cb_size, ctl, err_cause;
5614 5615 5616
	struct hl_cb *cb;
	int rc;

5617
	cb = hl_cb_kernel_create(hdev, PAGE_SIZE, false);
5618 5619 5620
	if (!cb)
		return -EFAULT;

5621
	lin_dma_pkt = cb->kernel_address;
5622 5623 5624
	memset(lin_dma_pkt, 0, sizeof(*lin_dma_pkt));
	cb_size = sizeof(*lin_dma_pkt);

5625 5626 5627 5628 5629 5630
	ctl = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_LIN_DMA);
	ctl |= FIELD_PREP(GAUDI_PKT_LIN_DMA_CTL_MEMSET_MASK, 1);
	ctl |= FIELD_PREP(GAUDI_PKT_LIN_DMA_CTL_LIN_MASK, 1);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1);

5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
	lin_dma_pkt->ctl = cpu_to_le32(ctl);
	lin_dma_pkt->src_addr = cpu_to_le64(val);
	lin_dma_pkt->dst_addr |= cpu_to_le64(addr);
	lin_dma_pkt->tsize = cpu_to_le32(size);

	job = hl_cs_allocate_job(hdev, QUEUE_TYPE_EXT, true);
	if (!job) {
		dev_err(hdev->dev, "Failed to allocate a new job\n");
		rc = -ENOMEM;
		goto release_cb;
	}

5643 5644 5645 5646 5647 5648 5649 5650 5651
	/* Verify DMA is OK */
	err_cause = RREG32(mmDMA0_CORE_ERR_CAUSE);
	if (err_cause && !hdev->init_done) {
		dev_dbg(hdev->dev,
			"Clearing DMA0 engine from errors (cause 0x%x)\n",
			err_cause);
		WREG32(mmDMA0_CORE_ERR_CAUSE, err_cause);
	}

5652 5653
	job->id = 0;
	job->user_cb = cb;
5654
	atomic_inc(&job->user_cb->cs_cnt);
5655 5656 5657 5658 5659 5660 5661 5662 5663 5664
	job->user_cb_size = cb_size;
	job->hw_queue_id = GAUDI_QUEUE_ID_DMA_0_0;
	job->patched_cb = job->user_cb;
	job->job_cb_size = job->user_cb_size + sizeof(struct packet_msg_prot);

	hl_debugfs_add_job(hdev, job);

	rc = gaudi_send_job_on_qman0(hdev, job);
	hl_debugfs_remove_job(hdev, job);
	kfree(job);
5665
	atomic_dec(&cb->cs_cnt);
5666

5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
	/* Verify DMA is OK */
	err_cause = RREG32(mmDMA0_CORE_ERR_CAUSE);
	if (err_cause) {
		dev_err(hdev->dev, "DMA Failed, cause 0x%x\n", err_cause);
		rc = -EIO;
		if (!hdev->init_done) {
			dev_dbg(hdev->dev,
				"Clearing DMA0 engine from errors (cause 0x%x)\n",
				err_cause);
			WREG32(mmDMA0_CORE_ERR_CAUSE, err_cause);
		}
	}

5680 5681 5682 5683 5684 5685 5686
release_cb:
	hl_cb_put(cb);
	hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT);

	return rc;
}

5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751
static int gaudi_memset_registers(struct hl_device *hdev, u64 reg_base,
					u32 num_regs, u32 val)
{
	struct packet_msg_long *pkt;
	struct hl_cs_job *job;
	u32 cb_size, ctl;
	struct hl_cb *cb;
	int i, rc;

	cb_size = (sizeof(*pkt) * num_regs) + sizeof(struct packet_msg_prot);

	if (cb_size > SZ_2M) {
		dev_err(hdev->dev, "CB size must be smaller than %uMB", SZ_2M);
		return -ENOMEM;
	}

	cb = hl_cb_kernel_create(hdev, cb_size, false);
	if (!cb)
		return -EFAULT;

	pkt = cb->kernel_address;

	ctl = FIELD_PREP(GAUDI_PKT_LONG_CTL_OP_MASK, 0); /* write the value */
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_LONG);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 1);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);

	for (i = 0; i < num_regs ; i++, pkt++) {
		pkt->ctl = cpu_to_le32(ctl);
		pkt->value = cpu_to_le32(val);
		pkt->addr = cpu_to_le64(reg_base + (i * 4));
	}

	job = hl_cs_allocate_job(hdev, QUEUE_TYPE_EXT, true);
	if (!job) {
		dev_err(hdev->dev, "Failed to allocate a new job\n");
		rc = -ENOMEM;
		goto release_cb;
	}

	job->id = 0;
	job->user_cb = cb;
	atomic_inc(&job->user_cb->cs_cnt);
	job->user_cb_size = cb_size;
	job->hw_queue_id = GAUDI_QUEUE_ID_DMA_0_0;
	job->patched_cb = job->user_cb;
	job->job_cb_size = cb_size;

	hl_debugfs_add_job(hdev, job);

	rc = gaudi_send_job_on_qman0(hdev, job);
	hl_debugfs_remove_job(hdev, job);
	kfree(job);
	atomic_dec(&cb->cs_cnt);

release_cb:
	hl_cb_put(cb);
	hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT);

	return rc;
}

static int gaudi_schedule_register_memset(struct hl_device *hdev,
		u32 hw_queue_id, u64 reg_base, u32 num_regs, u32 val)
5752
{
5753
	struct hl_ctx *ctx;
5754 5755 5756 5757
	struct hl_pending_cb *pending_cb;
	struct packet_msg_long *pkt;
	u32 cb_size, ctl;
	struct hl_cb *cb;
5758 5759 5760 5761
	int i, rc;

	mutex_lock(&hdev->fpriv_list_lock);
	ctx = hdev->compute_ctx;
5762

5763 5764 5765
	/* If no compute context available or context is going down
	 * memset registers directly
	 */
5766 5767 5768 5769 5770 5771 5772
	if (!ctx || kref_read(&ctx->refcount) == 0) {
		rc = gaudi_memset_registers(hdev, reg_base, num_regs, val);
		mutex_unlock(&hdev->fpriv_list_lock);
		return rc;
	}

	mutex_unlock(&hdev->fpriv_list_lock);
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849

	cb_size = (sizeof(*pkt) * num_regs) +
			sizeof(struct packet_msg_prot) * 2;

	if (cb_size > SZ_2M) {
		dev_err(hdev->dev, "CB size must be smaller than %uMB", SZ_2M);
		return -ENOMEM;
	}

	pending_cb = kzalloc(sizeof(*pending_cb), GFP_KERNEL);
	if (!pending_cb)
		return -ENOMEM;

	cb = hl_cb_kernel_create(hdev, cb_size, false);
	if (!cb) {
		kfree(pending_cb);
		return -EFAULT;
	}

	pkt = cb->kernel_address;

	ctl = FIELD_PREP(GAUDI_PKT_LONG_CTL_OP_MASK, 0); /* write the value */
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_LONG);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 1);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);

	for (i = 0; i < num_regs ; i++, pkt++) {
		pkt->ctl = cpu_to_le32(ctl);
		pkt->value = cpu_to_le32(val);
		pkt->addr = cpu_to_le64(reg_base + (i * 4));
	}

	hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT);

	pending_cb->cb = cb;
	pending_cb->cb_size = cb_size;
	/* The queue ID MUST be an external queue ID. Otherwise, we will
	 * have undefined behavior
	 */
	pending_cb->hw_queue_id = hw_queue_id;

	spin_lock(&ctx->pending_cb_lock);
	list_add_tail(&pending_cb->cb_node, &ctx->pending_cb_list);
	spin_unlock(&ctx->pending_cb_lock);

	return 0;
}

static int gaudi_restore_sm_registers(struct hl_device *hdev)
{
	u64 base_addr;
	u32 num_regs;
	int rc;

	base_addr = CFG_BASE + mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0;
	num_regs = NUM_OF_SOB_IN_BLOCK;
	rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0);
	if (rc) {
		dev_err(hdev->dev, "failed resetting SM registers");
		return -ENOMEM;
	}

	base_addr = CFG_BASE +  mmSYNC_MNGR_E_S_SYNC_MNGR_OBJS_SOB_OBJ_0;
	num_regs = NUM_OF_SOB_IN_BLOCK;
	rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0);
	if (rc) {
		dev_err(hdev->dev, "failed resetting SM registers");
		return -ENOMEM;
	}

	base_addr = CFG_BASE +  mmSYNC_MNGR_W_N_SYNC_MNGR_OBJS_SOB_OBJ_0;
	num_regs = NUM_OF_SOB_IN_BLOCK;
	rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0);
	if (rc) {
		dev_err(hdev->dev, "failed resetting SM registers");
		return -ENOMEM;
5850 5851
	}

5852 5853 5854 5855 5856 5857
	base_addr = CFG_BASE +  mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_STATUS_0;
	num_regs = NUM_OF_MONITORS_IN_BLOCK;
	rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0);
	if (rc) {
		dev_err(hdev->dev, "failed resetting SM registers");
		return -ENOMEM;
5858 5859
	}

5860 5861 5862 5863 5864 5865 5866
	base_addr = CFG_BASE +  mmSYNC_MNGR_E_S_SYNC_MNGR_OBJS_MON_STATUS_0;
	num_regs = NUM_OF_MONITORS_IN_BLOCK;
	rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0);
	if (rc) {
		dev_err(hdev->dev, "failed resetting SM registers");
		return -ENOMEM;
	}
5867

5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883
	base_addr = CFG_BASE +  mmSYNC_MNGR_W_N_SYNC_MNGR_OBJS_MON_STATUS_0;
	num_regs = NUM_OF_MONITORS_IN_BLOCK;
	rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0);
	if (rc) {
		dev_err(hdev->dev, "failed resetting SM registers");
		return -ENOMEM;
	}

	base_addr = CFG_BASE +  mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0 +
			(GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT * 4);
	num_regs = NUM_OF_SOB_IN_BLOCK - GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT;
	rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0);
	if (rc) {
		dev_err(hdev->dev, "failed resetting SM registers");
		return -ENOMEM;
	}
5884

5885 5886 5887 5888 5889 5890 5891 5892
	base_addr = CFG_BASE +  mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_STATUS_0 +
			(GAUDI_FIRST_AVAILABLE_W_S_MONITOR * 4);
	num_regs = NUM_OF_MONITORS_IN_BLOCK - GAUDI_FIRST_AVAILABLE_W_S_MONITOR;
	rc = gaudi_memset_registers(hdev, base_addr, num_regs, 0);
	if (rc) {
		dev_err(hdev->dev, "failed resetting SM registers");
		return -ENOMEM;
	}
5893

5894
	return 0;
5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942
}

static void gaudi_restore_dma_registers(struct hl_device *hdev)
{
	u32 sob_delta = mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_1 -
			mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0;
	int i;

	for (i = 0 ; i < DMA_NUMBER_OF_CHANNELS ; i++) {
		u64 sob_addr = CFG_BASE +
				mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0 +
				(i * sob_delta);
		u32 dma_offset = i * DMA_CORE_OFFSET;

		WREG32(mmDMA0_CORE_WR_COMP_ADDR_LO + dma_offset,
				lower_32_bits(sob_addr));
		WREG32(mmDMA0_CORE_WR_COMP_ADDR_HI + dma_offset,
				upper_32_bits(sob_addr));
		WREG32(mmDMA0_CORE_WR_COMP_WDATA + dma_offset, 0x80000001);

		/* For DMAs 2-7, need to restore WR_AWUSER_31_11 as it can be
		 * modified by the user for SRAM reduction
		 */
		if (i > 1)
			WREG32(mmDMA0_CORE_WR_AWUSER_31_11 + dma_offset,
								0x00000001);
	}
}

static void gaudi_restore_qm_registers(struct hl_device *hdev)
{
	u32 qman_offset;
	int i;

	for (i = 0 ; i < DMA_NUMBER_OF_CHANNELS ; i++) {
		qman_offset = i * DMA_QMAN_OFFSET;
		WREG32(mmDMA0_QM_ARB_CFG_0 + qman_offset, 0);
	}

	for (i = 0 ; i < MME_NUMBER_OF_MASTER_ENGINES ; i++) {
		qman_offset = i * (mmMME2_QM_BASE - mmMME0_QM_BASE);
		WREG32(mmMME0_QM_ARB_CFG_0 + qman_offset, 0);
	}

	for (i = 0 ; i < TPC_NUMBER_OF_ENGINES ; i++) {
		qman_offset = i * TPC_QMAN_OFFSET;
		WREG32(mmTPC0_QM_ARB_CFG_0 + qman_offset, 0);
	}
5943 5944 5945 5946 5947 5948

	for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++) {
		qman_offset = (i >> 1) * NIC_MACRO_QMAN_OFFSET +
				(i & 0x1) * NIC_ENGINE_QMAN_OFFSET;
		WREG32(mmNIC0_QM0_ARB_CFG_0 + qman_offset, 0);
	}
5949 5950
}

5951
static int gaudi_restore_user_registers(struct hl_device *hdev)
5952
{
5953 5954 5955 5956 5957 5958
	int rc;

	rc = gaudi_restore_sm_registers(hdev);
	if (rc)
		return rc;

5959 5960
	gaudi_restore_dma_registers(hdev);
	gaudi_restore_qm_registers(hdev);
5961 5962

	return 0;
5963 5964 5965 5966
}

static int gaudi_context_switch(struct hl_device *hdev, u32 asid)
{
5967
	return gaudi_restore_user_registers(hdev);
5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987
}

static int gaudi_mmu_clear_pgt_range(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct gaudi_device *gaudi = hdev->asic_specific;
	u64 addr = prop->mmu_pgt_addr;
	u32 size = prop->mmu_pgt_size + MMU_CACHE_MNG_SIZE;

	if (!(gaudi->hw_cap_initialized & HW_CAP_MMU))
		return 0;

	return gaudi_memset_device_memory(hdev, addr, size, 0);
}

static void gaudi_restore_phase_topology(struct hl_device *hdev)
{

}

5988 5989
static int gaudi_debugfs_read32(struct hl_device *hdev, u64 addr,
			bool user_address, u32 *val)
5990 5991 5992
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct gaudi_device *gaudi = hdev->asic_specific;
5993
	u64 hbm_bar_addr, host_phys_end;
5994 5995
	int rc = 0;

5996 5997
	host_phys_end = HOST_PHYS_BASE + HOST_PHYS_SIZE;

5998
	if ((addr >= CFG_BASE) && (addr < CFG_BASE + CFG_SIZE)) {
5999 6000 6001 6002 6003

		if ((gaudi->hw_cap_initialized & HW_CAP_CLK_GATE) &&
				(hdev->clock_gating_mask &
						GAUDI_CLK_GATE_DEBUGFS_MASK)) {

6004 6005 6006 6007 6008 6009
			dev_err_ratelimited(hdev->dev,
				"Can't read register - clock gating is enabled!\n");
			rc = -EFAULT;
		} else {
			*val = RREG32(addr - CFG_BASE);
		}
6010

6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028
	} else if ((addr >= SRAM_BASE_ADDR) &&
			(addr < SRAM_BASE_ADDR + SRAM_BAR_SIZE)) {
		*val = readl(hdev->pcie_bar[SRAM_BAR_ID] +
				(addr - SRAM_BASE_ADDR));
	} else if (addr < DRAM_PHYS_BASE + hdev->asic_prop.dram_size) {
		u64 bar_base_addr = DRAM_PHYS_BASE +
				(addr & ~(prop->dram_pci_bar_size - 0x1ull));

		hbm_bar_addr = gaudi_set_hbm_bar_base(hdev, bar_base_addr);
		if (hbm_bar_addr != U64_MAX) {
			*val = readl(hdev->pcie_bar[HBM_BAR_ID] +
						(addr - bar_base_addr));

			hbm_bar_addr = gaudi_set_hbm_bar_base(hdev,
						hbm_bar_addr);
		}
		if (hbm_bar_addr == U64_MAX)
			rc = -EIO;
6029 6030 6031
	} else if (addr >= HOST_PHYS_BASE && addr < host_phys_end &&
			user_address && !iommu_present(&pci_bus_type)) {
		*val = *(u32 *) phys_to_virt(addr - HOST_PHYS_BASE);
6032 6033 6034 6035 6036 6037 6038
	} else {
		rc = -EFAULT;
	}

	return rc;
}

6039 6040
static int gaudi_debugfs_write32(struct hl_device *hdev, u64 addr,
			bool user_address, u32 val)
6041 6042 6043
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct gaudi_device *gaudi = hdev->asic_specific;
6044
	u64 hbm_bar_addr, host_phys_end;
6045 6046
	int rc = 0;

6047 6048
	host_phys_end = HOST_PHYS_BASE + HOST_PHYS_SIZE;

6049
	if ((addr >= CFG_BASE) && (addr < CFG_BASE + CFG_SIZE)) {
6050 6051 6052 6053 6054

		if ((gaudi->hw_cap_initialized & HW_CAP_CLK_GATE) &&
				(hdev->clock_gating_mask &
						GAUDI_CLK_GATE_DEBUGFS_MASK)) {

6055 6056 6057 6058 6059 6060
			dev_err_ratelimited(hdev->dev,
				"Can't write register - clock gating is enabled!\n");
			rc = -EFAULT;
		} else {
			WREG32(addr - CFG_BASE, val);
		}
6061

6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
	} else if ((addr >= SRAM_BASE_ADDR) &&
			(addr < SRAM_BASE_ADDR + SRAM_BAR_SIZE)) {
		writel(val, hdev->pcie_bar[SRAM_BAR_ID] +
					(addr - SRAM_BASE_ADDR));
	} else if (addr < DRAM_PHYS_BASE + hdev->asic_prop.dram_size) {
		u64 bar_base_addr = DRAM_PHYS_BASE +
				(addr & ~(prop->dram_pci_bar_size - 0x1ull));

		hbm_bar_addr = gaudi_set_hbm_bar_base(hdev, bar_base_addr);
		if (hbm_bar_addr != U64_MAX) {
			writel(val, hdev->pcie_bar[HBM_BAR_ID] +
						(addr - bar_base_addr));

			hbm_bar_addr = gaudi_set_hbm_bar_base(hdev,
						hbm_bar_addr);
		}
		if (hbm_bar_addr == U64_MAX)
			rc = -EIO;
6080 6081 6082
	} else if (addr >= HOST_PHYS_BASE && addr < host_phys_end &&
			user_address && !iommu_present(&pci_bus_type)) {
		*(u32 *) phys_to_virt(addr - HOST_PHYS_BASE) = val;
6083 6084 6085 6086 6087 6088 6089
	} else {
		rc = -EFAULT;
	}

	return rc;
}

6090 6091
static int gaudi_debugfs_read64(struct hl_device *hdev, u64 addr,
				bool user_address, u64 *val)
6092 6093 6094
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct gaudi_device *gaudi = hdev->asic_specific;
6095
	u64 hbm_bar_addr, host_phys_end;
6096 6097
	int rc = 0;

6098 6099
	host_phys_end = HOST_PHYS_BASE + HOST_PHYS_SIZE;

6100
	if ((addr >= CFG_BASE) && (addr <= CFG_BASE + CFG_SIZE - sizeof(u64))) {
6101 6102 6103 6104 6105

		if ((gaudi->hw_cap_initialized & HW_CAP_CLK_GATE) &&
				(hdev->clock_gating_mask &
						GAUDI_CLK_GATE_DEBUGFS_MASK)) {

6106 6107 6108 6109 6110 6111 6112 6113 6114
			dev_err_ratelimited(hdev->dev,
				"Can't read register - clock gating is enabled!\n");
			rc = -EFAULT;
		} else {
			u32 val_l = RREG32(addr - CFG_BASE);
			u32 val_h = RREG32(addr + sizeof(u32) - CFG_BASE);

			*val = (((u64) val_h) << 32) | val_l;
		}
6115

6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
	} else if ((addr >= SRAM_BASE_ADDR) &&
		   (addr <= SRAM_BASE_ADDR + SRAM_BAR_SIZE - sizeof(u64))) {
		*val = readq(hdev->pcie_bar[SRAM_BAR_ID] +
				(addr - SRAM_BASE_ADDR));
	} else if (addr <=
		    DRAM_PHYS_BASE + hdev->asic_prop.dram_size - sizeof(u64)) {
		u64 bar_base_addr = DRAM_PHYS_BASE +
				(addr & ~(prop->dram_pci_bar_size - 0x1ull));

		hbm_bar_addr = gaudi_set_hbm_bar_base(hdev, bar_base_addr);
		if (hbm_bar_addr != U64_MAX) {
			*val = readq(hdev->pcie_bar[HBM_BAR_ID] +
						(addr - bar_base_addr));

			hbm_bar_addr = gaudi_set_hbm_bar_base(hdev,
						hbm_bar_addr);
		}
		if (hbm_bar_addr == U64_MAX)
			rc = -EIO;
6135 6136 6137
	} else if (addr >= HOST_PHYS_BASE && addr < host_phys_end &&
			user_address && !iommu_present(&pci_bus_type)) {
		*val = *(u64 *) phys_to_virt(addr - HOST_PHYS_BASE);
6138 6139 6140 6141 6142 6143 6144
	} else {
		rc = -EFAULT;
	}

	return rc;
}

6145 6146
static int gaudi_debugfs_write64(struct hl_device *hdev, u64 addr,
				bool user_address, u64 val)
6147 6148 6149
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct gaudi_device *gaudi = hdev->asic_specific;
6150
	u64 hbm_bar_addr, host_phys_end;
6151 6152
	int rc = 0;

6153 6154
	host_phys_end = HOST_PHYS_BASE + HOST_PHYS_SIZE;

6155
	if ((addr >= CFG_BASE) && (addr <= CFG_BASE + CFG_SIZE - sizeof(u64))) {
6156 6157 6158 6159 6160

		if ((gaudi->hw_cap_initialized & HW_CAP_CLK_GATE) &&
				(hdev->clock_gating_mask &
						GAUDI_CLK_GATE_DEBUGFS_MASK)) {

6161 6162 6163 6164 6165 6166 6167 6168
			dev_err_ratelimited(hdev->dev,
				"Can't write register - clock gating is enabled!\n");
			rc = -EFAULT;
		} else {
			WREG32(addr - CFG_BASE, lower_32_bits(val));
			WREG32(addr + sizeof(u32) - CFG_BASE,
				upper_32_bits(val));
		}
6169

6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188
	} else if ((addr >= SRAM_BASE_ADDR) &&
		   (addr <= SRAM_BASE_ADDR + SRAM_BAR_SIZE - sizeof(u64))) {
		writeq(val, hdev->pcie_bar[SRAM_BAR_ID] +
					(addr - SRAM_BASE_ADDR));
	} else if (addr <=
		    DRAM_PHYS_BASE + hdev->asic_prop.dram_size - sizeof(u64)) {
		u64 bar_base_addr = DRAM_PHYS_BASE +
				(addr & ~(prop->dram_pci_bar_size - 0x1ull));

		hbm_bar_addr = gaudi_set_hbm_bar_base(hdev, bar_base_addr);
		if (hbm_bar_addr != U64_MAX) {
			writeq(val, hdev->pcie_bar[HBM_BAR_ID] +
						(addr - bar_base_addr));

			hbm_bar_addr = gaudi_set_hbm_bar_base(hdev,
						hbm_bar_addr);
		}
		if (hbm_bar_addr == U64_MAX)
			rc = -EIO;
6189 6190 6191
	} else if (addr >= HOST_PHYS_BASE && addr < host_phys_end &&
			user_address && !iommu_present(&pci_bus_type)) {
		*(u64 *) phys_to_virt(addr - HOST_PHYS_BASE) = val;
6192 6193 6194 6195 6196 6197 6198
	} else {
		rc = -EFAULT;
	}

	return rc;
}

6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
static int gaudi_dma_core_transfer(struct hl_device *hdev, int dma_id, u64 addr,
					u32 size_to_dma, dma_addr_t dma_addr)
{
	u32 err_cause, val;
	u64 dma_offset;
	int rc;

	dma_offset = dma_id * DMA_CORE_OFFSET;

	WREG32(mmDMA0_CORE_SRC_BASE_LO + dma_offset, lower_32_bits(addr));
	WREG32(mmDMA0_CORE_SRC_BASE_HI + dma_offset, upper_32_bits(addr));
	WREG32(mmDMA0_CORE_DST_BASE_LO + dma_offset, lower_32_bits(dma_addr));
	WREG32(mmDMA0_CORE_DST_BASE_HI + dma_offset, upper_32_bits(dma_addr));
	WREG32(mmDMA0_CORE_DST_TSIZE_0 + dma_offset, size_to_dma);
	WREG32(mmDMA0_CORE_COMMIT + dma_offset,
			(1 << DMA0_CORE_COMMIT_LIN_SHIFT));

	rc = hl_poll_timeout(
		hdev,
		mmDMA0_CORE_STS0 + dma_offset,
		val,
		((val & DMA0_CORE_STS0_BUSY_MASK) == 0),
		0,
		1000000);

	if (rc) {
		dev_err(hdev->dev,
			"DMA %d timed-out during reading of 0x%llx\n",
			dma_id, addr);
		return -EIO;
	}

	/* Verify DMA is OK */
	err_cause = RREG32(mmDMA0_CORE_ERR_CAUSE + dma_offset);
	if (err_cause) {
		dev_err(hdev->dev, "DMA Failed, cause 0x%x\n", err_cause);
		dev_dbg(hdev->dev,
			"Clearing DMA0 engine from errors (cause 0x%x)\n",
			err_cause);
		WREG32(mmDMA0_CORE_ERR_CAUSE + dma_offset, err_cause);

		return -EIO;
	}

	return 0;
}

static int gaudi_debugfs_read_dma(struct hl_device *hdev, u64 addr, u32 size,
				void *blob_addr)
{
	u32 dma_core_sts0, err_cause, cfg1, size_left, pos, size_to_dma;
	struct gaudi_device *gaudi = hdev->asic_specific;
	u64 dma_offset, qm_offset;
	dma_addr_t dma_addr;
	void *kernel_addr;
	bool is_eng_idle;
	int rc, dma_id;

	kernel_addr = hdev->asic_funcs->asic_dma_alloc_coherent(
						hdev, SZ_2M,
						&dma_addr,
						GFP_KERNEL | __GFP_ZERO);

	if (!kernel_addr)
		return -ENOMEM;

	mutex_lock(&gaudi->clk_gate_mutex);

	hdev->asic_funcs->disable_clock_gating(hdev);

	hdev->asic_funcs->hw_queues_lock(hdev);

	dma_id = gaudi_dma_assignment[GAUDI_PCI_DMA_1];
	dma_offset = dma_id * DMA_CORE_OFFSET;
	qm_offset = dma_id * DMA_QMAN_OFFSET;
	dma_core_sts0 = RREG32(mmDMA0_CORE_STS0 + dma_offset);
	is_eng_idle = IS_DMA_IDLE(dma_core_sts0);

	if (!is_eng_idle) {
		dma_id = gaudi_dma_assignment[GAUDI_PCI_DMA_2];
		dma_offset = dma_id * DMA_CORE_OFFSET;
		qm_offset = dma_id * DMA_QMAN_OFFSET;
		dma_core_sts0 = RREG32(mmDMA0_CORE_STS0 + dma_offset);
		is_eng_idle = IS_DMA_IDLE(dma_core_sts0);

		if (!is_eng_idle) {
			dev_err_ratelimited(hdev->dev,
				"Can't read via DMA because it is BUSY\n");
			rc = -EAGAIN;
			goto out;
		}
	}

	cfg1 = RREG32(mmDMA0_QM_GLBL_CFG1 + qm_offset);
	WREG32(mmDMA0_QM_GLBL_CFG1 + qm_offset,
			0xF << DMA0_QM_GLBL_CFG1_CP_STOP_SHIFT);

	/* TODO: remove this by mapping the DMA temporary buffer to the MMU
	 * using the compute ctx ASID, if exists. If not, use the kernel ctx
	 * ASID
	 */
	WREG32_OR(mmDMA0_CORE_PROT + dma_offset, BIT(DMA0_CORE_PROT_VAL_SHIFT));

	/* Verify DMA is OK */
	err_cause = RREG32(mmDMA0_CORE_ERR_CAUSE + dma_offset);
	if (err_cause) {
		dev_dbg(hdev->dev,
			"Clearing DMA0 engine from errors (cause 0x%x)\n",
			err_cause);
		WREG32(mmDMA0_CORE_ERR_CAUSE + dma_offset, err_cause);
	}

	pos = 0;
	size_left = size;
	size_to_dma = SZ_2M;

	while (size_left > 0) {

		if (size_left < SZ_2M)
			size_to_dma = size_left;

		rc = gaudi_dma_core_transfer(hdev, dma_id, addr, size_to_dma,
						dma_addr);
		if (rc)
			break;

		memcpy(blob_addr + pos, kernel_addr, size_to_dma);

		if (size_left <= SZ_2M)
			break;

		pos += SZ_2M;
		addr += SZ_2M;
		size_left -= SZ_2M;
	}

	/* TODO: remove this by mapping the DMA temporary buffer to the MMU
	 * using the compute ctx ASID, if exists. If not, use the kernel ctx
	 * ASID
	 */
	WREG32_AND(mmDMA0_CORE_PROT + dma_offset,
			~BIT(DMA0_CORE_PROT_VAL_SHIFT));

	WREG32(mmDMA0_QM_GLBL_CFG1 + qm_offset, cfg1);

out:
	hdev->asic_funcs->hw_queues_unlock(hdev);

	hdev->asic_funcs->set_clock_gating(hdev);

	mutex_unlock(&gaudi->clk_gate_mutex);

	hdev->asic_funcs->asic_dma_free_coherent(hdev, SZ_2M, kernel_addr,
						dma_addr);

	return rc;
}

6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378
static u64 gaudi_read_pte(struct hl_device *hdev, u64 addr)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	if (hdev->hard_reset_pending)
		return U64_MAX;

	return readq(hdev->pcie_bar[HBM_BAR_ID] +
			(addr - gaudi->hbm_bar_cur_addr));
}

static void gaudi_write_pte(struct hl_device *hdev, u64 addr, u64 val)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	if (hdev->hard_reset_pending)
		return;

	writeq(val, hdev->pcie_bar[HBM_BAR_ID] +
			(addr - gaudi->hbm_bar_cur_addr));
}

6379
void gaudi_mmu_prepare_reg(struct hl_device *hdev, u64 reg, u32 asid)
6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393
{
	/* mask to zero the MMBP and ASID bits */
	WREG32_AND(reg, ~0x7FF);
	WREG32_OR(reg, asid);
}

static void gaudi_mmu_prepare(struct hl_device *hdev, u32 asid)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	if (!(gaudi->hw_cap_initialized & HW_CAP_MMU))
		return;

	if (asid & ~DMA0_QM_GLBL_NON_SECURE_PROPS_0_ASID_MASK) {
6394
		dev_crit(hdev->dev, "asid %u is too big\n", asid);
6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546
		return;
	}

	mutex_lock(&gaudi->clk_gate_mutex);

	hdev->asic_funcs->disable_clock_gating(hdev);

	gaudi_mmu_prepare_reg(hdev, mmDMA0_QM_GLBL_NON_SECURE_PROPS_0, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA0_QM_GLBL_NON_SECURE_PROPS_1, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA0_QM_GLBL_NON_SECURE_PROPS_2, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA0_QM_GLBL_NON_SECURE_PROPS_3, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA0_QM_GLBL_NON_SECURE_PROPS_4, asid);

	gaudi_mmu_prepare_reg(hdev, mmDMA1_QM_GLBL_NON_SECURE_PROPS_0, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA1_QM_GLBL_NON_SECURE_PROPS_1, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA1_QM_GLBL_NON_SECURE_PROPS_2, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA1_QM_GLBL_NON_SECURE_PROPS_3, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA1_QM_GLBL_NON_SECURE_PROPS_4, asid);

	gaudi_mmu_prepare_reg(hdev, mmDMA2_QM_GLBL_NON_SECURE_PROPS_0, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA2_QM_GLBL_NON_SECURE_PROPS_1, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA2_QM_GLBL_NON_SECURE_PROPS_2, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA2_QM_GLBL_NON_SECURE_PROPS_3, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA2_QM_GLBL_NON_SECURE_PROPS_4, asid);

	gaudi_mmu_prepare_reg(hdev, mmDMA3_QM_GLBL_NON_SECURE_PROPS_0, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA3_QM_GLBL_NON_SECURE_PROPS_1, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA3_QM_GLBL_NON_SECURE_PROPS_2, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA3_QM_GLBL_NON_SECURE_PROPS_3, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA3_QM_GLBL_NON_SECURE_PROPS_4, asid);

	gaudi_mmu_prepare_reg(hdev, mmDMA4_QM_GLBL_NON_SECURE_PROPS_0, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA4_QM_GLBL_NON_SECURE_PROPS_1, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA4_QM_GLBL_NON_SECURE_PROPS_2, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA4_QM_GLBL_NON_SECURE_PROPS_3, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA4_QM_GLBL_NON_SECURE_PROPS_4, asid);

	gaudi_mmu_prepare_reg(hdev, mmDMA5_QM_GLBL_NON_SECURE_PROPS_0, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA5_QM_GLBL_NON_SECURE_PROPS_1, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA5_QM_GLBL_NON_SECURE_PROPS_2, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA5_QM_GLBL_NON_SECURE_PROPS_3, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA5_QM_GLBL_NON_SECURE_PROPS_4, asid);

	gaudi_mmu_prepare_reg(hdev, mmDMA6_QM_GLBL_NON_SECURE_PROPS_0, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA6_QM_GLBL_NON_SECURE_PROPS_1, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA6_QM_GLBL_NON_SECURE_PROPS_2, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA6_QM_GLBL_NON_SECURE_PROPS_3, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA6_QM_GLBL_NON_SECURE_PROPS_4, asid);

	gaudi_mmu_prepare_reg(hdev, mmDMA7_QM_GLBL_NON_SECURE_PROPS_0, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA7_QM_GLBL_NON_SECURE_PROPS_1, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA7_QM_GLBL_NON_SECURE_PROPS_2, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA7_QM_GLBL_NON_SECURE_PROPS_3, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA7_QM_GLBL_NON_SECURE_PROPS_4, asid);

	gaudi_mmu_prepare_reg(hdev, mmDMA0_CORE_NON_SECURE_PROPS, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA1_CORE_NON_SECURE_PROPS, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA2_CORE_NON_SECURE_PROPS, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA3_CORE_NON_SECURE_PROPS, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA4_CORE_NON_SECURE_PROPS, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA5_CORE_NON_SECURE_PROPS, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA6_CORE_NON_SECURE_PROPS, asid);
	gaudi_mmu_prepare_reg(hdev, mmDMA7_CORE_NON_SECURE_PROPS, asid);

	gaudi_mmu_prepare_reg(hdev, mmTPC0_QM_GLBL_NON_SECURE_PROPS_0, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC0_QM_GLBL_NON_SECURE_PROPS_1, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC0_QM_GLBL_NON_SECURE_PROPS_2, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC0_QM_GLBL_NON_SECURE_PROPS_3, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC0_QM_GLBL_NON_SECURE_PROPS_4, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC0_CFG_ARUSER_LO, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC0_CFG_AWUSER_LO, asid);

	gaudi_mmu_prepare_reg(hdev, mmTPC1_QM_GLBL_NON_SECURE_PROPS_0, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC1_QM_GLBL_NON_SECURE_PROPS_1, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC1_QM_GLBL_NON_SECURE_PROPS_2, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC1_QM_GLBL_NON_SECURE_PROPS_3, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC1_QM_GLBL_NON_SECURE_PROPS_4, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC1_CFG_ARUSER_LO, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC1_CFG_AWUSER_LO, asid);

	gaudi_mmu_prepare_reg(hdev, mmTPC2_QM_GLBL_NON_SECURE_PROPS_0, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC2_QM_GLBL_NON_SECURE_PROPS_1, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC2_QM_GLBL_NON_SECURE_PROPS_2, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC2_QM_GLBL_NON_SECURE_PROPS_3, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC2_QM_GLBL_NON_SECURE_PROPS_4, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC2_CFG_ARUSER_LO, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC2_CFG_AWUSER_LO, asid);

	gaudi_mmu_prepare_reg(hdev, mmTPC3_QM_GLBL_NON_SECURE_PROPS_0, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC3_QM_GLBL_NON_SECURE_PROPS_1, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC3_QM_GLBL_NON_SECURE_PROPS_2, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC3_QM_GLBL_NON_SECURE_PROPS_3, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC3_QM_GLBL_NON_SECURE_PROPS_4, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC3_CFG_ARUSER_LO, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC3_CFG_AWUSER_LO, asid);

	gaudi_mmu_prepare_reg(hdev, mmTPC4_QM_GLBL_NON_SECURE_PROPS_0, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC4_QM_GLBL_NON_SECURE_PROPS_1, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC4_QM_GLBL_NON_SECURE_PROPS_2, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC4_QM_GLBL_NON_SECURE_PROPS_3, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC4_QM_GLBL_NON_SECURE_PROPS_4, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC4_CFG_ARUSER_LO, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC4_CFG_AWUSER_LO, asid);

	gaudi_mmu_prepare_reg(hdev, mmTPC5_QM_GLBL_NON_SECURE_PROPS_0, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC5_QM_GLBL_NON_SECURE_PROPS_1, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC5_QM_GLBL_NON_SECURE_PROPS_2, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC5_QM_GLBL_NON_SECURE_PROPS_3, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC5_QM_GLBL_NON_SECURE_PROPS_4, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC5_CFG_ARUSER_LO, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC5_CFG_AWUSER_LO, asid);

	gaudi_mmu_prepare_reg(hdev, mmTPC6_QM_GLBL_NON_SECURE_PROPS_0, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC6_QM_GLBL_NON_SECURE_PROPS_1, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC6_QM_GLBL_NON_SECURE_PROPS_2, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC6_QM_GLBL_NON_SECURE_PROPS_3, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC6_QM_GLBL_NON_SECURE_PROPS_4, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC6_CFG_ARUSER_LO, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC6_CFG_AWUSER_LO, asid);

	gaudi_mmu_prepare_reg(hdev, mmTPC7_QM_GLBL_NON_SECURE_PROPS_0, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC7_QM_GLBL_NON_SECURE_PROPS_1, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC7_QM_GLBL_NON_SECURE_PROPS_2, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC7_QM_GLBL_NON_SECURE_PROPS_3, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC7_QM_GLBL_NON_SECURE_PROPS_4, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC7_CFG_ARUSER_LO, asid);
	gaudi_mmu_prepare_reg(hdev, mmTPC7_CFG_AWUSER_LO, asid);

	gaudi_mmu_prepare_reg(hdev, mmMME0_QM_GLBL_NON_SECURE_PROPS_0, asid);
	gaudi_mmu_prepare_reg(hdev, mmMME0_QM_GLBL_NON_SECURE_PROPS_1, asid);
	gaudi_mmu_prepare_reg(hdev, mmMME0_QM_GLBL_NON_SECURE_PROPS_2, asid);
	gaudi_mmu_prepare_reg(hdev, mmMME0_QM_GLBL_NON_SECURE_PROPS_3, asid);
	gaudi_mmu_prepare_reg(hdev, mmMME0_QM_GLBL_NON_SECURE_PROPS_4, asid);
	gaudi_mmu_prepare_reg(hdev, mmMME2_QM_GLBL_NON_SECURE_PROPS_0, asid);
	gaudi_mmu_prepare_reg(hdev, mmMME2_QM_GLBL_NON_SECURE_PROPS_1, asid);
	gaudi_mmu_prepare_reg(hdev, mmMME2_QM_GLBL_NON_SECURE_PROPS_2, asid);
	gaudi_mmu_prepare_reg(hdev, mmMME2_QM_GLBL_NON_SECURE_PROPS_3, asid);
	gaudi_mmu_prepare_reg(hdev, mmMME2_QM_GLBL_NON_SECURE_PROPS_4, asid);

	gaudi_mmu_prepare_reg(hdev, mmMME0_SBAB_ARUSER0, asid);
	gaudi_mmu_prepare_reg(hdev, mmMME0_SBAB_ARUSER1, asid);
	gaudi_mmu_prepare_reg(hdev, mmMME1_SBAB_ARUSER0, asid);
	gaudi_mmu_prepare_reg(hdev, mmMME1_SBAB_ARUSER1, asid);
	gaudi_mmu_prepare_reg(hdev, mmMME2_SBAB_ARUSER0, asid);
	gaudi_mmu_prepare_reg(hdev, mmMME2_SBAB_ARUSER1, asid);
	gaudi_mmu_prepare_reg(hdev, mmMME3_SBAB_ARUSER0, asid);
	gaudi_mmu_prepare_reg(hdev, mmMME3_SBAB_ARUSER1, asid);
	gaudi_mmu_prepare_reg(hdev, mmMME0_ACC_WBC, asid);
	gaudi_mmu_prepare_reg(hdev, mmMME1_ACC_WBC, asid);
	gaudi_mmu_prepare_reg(hdev, mmMME2_ACC_WBC, asid);
	gaudi_mmu_prepare_reg(hdev, mmMME3_ACC_WBC, asid);

6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
	if (hdev->nic_ports_mask & GAUDI_NIC_MASK_NIC0) {
		gaudi_mmu_prepare_reg(hdev, mmNIC0_QM0_GLBL_NON_SECURE_PROPS_0,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC0_QM0_GLBL_NON_SECURE_PROPS_1,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC0_QM0_GLBL_NON_SECURE_PROPS_2,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC0_QM0_GLBL_NON_SECURE_PROPS_3,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC0_QM0_GLBL_NON_SECURE_PROPS_4,
				asid);
	}

	if (hdev->nic_ports_mask & GAUDI_NIC_MASK_NIC1) {
		gaudi_mmu_prepare_reg(hdev, mmNIC0_QM1_GLBL_NON_SECURE_PROPS_0,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC0_QM1_GLBL_NON_SECURE_PROPS_1,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC0_QM1_GLBL_NON_SECURE_PROPS_2,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC0_QM1_GLBL_NON_SECURE_PROPS_3,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC0_QM1_GLBL_NON_SECURE_PROPS_4,
				asid);
	}

	if (hdev->nic_ports_mask & GAUDI_NIC_MASK_NIC2) {
		gaudi_mmu_prepare_reg(hdev, mmNIC1_QM0_GLBL_NON_SECURE_PROPS_0,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC1_QM0_GLBL_NON_SECURE_PROPS_1,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC1_QM0_GLBL_NON_SECURE_PROPS_2,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC1_QM0_GLBL_NON_SECURE_PROPS_3,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC1_QM0_GLBL_NON_SECURE_PROPS_4,
				asid);
	}

	if (hdev->nic_ports_mask & GAUDI_NIC_MASK_NIC3) {
		gaudi_mmu_prepare_reg(hdev, mmNIC1_QM1_GLBL_NON_SECURE_PROPS_0,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC1_QM1_GLBL_NON_SECURE_PROPS_1,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC1_QM1_GLBL_NON_SECURE_PROPS_2,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC1_QM1_GLBL_NON_SECURE_PROPS_3,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC1_QM1_GLBL_NON_SECURE_PROPS_4,
				asid);
	}

	if (hdev->nic_ports_mask & GAUDI_NIC_MASK_NIC4) {
		gaudi_mmu_prepare_reg(hdev, mmNIC2_QM0_GLBL_NON_SECURE_PROPS_0,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC2_QM0_GLBL_NON_SECURE_PROPS_1,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC2_QM0_GLBL_NON_SECURE_PROPS_2,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC2_QM0_GLBL_NON_SECURE_PROPS_3,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC2_QM0_GLBL_NON_SECURE_PROPS_4,
				asid);
	}

	if (hdev->nic_ports_mask & GAUDI_NIC_MASK_NIC5) {
		gaudi_mmu_prepare_reg(hdev, mmNIC2_QM1_GLBL_NON_SECURE_PROPS_0,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC2_QM1_GLBL_NON_SECURE_PROPS_1,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC2_QM1_GLBL_NON_SECURE_PROPS_2,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC2_QM1_GLBL_NON_SECURE_PROPS_3,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC2_QM1_GLBL_NON_SECURE_PROPS_4,
				asid);
	}

	if (hdev->nic_ports_mask & GAUDI_NIC_MASK_NIC6) {
		gaudi_mmu_prepare_reg(hdev, mmNIC3_QM0_GLBL_NON_SECURE_PROPS_0,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC3_QM0_GLBL_NON_SECURE_PROPS_1,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC3_QM0_GLBL_NON_SECURE_PROPS_2,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC3_QM0_GLBL_NON_SECURE_PROPS_3,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC3_QM0_GLBL_NON_SECURE_PROPS_4,
				asid);
	}

	if (hdev->nic_ports_mask & GAUDI_NIC_MASK_NIC7) {
		gaudi_mmu_prepare_reg(hdev, mmNIC3_QM1_GLBL_NON_SECURE_PROPS_0,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC3_QM1_GLBL_NON_SECURE_PROPS_1,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC3_QM1_GLBL_NON_SECURE_PROPS_2,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC3_QM1_GLBL_NON_SECURE_PROPS_3,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC3_QM1_GLBL_NON_SECURE_PROPS_4,
				asid);
	}

	if (hdev->nic_ports_mask & GAUDI_NIC_MASK_NIC8) {
		gaudi_mmu_prepare_reg(hdev, mmNIC4_QM0_GLBL_NON_SECURE_PROPS_0,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC4_QM0_GLBL_NON_SECURE_PROPS_1,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC4_QM0_GLBL_NON_SECURE_PROPS_2,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC4_QM0_GLBL_NON_SECURE_PROPS_3,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC4_QM0_GLBL_NON_SECURE_PROPS_4,
				asid);
	}

	if (hdev->nic_ports_mask & GAUDI_NIC_MASK_NIC9) {
		gaudi_mmu_prepare_reg(hdev, mmNIC4_QM1_GLBL_NON_SECURE_PROPS_0,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC4_QM1_GLBL_NON_SECURE_PROPS_1,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC4_QM1_GLBL_NON_SECURE_PROPS_2,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC4_QM1_GLBL_NON_SECURE_PROPS_3,
				asid);
		gaudi_mmu_prepare_reg(hdev, mmNIC4_QM1_GLBL_NON_SECURE_PROPS_4,
				asid);
	}

6677
	hdev->asic_funcs->set_clock_gating(hdev);
6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696

	mutex_unlock(&gaudi->clk_gate_mutex);
}

static int gaudi_send_job_on_qman0(struct hl_device *hdev,
		struct hl_cs_job *job)
{
	struct packet_msg_prot *fence_pkt;
	u32 *fence_ptr;
	dma_addr_t fence_dma_addr;
	struct hl_cb *cb;
	u32 tmp, timeout, dma_offset;
	int rc;

	if (hdev->pldm)
		timeout = GAUDI_PLDM_QMAN0_TIMEOUT_USEC;
	else
		timeout = HL_DEVICE_TIMEOUT_USEC;

6697
	if (!hdev->asic_funcs->is_device_idle(hdev, NULL, 0, NULL)) {
6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712
		dev_err_ratelimited(hdev->dev,
			"Can't send driver job on QMAN0 because the device is not idle\n");
		return -EBUSY;
	}

	fence_ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, 4, GFP_KERNEL,
							&fence_dma_addr);
	if (!fence_ptr) {
		dev_err(hdev->dev,
			"Failed to allocate fence memory for QMAN0\n");
		return -ENOMEM;
	}

	cb = job->patched_cb;

6713 6714
	fence_pkt = cb->kernel_address +
			job->job_cb_size - sizeof(struct packet_msg_prot);
6715

6716 6717 6718 6719
	tmp = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_PROT);
	tmp |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 1);
	tmp |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);

6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756
	fence_pkt->ctl = cpu_to_le32(tmp);
	fence_pkt->value = cpu_to_le32(GAUDI_QMAN0_FENCE_VAL);
	fence_pkt->addr = cpu_to_le64(fence_dma_addr);

	dma_offset = gaudi_dma_assignment[GAUDI_PCI_DMA_1] * DMA_CORE_OFFSET;

	WREG32_OR(mmDMA0_CORE_PROT + dma_offset, BIT(DMA0_CORE_PROT_VAL_SHIFT));

	rc = hl_hw_queue_send_cb_no_cmpl(hdev, GAUDI_QUEUE_ID_DMA_0_0,
					job->job_cb_size, cb->bus_address);
	if (rc) {
		dev_err(hdev->dev, "Failed to send CB on QMAN0, %d\n", rc);
		goto free_fence_ptr;
	}

	rc = hl_poll_timeout_memory(hdev, fence_ptr, tmp,
				(tmp == GAUDI_QMAN0_FENCE_VAL), 1000,
				timeout, true);

	hl_hw_queue_inc_ci_kernel(hdev, GAUDI_QUEUE_ID_DMA_0_0);

	if (rc == -ETIMEDOUT) {
		dev_err(hdev->dev, "QMAN0 Job timeout (0x%x)\n", tmp);
		goto free_fence_ptr;
	}

free_fence_ptr:
	WREG32_AND(mmDMA0_CORE_PROT + dma_offset,
			~BIT(DMA0_CORE_PROT_VAL_SHIFT));

	hdev->asic_funcs->asic_dma_pool_free(hdev, (void *) fence_ptr,
					fence_dma_addr);
	return rc;
}

static void gaudi_get_event_desc(u16 event_type, char *desc, size_t size)
{
6757 6758
	if (event_type >= GAUDI_EVENT_SIZE)
		goto event_not_supported;
6759

6760 6761 6762 6763 6764 6765 6766 6767 6768
	if (!gaudi_irq_map_table[event_type].valid)
		goto event_not_supported;

	snprintf(desc, size, gaudi_irq_map_table[event_type].name);

	return;

event_not_supported:
	snprintf(desc, size, "N/A");
6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005
}

static const char *gaudi_get_razwi_initiator_dma_name(struct hl_device *hdev,
							u32 x_y, bool is_write)
{
	u32 dma_id[2], dma_offset, err_cause[2], mask, i;

	mask = is_write ? DMA0_CORE_ERR_CAUSE_HBW_WR_ERR_MASK :
				DMA0_CORE_ERR_CAUSE_HBW_RD_ERR_MASK;

	switch (x_y) {
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_S_0:
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_S_1:
		dma_id[0] = 0;
		dma_id[1] = 2;
		break;
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_S_0:
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_S_1:
		dma_id[0] = 1;
		dma_id[1] = 3;
		break;
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_N_0:
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_N_1:
		dma_id[0] = 4;
		dma_id[1] = 6;
		break;
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_N_0:
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_N_1:
		dma_id[0] = 5;
		dma_id[1] = 7;
		break;
	default:
		goto unknown_initiator;
	}

	for (i = 0 ; i < 2 ; i++) {
		dma_offset = dma_id[i] * DMA_CORE_OFFSET;
		err_cause[i] = RREG32(mmDMA0_CORE_ERR_CAUSE + dma_offset);
	}

	switch (x_y) {
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_S_0:
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_S_1:
		if ((err_cause[0] & mask) && !(err_cause[1] & mask))
			return "DMA0";
		else if (!(err_cause[0] & mask) && (err_cause[1] & mask))
			return "DMA2";
		else
			return "DMA0 or DMA2";
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_S_0:
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_S_1:
		if ((err_cause[0] & mask) && !(err_cause[1] & mask))
			return "DMA1";
		else if (!(err_cause[0] & mask) && (err_cause[1] & mask))
			return "DMA3";
		else
			return "DMA1 or DMA3";
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_N_0:
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_N_1:
		if ((err_cause[0] & mask) && !(err_cause[1] & mask))
			return "DMA4";
		else if (!(err_cause[0] & mask) && (err_cause[1] & mask))
			return "DMA6";
		else
			return "DMA4 or DMA6";
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_N_0:
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_N_1:
		if ((err_cause[0] & mask) && !(err_cause[1] & mask))
			return "DMA5";
		else if (!(err_cause[0] & mask) && (err_cause[1] & mask))
			return "DMA7";
		else
			return "DMA5 or DMA7";
	}

unknown_initiator:
	return "unknown initiator";
}

static const char *gaudi_get_razwi_initiator_name(struct hl_device *hdev,
							bool is_write)
{
	u32 val, x_y, axi_id;

	val = is_write ? RREG32(mmMMU_UP_RAZWI_WRITE_ID) :
				RREG32(mmMMU_UP_RAZWI_READ_ID);
	x_y = val & ((RAZWI_INITIATOR_Y_MASK << RAZWI_INITIATOR_Y_SHIFT) |
			(RAZWI_INITIATOR_X_MASK << RAZWI_INITIATOR_X_SHIFT));
	axi_id = val & (RAZWI_INITIATOR_AXI_ID_MASK <<
			RAZWI_INITIATOR_AXI_ID_SHIFT);

	switch (x_y) {
	case RAZWI_INITIATOR_ID_X_Y_TPC0_NIC0:
		if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_TPC))
			return "TPC0";
		if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_NIC))
			return "NIC0";
		break;
	case RAZWI_INITIATOR_ID_X_Y_TPC1:
		return "TPC1";
	case RAZWI_INITIATOR_ID_X_Y_MME0_0:
	case RAZWI_INITIATOR_ID_X_Y_MME0_1:
		return "MME0";
	case RAZWI_INITIATOR_ID_X_Y_MME1_0:
	case RAZWI_INITIATOR_ID_X_Y_MME1_1:
		return "MME1";
	case RAZWI_INITIATOR_ID_X_Y_TPC2:
		return "TPC2";
	case RAZWI_INITIATOR_ID_X_Y_TPC3_PCI_CPU_PSOC:
		if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_TPC))
			return "TPC3";
		if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_PCI))
			return "PCI";
		if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_CPU))
			return "CPU";
		if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_PSOC))
			return "PSOC";
		break;
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_S_0:
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_S_1:
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_S_0:
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_S_1:
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_N_0:
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_W_N_1:
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_N_0:
	case RAZWI_INITIATOR_ID_X_Y_DMA_IF_E_N_1:
		return gaudi_get_razwi_initiator_dma_name(hdev, x_y, is_write);
	case RAZWI_INITIATOR_ID_X_Y_TPC4_NIC1_NIC2:
		if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_TPC))
			return "TPC4";
		if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_NIC))
			return "NIC1";
		if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_NIC_FT))
			return "NIC2";
		break;
	case RAZWI_INITIATOR_ID_X_Y_TPC5:
		return "TPC5";
	case RAZWI_INITIATOR_ID_X_Y_MME2_0:
	case RAZWI_INITIATOR_ID_X_Y_MME2_1:
		return "MME2";
	case RAZWI_INITIATOR_ID_X_Y_MME3_0:
	case RAZWI_INITIATOR_ID_X_Y_MME3_1:
		return "MME3";
	case RAZWI_INITIATOR_ID_X_Y_TPC6:
		return "TPC6";
	case RAZWI_INITIATOR_ID_X_Y_TPC7_NIC4_NIC5:
		if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_TPC))
			return "TPC7";
		if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_NIC))
			return "NIC4";
		if (axi_id == RAZWI_INITIATOR_ID_AXI_ID(AXI_ID_NIC_FT))
			return "NIC5";
		break;
	default:
		break;
	}

	dev_err(hdev->dev,
		"Unknown RAZWI initiator ID 0x%x [Y=%d, X=%d, AXI_ID=%d]\n",
		val,
		(val >> RAZWI_INITIATOR_Y_SHIFT) & RAZWI_INITIATOR_Y_MASK,
		(val >> RAZWI_INITIATOR_X_SHIFT) & RAZWI_INITIATOR_X_MASK,
		(val >> RAZWI_INITIATOR_AXI_ID_SHIFT) &
			RAZWI_INITIATOR_AXI_ID_MASK);

	return "unknown initiator";
}

static void gaudi_print_razwi_info(struct hl_device *hdev)
{
	if (RREG32(mmMMU_UP_RAZWI_WRITE_VLD)) {
		dev_err_ratelimited(hdev->dev,
			"RAZWI event caused by illegal write of %s\n",
			gaudi_get_razwi_initiator_name(hdev, true));
		WREG32(mmMMU_UP_RAZWI_WRITE_VLD, 0);
	}

	if (RREG32(mmMMU_UP_RAZWI_READ_VLD)) {
		dev_err_ratelimited(hdev->dev,
			"RAZWI event caused by illegal read of %s\n",
			gaudi_get_razwi_initiator_name(hdev, false));
		WREG32(mmMMU_UP_RAZWI_READ_VLD, 0);
	}
}

static void gaudi_print_mmu_error_info(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	u64 addr;
	u32 val;

	if (!(gaudi->hw_cap_initialized & HW_CAP_MMU))
		return;

	val = RREG32(mmMMU_UP_PAGE_ERROR_CAPTURE);
	if (val & MMU_UP_PAGE_ERROR_CAPTURE_ENTRY_VALID_MASK) {
		addr = val & MMU_UP_PAGE_ERROR_CAPTURE_VA_49_32_MASK;
		addr <<= 32;
		addr |= RREG32(mmMMU_UP_PAGE_ERROR_CAPTURE_VA);

		dev_err_ratelimited(hdev->dev, "MMU page fault on va 0x%llx\n",
					addr);

		WREG32(mmMMU_UP_PAGE_ERROR_CAPTURE, 0);
	}

	val = RREG32(mmMMU_UP_ACCESS_ERROR_CAPTURE);
	if (val & MMU_UP_ACCESS_ERROR_CAPTURE_ENTRY_VALID_MASK) {
		addr = val & MMU_UP_ACCESS_ERROR_CAPTURE_VA_49_32_MASK;
		addr <<= 32;
		addr |= RREG32(mmMMU_UP_ACCESS_ERROR_CAPTURE_VA);

		dev_err_ratelimited(hdev->dev,
				"MMU access error on va 0x%llx\n", addr);

		WREG32(mmMMU_UP_ACCESS_ERROR_CAPTURE, 0);
	}
}

/*
 *  +-------------------+------------------------------------------------------+
 *  | Configuration Reg |                     Description                      |
 *  |      Address      |                                                      |
 *  +-------------------+------------------------------------------------------+
 *  |  0xF30 - 0xF3F    |ECC single error indication (1 bit per memory wrapper)|
 *  |                   |0xF30 memory wrappers 31:0 (MSB to LSB)               |
 *  |                   |0xF34 memory wrappers 63:32                           |
 *  |                   |0xF38 memory wrappers 95:64                           |
 *  |                   |0xF3C memory wrappers 127:96                          |
 *  +-------------------+------------------------------------------------------+
 *  |  0xF40 - 0xF4F    |ECC double error indication (1 bit per memory wrapper)|
 *  |                   |0xF40 memory wrappers 31:0 (MSB to LSB)               |
 *  |                   |0xF44 memory wrappers 63:32                           |
 *  |                   |0xF48 memory wrappers 95:64                           |
 *  |                   |0xF4C memory wrappers 127:96                          |
 *  +-------------------+------------------------------------------------------+
 */
7006 7007 7008
static int gaudi_extract_ecc_info(struct hl_device *hdev,
		struct ecc_info_extract_params *params, u64 *ecc_address,
		u64 *ecc_syndrom, u8 *memory_wrapper_idx)
7009 7010
{
	struct gaudi_device *gaudi = hdev->asic_specific;
7011 7012 7013
	u32 i, num_mem_regs, reg, err_bit;
	u64 err_addr, err_word = 0;
	int rc = 0;
7014

7015 7016
	num_mem_regs = params->num_memories / 32 +
			((params->num_memories % 32) ? 1 : 0);
7017

7018 7019 7020 7021 7022
	if (params->block_address >= CFG_BASE)
		params->block_address -= CFG_BASE;

	if (params->derr)
		err_addr = params->block_address + GAUDI_ECC_DERR0_OFFSET;
7023
	else
7024
		err_addr = params->block_address + GAUDI_ECC_SERR0_OFFSET;
7025

7026
	if (params->disable_clock_gating) {
7027 7028 7029 7030
		mutex_lock(&gaudi->clk_gate_mutex);
		hdev->asic_funcs->disable_clock_gating(hdev);
	}

7031 7032
	/* Set invalid wrapper index */
	*memory_wrapper_idx = 0xFF;
7033

7034
	/* Iterate through memory wrappers, a single bit must be set */
7035
	for (i = 0 ; i < num_mem_regs ; i++) {
7036 7037 7038 7039 7040 7041 7042
		err_addr += i * 4;
		err_word = RREG32(err_addr);
		if (err_word) {
			err_bit = __ffs(err_word);
			*memory_wrapper_idx = err_bit + (32 * i);
			break;
		}
7043 7044
	}

7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069
	if (*memory_wrapper_idx == 0xFF) {
		dev_err(hdev->dev, "ECC error information cannot be found\n");
		rc = -EINVAL;
		goto enable_clk_gate;
	}

	WREG32(params->block_address + GAUDI_ECC_MEM_SEL_OFFSET,
			*memory_wrapper_idx);

	*ecc_address =
		RREG32(params->block_address + GAUDI_ECC_ADDRESS_OFFSET);
	*ecc_syndrom =
		RREG32(params->block_address + GAUDI_ECC_SYNDROME_OFFSET);

	/* Clear error indication */
	reg = RREG32(params->block_address + GAUDI_ECC_MEM_INFO_CLR_OFFSET);
	if (params->derr)
		reg |= FIELD_PREP(GAUDI_ECC_MEM_INFO_CLR_DERR_MASK, 1);
	else
		reg |= FIELD_PREP(GAUDI_ECC_MEM_INFO_CLR_SERR_MASK, 1);

	WREG32(params->block_address + GAUDI_ECC_MEM_INFO_CLR_OFFSET, reg);

enable_clk_gate:
	if (params->disable_clock_gating) {
7070
		hdev->asic_funcs->set_clock_gating(hdev);
7071

7072 7073
		mutex_unlock(&gaudi->clk_gate_mutex);
	}
7074 7075

	return rc;
7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109
}

static void gaudi_handle_qman_err_generic(struct hl_device *hdev,
					  const char *qm_name,
					  u64 glbl_sts_addr,
					  u64 arb_err_addr)
{
	u32 i, j, glbl_sts_val, arb_err_val, glbl_sts_clr_val;
	char reg_desc[32];

	/* Iterate through all stream GLBL_STS1 registers + Lower CP */
	for (i = 0 ; i < QMAN_STREAMS + 1 ; i++) {
		glbl_sts_clr_val = 0;
		glbl_sts_val = RREG32(glbl_sts_addr + 4 * i);

		if (!glbl_sts_val)
			continue;

		if (i == QMAN_STREAMS)
			snprintf(reg_desc, ARRAY_SIZE(reg_desc), "LowerCP");
		else
			snprintf(reg_desc, ARRAY_SIZE(reg_desc), "stream%u", i);

		for (j = 0 ; j < GAUDI_NUM_OF_QM_ERR_CAUSE ; j++) {
			if (glbl_sts_val & BIT(j)) {
				dev_err_ratelimited(hdev->dev,
						"%s %s. err cause: %s\n",
						qm_name, reg_desc,
						gaudi_qman_error_cause[j]);
				glbl_sts_clr_val |= BIT(j);
			}
		}

		/* Write 1 clear errors */
7110 7111
		if (!hdev->stop_on_err)
			WREG32(glbl_sts_addr + 4 * i, glbl_sts_clr_val);
7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128
	}

	arb_err_val = RREG32(arb_err_addr);

	if (!arb_err_val)
		return;

	for (j = 0 ; j < GAUDI_NUM_OF_QM_ARB_ERR_CAUSE ; j++) {
		if (arb_err_val & BIT(j)) {
			dev_err_ratelimited(hdev->dev,
					"%s ARB_ERR. err cause: %s\n",
					qm_name,
					gaudi_qman_arb_error_cause[j]);
		}
	}
}

7129 7130 7131 7132 7133 7134
static void gaudi_print_sm_sei_info(struct hl_device *hdev, u16 event_type,
		struct hl_eq_sm_sei_data *sei_data)
{
	u32 index = event_type - GAUDI_EVENT_DMA_IF_SEI_0;

	switch (sei_data->sei_cause) {
7135
	case SM_SEI_SO_OVERFLOW:
7136 7137
		dev_err(hdev->dev,
			"SM %u SEI Error: SO %u overflow/underflow",
7138
			index, le32_to_cpu(sei_data->sei_log));
7139
		break;
7140
	case SM_SEI_LBW_4B_UNALIGNED:
7141 7142
		dev_err(hdev->dev,
			"SM %u SEI Error: Unaligned 4B LBW access, monitor agent address low - %#x",
7143
			index, le32_to_cpu(sei_data->sei_log));
7144
		break;
7145
	case SM_SEI_AXI_RESPONSE_ERR:
7146 7147
		dev_err(hdev->dev,
			"SM %u SEI Error: AXI ID %u response error",
7148
			index, le32_to_cpu(sei_data->sei_log));
7149 7150 7151
		break;
	default:
		dev_err(hdev->dev, "Unknown SM SEI cause %u",
7152
				le32_to_cpu(sei_data->sei_log));
7153 7154 7155 7156
		break;
	}
}

7157 7158
static void gaudi_handle_ecc_event(struct hl_device *hdev, u16 event_type,
		struct hl_eq_ecc_data *ecc_data)
7159
{
7160 7161 7162 7163 7164
	struct ecc_info_extract_params params;
	u64 ecc_address = 0, ecc_syndrom = 0;
	u8 index, memory_wrapper_idx = 0;
	bool extract_info_from_fw;
	int rc;
7165 7166

	switch (event_type) {
7167 7168 7169
	case GAUDI_EVENT_PCIE_CORE_SERR ... GAUDI_EVENT_PCIE_PHY_DERR:
	case GAUDI_EVENT_DMA0_SERR_ECC ... GAUDI_EVENT_MMU_DERR:
		extract_info_from_fw = true;
7170 7171 7172
		break;
	case GAUDI_EVENT_TPC0_SERR ... GAUDI_EVENT_TPC7_SERR:
		index = event_type - GAUDI_EVENT_TPC0_SERR;
7173 7174 7175 7176 7177
		params.block_address = mmTPC0_CFG_BASE + index * TPC_CFG_OFFSET;
		params.num_memories = 90;
		params.derr = false;
		params.disable_clock_gating = true;
		extract_info_from_fw = false;
7178 7179 7180
		break;
	case GAUDI_EVENT_TPC0_DERR ... GAUDI_EVENT_TPC7_DERR:
		index = event_type - GAUDI_EVENT_TPC0_DERR;
7181
		params.block_address =
7182
			mmTPC0_CFG_BASE + index * TPC_CFG_OFFSET;
7183 7184 7185 7186
		params.num_memories = 90;
		params.derr = true;
		params.disable_clock_gating = true;
		extract_info_from_fw = false;
7187 7188 7189 7190 7191 7192
		break;
	case GAUDI_EVENT_MME0_ACC_SERR:
	case GAUDI_EVENT_MME1_ACC_SERR:
	case GAUDI_EVENT_MME2_ACC_SERR:
	case GAUDI_EVENT_MME3_ACC_SERR:
		index = (event_type - GAUDI_EVENT_MME0_ACC_SERR) / 4;
7193 7194 7195 7196 7197
		params.block_address = mmMME0_ACC_BASE + index * MME_ACC_OFFSET;
		params.num_memories = 128;
		params.derr = false;
		params.disable_clock_gating = true;
		extract_info_from_fw = false;
7198 7199 7200 7201 7202 7203
		break;
	case GAUDI_EVENT_MME0_ACC_DERR:
	case GAUDI_EVENT_MME1_ACC_DERR:
	case GAUDI_EVENT_MME2_ACC_DERR:
	case GAUDI_EVENT_MME3_ACC_DERR:
		index = (event_type - GAUDI_EVENT_MME0_ACC_DERR) / 4;
7204 7205 7206 7207 7208
		params.block_address = mmMME0_ACC_BASE + index * MME_ACC_OFFSET;
		params.num_memories = 128;
		params.derr = true;
		params.disable_clock_gating = true;
		extract_info_from_fw = false;
7209 7210 7211 7212 7213 7214
		break;
	case GAUDI_EVENT_MME0_SBAB_SERR:
	case GAUDI_EVENT_MME1_SBAB_SERR:
	case GAUDI_EVENT_MME2_SBAB_SERR:
	case GAUDI_EVENT_MME3_SBAB_SERR:
		index = (event_type - GAUDI_EVENT_MME0_SBAB_SERR) / 4;
7215 7216 7217 7218 7219 7220
		params.block_address =
			mmMME0_SBAB_BASE + index * MME_ACC_OFFSET;
		params.num_memories = 33;
		params.derr = false;
		params.disable_clock_gating = true;
		extract_info_from_fw = false;
7221 7222 7223 7224 7225 7226
		break;
	case GAUDI_EVENT_MME0_SBAB_DERR:
	case GAUDI_EVENT_MME1_SBAB_DERR:
	case GAUDI_EVENT_MME2_SBAB_DERR:
	case GAUDI_EVENT_MME3_SBAB_DERR:
		index = (event_type - GAUDI_EVENT_MME0_SBAB_DERR) / 4;
7227 7228 7229 7230 7231
		params.block_address =
			mmMME0_SBAB_BASE + index * MME_ACC_OFFSET;
		params.num_memories = 33;
		params.derr = true;
		params.disable_clock_gating = true;
7232 7233
		extract_info_from_fw = false;
		break;
7234 7235 7236 7237
	default:
		return;
	}

7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251
	if (extract_info_from_fw) {
		ecc_address = le64_to_cpu(ecc_data->ecc_address);
		ecc_syndrom = le64_to_cpu(ecc_data->ecc_syndrom);
		memory_wrapper_idx = ecc_data->memory_wrapper_idx;
	} else {
		rc = gaudi_extract_ecc_info(hdev, &params, &ecc_address,
				&ecc_syndrom, &memory_wrapper_idx);
		if (rc)
			return;
	}

	dev_err(hdev->dev,
		"ECC error detected. address: %#llx. Syndrom: %#llx. block id %u\n",
		ecc_address, ecc_syndrom, memory_wrapper_idx);
7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284
}

static void gaudi_handle_qman_err(struct hl_device *hdev, u16 event_type)
{
	u64 glbl_sts_addr, arb_err_addr;
	u8 index;
	char desc[32];

	switch (event_type) {
	case GAUDI_EVENT_TPC0_QM ... GAUDI_EVENT_TPC7_QM:
		index = event_type - GAUDI_EVENT_TPC0_QM;
		glbl_sts_addr =
			mmTPC0_QM_GLBL_STS1_0 + index * TPC_QMAN_OFFSET;
		arb_err_addr =
			mmTPC0_QM_ARB_ERR_CAUSE + index * TPC_QMAN_OFFSET;
		snprintf(desc, ARRAY_SIZE(desc), "%s%d", "TPC_QM", index);
		break;
	case GAUDI_EVENT_MME0_QM ... GAUDI_EVENT_MME2_QM:
		index = event_type - GAUDI_EVENT_MME0_QM;
		glbl_sts_addr =
			mmMME0_QM_GLBL_STS1_0 + index * MME_QMAN_OFFSET;
		arb_err_addr =
			mmMME0_QM_ARB_ERR_CAUSE + index * MME_QMAN_OFFSET;
		snprintf(desc, ARRAY_SIZE(desc), "%s%d", "MME_QM", index);
		break;
	case GAUDI_EVENT_DMA0_QM ... GAUDI_EVENT_DMA7_QM:
		index = event_type - GAUDI_EVENT_DMA0_QM;
		glbl_sts_addr =
			mmDMA0_QM_GLBL_STS1_0 + index * DMA_QMAN_OFFSET;
		arb_err_addr =
			mmDMA0_QM_ARB_ERR_CAUSE + index * DMA_QMAN_OFFSET;
		snprintf(desc, ARRAY_SIZE(desc), "%s%d", "DMA_QM", index);
		break;
7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334
	case GAUDI_EVENT_NIC0_QM0:
		glbl_sts_addr = mmNIC0_QM0_GLBL_STS1_0;
		arb_err_addr = mmNIC0_QM0_ARB_ERR_CAUSE;
		snprintf(desc, ARRAY_SIZE(desc), "NIC0_QM0");
		break;
	case GAUDI_EVENT_NIC0_QM1:
		glbl_sts_addr = mmNIC0_QM1_GLBL_STS1_0;
		arb_err_addr = mmNIC0_QM1_ARB_ERR_CAUSE;
		snprintf(desc, ARRAY_SIZE(desc), "NIC0_QM1");
		break;
	case GAUDI_EVENT_NIC1_QM0:
		glbl_sts_addr = mmNIC1_QM0_GLBL_STS1_0;
		arb_err_addr = mmNIC1_QM0_ARB_ERR_CAUSE;
		snprintf(desc, ARRAY_SIZE(desc), "NIC1_QM0");
		break;
	case GAUDI_EVENT_NIC1_QM1:
		glbl_sts_addr = mmNIC1_QM1_GLBL_STS1_0;
		arb_err_addr = mmNIC1_QM1_ARB_ERR_CAUSE;
		snprintf(desc, ARRAY_SIZE(desc), "NIC1_QM1");
		break;
	case GAUDI_EVENT_NIC2_QM0:
		glbl_sts_addr = mmNIC2_QM0_GLBL_STS1_0;
		arb_err_addr = mmNIC2_QM0_ARB_ERR_CAUSE;
		snprintf(desc, ARRAY_SIZE(desc), "NIC2_QM0");
		break;
	case GAUDI_EVENT_NIC2_QM1:
		glbl_sts_addr = mmNIC2_QM1_GLBL_STS1_0;
		arb_err_addr = mmNIC2_QM1_ARB_ERR_CAUSE;
		snprintf(desc, ARRAY_SIZE(desc), "NIC2_QM1");
		break;
	case GAUDI_EVENT_NIC3_QM0:
		glbl_sts_addr = mmNIC3_QM0_GLBL_STS1_0;
		arb_err_addr = mmNIC3_QM0_ARB_ERR_CAUSE;
		snprintf(desc, ARRAY_SIZE(desc), "NIC3_QM0");
		break;
	case GAUDI_EVENT_NIC3_QM1:
		glbl_sts_addr = mmNIC3_QM1_GLBL_STS1_0;
		arb_err_addr = mmNIC3_QM1_ARB_ERR_CAUSE;
		snprintf(desc, ARRAY_SIZE(desc), "NIC3_QM1");
		break;
	case GAUDI_EVENT_NIC4_QM0:
		glbl_sts_addr = mmNIC4_QM0_GLBL_STS1_0;
		arb_err_addr = mmNIC4_QM0_ARB_ERR_CAUSE;
		snprintf(desc, ARRAY_SIZE(desc), "NIC4_QM0");
		break;
	case GAUDI_EVENT_NIC4_QM1:
		glbl_sts_addr = mmNIC4_QM1_GLBL_STS1_0;
		arb_err_addr = mmNIC4_QM1_ARB_ERR_CAUSE;
		snprintf(desc, ARRAY_SIZE(desc), "NIC4_QM1");
		break;
7335 7336 7337 7338 7339 7340 7341 7342 7343 7344
	default:
		return;
	}

	gaudi_handle_qman_err_generic(hdev, desc, glbl_sts_addr, arb_err_addr);
}

static void gaudi_print_irq_info(struct hl_device *hdev, u16 event_type,
					bool razwi)
{
7345
	char desc[64] = "";
7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356

	gaudi_get_event_desc(event_type, desc, sizeof(desc));
	dev_err_ratelimited(hdev->dev, "Received H/W interrupt %d [\"%s\"]\n",
		event_type, desc);

	if (razwi) {
		gaudi_print_razwi_info(hdev);
		gaudi_print_mmu_error_info(hdev);
	}
}

7357 7358 7359 7360 7361 7362 7363 7364 7365
static void gaudi_print_out_of_sync_info(struct hl_device *hdev,
					struct cpucp_pkt_sync_err *sync_err)
{
	struct hl_hw_queue *q = &hdev->kernel_queues[GAUDI_QUEUE_ID_CPU_PQ];

	dev_err(hdev->dev, "Out of sync with FW, FW: pi=%u, ci=%u, LKD: pi=%u, ci=%u\n",
			sync_err->pi, sync_err->ci, q->pi, atomic_read(&q->ci));
}

7366 7367
static int gaudi_soft_reset_late_init(struct hl_device *hdev)
{
7368 7369
	struct gaudi_device *gaudi = hdev->asic_specific;

7370 7371 7372
	/* Unmask all IRQs since some could have been received
	 * during the soft reset
	 */
7373
	return hl_fw_unmask_irq_arr(hdev, gaudi->events, sizeof(gaudi->events));
7374 7375
}

7376 7377
static int gaudi_hbm_read_interrupts(struct hl_device *hdev, int device,
			struct hl_eq_hbm_ecc_data *hbm_ecc_data)
7378
{
7379 7380 7381
	u32 base, val, val2, wr_par, rd_par, ca_par, derr, serr, type, ch;
	int err = 0;

7382 7383 7384
	if (hdev->asic_prop.fw_security_status_valid &&
			(hdev->asic_prop.fw_app_security_map &
				CPU_BOOT_DEV_STS0_HBM_ECC_EN)) {
7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405
		if (!hbm_ecc_data) {
			dev_err(hdev->dev, "No FW ECC data");
			return 0;
		}

		wr_par = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_WR_PAR_MASK,
				le32_to_cpu(hbm_ecc_data->hbm_ecc_info));
		rd_par = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_RD_PAR_MASK,
				le32_to_cpu(hbm_ecc_data->hbm_ecc_info));
		ca_par = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_CA_PAR_MASK,
				le32_to_cpu(hbm_ecc_data->hbm_ecc_info));
		derr = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_DERR_MASK,
				le32_to_cpu(hbm_ecc_data->hbm_ecc_info));
		serr = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_SERR_MASK,
				le32_to_cpu(hbm_ecc_data->hbm_ecc_info));
		type = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_TYPE_MASK,
				le32_to_cpu(hbm_ecc_data->hbm_ecc_info));
		ch = FIELD_GET(CPUCP_PKT_HBM_ECC_INFO_HBM_CH_MASK,
				le32_to_cpu(hbm_ecc_data->hbm_ecc_info));

		dev_err(hdev->dev,
7406 7407 7408 7409 7410 7411 7412
			"HBM%d pc%d interrupts info: WR_PAR=%d, RD_PAR=%d, CA_PAR=%d, SERR=%d, DERR=%d\n",
			device, ch, wr_par, rd_par, ca_par, serr, derr);
		dev_err(hdev->dev,
			"HBM%d pc%d ECC info: 1ST_ERR_ADDR=0x%x, 1ST_ERR_TYPE=%d, SEC_CONT_CNT=%u, SEC_CNT=%d, DEC_CNT=%d\n",
			device, ch, hbm_ecc_data->first_addr, type,
			hbm_ecc_data->sec_cont_cnt, hbm_ecc_data->sec_cnt,
			hbm_ecc_data->dec_cnt);
7413 7414 7415 7416 7417

		err = 1;

		return 0;
	}
7418

7419 7420 7421 7422 7423
	if (!hdev->asic_prop.fw_security_disabled) {
		dev_info(hdev->dev, "Cannot access MC regs for ECC data while security is enabled\n");
		return 0;
	}

7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437
	base = GAUDI_HBM_CFG_BASE + device * GAUDI_HBM_CFG_OFFSET;
	for (ch = 0 ; ch < GAUDI_HBM_CHANNELS ; ch++) {
		val = RREG32_MASK(base + ch * 0x1000 + 0x06C, 0x0000FFFF);
		val = (val & 0xFF) | ((val >> 8) & 0xFF);
		if (val) {
			err = 1;
			dev_err(hdev->dev,
				"HBM%d pc%d interrupts info: WR_PAR=%d, RD_PAR=%d, CA_PAR=%d, SERR=%d, DERR=%d\n",
				device, ch * 2, val & 0x1, (val >> 1) & 0x1,
				(val >> 2) & 0x1, (val >> 3) & 0x1,
				(val >> 4) & 0x1);

			val2 = RREG32(base + ch * 0x1000 + 0x060);
			dev_err(hdev->dev,
7438
				"HBM%d pc%d ECC info: 1ST_ERR_ADDR=0x%x, 1ST_ERR_TYPE=%d, SEC_CONT_CNT=%d, SEC_CNT=%d, DEC_CNT=%d\n",
7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457
				device, ch * 2,
				RREG32(base + ch * 0x1000 + 0x064),
				(val2 & 0x200) >> 9, (val2 & 0xFC00) >> 10,
				(val2 & 0xFF0000) >> 16,
				(val2 & 0xFF000000) >> 24);
		}

		val = RREG32_MASK(base + ch * 0x1000 + 0x07C, 0x0000FFFF);
		val = (val & 0xFF) | ((val >> 8) & 0xFF);
		if (val) {
			err = 1;
			dev_err(hdev->dev,
				"HBM%d pc%d interrupts info: WR_PAR=%d, RD_PAR=%d, CA_PAR=%d, SERR=%d, DERR=%d\n",
				device, ch * 2 + 1, val & 0x1, (val >> 1) & 0x1,
				(val >> 2) & 0x1, (val >> 3) & 0x1,
				(val >> 4) & 0x1);

			val2 = RREG32(base + ch * 0x1000 + 0x070);
			dev_err(hdev->dev,
7458
				"HBM%d pc%d ECC info: 1ST_ERR_ADDR=0x%x, 1ST_ERR_TYPE=%d, SEC_CONT_CNT=%d, SEC_CNT=%d, DEC_CNT=%d\n",
7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525
				device, ch * 2 + 1,
				RREG32(base + ch * 0x1000 + 0x074),
				(val2 & 0x200) >> 9, (val2 & 0xFC00) >> 10,
				(val2 & 0xFF0000) >> 16,
				(val2 & 0xFF000000) >> 24);
		}

		/* Clear interrupts */
		RMWREG32(base + (ch * 0x1000) + 0x060, 0x1C8, 0x1FF);
		RMWREG32(base + (ch * 0x1000) + 0x070, 0x1C8, 0x1FF);
		WREG32(base + (ch * 0x1000) + 0x06C, 0x1F1F);
		WREG32(base + (ch * 0x1000) + 0x07C, 0x1F1F);
		RMWREG32(base + (ch * 0x1000) + 0x060, 0x0, 0xF);
		RMWREG32(base + (ch * 0x1000) + 0x070, 0x0, 0xF);
	}

	val  = RREG32(base + 0x8F30);
	val2 = RREG32(base + 0x8F34);
	if (val | val2) {
		err = 1;
		dev_err(hdev->dev,
			"HBM %d MC SRAM SERR info: Reg 0x8F30=0x%x, Reg 0x8F34=0x%x\n",
			device, val, val2);
	}
	val  = RREG32(base + 0x8F40);
	val2 = RREG32(base + 0x8F44);
	if (val | val2) {
		err = 1;
		dev_err(hdev->dev,
			"HBM %d MC SRAM DERR info: Reg 0x8F40=0x%x, Reg 0x8F44=0x%x\n",
			device, val, val2);
	}

	return err;
}

static int gaudi_hbm_event_to_dev(u16 hbm_event_type)
{
	switch (hbm_event_type) {
	case GAUDI_EVENT_HBM0_SPI_0:
	case GAUDI_EVENT_HBM0_SPI_1:
		return 0;
	case GAUDI_EVENT_HBM1_SPI_0:
	case GAUDI_EVENT_HBM1_SPI_1:
		return 1;
	case GAUDI_EVENT_HBM2_SPI_0:
	case GAUDI_EVENT_HBM2_SPI_1:
		return 2;
	case GAUDI_EVENT_HBM3_SPI_0:
	case GAUDI_EVENT_HBM3_SPI_1:
		return 3;
	default:
		break;
	}

	/* Should never happen */
	return 0;
}

static bool gaudi_tpc_read_interrupts(struct hl_device *hdev, u8 tpc_id,
					char *interrupt_name)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	u32 tpc_offset = tpc_id * TPC_CFG_OFFSET, tpc_interrupts_cause, i;
	bool soft_reset_required = false;

	/* Accessing the TPC_INTR_CAUSE registers requires disabling the clock
O
Oded Gabbay 已提交
7526
	 * gating, and thus cannot be done in CPU-CP and should be done instead
7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550
	 * by the driver.
	 */

	mutex_lock(&gaudi->clk_gate_mutex);

	hdev->asic_funcs->disable_clock_gating(hdev);

	tpc_interrupts_cause = RREG32(mmTPC0_CFG_TPC_INTR_CAUSE + tpc_offset) &
				TPC0_CFG_TPC_INTR_CAUSE_CAUSE_MASK;

	for (i = 0 ; i < GAUDI_NUM_OF_TPC_INTR_CAUSE ; i++)
		if (tpc_interrupts_cause & BIT(i)) {
			dev_err_ratelimited(hdev->dev,
					"TPC%d_%s interrupt cause: %s\n",
					tpc_id, interrupt_name,
					gaudi_tpc_interrupts_cause[i]);
			/* If this is QM error, we need to soft-reset */
			if (i == 15)
				soft_reset_required = true;
		}

	/* Clear interrupts */
	WREG32(mmTPC0_CFG_TPC_INTR_CAUSE + tpc_offset, 0);

7551
	hdev->asic_funcs->set_clock_gating(hdev);
7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572

	mutex_unlock(&gaudi->clk_gate_mutex);

	return soft_reset_required;
}

static int tpc_dec_event_to_tpc_id(u16 tpc_dec_event_type)
{
	return (tpc_dec_event_type - GAUDI_EVENT_TPC0_DEC) >> 1;
}

static int tpc_krn_event_to_tpc_id(u16 tpc_dec_event_type)
{
	return (tpc_dec_event_type - GAUDI_EVENT_TPC0_KRN_ERR) / 6;
}

static void gaudi_print_clk_change_info(struct hl_device *hdev,
					u16 event_type)
{
	switch (event_type) {
	case GAUDI_EVENT_FIX_POWER_ENV_S:
7573
		hdev->clk_throttling_reason |= HL_CLK_THROTTLE_POWER;
7574 7575 7576 7577 7578
		dev_info_ratelimited(hdev->dev,
			"Clock throttling due to power consumption\n");
		break;

	case GAUDI_EVENT_FIX_POWER_ENV_E:
7579
		hdev->clk_throttling_reason &= ~HL_CLK_THROTTLE_POWER;
7580 7581 7582 7583 7584
		dev_info_ratelimited(hdev->dev,
			"Power envelop is safe, back to optimal clock\n");
		break;

	case GAUDI_EVENT_FIX_THERMAL_ENV_S:
7585
		hdev->clk_throttling_reason |= HL_CLK_THROTTLE_THERMAL;
7586 7587 7588 7589 7590
		dev_info_ratelimited(hdev->dev,
			"Clock throttling due to overheating\n");
		break;

	case GAUDI_EVENT_FIX_THERMAL_ENV_E:
7591
		hdev->clk_throttling_reason &= ~HL_CLK_THROTTLE_THERMAL;
7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610
		dev_info_ratelimited(hdev->dev,
			"Thermal envelop is safe, back to optimal clock\n");
		break;

	default:
		dev_err(hdev->dev, "Received invalid clock change event %d\n",
			event_type);
		break;
	}
}

static void gaudi_handle_eqe(struct hl_device *hdev,
				struct hl_eq_entry *eq_entry)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	u32 ctl = le32_to_cpu(eq_entry->hdr.ctl);
	u16 event_type = ((ctl & EQ_CTL_EVENT_TYPE_MASK)
			>> EQ_CTL_EVENT_TYPE_SHIFT);
	u8 cause;
7611
	bool reset_required;
7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637

	gaudi->events_stat[event_type]++;
	gaudi->events_stat_aggregate[event_type]++;

	switch (event_type) {
	case GAUDI_EVENT_PCIE_CORE_DERR:
	case GAUDI_EVENT_PCIE_IF_DERR:
	case GAUDI_EVENT_PCIE_PHY_DERR:
	case GAUDI_EVENT_TPC0_DERR ... GAUDI_EVENT_TPC7_DERR:
	case GAUDI_EVENT_MME0_ACC_DERR:
	case GAUDI_EVENT_MME0_SBAB_DERR:
	case GAUDI_EVENT_MME1_ACC_DERR:
	case GAUDI_EVENT_MME1_SBAB_DERR:
	case GAUDI_EVENT_MME2_ACC_DERR:
	case GAUDI_EVENT_MME2_SBAB_DERR:
	case GAUDI_EVENT_MME3_ACC_DERR:
	case GAUDI_EVENT_MME3_SBAB_DERR:
	case GAUDI_EVENT_DMA0_DERR_ECC ... GAUDI_EVENT_DMA7_DERR_ECC:
		fallthrough;
	case GAUDI_EVENT_CPU_IF_ECC_DERR:
	case GAUDI_EVENT_PSOC_MEM_DERR:
	case GAUDI_EVENT_PSOC_CORESIGHT_DERR:
	case GAUDI_EVENT_SRAM0_DERR ... GAUDI_EVENT_SRAM28_DERR:
	case GAUDI_EVENT_DMA_IF0_DERR ... GAUDI_EVENT_DMA_IF3_DERR:
	case GAUDI_EVENT_HBM_0_DERR ... GAUDI_EVENT_HBM_3_DERR:
	case GAUDI_EVENT_MMU_DERR:
7638 7639
		gaudi_print_irq_info(hdev, event_type, true);
		gaudi_handle_ecc_event(hdev, event_type, &eq_entry->ecc_data);
7640
		goto reset_device;
7641 7642

	case GAUDI_EVENT_GIC500:
7643 7644 7645 7646
	case GAUDI_EVENT_AXI_ECC:
	case GAUDI_EVENT_L2_RAM_ECC:
	case GAUDI_EVENT_PLL0 ... GAUDI_EVENT_PLL17:
		gaudi_print_irq_info(hdev, event_type, false);
7647
		goto reset_device;
7648 7649 7650 7651 7652 7653 7654

	case GAUDI_EVENT_HBM0_SPI_0:
	case GAUDI_EVENT_HBM1_SPI_0:
	case GAUDI_EVENT_HBM2_SPI_0:
	case GAUDI_EVENT_HBM3_SPI_0:
		gaudi_print_irq_info(hdev, event_type, false);
		gaudi_hbm_read_interrupts(hdev,
7655 7656
				gaudi_hbm_event_to_dev(event_type),
				&eq_entry->hbm_ecc_data);
7657
		goto reset_device;
7658 7659 7660 7661 7662 7663 7664

	case GAUDI_EVENT_HBM0_SPI_1:
	case GAUDI_EVENT_HBM1_SPI_1:
	case GAUDI_EVENT_HBM2_SPI_1:
	case GAUDI_EVENT_HBM3_SPI_1:
		gaudi_print_irq_info(hdev, event_type, false);
		gaudi_hbm_read_interrupts(hdev,
7665 7666
				gaudi_hbm_event_to_dev(event_type),
				&eq_entry->hbm_ecc_data);
7667
		hl_fw_unmask_irq(hdev, event_type);
7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678
		break;

	case GAUDI_EVENT_TPC0_DEC:
	case GAUDI_EVENT_TPC1_DEC:
	case GAUDI_EVENT_TPC2_DEC:
	case GAUDI_EVENT_TPC3_DEC:
	case GAUDI_EVENT_TPC4_DEC:
	case GAUDI_EVENT_TPC5_DEC:
	case GAUDI_EVENT_TPC6_DEC:
	case GAUDI_EVENT_TPC7_DEC:
		gaudi_print_irq_info(hdev, event_type, true);
7679
		reset_required = gaudi_tpc_read_interrupts(hdev,
7680 7681
					tpc_dec_event_to_tpc_id(event_type),
					"AXI_SLV_DEC_Error");
7682 7683 7684 7685
		if (reset_required) {
			dev_err(hdev->dev, "hard reset required due to %s\n",
				gaudi_irq_map_table[event_type].name);

7686
			goto reset_device;
7687 7688
		} else {
			hl_fw_unmask_irq(hdev, event_type);
7689
		}
7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700
		break;

	case GAUDI_EVENT_TPC0_KRN_ERR:
	case GAUDI_EVENT_TPC1_KRN_ERR:
	case GAUDI_EVENT_TPC2_KRN_ERR:
	case GAUDI_EVENT_TPC3_KRN_ERR:
	case GAUDI_EVENT_TPC4_KRN_ERR:
	case GAUDI_EVENT_TPC5_KRN_ERR:
	case GAUDI_EVENT_TPC6_KRN_ERR:
	case GAUDI_EVENT_TPC7_KRN_ERR:
		gaudi_print_irq_info(hdev, event_type, true);
7701
		reset_required = gaudi_tpc_read_interrupts(hdev,
7702 7703
					tpc_krn_event_to_tpc_id(event_type),
					"KRN_ERR");
7704 7705 7706 7707
		if (reset_required) {
			dev_err(hdev->dev, "hard reset required due to %s\n",
				gaudi_irq_map_table[event_type].name);

7708
			goto reset_device;
7709 7710
		} else {
			hl_fw_unmask_irq(hdev, event_type);
7711
		}
7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734
		break;

	case GAUDI_EVENT_PCIE_CORE_SERR:
	case GAUDI_EVENT_PCIE_IF_SERR:
	case GAUDI_EVENT_PCIE_PHY_SERR:
	case GAUDI_EVENT_TPC0_SERR ... GAUDI_EVENT_TPC7_SERR:
	case GAUDI_EVENT_MME0_ACC_SERR:
	case GAUDI_EVENT_MME0_SBAB_SERR:
	case GAUDI_EVENT_MME1_ACC_SERR:
	case GAUDI_EVENT_MME1_SBAB_SERR:
	case GAUDI_EVENT_MME2_ACC_SERR:
	case GAUDI_EVENT_MME2_SBAB_SERR:
	case GAUDI_EVENT_MME3_ACC_SERR:
	case GAUDI_EVENT_MME3_SBAB_SERR:
	case GAUDI_EVENT_DMA0_SERR_ECC ... GAUDI_EVENT_DMA7_SERR_ECC:
	case GAUDI_EVENT_CPU_IF_ECC_SERR:
	case GAUDI_EVENT_PSOC_MEM_SERR:
	case GAUDI_EVENT_PSOC_CORESIGHT_SERR:
	case GAUDI_EVENT_SRAM0_SERR ... GAUDI_EVENT_SRAM28_SERR:
	case GAUDI_EVENT_DMA_IF0_SERR ... GAUDI_EVENT_DMA_IF3_SERR:
	case GAUDI_EVENT_HBM_0_SERR ... GAUDI_EVENT_HBM_3_SERR:
		fallthrough;
	case GAUDI_EVENT_MMU_SERR:
7735 7736 7737 7738 7739
		gaudi_print_irq_info(hdev, event_type, true);
		gaudi_handle_ecc_event(hdev, event_type, &eq_entry->ecc_data);
		hl_fw_unmask_irq(hdev, event_type);
		break;

7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758
	case GAUDI_EVENT_PCIE_DEC:
	case GAUDI_EVENT_MME0_WBC_RSP:
	case GAUDI_EVENT_MME0_SBAB0_RSP:
	case GAUDI_EVENT_MME1_WBC_RSP:
	case GAUDI_EVENT_MME1_SBAB0_RSP:
	case GAUDI_EVENT_MME2_WBC_RSP:
	case GAUDI_EVENT_MME2_SBAB0_RSP:
	case GAUDI_EVENT_MME3_WBC_RSP:
	case GAUDI_EVENT_MME3_SBAB0_RSP:
	case GAUDI_EVENT_CPU_AXI_SPLITTER:
	case GAUDI_EVENT_PSOC_AXI_DEC:
	case GAUDI_EVENT_PSOC_PRSTN_FALL:
	case GAUDI_EVENT_MMU_PAGE_FAULT:
	case GAUDI_EVENT_MMU_WR_PERM:
	case GAUDI_EVENT_RAZWI_OR_ADC:
	case GAUDI_EVENT_TPC0_QM ... GAUDI_EVENT_TPC7_QM:
	case GAUDI_EVENT_MME0_QM ... GAUDI_EVENT_MME2_QM:
	case GAUDI_EVENT_DMA0_QM ... GAUDI_EVENT_DMA7_QM:
		fallthrough;
7759 7760 7761 7762 7763 7764 7765 7766 7767 7768
	case GAUDI_EVENT_NIC0_QM0:
	case GAUDI_EVENT_NIC0_QM1:
	case GAUDI_EVENT_NIC1_QM0:
	case GAUDI_EVENT_NIC1_QM1:
	case GAUDI_EVENT_NIC2_QM0:
	case GAUDI_EVENT_NIC2_QM1:
	case GAUDI_EVENT_NIC3_QM0:
	case GAUDI_EVENT_NIC3_QM1:
	case GAUDI_EVENT_NIC4_QM0:
	case GAUDI_EVENT_NIC4_QM1:
7769 7770 7771
	case GAUDI_EVENT_DMA0_CORE ... GAUDI_EVENT_DMA7_CORE:
		gaudi_print_irq_info(hdev, event_type, true);
		gaudi_handle_qman_err(hdev, event_type);
7772
		hl_fw_unmask_irq(hdev, event_type);
7773 7774 7775 7776
		break;

	case GAUDI_EVENT_RAZWI_OR_ADC_SW:
		gaudi_print_irq_info(hdev, event_type, true);
7777
		goto reset_device;
7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788

	case GAUDI_EVENT_TPC0_BMON_SPMU:
	case GAUDI_EVENT_TPC1_BMON_SPMU:
	case GAUDI_EVENT_TPC2_BMON_SPMU:
	case GAUDI_EVENT_TPC3_BMON_SPMU:
	case GAUDI_EVENT_TPC4_BMON_SPMU:
	case GAUDI_EVENT_TPC5_BMON_SPMU:
	case GAUDI_EVENT_TPC6_BMON_SPMU:
	case GAUDI_EVENT_TPC7_BMON_SPMU:
	case GAUDI_EVENT_DMA_BM_CH0 ... GAUDI_EVENT_DMA_BM_CH7:
		gaudi_print_irq_info(hdev, event_type, false);
7789
		hl_fw_unmask_irq(hdev, event_type);
7790 7791
		break;

7792 7793 7794 7795 7796 7797 7798
	case GAUDI_EVENT_DMA_IF_SEI_0 ... GAUDI_EVENT_DMA_IF_SEI_3:
		gaudi_print_irq_info(hdev, event_type, false);
		gaudi_print_sm_sei_info(hdev, event_type,
					&eq_entry->sm_sei_data);
		hl_fw_unmask_irq(hdev, event_type);
		break;

7799 7800
	case GAUDI_EVENT_FIX_POWER_ENV_S ... GAUDI_EVENT_FIX_THERMAL_ENV_E:
		gaudi_print_clk_change_info(hdev, event_type);
7801
		hl_fw_unmask_irq(hdev, event_type);
7802 7803 7804 7805 7806 7807 7808 7809 7810
		break;

	case GAUDI_EVENT_PSOC_GPIO_U16_0:
		cause = le64_to_cpu(eq_entry->data[0]) & 0xFF;
		dev_err(hdev->dev,
			"Received high temp H/W interrupt %d (cause %d)\n",
			event_type, cause);
		break;

7811
	case GAUDI_EVENT_DEV_RESET_REQ:
7812 7813 7814
		gaudi_print_irq_info(hdev, event_type, false);
		goto reset_device;

7815 7816 7817
	case GAUDI_EVENT_PKT_QUEUE_OUT_SYNC:
		gaudi_print_irq_info(hdev, event_type, false);
		gaudi_print_out_of_sync_info(hdev, &eq_entry->pkt_sync_err);
7818
		goto reset_device;
7819

7820 7821 7822 7823 7824
	default:
		dev_err(hdev->dev, "Received invalid H/W interrupt %d\n",
				event_type);
		break;
	}
7825 7826 7827 7828 7829 7830 7831 7832

	return;

reset_device:
	if (hdev->hard_reset_on_fw_events)
		hl_device_reset(hdev, HL_RESET_HARD);
	else
		hl_fw_unmask_irq(hdev, event_type);
7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848
}

static void *gaudi_get_events_stat(struct hl_device *hdev, bool aggregate,
					u32 *size)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	if (aggregate) {
		*size = (u32) sizeof(gaudi->events_stat_aggregate);
		return gaudi->events_stat_aggregate;
	}

	*size = (u32) sizeof(gaudi->events_stat);
	return gaudi->events_stat;
}

7849
static int gaudi_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard,
7850 7851 7852 7853 7854 7855 7856 7857
					u32 flags)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	u32 status, timeout_usec;
	int rc;

	if (!(gaudi->hw_cap_initialized & HW_CAP_MMU) ||
		hdev->hard_reset_pending)
7858
		return 0;
7859 7860 7861 7862 7863 7864 7865

	if (hdev->pldm)
		timeout_usec = GAUDI_PLDM_MMU_TIMEOUT_USEC;
	else
		timeout_usec = MMU_CONFIG_TIMEOUT_USEC;

	/* L0 & L1 invalidation */
7866 7867
	WREG32(mmSTLB_INV_PS, 3);
	WREG32(mmSTLB_CACHE_INV, gaudi->mmu_cache_inv_pi++);
7868
	WREG32(mmSTLB_INV_PS, 2);
7869 7870 7871

	rc = hl_poll_timeout(
		hdev,
7872
		mmSTLB_INV_PS,
7873 7874 7875 7876 7877
		status,
		!status,
		1000,
		timeout_usec);

7878 7879
	WREG32(mmSTLB_INV_SET, 0);

7880 7881 7882
	if (rc) {
		dev_err_ratelimited(hdev->dev,
					"MMU cache invalidation timeout\n");
7883
		hl_device_reset(hdev, HL_RESET_HARD);
7884 7885 7886
	}

	return rc;
7887 7888
}

7889
static int gaudi_mmu_invalidate_cache_range(struct hl_device *hdev,
7890 7891 7892 7893 7894 7895 7896 7897 7898 7899
				bool is_hard, u32 asid, u64 va, u64 size)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	u32 status, timeout_usec;
	u32 inv_data;
	u32 pi;
	int rc;

	if (!(gaudi->hw_cap_initialized & HW_CAP_MMU) ||
		hdev->hard_reset_pending)
7900
		return 0;
7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928

	if (hdev->pldm)
		timeout_usec = GAUDI_PLDM_MMU_TIMEOUT_USEC;
	else
		timeout_usec = MMU_CONFIG_TIMEOUT_USEC;

	/*
	 * TODO: currently invalidate entire L0 & L1 as in regular hard
	 * invalidation. Need to apply invalidation of specific cache
	 * lines with mask of ASID & VA & size.
	 * Note that L1 with be flushed entirely in any case.
	 */

	/* L0 & L1 invalidation */
	inv_data = RREG32(mmSTLB_CACHE_INV);
	/* PI is 8 bit */
	pi = ((inv_data & STLB_CACHE_INV_PRODUCER_INDEX_MASK) + 1) & 0xFF;
	WREG32(mmSTLB_CACHE_INV,
		(inv_data & STLB_CACHE_INV_INDEX_MASK_MASK) | pi);

	rc = hl_poll_timeout(
		hdev,
		mmSTLB_INV_CONSUMER_INDEX,
		status,
		status == pi,
		1000,
		timeout_usec);

7929 7930 7931
	if (rc) {
		dev_err_ratelimited(hdev->dev,
					"MMU cache invalidation timeout\n");
7932
		hl_device_reset(hdev, HL_RESET_HARD);
7933 7934 7935
	}

	return rc;
7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980
}

static int gaudi_mmu_update_asid_hop0_addr(struct hl_device *hdev,
					u32 asid, u64 phys_addr)
{
	u32 status, timeout_usec;
	int rc;

	if (hdev->pldm)
		timeout_usec = GAUDI_PLDM_MMU_TIMEOUT_USEC;
	else
		timeout_usec = MMU_CONFIG_TIMEOUT_USEC;

	WREG32(MMU_ASID, asid);
	WREG32(MMU_HOP0_PA43_12, phys_addr >> MMU_HOP0_PA43_12_SHIFT);
	WREG32(MMU_HOP0_PA49_44, phys_addr >> MMU_HOP0_PA49_44_SHIFT);
	WREG32(MMU_BUSY, 0x80000000);

	rc = hl_poll_timeout(
		hdev,
		MMU_BUSY,
		status,
		!(status & 0x80000000),
		1000,
		timeout_usec);

	if (rc) {
		dev_err(hdev->dev,
			"Timeout during MMU hop0 config of asid %d\n", asid);
		return rc;
	}

	return 0;
}

static int gaudi_send_heartbeat(struct hl_device *hdev)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	if (!(gaudi->hw_cap_initialized & HW_CAP_CPU_Q))
		return 0;

	return hl_fw_send_heartbeat(hdev);
}

7981
static int gaudi_cpucp_info_get(struct hl_device *hdev)
7982 7983 7984 7985 7986 7987 7988 7989
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	int rc;

	if (!(gaudi->hw_cap_initialized & HW_CAP_CPU_Q))
		return 0;

7990
	rc = hl_fw_cpucp_handshake(hdev, mmCPU_BOOT_DEV_STS0, mmCPU_BOOT_ERR0);
7991 7992 7993
	if (rc)
		return rc;

7994 7995
	if (!strlen(prop->cpucp_info.card_name))
		strncpy(prop->cpucp_info.card_name, GAUDI_DEFAULT_CARD_NAME,
7996 7997
				CARD_NAME_MAX_LEN);

7998
	hdev->card_type = le32_to_cpu(hdev->asic_prop.cpucp_info.card_type);
7999

8000
	set_default_power_values(hdev);
8001 8002 8003

	hdev->max_power = prop->max_power_default;

8004 8005 8006
	return 0;
}

8007 8008
static bool gaudi_is_device_idle(struct hl_device *hdev, u64 *mask_arr,
					u8 mask_len, struct seq_file *s)
8009 8010 8011 8012
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	const char *fmt = "%-5d%-9s%#-14x%#-12x%#x\n";
	const char *mme_slave_fmt = "%-5d%-9s%-14s%-12s%#x\n";
8013
	const char *nic_fmt = "%-5d%-9s%#-14x%#x\n";
8014
	unsigned long *mask = (unsigned long *)mask_arr;
8015 8016 8017
	u32 qm_glbl_sts0, qm_cgm_sts, dma_core_sts0, tpc_cfg_sts, mme_arch_sts;
	bool is_idle = true, is_eng_idle, is_slave;
	u64 offset;
8018
	int i, dma_id, port;
8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039

	mutex_lock(&gaudi->clk_gate_mutex);

	hdev->asic_funcs->disable_clock_gating(hdev);

	if (s)
		seq_puts(s,
			"\nDMA  is_idle  QM_GLBL_STS0  QM_CGM_STS  DMA_CORE_STS0\n"
			"---  -------  ------------  ----------  -------------\n");

	for (i = 0 ; i < DMA_NUMBER_OF_CHNLS ; i++) {
		dma_id = gaudi_dma_assignment[i];
		offset = dma_id * DMA_QMAN_OFFSET;

		qm_glbl_sts0 = RREG32(mmDMA0_QM_GLBL_STS0 + offset);
		qm_cgm_sts = RREG32(mmDMA0_QM_CGM_STS + offset);
		dma_core_sts0 = RREG32(mmDMA0_CORE_STS0 + offset);
		is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_cgm_sts) &&
				IS_DMA_IDLE(dma_core_sts0);
		is_idle &= is_eng_idle;

8040 8041
		if (mask && !is_eng_idle)
			set_bit(GAUDI_ENGINE_ID_DMA_0 + dma_id, mask);
8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061
		if (s)
			seq_printf(s, fmt, dma_id,
				is_eng_idle ? "Y" : "N", qm_glbl_sts0,
				qm_cgm_sts, dma_core_sts0);
	}

	if (s)
		seq_puts(s,
			"\nTPC  is_idle  QM_GLBL_STS0  QM_CGM_STS  CFG_STATUS\n"
			"---  -------  ------------  ----------  ----------\n");

	for (i = 0 ; i < TPC_NUMBER_OF_ENGINES ; i++) {
		offset = i * TPC_QMAN_OFFSET;
		qm_glbl_sts0 = RREG32(mmTPC0_QM_GLBL_STS0 + offset);
		qm_cgm_sts = RREG32(mmTPC0_QM_CGM_STS + offset);
		tpc_cfg_sts = RREG32(mmTPC0_CFG_STATUS + offset);
		is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_cgm_sts) &&
				IS_TPC_IDLE(tpc_cfg_sts);
		is_idle &= is_eng_idle;

8062 8063
		if (mask && !is_eng_idle)
			set_bit(GAUDI_ENGINE_ID_TPC_0 + i, mask);
8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089
		if (s)
			seq_printf(s, fmt, i,
				is_eng_idle ? "Y" : "N",
				qm_glbl_sts0, qm_cgm_sts, tpc_cfg_sts);
	}

	if (s)
		seq_puts(s,
			"\nMME  is_idle  QM_GLBL_STS0  QM_CGM_STS  ARCH_STATUS\n"
			"---  -------  ------------  ----------  -----------\n");

	for (i = 0 ; i < MME_NUMBER_OF_ENGINES ; i++) {
		offset = i * MME_QMAN_OFFSET;
		mme_arch_sts = RREG32(mmMME0_CTRL_ARCH_STATUS + offset);
		is_eng_idle = IS_MME_IDLE(mme_arch_sts);

		/* MME 1 & 3 are slaves, no need to check their QMANs */
		is_slave = i % 2;
		if (!is_slave) {
			qm_glbl_sts0 = RREG32(mmMME0_QM_GLBL_STS0 + offset);
			qm_cgm_sts = RREG32(mmMME0_QM_CGM_STS + offset);
			is_eng_idle &= IS_QM_IDLE(qm_glbl_sts0, qm_cgm_sts);
		}

		is_idle &= is_eng_idle;

8090 8091
		if (mask && !is_eng_idle)
			set_bit(GAUDI_ENGINE_ID_MME_0 + i, mask);
8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103
		if (s) {
			if (!is_slave)
				seq_printf(s, fmt, i,
					is_eng_idle ? "Y" : "N",
					qm_glbl_sts0, qm_cgm_sts, mme_arch_sts);
			else
				seq_printf(s, mme_slave_fmt, i,
					is_eng_idle ? "Y" : "N", "-",
					"-", mme_arch_sts);
		}
	}

8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116
	if (s)
		seq_puts(s, "\nNIC  is_idle  QM_GLBL_STS0  QM_CGM_STS\n"
				"---  -------  ------------  ----------\n");

	for (i = 0 ; i < (NIC_NUMBER_OF_ENGINES / 2) ; i++) {
		offset = i * NIC_MACRO_QMAN_OFFSET;
		port = 2 * i;
		if (hdev->nic_ports_mask & BIT(port)) {
			qm_glbl_sts0 = RREG32(mmNIC0_QM0_GLBL_STS0 + offset);
			qm_cgm_sts = RREG32(mmNIC0_QM0_CGM_STS + offset);
			is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_cgm_sts);
			is_idle &= is_eng_idle;

8117 8118
			if (mask && !is_eng_idle)
				set_bit(GAUDI_ENGINE_ID_NIC_0 + port, mask);
8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131
			if (s)
				seq_printf(s, nic_fmt, port,
						is_eng_idle ? "Y" : "N",
						qm_glbl_sts0, qm_cgm_sts);
		}

		port = 2 * i + 1;
		if (hdev->nic_ports_mask & BIT(port)) {
			qm_glbl_sts0 = RREG32(mmNIC0_QM1_GLBL_STS0 + offset);
			qm_cgm_sts = RREG32(mmNIC0_QM1_CGM_STS + offset);
			is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_cgm_sts);
			is_idle &= is_eng_idle;

8132 8133
			if (mask && !is_eng_idle)
				set_bit(GAUDI_ENGINE_ID_NIC_0 + port, mask);
8134 8135 8136 8137 8138 8139 8140
			if (s)
				seq_printf(s, nic_fmt, port,
						is_eng_idle ? "Y" : "N",
						qm_glbl_sts0, qm_cgm_sts);
		}
	}

8141 8142 8143
	if (s)
		seq_puts(s, "\n");

8144
	hdev->asic_funcs->set_clock_gating(hdev);
8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244

	mutex_unlock(&gaudi->clk_gate_mutex);

	return is_idle;
}

static void gaudi_hw_queues_lock(struct hl_device *hdev)
	__acquires(&gaudi->hw_queues_lock)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	spin_lock(&gaudi->hw_queues_lock);
}

static void gaudi_hw_queues_unlock(struct hl_device *hdev)
	__releases(&gaudi->hw_queues_lock)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	spin_unlock(&gaudi->hw_queues_lock);
}

static u32 gaudi_get_pci_id(struct hl_device *hdev)
{
	return hdev->pdev->device;
}

static int gaudi_get_eeprom_data(struct hl_device *hdev, void *data,
				size_t max_size)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	if (!(gaudi->hw_cap_initialized & HW_CAP_CPU_Q))
		return 0;

	return hl_fw_get_eeprom_data(hdev, data, max_size);
}

/*
 * this function should be used only during initialization and/or after reset,
 * when there are no active users.
 */
static int gaudi_run_tpc_kernel(struct hl_device *hdev, u64 tpc_kernel,
				u32 tpc_id)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	u64 kernel_timeout;
	u32 status, offset;
	int rc;

	offset = tpc_id * (mmTPC1_CFG_STATUS - mmTPC0_CFG_STATUS);

	if (hdev->pldm)
		kernel_timeout = GAUDI_PLDM_TPC_KERNEL_WAIT_USEC;
	else
		kernel_timeout = HL_DEVICE_TIMEOUT_USEC;

	mutex_lock(&gaudi->clk_gate_mutex);

	hdev->asic_funcs->disable_clock_gating(hdev);

	WREG32(mmTPC0_CFG_QM_KERNEL_BASE_ADDRESS_LOW + offset,
			lower_32_bits(tpc_kernel));
	WREG32(mmTPC0_CFG_QM_KERNEL_BASE_ADDRESS_HIGH + offset,
			upper_32_bits(tpc_kernel));

	WREG32(mmTPC0_CFG_ICACHE_BASE_ADDERESS_LOW + offset,
			lower_32_bits(tpc_kernel));
	WREG32(mmTPC0_CFG_ICACHE_BASE_ADDERESS_HIGH + offset,
			upper_32_bits(tpc_kernel));
	/* set a valid LUT pointer, content is of no significance */
	WREG32(mmTPC0_CFG_LUT_FUNC256_BASE_ADDR_LO + offset,
			lower_32_bits(tpc_kernel));
	WREG32(mmTPC0_CFG_LUT_FUNC256_BASE_ADDR_HI + offset,
			upper_32_bits(tpc_kernel));

	WREG32(mmTPC0_CFG_QM_SYNC_OBJECT_ADDR + offset,
			lower_32_bits(CFG_BASE +
				mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0));

	WREG32(mmTPC0_CFG_TPC_CMD + offset,
			(1 << TPC0_CFG_TPC_CMD_ICACHE_INVALIDATE_SHIFT |
			1 << TPC0_CFG_TPC_CMD_ICACHE_PREFETCH_64KB_SHIFT));
	/* wait a bit for the engine to start executing */
	usleep_range(1000, 1500);

	/* wait until engine has finished executing */
	rc = hl_poll_timeout(
		hdev,
		mmTPC0_CFG_STATUS + offset,
		status,
		(status & TPC0_CFG_STATUS_VECTOR_PIPE_EMPTY_MASK) ==
				TPC0_CFG_STATUS_VECTOR_PIPE_EMPTY_MASK,
		1000,
		kernel_timeout);

	if (rc) {
		dev_err(hdev->dev,
			"Timeout while waiting for TPC%d icache prefetch\n",
			tpc_id);
8245
		hdev->asic_funcs->set_clock_gating(hdev);
8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265
		mutex_unlock(&gaudi->clk_gate_mutex);
		return -EIO;
	}

	WREG32(mmTPC0_CFG_TPC_EXECUTE + offset,
			1 << TPC0_CFG_TPC_EXECUTE_V_SHIFT);

	/* wait a bit for the engine to start executing */
	usleep_range(1000, 1500);

	/* wait until engine has finished executing */
	rc = hl_poll_timeout(
		hdev,
		mmTPC0_CFG_STATUS + offset,
		status,
		(status & TPC0_CFG_STATUS_VECTOR_PIPE_EMPTY_MASK) ==
				TPC0_CFG_STATUS_VECTOR_PIPE_EMPTY_MASK,
		1000,
		kernel_timeout);

8266 8267 8268 8269 8270 8271 8272 8273 8274
	if (rc) {
		dev_err(hdev->dev,
			"Timeout while waiting for TPC%d vector pipe\n",
			tpc_id);
		hdev->asic_funcs->set_clock_gating(hdev);
		mutex_unlock(&gaudi->clk_gate_mutex);
		return -EIO;
	}

8275 8276 8277 8278 8279 8280 8281 8282
	rc = hl_poll_timeout(
		hdev,
		mmTPC0_CFG_WQ_INFLIGHT_CNTR + offset,
		status,
		(status == 0),
		1000,
		kernel_timeout);

8283
	hdev->asic_funcs->set_clock_gating(hdev);
8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295
	mutex_unlock(&gaudi->clk_gate_mutex);

	if (rc) {
		dev_err(hdev->dev,
			"Timeout while waiting for TPC%d kernel to execute\n",
			tpc_id);
		return -EIO;
	}

	return 0;
}

8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335
static int gaudi_internal_cb_pool_init(struct hl_device *hdev,
		struct hl_ctx *ctx)
{
	struct gaudi_device *gaudi = hdev->asic_specific;
	int min_alloc_order, rc, collective_cb_size;

	if (!(gaudi->hw_cap_initialized & HW_CAP_MMU))
		return 0;

	hdev->internal_cb_pool_virt_addr =
			hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
					HOST_SPACE_INTERNAL_CB_SZ,
					&hdev->internal_cb_pool_dma_addr,
					GFP_KERNEL | __GFP_ZERO);

	if (!hdev->internal_cb_pool_virt_addr)
		return -ENOMEM;

	collective_cb_size = sizeof(struct packet_msg_short) * 5 +
			sizeof(struct packet_fence);
	min_alloc_order = ilog2(collective_cb_size);

	hdev->internal_cb_pool = gen_pool_create(min_alloc_order, -1);
	if (!hdev->internal_cb_pool) {
		dev_err(hdev->dev,
			"Failed to create internal CB pool\n");
		rc = -ENOMEM;
		goto free_internal_cb_pool;
	}

	rc = gen_pool_add(hdev->internal_cb_pool,
				(uintptr_t) hdev->internal_cb_pool_virt_addr,
				HOST_SPACE_INTERNAL_CB_SZ, -1);
	if (rc) {
		dev_err(hdev->dev,
			"Failed to add memory to internal CB pool\n");
		rc = -EFAULT;
		goto destroy_internal_cb_pool;
	}

8336
	hdev->internal_cb_va_base = hl_reserve_va_block(hdev, ctx,
8337 8338
			HL_VA_RANGE_TYPE_HOST, HOST_SPACE_INTERNAL_CB_SZ,
			HL_MMU_VA_ALIGNMENT_NOT_NEEDED);
8339 8340 8341

	if (!hdev->internal_cb_va_base)
		goto destroy_internal_cb_pool;
8342 8343

	mutex_lock(&ctx->mmu_lock);
8344 8345 8346
	rc = hl_mmu_map_contiguous(ctx, hdev->internal_cb_va_base,
			hdev->internal_cb_pool_dma_addr,
			HOST_SPACE_INTERNAL_CB_SZ);
8347 8348 8349 8350

	hdev->asic_funcs->mmu_invalidate_cache(hdev, false, VM_TYPE_USERPTR);
	mutex_unlock(&ctx->mmu_lock);

8351 8352
	if (rc)
		goto unreserve_internal_cb_pool;
8353

8354
	return 0;
8355

8356
unreserve_internal_cb_pool:
8357 8358
	hl_unreserve_va_block(hdev, ctx, hdev->internal_cb_va_base,
			HOST_SPACE_INTERNAL_CB_SZ);
8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378
destroy_internal_cb_pool:
	gen_pool_destroy(hdev->internal_cb_pool);
free_internal_cb_pool:
	hdev->asic_funcs->asic_dma_free_coherent(hdev,
			HOST_SPACE_INTERNAL_CB_SZ,
			hdev->internal_cb_pool_virt_addr,
			hdev->internal_cb_pool_dma_addr);

	return rc;
}

static void gaudi_internal_cb_pool_fini(struct hl_device *hdev,
		struct hl_ctx *ctx)
{
	struct gaudi_device *gaudi = hdev->asic_specific;

	if (!(gaudi->hw_cap_initialized & HW_CAP_MMU))
		return;

	mutex_lock(&ctx->mmu_lock);
8379 8380
	hl_mmu_unmap_contiguous(ctx, hdev->internal_cb_va_base,
			HOST_SPACE_INTERNAL_CB_SZ);
8381 8382
	hl_unreserve_va_block(hdev, ctx, hdev->internal_cb_va_base,
			HOST_SPACE_INTERNAL_CB_SZ);
8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393
	hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_USERPTR);
	mutex_unlock(&ctx->mmu_lock);

	gen_pool_destroy(hdev->internal_cb_pool);

	hdev->asic_funcs->asic_dma_free_coherent(hdev,
			HOST_SPACE_INTERNAL_CB_SZ,
			hdev->internal_cb_pool_virt_addr,
			hdev->internal_cb_pool_dma_addr);
}

8394
static int gaudi_ctx_init(struct hl_ctx *ctx)
8395
{
8396 8397 8398
	if (ctx->asid == HL_KERNEL_ASID_ID)
		return 0;

8399
	gaudi_mmu_prepare(ctx->hdev, ctx->asid);
8400 8401
	return gaudi_internal_cb_pool_init(ctx->hdev, ctx);
}
8402

8403
static void gaudi_ctx_fini(struct hl_ctx *ctx)
8404
{
8405
	if (ctx->asid == HL_KERNEL_ASID_ID)
8406 8407 8408
		return;

	gaudi_internal_cb_pool_fini(ctx->hdev, ctx);
8409 8410
}

8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428
static u32 gaudi_get_queue_id_for_cq(struct hl_device *hdev, u32 cq_idx)
{
	return gaudi_cq_assignment[cq_idx];
}

static u32 gaudi_get_signal_cb_size(struct hl_device *hdev)
{
	return sizeof(struct packet_msg_short) +
			sizeof(struct packet_msg_prot) * 2;
}

static u32 gaudi_get_wait_cb_size(struct hl_device *hdev)
{
	return sizeof(struct packet_msg_short) * 4 +
			sizeof(struct packet_fence) +
			sizeof(struct packet_msg_prot) * 2;
}

8429
static u32 gaudi_gen_signal_cb(struct hl_device *hdev, void *data, u16 sob_id,
8430
				u32 size, bool eb)
8431 8432 8433
{
	struct hl_cb *cb = (struct hl_cb *) data;
	struct packet_msg_short *pkt;
8434
	u32 value, ctl, pkt_size = sizeof(*pkt);
8435

8436 8437
	pkt = cb->kernel_address + size;
	memset(pkt, 0, pkt_size);
8438

8439 8440 8441
	/* Inc by 1, Mode ADD */
	value = FIELD_PREP(GAUDI_PKT_SHORT_VAL_SOB_SYNC_VAL_MASK, 1);
	value |= FIELD_PREP(GAUDI_PKT_SHORT_VAL_SOB_MOD_MASK, 1);
8442

8443 8444 8445
	ctl = FIELD_PREP(GAUDI_PKT_SHORT_CTL_ADDR_MASK, sob_id * 4);
	ctl |= FIELD_PREP(GAUDI_PKT_SHORT_CTL_OP_MASK, 0); /* write the value */
	ctl |= FIELD_PREP(GAUDI_PKT_SHORT_CTL_BASE_MASK, 3); /* W_S SOB base */
8446 8447 8448 8449
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, eb);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);
8450 8451 8452

	pkt->value = cpu_to_le32(value);
	pkt->ctl = cpu_to_le32(ctl);
8453 8454

	return size + pkt_size;
8455 8456 8457 8458 8459 8460 8461 8462 8463
}

static u32 gaudi_add_mon_msg_short(struct packet_msg_short *pkt, u32 value,
					u16 addr)
{
	u32 ctl, pkt_size = sizeof(*pkt);

	memset(pkt, 0, pkt_size);

8464 8465
	ctl = FIELD_PREP(GAUDI_PKT_SHORT_CTL_ADDR_MASK, addr);
	ctl |= FIELD_PREP(GAUDI_PKT_SHORT_CTL_BASE_MASK, 2);  /* W_S MON base */
8466 8467 8468 8469
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 0);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 0); /* last pkt MB */
8470 8471 8472 8473 8474 8475 8476

	pkt->value = cpu_to_le32(value);
	pkt->ctl = cpu_to_le32(ctl);

	return pkt_size;
}

8477 8478 8479
static u32 gaudi_add_arm_monitor_pkt(struct hl_device *hdev,
		struct packet_msg_short *pkt, u16 sob_base, u8 sob_mask,
		u16 sob_val, u16 mon_id)
8480
{
8481
	u64 monitor_base;
8482
	u32 ctl, value, pkt_size = sizeof(*pkt);
8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501
	u16 msg_addr_offset;
	u8 mask;

	if (hl_gen_sob_mask(sob_base, sob_mask, &mask)) {
		dev_err(hdev->dev,
			"sob_base %u (mask %#x) is not valid\n",
			sob_base, sob_mask);
		return 0;
	}

	/*
	 * monitor_base should be the content of the base0 address registers,
	 * so it will be added to the msg short offsets
	 */
	monitor_base = mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0;

	msg_addr_offset =
		(mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_ARM_0 + mon_id * 4) -
				monitor_base;
8502 8503 8504

	memset(pkt, 0, pkt_size);

8505 8506
	/* Monitor config packet: bind the monitor to a sync object */
	value = FIELD_PREP(GAUDI_PKT_SHORT_VAL_MON_SYNC_GID_MASK, sob_base / 8);
8507 8508 8509 8510
	value |= FIELD_PREP(GAUDI_PKT_SHORT_VAL_MON_SYNC_VAL_MASK, sob_val);
	value |= FIELD_PREP(GAUDI_PKT_SHORT_VAL_MON_MODE_MASK,
			0); /* GREATER OR EQUAL*/
	value |= FIELD_PREP(GAUDI_PKT_SHORT_VAL_MON_MASK_MASK, mask);
8511

8512
	ctl = FIELD_PREP(GAUDI_PKT_SHORT_CTL_ADDR_MASK, msg_addr_offset);
8513 8514
	ctl |= FIELD_PREP(GAUDI_PKT_SHORT_CTL_OP_MASK, 0); /* write the value */
	ctl |= FIELD_PREP(GAUDI_PKT_SHORT_CTL_BASE_MASK, 2); /* W_S MON base */
8515 8516 8517 8518
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 0);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);
8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531

	pkt->value = cpu_to_le32(value);
	pkt->ctl = cpu_to_le32(ctl);

	return pkt_size;
}

static u32 gaudi_add_fence_pkt(struct packet_fence *pkt)
{
	u32 ctl, cfg, pkt_size = sizeof(*pkt);

	memset(pkt, 0, pkt_size);

8532 8533 8534
	cfg = FIELD_PREP(GAUDI_PKT_FENCE_CFG_DEC_VAL_MASK, 1);
	cfg |= FIELD_PREP(GAUDI_PKT_FENCE_CFG_TARGET_VAL_MASK, 1);
	cfg |= FIELD_PREP(GAUDI_PKT_FENCE_CFG_ID_MASK, 2);
8535

8536 8537 8538 8539
	ctl = FIELD_PREP(GAUDI_PKT_CTL_OPCODE_MASK, PACKET_FENCE);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_EB_MASK, 0);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_RB_MASK, 1);
	ctl |= FIELD_PREP(GAUDI_PKT_CTL_MB_MASK, 1);
8540 8541 8542 8543 8544 8545 8546

	pkt->cfg = cpu_to_le32(cfg);
	pkt->ctl = cpu_to_le32(ctl);

	return pkt_size;
}

8547
static int gaudi_get_fence_addr(struct hl_device *hdev, u32 queue_id, u64 *addr)
8548
{
8549
	u32 offset, nic_index;
8550

8551
	switch (queue_id) {
8552
	case GAUDI_QUEUE_ID_DMA_0_0:
8553
		offset = mmDMA0_QM_CP_FENCE2_RDATA_0;
8554 8555
		break;
	case GAUDI_QUEUE_ID_DMA_0_1:
8556
		offset = mmDMA0_QM_CP_FENCE2_RDATA_1;
8557 8558
		break;
	case GAUDI_QUEUE_ID_DMA_0_2:
8559
		offset = mmDMA0_QM_CP_FENCE2_RDATA_2;
8560 8561
		break;
	case GAUDI_QUEUE_ID_DMA_0_3:
8562
		offset = mmDMA0_QM_CP_FENCE2_RDATA_3;
8563 8564
		break;
	case GAUDI_QUEUE_ID_DMA_1_0:
8565
		offset = mmDMA1_QM_CP_FENCE2_RDATA_0;
8566 8567
		break;
	case GAUDI_QUEUE_ID_DMA_1_1:
8568
		offset = mmDMA1_QM_CP_FENCE2_RDATA_1;
8569 8570
		break;
	case GAUDI_QUEUE_ID_DMA_1_2:
8571
		offset = mmDMA1_QM_CP_FENCE2_RDATA_2;
8572 8573
		break;
	case GAUDI_QUEUE_ID_DMA_1_3:
8574
		offset = mmDMA1_QM_CP_FENCE2_RDATA_3;
8575 8576
		break;
	case GAUDI_QUEUE_ID_DMA_5_0:
8577
		offset = mmDMA5_QM_CP_FENCE2_RDATA_0;
8578 8579
		break;
	case GAUDI_QUEUE_ID_DMA_5_1:
8580
		offset = mmDMA5_QM_CP_FENCE2_RDATA_1;
8581 8582
		break;
	case GAUDI_QUEUE_ID_DMA_5_2:
8583
		offset = mmDMA5_QM_CP_FENCE2_RDATA_2;
8584 8585
		break;
	case GAUDI_QUEUE_ID_DMA_5_3:
8586
		offset = mmDMA5_QM_CP_FENCE2_RDATA_3;
8587
		break;
8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659
	case GAUDI_QUEUE_ID_TPC_7_0:
		offset = mmTPC7_QM_CP_FENCE2_RDATA_0;
		break;
	case GAUDI_QUEUE_ID_TPC_7_1:
		offset = mmTPC7_QM_CP_FENCE2_RDATA_1;
		break;
	case GAUDI_QUEUE_ID_TPC_7_2:
		offset = mmTPC7_QM_CP_FENCE2_RDATA_2;
		break;
	case GAUDI_QUEUE_ID_TPC_7_3:
		offset = mmTPC7_QM_CP_FENCE2_RDATA_3;
		break;
	case GAUDI_QUEUE_ID_NIC_0_0:
	case GAUDI_QUEUE_ID_NIC_1_0:
	case GAUDI_QUEUE_ID_NIC_2_0:
	case GAUDI_QUEUE_ID_NIC_3_0:
	case GAUDI_QUEUE_ID_NIC_4_0:
	case GAUDI_QUEUE_ID_NIC_5_0:
	case GAUDI_QUEUE_ID_NIC_6_0:
	case GAUDI_QUEUE_ID_NIC_7_0:
	case GAUDI_QUEUE_ID_NIC_8_0:
	case GAUDI_QUEUE_ID_NIC_9_0:
		nic_index = (queue_id - GAUDI_QUEUE_ID_NIC_0_0) >> 2;
		offset = mmNIC0_QM0_CP_FENCE2_RDATA_0 +
				(nic_index >> 1) * NIC_MACRO_QMAN_OFFSET +
				(nic_index & 0x1) * NIC_ENGINE_QMAN_OFFSET;
		break;
	case GAUDI_QUEUE_ID_NIC_0_1:
	case GAUDI_QUEUE_ID_NIC_1_1:
	case GAUDI_QUEUE_ID_NIC_2_1:
	case GAUDI_QUEUE_ID_NIC_3_1:
	case GAUDI_QUEUE_ID_NIC_4_1:
	case GAUDI_QUEUE_ID_NIC_5_1:
	case GAUDI_QUEUE_ID_NIC_6_1:
	case GAUDI_QUEUE_ID_NIC_7_1:
	case GAUDI_QUEUE_ID_NIC_8_1:
	case GAUDI_QUEUE_ID_NIC_9_1:
		nic_index = (queue_id - GAUDI_QUEUE_ID_NIC_0_1) >> 2;
		offset = mmNIC0_QM0_CP_FENCE2_RDATA_1 +
				(nic_index >> 1) * NIC_MACRO_QMAN_OFFSET +
				(nic_index & 0x1) * NIC_ENGINE_QMAN_OFFSET;
		break;
	case GAUDI_QUEUE_ID_NIC_0_2:
	case GAUDI_QUEUE_ID_NIC_1_2:
	case GAUDI_QUEUE_ID_NIC_2_2:
	case GAUDI_QUEUE_ID_NIC_3_2:
	case GAUDI_QUEUE_ID_NIC_4_2:
	case GAUDI_QUEUE_ID_NIC_5_2:
	case GAUDI_QUEUE_ID_NIC_6_2:
	case GAUDI_QUEUE_ID_NIC_7_2:
	case GAUDI_QUEUE_ID_NIC_8_2:
	case GAUDI_QUEUE_ID_NIC_9_2:
		nic_index = (queue_id - GAUDI_QUEUE_ID_NIC_0_2) >> 2;
		offset = mmNIC0_QM0_CP_FENCE2_RDATA_2 +
				(nic_index >> 1) * NIC_MACRO_QMAN_OFFSET +
				(nic_index & 0x1) * NIC_ENGINE_QMAN_OFFSET;
		break;
	case GAUDI_QUEUE_ID_NIC_0_3:
	case GAUDI_QUEUE_ID_NIC_1_3:
	case GAUDI_QUEUE_ID_NIC_2_3:
	case GAUDI_QUEUE_ID_NIC_3_3:
	case GAUDI_QUEUE_ID_NIC_4_3:
	case GAUDI_QUEUE_ID_NIC_5_3:
	case GAUDI_QUEUE_ID_NIC_6_3:
	case GAUDI_QUEUE_ID_NIC_7_3:
	case GAUDI_QUEUE_ID_NIC_8_3:
	case GAUDI_QUEUE_ID_NIC_9_3:
		nic_index = (queue_id - GAUDI_QUEUE_ID_NIC_0_3) >> 2;
		offset = mmNIC0_QM0_CP_FENCE2_RDATA_3 +
				(nic_index >> 1) * NIC_MACRO_QMAN_OFFSET +
				(nic_index & 0x1) * NIC_ENGINE_QMAN_OFFSET;
		break;
8660
	default:
8661
		return -EINVAL;
8662 8663
	}

8664 8665 8666 8667 8668 8669 8670 8671 8672 8673
	*addr = CFG_BASE + offset;

	return 0;
}

static u32 gaudi_add_mon_pkts(void *buf, u16 mon_id, u64 fence_addr)
{
	u64 monitor_base;
	u32 size = 0;
	u16 msg_addr_offset;
8674 8675 8676 8677 8678 8679 8680 8681

	/*
	 * monitor_base should be the content of the base0 address registers,
	 * so it will be added to the msg short offsets
	 */
	monitor_base = mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0;

	/* First monitor config packet: low address of the sync */
8682 8683 8684
	msg_addr_offset =
		(mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_id * 4) -
				monitor_base;
8685 8686 8687 8688 8689

	size += gaudi_add_mon_msg_short(buf + size, (u32) fence_addr,
					msg_addr_offset);

	/* Second monitor config packet: high address of the sync */
8690 8691 8692
	msg_addr_offset =
		(mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + mon_id * 4) -
				monitor_base;
8693 8694 8695 8696 8697 8698 8699 8700

	size += gaudi_add_mon_msg_short(buf + size, (u32) (fence_addr >> 32),
					msg_addr_offset);

	/*
	 * Third monitor config packet: the payload, i.e. what to write when the
	 * sync triggers
	 */
8701 8702 8703
	msg_addr_offset =
		(mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_id * 4) -
				monitor_base;
8704 8705 8706

	size += gaudi_add_mon_msg_short(buf + size, 1, msg_addr_offset);

8707 8708 8709
	return size;
}

8710 8711
static u32 gaudi_gen_wait_cb(struct hl_device *hdev,
				struct hl_gen_wait_properties *prop)
8712 8713 8714 8715 8716
{
	struct hl_cb *cb = (struct hl_cb *) prop->data;
	void *buf = cb->kernel_address;
	u64 fence_addr = 0;
	u32 size = prop->size;
8717

8718 8719 8720 8721 8722 8723 8724 8725 8726
	if (gaudi_get_fence_addr(hdev, prop->q_idx, &fence_addr)) {
		dev_crit(hdev->dev, "wrong queue id %d for wait packet\n",
				prop->q_idx);
		return 0;
	}

	size += gaudi_add_mon_pkts(buf + size, prop->mon_id, fence_addr);
	size += gaudi_add_arm_monitor_pkt(hdev, buf + size, prop->sob_base,
			prop->sob_mask, prop->sob_val, prop->mon_id);
8727
	size += gaudi_add_fence_pkt(buf + size);
8728 8729

	return size;
8730 8731 8732 8733 8734
}

static void gaudi_reset_sob(struct hl_device *hdev, void *data)
{
	struct hl_hw_sob *hw_sob = (struct hl_hw_sob *) data;
8735
	int rc;
8736 8737 8738 8739

	dev_dbg(hdev->dev, "reset SOB, q_idx: %d, sob_id: %d\n", hw_sob->q_idx,
		hw_sob->sob_id);

8740 8741 8742 8743 8744
	rc = gaudi_schedule_register_memset(hdev, hw_sob->q_idx,
			CFG_BASE + mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0 +
			hw_sob->sob_id * 4, 1, 0);
	if (rc)
		dev_err(hdev->dev, "failed resetting sob %u", hw_sob->sob_id);
8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767

	kref_init(&hw_sob->kref);
}

static void gaudi_set_dma_mask_from_fw(struct hl_device *hdev)
{
	if (RREG32(mmPSOC_GLOBAL_CONF_NON_RST_FLOPS_0) ==
							HL_POWER9_HOST_MAGIC) {
		hdev->power9_64bit_dma_enable = 1;
		hdev->dma_mask = 64;
	} else {
		hdev->power9_64bit_dma_enable = 0;
		hdev->dma_mask = 48;
	}
}

static u64 gaudi_get_device_time(struct hl_device *hdev)
{
	u64 device_time = ((u64) RREG32(mmPSOC_TIMESTAMP_CNTCVU)) << 32;

	return device_time | RREG32(mmPSOC_TIMESTAMP_CNTCVL);
}

8768
static int gaudi_get_hw_block_id(struct hl_device *hdev, u64 block_addr,
8769
				u32 *block_size, u32 *block_id)
8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780
{
	return -EPERM;
}

static int gaudi_block_mmap(struct hl_device *hdev,
				struct vm_area_struct *vma,
				u32 block_id, u32 block_size)
{
	return -EPERM;
}

8781 8782 8783 8784 8785
static void gaudi_enable_events_from_fw(struct hl_device *hdev)
{
	WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR, GAUDI_EVENT_INTS_REGISTER);
}

8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802
static const struct hl_asic_funcs gaudi_funcs = {
	.early_init = gaudi_early_init,
	.early_fini = gaudi_early_fini,
	.late_init = gaudi_late_init,
	.late_fini = gaudi_late_fini,
	.sw_init = gaudi_sw_init,
	.sw_fini = gaudi_sw_fini,
	.hw_init = gaudi_hw_init,
	.hw_fini = gaudi_hw_fini,
	.halt_engines = gaudi_halt_engines,
	.suspend = gaudi_suspend,
	.resume = gaudi_resume,
	.cb_mmap = gaudi_cb_mmap,
	.ring_doorbell = gaudi_ring_doorbell,
	.pqe_write = gaudi_pqe_write,
	.asic_dma_alloc_coherent = gaudi_dma_alloc_coherent,
	.asic_dma_free_coherent = gaudi_dma_free_coherent,
8803
	.scrub_device_mem = gaudi_scrub_device_mem,
8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821
	.get_int_queue_base = gaudi_get_int_queue_base,
	.test_queues = gaudi_test_queues,
	.asic_dma_pool_zalloc = gaudi_dma_pool_zalloc,
	.asic_dma_pool_free = gaudi_dma_pool_free,
	.cpu_accessible_dma_pool_alloc = gaudi_cpu_accessible_dma_pool_alloc,
	.cpu_accessible_dma_pool_free = gaudi_cpu_accessible_dma_pool_free,
	.hl_dma_unmap_sg = gaudi_dma_unmap_sg,
	.cs_parser = gaudi_cs_parser,
	.asic_dma_map_sg = gaudi_dma_map_sg,
	.get_dma_desc_list_size = gaudi_get_dma_desc_list_size,
	.add_end_of_cb_packets = gaudi_add_end_of_cb_packets,
	.update_eq_ci = gaudi_update_eq_ci,
	.context_switch = gaudi_context_switch,
	.restore_phase_topology = gaudi_restore_phase_topology,
	.debugfs_read32 = gaudi_debugfs_read32,
	.debugfs_write32 = gaudi_debugfs_write32,
	.debugfs_read64 = gaudi_debugfs_read64,
	.debugfs_write64 = gaudi_debugfs_write64,
8822
	.debugfs_read_dma = gaudi_debugfs_read_dma,
8823
	.add_device_attr = gaudi_add_device_attr,
8824
	.handle_eqe = gaudi_handle_eqe,
8825
	.set_pll_profile = gaudi_set_pll_profile,
8826 8827 8828 8829 8830 8831
	.get_events_stat = gaudi_get_events_stat,
	.read_pte = gaudi_read_pte,
	.write_pte = gaudi_write_pte,
	.mmu_invalidate_cache = gaudi_mmu_invalidate_cache,
	.mmu_invalidate_cache_range = gaudi_mmu_invalidate_cache_range,
	.send_heartbeat = gaudi_send_heartbeat,
8832
	.set_clock_gating = gaudi_set_clock_gating,
8833
	.disable_clock_gating = gaudi_disable_clock_gating,
8834
	.debug_coresight = gaudi_debug_coresight,
8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845
	.is_device_idle = gaudi_is_device_idle,
	.soft_reset_late_init = gaudi_soft_reset_late_init,
	.hw_queues_lock = gaudi_hw_queues_lock,
	.hw_queues_unlock = gaudi_hw_queues_unlock,
	.get_pci_id = gaudi_get_pci_id,
	.get_eeprom_data = gaudi_get_eeprom_data,
	.send_cpu_message = gaudi_send_cpu_message,
	.pci_bars_map = gaudi_pci_bars_map,
	.init_iatu = gaudi_init_iatu,
	.rreg = hl_rreg,
	.wreg = hl_wreg,
8846
	.halt_coresight = gaudi_halt_coresight,
8847
	.ctx_init = gaudi_ctx_init,
8848
	.ctx_fini = gaudi_ctx_fini,
8849
	.get_clk_rate = gaudi_get_clk_rate,
8850 8851 8852 8853 8854 8855 8856 8857 8858
	.get_queue_id_for_cq = gaudi_get_queue_id_for_cq,
	.read_device_fw_version = gaudi_read_device_fw_version,
	.load_firmware_to_device = gaudi_load_firmware_to_device,
	.load_boot_fit_to_device = gaudi_load_boot_fit_to_device,
	.get_signal_cb_size = gaudi_get_signal_cb_size,
	.get_wait_cb_size = gaudi_get_wait_cb_size,
	.gen_signal_cb = gaudi_gen_signal_cb,
	.gen_wait_cb = gaudi_gen_wait_cb,
	.reset_sob = gaudi_reset_sob,
8859
	.reset_sob_group = gaudi_reset_sob_group,
8860
	.set_dma_mask_from_fw = gaudi_set_dma_mask_from_fw,
8861 8862
	.get_device_time = gaudi_get_device_time,
	.collective_wait_init_cs = gaudi_collective_wait_init_cs,
8863
	.collective_wait_create_jobs = gaudi_collective_wait_create_jobs,
8864 8865
	.scramble_addr = hl_mmu_scramble_addr,
	.descramble_addr = hl_mmu_descramble_addr,
8866 8867
	.ack_protection_bits_errors = gaudi_ack_protection_bits_errors,
	.get_hw_block_id = gaudi_get_hw_block_id,
8868 8869
	.hw_block_mmap = gaudi_block_mmap,
	.enable_events_from_fw = gaudi_enable_events_from_fw
8870 8871 8872 8873 8874
};

/**
 * gaudi_set_asic_funcs - set GAUDI function pointers
 *
8875
 * @hdev: pointer to hl_device structure
8876 8877 8878 8879 8880 8881
 *
 */
void gaudi_set_asic_funcs(struct hl_device *hdev)
{
	hdev->asic_funcs = &gaudi_funcs;
}