ib_srpt.c 86.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/ctype.h>
#include <linux/kthread.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/atomic.h>
44
#include <scsi/scsi_proto.h>
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
#include <scsi/scsi_tcq.h>
#include <target/target_core_base.h>
#include <target/target_core_fabric.h>
#include "ib_srpt.h"

/* Name of this kernel module. */
#define DRV_NAME		"ib_srpt"
#define DRV_VERSION		"2.0.0"
#define DRV_RELDATE		"2011-02-14"

#define SRPT_ID_STRING	"Linux SRP target"

#undef pr_fmt
#define pr_fmt(fmt) DRV_NAME " " fmt

MODULE_AUTHOR("Vu Pham and Bart Van Assche");
MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
		   "v" DRV_VERSION " (" DRV_RELDATE ")");
MODULE_LICENSE("Dual BSD/GPL");

/*
 * Global Variables
 */

static u64 srpt_service_guid;
70 71
static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
72 73 74 75 76 77 78 79 80 81 82

static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
module_param(srp_max_req_size, int, 0444);
MODULE_PARM_DESC(srp_max_req_size,
		 "Maximum size of SRP request messages in bytes.");

static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
module_param(srpt_srq_size, int, 0444);
MODULE_PARM_DESC(srpt_srq_size,
		 "Shared receive queue (SRQ) size.");

83
static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
84 85 86 87 88 89 90 91 92 93
{
	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
}
module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
		  0444);
MODULE_PARM_DESC(srpt_service_guid,
		 "Using this value for ioc_guid, id_ext, and cm_listen_id"
		 " instead of using the node_guid of the first HCA.");

static struct ib_client srpt_client;
94
static void srpt_release_cmd(struct se_cmd *se_cmd);
95
static void srpt_free_ch(struct kref *kref);
96
static int srpt_queue_status(struct se_cmd *cmd);
97 98
static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
99
static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
100

101 102 103
/*
 * The only allowed channel state changes are those that change the channel
 * state into a state with a higher numerical value. Hence the new > prev test.
104
 */
105
static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
106 107 108
{
	unsigned long flags;
	enum rdma_ch_state prev;
109
	bool changed = false;
110 111 112

	spin_lock_irqsave(&ch->spinlock, flags);
	prev = ch->state;
113
	if (new > prev) {
114
		ch->state = new;
115 116
		changed = true;
	}
117
	spin_unlock_irqrestore(&ch->spinlock, flags);
118 119

	return changed;
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
}

/**
 * srpt_event_handler() - Asynchronous IB event callback function.
 *
 * Callback function called by the InfiniBand core when an asynchronous IB
 * event occurs. This callback may occur in interrupt context. See also
 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
 * Architecture Specification.
 */
static void srpt_event_handler(struct ib_event_handler *handler,
			       struct ib_event *event)
{
	struct srpt_device *sdev;
	struct srpt_port *sport;

	sdev = ib_get_client_data(event->device, &srpt_client);
	if (!sdev || sdev->device != event->device)
		return;

	pr_debug("ASYNC event= %d on device= %s\n", event->event,
141
		 sdev->device->name);
142 143 144 145 146 147 148 149 150 151 152 153 154 155

	switch (event->event) {
	case IB_EVENT_PORT_ERR:
		if (event->element.port_num <= sdev->device->phys_port_cnt) {
			sport = &sdev->port[event->element.port_num - 1];
			sport->lid = 0;
			sport->sm_lid = 0;
		}
		break;
	case IB_EVENT_PORT_ACTIVE:
	case IB_EVENT_LID_CHANGE:
	case IB_EVENT_PKEY_CHANGE:
	case IB_EVENT_SM_CHANGE:
	case IB_EVENT_CLIENT_REREGISTER:
D
Doug Ledford 已提交
156
	case IB_EVENT_GID_CHANGE:
157 158 159 160 161 162 163 164
		/* Refresh port data asynchronously. */
		if (event->element.port_num <= sdev->device->phys_port_cnt) {
			sport = &sdev->port[event->element.port_num - 1];
			if (!sport->lid && !sport->sm_lid)
				schedule_work(&sport->work);
		}
		break;
	default:
165
		pr_err("received unrecognized IB event %d\n",
166 167 168 169 170 171 172 173 174 175
		       event->event);
		break;
	}
}

/**
 * srpt_srq_event() - SRQ event callback function.
 */
static void srpt_srq_event(struct ib_event *event, void *ctx)
{
176
	pr_info("SRQ event %d\n", event->event);
177 178
}

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
static const char *get_ch_state_name(enum rdma_ch_state s)
{
	switch (s) {
	case CH_CONNECTING:
		return "connecting";
	case CH_LIVE:
		return "live";
	case CH_DISCONNECTING:
		return "disconnecting";
	case CH_DRAINING:
		return "draining";
	case CH_DISCONNECTED:
		return "disconnected";
	}
	return "???";
}

196 197 198 199 200 201
/**
 * srpt_qp_event() - QP event callback function.
 */
static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
{
	pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
202
		 event->event, ch->cm_id, ch->sess_name, ch->state);
203 204 205 206 207 208

	switch (event->event) {
	case IB_EVENT_COMM_EST:
		ib_cm_notify(ch->cm_id, event->event);
		break;
	case IB_EVENT_QP_LAST_WQE_REACHED:
209 210 211
		pr_debug("%s-%d, state %s: received Last WQE event.\n",
			 ch->sess_name, ch->qp->qp_num,
			 get_ch_state_name(ch->state));
212 213
		break;
	default:
214
		pr_err("received unrecognized IB QP event %d\n", event->event);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
		break;
	}
}

/**
 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
 *
 * @slot: one-based slot number.
 * @value: four-bit value.
 *
 * Copies the lowest four bits of value in element slot of the array of four
 * bit elements called c_list (controller list). The index slot is one-based.
 */
static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
{
	u16 id;
	u8 tmp;

	id = (slot - 1) / 2;
	if (slot & 0x1) {
		tmp = c_list[id] & 0xf;
		c_list[id] = (value << 4) | tmp;
	} else {
		tmp = c_list[id] & 0xf0;
		c_list[id] = (value & 0xf) | tmp;
	}
}

/**
 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
 *
 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
 * Specification.
 */
static void srpt_get_class_port_info(struct ib_dm_mad *mad)
{
	struct ib_class_port_info *cif;

	cif = (struct ib_class_port_info *)mad->data;
254
	memset(cif, 0, sizeof(*cif));
255 256 257
	cif->base_version = 1;
	cif->class_version = 1;

258
	ib_set_cpi_resp_time(cif, 20);
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
	mad->mad_hdr.status = 0;
}

/**
 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
 *
 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
 * Specification. See also section B.7, table B.6 in the SRP r16a document.
 */
static void srpt_get_iou(struct ib_dm_mad *mad)
{
	struct ib_dm_iou_info *ioui;
	u8 slot;
	int i;

	ioui = (struct ib_dm_iou_info *)mad->data;
275
	ioui->change_id = cpu_to_be16(1);
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
	ioui->max_controllers = 16;

	/* set present for slot 1 and empty for the rest */
	srpt_set_ioc(ioui->controller_list, 1, 1);
	for (i = 1, slot = 2; i < 16; i++, slot++)
		srpt_set_ioc(ioui->controller_list, slot, 0);

	mad->mad_hdr.status = 0;
}

/**
 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
 *
 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
 * Architecture Specification. See also section B.7, table B.7 in the SRP
 * r16a document.
 */
static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
			 struct ib_dm_mad *mad)
{
	struct srpt_device *sdev = sport->sdev;
	struct ib_dm_ioc_profile *iocp;
298
	int send_queue_depth;
299 300 301 302 303

	iocp = (struct ib_dm_ioc_profile *)mad->data;

	if (!slot || slot > 16) {
		mad->mad_hdr.status
304
			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
305 306 307 308 309
		return;
	}

	if (slot > 2) {
		mad->mad_hdr.status
310
			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
311 312 313
		return;
	}

314 315 316 317 318 319
	if (sdev->use_srq)
		send_queue_depth = sdev->srq_size;
	else
		send_queue_depth = min(SRPT_RQ_SIZE,
				       sdev->device->attrs.max_qp_wr);

320
	memset(iocp, 0, sizeof(*iocp));
321 322
	strcpy(iocp->id_string, SRPT_ID_STRING);
	iocp->guid = cpu_to_be64(srpt_service_guid);
323 324 325 326
	iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
	iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
	iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
	iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
327
	iocp->subsys_device_id = 0x0;
328 329 330 331
	iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
	iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
	iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
	iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
332
	iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	iocp->rdma_read_depth = 4;
	iocp->send_size = cpu_to_be32(srp_max_req_size);
	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
					  1U << 24));
	iocp->num_svc_entries = 1;
	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;

	mad->mad_hdr.status = 0;
}

/**
 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
 *
 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
 * Specification. See also section B.7, table B.8 in the SRP r16a document.
 */
static void srpt_get_svc_entries(u64 ioc_guid,
				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
{
	struct ib_dm_svc_entries *svc_entries;

	WARN_ON(!ioc_guid);

	if (!slot || slot > 16) {
		mad->mad_hdr.status
359
			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
360 361 362 363 364
		return;
	}

	if (slot > 2 || lo > hi || hi > 1) {
		mad->mad_hdr.status
365
			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
366 367 368 369
		return;
	}

	svc_entries = (struct ib_dm_svc_entries *)mad->data;
370
	memset(svc_entries, 0, sizeof(*svc_entries));
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
	snprintf(svc_entries->service_entries[0].name,
		 sizeof(svc_entries->service_entries[0].name),
		 "%s%016llx",
		 SRP_SERVICE_NAME_PREFIX,
		 ioc_guid);

	mad->mad_hdr.status = 0;
}

/**
 * srpt_mgmt_method_get() - Process a received management datagram.
 * @sp:      source port through which the MAD has been received.
 * @rq_mad:  received MAD.
 * @rsp_mad: response MAD.
 */
static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
				 struct ib_dm_mad *rsp_mad)
{
	u16 attr_id;
	u32 slot;
	u8 hi, lo;

	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
	switch (attr_id) {
	case DM_ATTR_CLASS_PORT_INFO:
		srpt_get_class_port_info(rsp_mad);
		break;
	case DM_ATTR_IOU_INFO:
		srpt_get_iou(rsp_mad);
		break;
	case DM_ATTR_IOC_PROFILE:
		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
		srpt_get_ioc(sp, slot, rsp_mad);
		break;
	case DM_ATTR_SVC_ENTRIES:
		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
		hi = (u8) ((slot >> 8) & 0xff);
		lo = (u8) (slot & 0xff);
		slot = (u16) ((slot >> 16) & 0xffff);
		srpt_get_svc_entries(srpt_service_guid,
				     slot, hi, lo, rsp_mad);
		break;
	default:
		rsp_mad->mad_hdr.status =
416
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
417 418 419 420 421 422 423 424 425 426
		break;
	}
}

/**
 * srpt_mad_send_handler() - Post MAD-send callback function.
 */
static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
				  struct ib_mad_send_wc *mad_wc)
{
427
	rdma_destroy_ah(mad_wc->send_buf->ah);
428 429 430 431 432 433 434
	ib_free_send_mad(mad_wc->send_buf);
}

/**
 * srpt_mad_recv_handler() - MAD reception callback function.
 */
static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
435
				  struct ib_mad_send_buf *send_buf,
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
				  struct ib_mad_recv_wc *mad_wc)
{
	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
	struct ib_ah *ah;
	struct ib_mad_send_buf *rsp;
	struct ib_dm_mad *dm_mad;

	if (!mad_wc || !mad_wc->recv_buf.mad)
		return;

	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
				  mad_wc->recv_buf.grh, mad_agent->port_num);
	if (IS_ERR(ah))
		goto err;

	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);

	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
				 mad_wc->wc->pkey_index, 0,
				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
456 457
				 GFP_KERNEL,
				 IB_MGMT_BASE_VERSION);
458 459 460 461 462 463
	if (IS_ERR(rsp))
		goto err_rsp;

	rsp->ah = ah;

	dm_mad = rsp->mad;
464
	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
465 466 467 468 469 470 471 472 473
	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
	dm_mad->mad_hdr.status = 0;

	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
	case IB_MGMT_METHOD_GET:
		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
		break;
	case IB_MGMT_METHOD_SET:
		dm_mad->mad_hdr.status =
474
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
475 476 477
		break;
	default:
		dm_mad->mad_hdr.status =
478
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
479 480 481 482 483 484 485 486 487 488 489 490
		break;
	}

	if (!ib_post_send_mad(rsp, NULL)) {
		ib_free_recv_mad(mad_wc);
		/* will destroy_ah & free_send_mad in send completion */
		return;
	}

	ib_free_send_mad(rsp);

err_rsp:
491
	rdma_destroy_ah(ah);
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
err:
	ib_free_recv_mad(mad_wc);
}

/**
 * srpt_refresh_port() - Configure a HCA port.
 *
 * Enable InfiniBand management datagram processing, update the cached sm_lid,
 * lid and gid values, and register a callback function for processing MADs
 * on the specified port.
 *
 * Note: It is safe to call this function more than once for the same port.
 */
static int srpt_refresh_port(struct srpt_port *sport)
{
	struct ib_mad_reg_req reg_req;
	struct ib_port_modify port_modify;
	struct ib_port_attr port_attr;
510
	__be16 *guid;
511 512
	int ret;

513
	memset(&port_modify, 0, sizeof(port_modify));
514 515 516 517 518 519 520 521 522 523 524 525 526 527
	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
	port_modify.clr_port_cap_mask = 0;

	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
	if (ret)
		goto err_mod_port;

	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
	if (ret)
		goto err_query_port;

	sport->sm_lid = port_attr.sm_lid;
	sport->lid = port_attr.lid;

528 529
	ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
			   NULL);
530 531 532
	if (ret)
		goto err_query_port;

533 534
	sport->port_guid_wwn.priv = sport;
	guid = (__be16 *)&sport->gid.global.interface_id;
535
	snprintf(sport->port_guid, sizeof(sport->port_guid),
536 537 538 539 540 541 542 543
		 "%04x:%04x:%04x:%04x",
		 be16_to_cpu(guid[0]), be16_to_cpu(guid[1]),
		 be16_to_cpu(guid[2]), be16_to_cpu(guid[3]));
	sport->port_gid_wwn.priv = sport;
	snprintf(sport->port_gid, sizeof(sport->port_gid),
		 "0x%016llx%016llx",
		 be64_to_cpu(sport->gid.global.subnet_prefix),
		 be64_to_cpu(sport->gid.global.interface_id));
544

545
	if (!sport->mad_agent) {
546
		memset(&reg_req, 0, sizeof(reg_req));
547 548 549 550 551 552 553 554 555 556 557
		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);

		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
							 sport->port,
							 IB_QPT_GSI,
							 &reg_req, 0,
							 srpt_mad_send_handler,
							 srpt_mad_recv_handler,
558
							 sport, 0);
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
		if (IS_ERR(sport->mad_agent)) {
			ret = PTR_ERR(sport->mad_agent);
			sport->mad_agent = NULL;
			goto err_query_port;
		}
	}

	return 0;

err_query_port:

	port_modify.set_port_cap_mask = 0;
	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);

err_mod_port:

	return ret;
}

/**
 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
 *
 * Note: It is safe to call this function more than once for the same device.
 */
static void srpt_unregister_mad_agent(struct srpt_device *sdev)
{
	struct ib_port_modify port_modify = {
		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
	};
	struct srpt_port *sport;
	int i;

	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
		sport = &sdev->port[i - 1];
		WARN_ON(sport->port != i);
		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
596
			pr_err("disabling MAD processing failed.\n");
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
		if (sport->mad_agent) {
			ib_unregister_mad_agent(sport->mad_agent);
			sport->mad_agent = NULL;
		}
	}
}

/**
 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
 */
static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
					   int ioctx_size, int dma_size,
					   enum dma_data_direction dir)
{
	struct srpt_ioctx *ioctx;

	ioctx = kmalloc(ioctx_size, GFP_KERNEL);
	if (!ioctx)
		goto err;

	ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
	if (!ioctx->buf)
		goto err_free_ioctx;

	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
		goto err_free_buf;

	return ioctx;

err_free_buf:
	kfree(ioctx->buf);
err_free_ioctx:
	kfree(ioctx);
err:
	return NULL;
}

/**
 * srpt_free_ioctx() - Free an SRPT I/O context structure.
 */
static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
			    int dma_size, enum dma_data_direction dir)
{
	if (!ioctx)
		return;

	ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
	kfree(ioctx->buf);
	kfree(ioctx);
}

/**
 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
 * @sdev:       Device to allocate the I/O context ring for.
 * @ring_size:  Number of elements in the I/O context ring.
 * @ioctx_size: I/O context size.
 * @dma_size:   DMA buffer size.
 * @dir:        DMA data direction.
 */
static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
				int ring_size, int ioctx_size,
				int dma_size, enum dma_data_direction dir)
{
	struct srpt_ioctx **ring;
	int i;

	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
		&& ioctx_size != sizeof(struct srpt_send_ioctx));

	ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
	if (!ring)
		goto out;
	for (i = 0; i < ring_size; ++i) {
		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
		if (!ring[i])
			goto err;
		ring[i]->index = i;
	}
	goto out;

err:
	while (--i >= 0)
		srpt_free_ioctx(sdev, ring[i], dma_size, dir);
	kfree(ring);
682
	ring = NULL;
683 684 685 686 687 688 689 690 691 692 693 694 695
out:
	return ring;
}

/**
 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
 */
static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
				 struct srpt_device *sdev, int ring_size,
				 int dma_size, enum dma_data_direction dir)
{
	int i;

696 697 698
	if (!ioctx_ring)
		return;

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
	for (i = 0; i < ring_size; ++i)
		srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
	kfree(ioctx_ring);
}

/**
 * srpt_get_cmd_state() - Get the state of a SCSI command.
 */
static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
{
	enum srpt_command_state state;
	unsigned long flags;

	BUG_ON(!ioctx);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	state = ioctx->state;
	spin_unlock_irqrestore(&ioctx->spinlock, flags);
	return state;
}

/**
 * srpt_set_cmd_state() - Set the state of a SCSI command.
 *
 * Does not modify the state of aborted commands. Returns the previous command
 * state.
 */
static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
						  enum srpt_command_state new)
{
	enum srpt_command_state previous;
	unsigned long flags;

	BUG_ON(!ioctx);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	previous = ioctx->state;
	if (previous != SRPT_STATE_DONE)
		ioctx->state = new;
	spin_unlock_irqrestore(&ioctx->spinlock, flags);

	return previous;
}

/**
 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
 *
 * Returns true if and only if the previous command state was equal to 'old'.
 */
static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
					enum srpt_command_state old,
					enum srpt_command_state new)
{
	enum srpt_command_state previous;
	unsigned long flags;

	WARN_ON(!ioctx);
	WARN_ON(old == SRPT_STATE_DONE);
	WARN_ON(new == SRPT_STATE_NEW);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	previous = ioctx->state;
	if (previous == old)
		ioctx->state = new;
	spin_unlock_irqrestore(&ioctx->spinlock, flags);
	return previous == old;
}

/**
 * srpt_post_recv() - Post an IB receive request.
 */
770
static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
771 772 773 774 775 776 777 778
			  struct srpt_recv_ioctx *ioctx)
{
	struct ib_sge list;
	struct ib_recv_wr wr, *bad_wr;

	BUG_ON(!sdev);
	list.addr = ioctx->ioctx.dma;
	list.length = srp_max_req_size;
B
Bart Van Assche 已提交
779
	list.lkey = sdev->lkey;
780

781 782
	ioctx->ioctx.cqe.done = srpt_recv_done;
	wr.wr_cqe = &ioctx->ioctx.cqe;
783 784 785 786
	wr.next = NULL;
	wr.sg_list = &list;
	wr.num_sge = 1;

787 788 789 790
	if (sdev->use_srq)
		return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
	else
		return ib_post_recv(ch->qp, &wr, &bad_wr);
791 792
}

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
/**
 * srpt_zerolength_write() - Perform a zero-length RDMA write.
 *
 * A quote from the InfiniBand specification: C9-88: For an HCA responder
 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
 * request, the R_Key shall not be validated, even if the request includes
 * Immediate data.
 */
static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
{
	struct ib_send_wr wr, *bad_wr;

	memset(&wr, 0, sizeof(wr));
	wr.opcode = IB_WR_RDMA_WRITE;
	wr.wr_cqe = &ch->zw_cqe;
	wr.send_flags = IB_SEND_SIGNALED;
	return ib_post_send(ch->qp, &wr, &bad_wr);
}

static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct srpt_rdma_ch *ch = cq->cq_context;

816 817 818 819 820 821
	if (wc->status == IB_WC_SUCCESS) {
		srpt_process_wait_list(ch);
	} else {
		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
			schedule_work(&ch->release_work);
		else
D
Dan Carpenter 已提交
822
			WARN_ONCE(1, "%s-%d\n", ch->sess_name, ch->qp->qp_num);
823
	}
824 825
}

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
		struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
		unsigned *sg_cnt)
{
	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
	struct scatterlist *prev = NULL;
	unsigned prev_nents;
	int ret, i;

	if (nbufs == 1) {
		ioctx->rw_ctxs = &ioctx->s_rw_ctx;
	} else {
		ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
			GFP_KERNEL);
		if (!ioctx->rw_ctxs)
			return -ENOMEM;
	}

	for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
		u64 remote_addr = be64_to_cpu(db->va);
		u32 size = be32_to_cpu(db->len);
		u32 rkey = be32_to_cpu(db->key);

		ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
				i < nbufs - 1);
		if (ret)
			goto unwind;

		ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
		if (ret < 0) {
			target_free_sgl(ctx->sg, ctx->nents);
			goto unwind;
		}

		ioctx->n_rdma += ret;
		ioctx->n_rw_ctx++;

		if (prev) {
			sg_unmark_end(&prev[prev_nents - 1]);
			sg_chain(prev, prev_nents + 1, ctx->sg);
		} else {
			*sg = ctx->sg;
		}

		prev = ctx->sg;
		prev_nents = ctx->nents;

		*sg_cnt += ctx->nents;
	}

	return 0;

unwind:
	while (--i >= 0) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, dir);
		target_free_sgl(ctx->sg, ctx->nents);
	}
	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
		kfree(ioctx->rw_ctxs);
	return ret;
}

static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
				    struct srpt_send_ioctx *ioctx)
{
	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
	int i;

	for (i = 0; i < ioctx->n_rw_ctx; i++) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, dir);
		target_free_sgl(ctx->sg, ctx->nents);
	}

	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
		kfree(ioctx->rw_ctxs);
}

static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
{
	/*
	 * The pointer computations below will only be compiled correctly
	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
	 * whether srp_cmd::add_data has been declared as a byte pointer.
	 */
	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
		     !__same_type(srp_cmd->add_data[0], (u8)0));

	/*
	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
	 * CDB LENGTH' field are reserved and the size in bytes of this field
	 * is four times the value specified in bits 3..7. Hence the "& ~3".
	 */
	return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
}

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
/**
 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
 * @ioctx: Pointer to the I/O context associated with the request.
 * @srp_cmd: Pointer to the SRP_CMD request data.
 * @dir: Pointer to the variable to which the transfer direction will be
 *   written.
 * @data_len: Pointer to the variable to which the total data length of all
 *   descriptors in the SRP_CMD request will be written.
 *
 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
 *
 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
 * -ENOMEM when memory allocation fails and zero upon success.
 */
static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
945 946
		struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
		struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len)
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
{
	BUG_ON(!dir);
	BUG_ON(!data_len);

	/*
	 * The lower four bits of the buffer format field contain the DATA-IN
	 * buffer descriptor format, and the highest four bits contain the
	 * DATA-OUT buffer descriptor format.
	 */
	if (srp_cmd->buf_fmt & 0xf)
		/* DATA-IN: transfer data from target to initiator (read). */
		*dir = DMA_FROM_DEVICE;
	else if (srp_cmd->buf_fmt >> 4)
		/* DATA-OUT: transfer data from initiator to target (write). */
		*dir = DMA_TO_DEVICE;
962 963 964 965 966
	else
		*dir = DMA_NONE;

	/* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
	ioctx->cmd.data_direction = *dir;
967 968 969

	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
970
	    	struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
971 972

		*data_len = be32_to_cpu(db->len);
973
		return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
974 975
	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
976 977 978
		struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
		int nbufs = be32_to_cpu(idb->table_desc.len) /
				sizeof(struct srp_direct_buf);
979

980
		if (nbufs >
981
		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
982
			pr_err("received unsupported SRP_CMD request"
983 984 985 986
			       " type (%u out + %u in != %u / %zu)\n",
			       srp_cmd->data_out_desc_cnt,
			       srp_cmd->data_in_desc_cnt,
			       be32_to_cpu(idb->table_desc.len),
987 988
			       sizeof(struct srp_direct_buf));
			return -EINVAL;
989 990 991
		}

		*data_len = be32_to_cpu(idb->len);
992 993 994 995 996
		return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
				sg, sg_cnt);
	} else {
		*data_len = 0;
		return 0;
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	}
}

/**
 * srpt_init_ch_qp() - Initialize queue pair attributes.
 *
 * Initialized the attributes of queue pair 'qp' by allowing local write,
 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
 */
static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr *attr;
	int ret;

1011
	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1012 1013 1014 1015
	if (!attr)
		return -ENOMEM;

	attr->qp_state = IB_QPS_INIT;
1016
	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	attr->port_num = ch->sport->port;
	attr->pkey_index = 0;

	ret = ib_modify_qp(qp, attr,
			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
			   IB_QP_PKEY_INDEX);

	kfree(attr);
	return ret;
}

/**
 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
 * @ch: channel of the queue pair.
 * @qp: queue pair to change the state of.
 *
 * Returns zero upon success and a negative value upon failure.
 *
 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 * If this structure ever becomes larger, it might be necessary to allocate
 * it dynamically instead of on the stack.
 */
static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr qp_attr;
	int attr_mask;
	int ret;

	qp_attr.qp_state = IB_QPS_RTR;
	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
	if (ret)
		goto out;

	qp_attr.max_dest_rd_atomic = 4;

	ret = ib_modify_qp(qp, &qp_attr, attr_mask);

out:
	return ret;
}

/**
 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
 * @ch: channel of the queue pair.
 * @qp: queue pair to change the state of.
 *
 * Returns zero upon success and a negative value upon failure.
 *
 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 * If this structure ever becomes larger, it might be necessary to allocate
 * it dynamically instead of on the stack.
 */
static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr qp_attr;
	int attr_mask;
	int ret;

	qp_attr.qp_state = IB_QPS_RTS;
	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
	if (ret)
		goto out;

	qp_attr.max_rd_atomic = 4;

	ret = ib_modify_qp(qp, &qp_attr, attr_mask);

out:
	return ret;
}

/**
 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
 */
static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
{
	struct ib_qp_attr qp_attr;

	qp_attr.qp_state = IB_QPS_ERR;
	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
}

/**
 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
 */
static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
{
	struct srpt_send_ioctx *ioctx;
1105
	unsigned long flags;
1106 1107 1108

	BUG_ON(!ch);

1109 1110 1111 1112 1113 1114
	ioctx = NULL;
	spin_lock_irqsave(&ch->spinlock, flags);
	if (!list_empty(&ch->free_list)) {
		ioctx = list_first_entry(&ch->free_list,
					 struct srpt_send_ioctx, free_list);
		list_del(&ioctx->free_list);
1115
	}
1116 1117 1118 1119 1120 1121
	spin_unlock_irqrestore(&ch->spinlock, flags);

	if (!ioctx)
		return ioctx;

	BUG_ON(ioctx->ch != ch);
1122 1123
	spin_lock_init(&ioctx->spinlock);
	ioctx->state = SRPT_STATE_NEW;
1124
	ioctx->n_rdma = 0;
1125
	ioctx->n_rw_ctx = 0;
1126
	init_completion(&ioctx->tx_done);
1127 1128 1129 1130 1131 1132 1133
	ioctx->queue_status_only = false;
	/*
	 * transport_init_se_cmd() does not initialize all fields, so do it
	 * here.
	 */
	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

	return ioctx;
}

/**
 * srpt_abort_cmd() - Abort a SCSI command.
 * @ioctx:   I/O context associated with the SCSI command.
 * @context: Preferred execution context.
 */
static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
{
	enum srpt_command_state state;
	unsigned long flags;

	BUG_ON(!ioctx);

	/*
	 * If the command is in a state where the target core is waiting for
1152
	 * the ib_srpt driver, change the state to the next state.
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	 */

	spin_lock_irqsave(&ioctx->spinlock, flags);
	state = ioctx->state;
	switch (state) {
	case SRPT_STATE_NEED_DATA:
		ioctx->state = SRPT_STATE_DATA_IN;
		break;
	case SRPT_STATE_CMD_RSP_SENT:
	case SRPT_STATE_MGMT_RSP_SENT:
		ioctx->state = SRPT_STATE_DONE;
		break;
	default:
1166 1167
		WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
			  __func__, state);
1168 1169 1170 1171
		break;
	}
	spin_unlock_irqrestore(&ioctx->spinlock, flags);

1172 1173
	pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
		 ioctx->state, ioctx->cmd.tag);
1174 1175 1176 1177 1178

	switch (state) {
	case SRPT_STATE_NEW:
	case SRPT_STATE_DATA_IN:
	case SRPT_STATE_MGMT:
1179
	case SRPT_STATE_DONE:
1180 1181 1182 1183 1184 1185
		/*
		 * Do nothing - defer abort processing until
		 * srpt_queue_response() is invoked.
		 */
		break;
	case SRPT_STATE_NEED_DATA:
1186 1187 1188
		pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
		transport_generic_request_failure(&ioctx->cmd,
					TCM_CHECK_CONDITION_ABORT_CMD);
1189 1190 1191 1192 1193 1194
		break;
	case SRPT_STATE_CMD_RSP_SENT:
		/*
		 * SRP_RSP sending failed or the SRP_RSP send completion has
		 * not been received in time.
		 */
1195
		transport_generic_free_cmd(&ioctx->cmd, 0);
1196 1197
		break;
	case SRPT_STATE_MGMT_RSP_SENT:
1198
		transport_generic_free_cmd(&ioctx->cmd, 0);
1199 1200
		break;
	default:
G
Grant Grundler 已提交
1201
		WARN(1, "Unexpected command state (%d)", state);
1202 1203 1204 1205 1206 1207 1208
		break;
	}

	return state;
}

/**
1209 1210
 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
 * the data that has been transferred via IB RDMA had to be postponed until the
1211
 * check_stop_free() callback.  None of this is necessary anymore and needs to
1212
 * be cleaned up.
1213
 */
1214
static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1215
{
1216 1217
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_send_ioctx *ioctx =
1218
		container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1219

1220 1221
	WARN_ON(ioctx->n_rdma <= 0);
	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1222
	ioctx->n_rdma = 0;
1223

1224 1225 1226 1227 1228
	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
			ioctx, wc->status);
		srpt_abort_cmd(ioctx);
		return;
1229
	}
1230 1231 1232 1233 1234 1235 1236

	if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
					SRPT_STATE_DATA_IN))
		target_execute_cmd(&ioctx->cmd);
	else
		pr_err("%s[%d]: wrong state = %d\n", __func__,
		       __LINE__, srpt_get_cmd_state(ioctx));
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
}

/**
 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
 * @ch: RDMA channel through which the request has been received.
 * @ioctx: I/O context associated with the SRP_CMD request. The response will
 *   be built in the buffer ioctx->buf points at and hence this function will
 *   overwrite the request data.
 * @tag: tag of the request for which this response is being generated.
 * @status: value for the STATUS field of the SRP_RSP information unit.
 *
 * Returns the size in bytes of the SRP_RSP response.
 *
 * An SRP_RSP response contains a SCSI status or service response. See also
 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
 * response. See also SPC-2 for more information about sense data.
 */
static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
			      struct srpt_send_ioctx *ioctx, u64 tag,
			      int status)
{
	struct srp_rsp *srp_rsp;
	const u8 *sense_data;
	int sense_data_len, max_sense_len;

	/*
	 * The lowest bit of all SAM-3 status codes is zero (see also
	 * paragraph 5.3 in SAM-3).
	 */
	WARN_ON(status & 1);

	srp_rsp = ioctx->ioctx.buf;
	BUG_ON(!srp_rsp);

	sense_data = ioctx->sense_data;
	sense_data_len = ioctx->cmd.scsi_sense_length;
	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));

1275
	memset(srp_rsp, 0, sizeof(*srp_rsp));
1276 1277
	srp_rsp->opcode = SRP_RSP;
	srp_rsp->req_lim_delta =
1278
		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1279 1280 1281 1282 1283 1284 1285
	srp_rsp->tag = tag;
	srp_rsp->status = status;

	if (sense_data_len) {
		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
		if (sense_data_len > max_sense_len) {
1286 1287
			pr_warn("truncated sense data from %d to %d"
				" bytes\n", sense_data_len, max_sense_len);
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
			sense_data_len = max_sense_len;
		}

		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
		memcpy(srp_rsp + 1, sense_data, sense_data_len);
	}

	return sizeof(*srp_rsp) + sense_data_len;
}

/**
 * srpt_build_tskmgmt_rsp() - Build a task management response.
 * @ch:       RDMA channel through which the request has been received.
 * @ioctx:    I/O context in which the SRP_RSP response will be built.
 * @rsp_code: RSP_CODE that will be stored in the response.
 * @tag:      Tag of the request for which this response is being generated.
 *
 * Returns the size in bytes of the SRP_RSP response.
 *
 * An SRP_RSP response contains a SCSI status or service response. See also
 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
 * response.
 */
static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
				  struct srpt_send_ioctx *ioctx,
				  u8 rsp_code, u64 tag)
{
	struct srp_rsp *srp_rsp;
	int resp_data_len;
	int resp_len;

1320
	resp_data_len = 4;
1321 1322 1323 1324
	resp_len = sizeof(*srp_rsp) + resp_data_len;

	srp_rsp = ioctx->ioctx.buf;
	BUG_ON(!srp_rsp);
1325
	memset(srp_rsp, 0, sizeof(*srp_rsp));
1326 1327

	srp_rsp->opcode = SRP_RSP;
1328 1329
	srp_rsp->req_lim_delta =
		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1330 1331
	srp_rsp->tag = tag;

1332 1333 1334
	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
	srp_rsp->data[3] = rsp_code;
1335 1336 1337 1338 1339 1340

	return resp_len;
}

static int srpt_check_stop_free(struct se_cmd *cmd)
{
1341 1342
	struct srpt_send_ioctx *ioctx = container_of(cmd,
				struct srpt_send_ioctx, cmd);
1343

1344
	return target_put_sess_cmd(&ioctx->cmd);
1345 1346 1347 1348 1349
}

/**
 * srpt_handle_cmd() - Process SRP_CMD.
 */
1350 1351 1352
static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
			    struct srpt_recv_ioctx *recv_ioctx,
			    struct srpt_send_ioctx *send_ioctx)
1353 1354 1355
{
	struct se_cmd *cmd;
	struct srp_cmd *srp_cmd;
1356 1357
	struct scatterlist *sg = NULL;
	unsigned sg_cnt = 0;
1358 1359
	u64 data_len;
	enum dma_data_direction dir;
1360
	int rc;
1361 1362 1363 1364 1365

	BUG_ON(!send_ioctx);

	srp_cmd = recv_ioctx->ioctx.buf;
	cmd = &send_ioctx->cmd;
1366
	cmd->tag = srp_cmd->tag;
1367 1368 1369

	switch (srp_cmd->task_attr) {
	case SRP_CMD_SIMPLE_Q:
C
Christoph Hellwig 已提交
1370
		cmd->sam_task_attr = TCM_SIMPLE_TAG;
1371 1372 1373
		break;
	case SRP_CMD_ORDERED_Q:
	default:
C
Christoph Hellwig 已提交
1374
		cmd->sam_task_attr = TCM_ORDERED_TAG;
1375 1376
		break;
	case SRP_CMD_HEAD_OF_Q:
C
Christoph Hellwig 已提交
1377
		cmd->sam_task_attr = TCM_HEAD_TAG;
1378 1379
		break;
	case SRP_CMD_ACA:
C
Christoph Hellwig 已提交
1380
		cmd->sam_task_attr = TCM_ACA_TAG;
1381 1382 1383
		break;
	}

1384 1385 1386 1387 1388 1389 1390
	rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt,
			&data_len);
	if (rc) {
		if (rc != -EAGAIN) {
			pr_err("0x%llx: parsing SRP descriptor table failed.\n",
			       srp_cmd->tag);
		}
1391
		goto release_ioctx;
1392 1393
	}

1394
	rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
B
Bart Van Assche 已提交
1395 1396
			       &send_ioctx->sense_data[0],
			       scsilun_to_int(&srp_cmd->lun), data_len,
1397 1398
			       TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
			       sg, sg_cnt, NULL, 0, NULL, 0);
1399
	if (rc != 0) {
1400 1401 1402
		pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
			 srp_cmd->tag);
		goto release_ioctx;
1403
	}
1404
	return;
1405

1406 1407 1408
release_ioctx:
	send_ioctx->state = SRPT_STATE_DONE;
	srpt_release_cmd(cmd);
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
}

static int srp_tmr_to_tcm(int fn)
{
	switch (fn) {
	case SRP_TSK_ABORT_TASK:
		return TMR_ABORT_TASK;
	case SRP_TSK_ABORT_TASK_SET:
		return TMR_ABORT_TASK_SET;
	case SRP_TSK_CLEAR_TASK_SET:
		return TMR_CLEAR_TASK_SET;
	case SRP_TSK_LUN_RESET:
		return TMR_LUN_RESET;
	case SRP_TSK_CLEAR_ACA:
		return TMR_CLEAR_ACA;
	default:
		return -1;
	}
}

/**
 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
 *
 * Returns 0 if and only if the request will be processed by the target core.
 *
 * For more information about SRP_TSK_MGMT information units, see also section
 * 6.7 in the SRP r16a document.
 */
static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
				 struct srpt_recv_ioctx *recv_ioctx,
				 struct srpt_send_ioctx *send_ioctx)
{
	struct srp_tsk_mgmt *srp_tsk;
	struct se_cmd *cmd;
1443
	struct se_session *sess = ch->sess;
1444
	int tcm_tmr;
1445
	int rc;
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456

	BUG_ON(!send_ioctx);

	srp_tsk = recv_ioctx->ioctx.buf;
	cmd = &send_ioctx->cmd;

	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
		 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
		 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);

	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1457
	send_ioctx->cmd.tag = srp_tsk->tag;
1458
	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
B
Bart Van Assche 已提交
1459 1460 1461 1462
	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
			       scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
			       GFP_KERNEL, srp_tsk->task_tag,
			       TARGET_SCF_ACK_KREF);
1463 1464
	if (rc != 0) {
		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1465
		goto fail;
1466
	}
1467 1468 1469
	return;
fail:
	transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
}

/**
 * srpt_handle_new_iu() - Process a newly received information unit.
 * @ch:    RDMA channel through which the information unit has been received.
 * @ioctx: SRPT I/O context associated with the information unit.
 */
static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
			       struct srpt_recv_ioctx *recv_ioctx,
			       struct srpt_send_ioctx *send_ioctx)
{
	struct srp_cmd *srp_cmd;

	BUG_ON(!ch);
	BUG_ON(!recv_ioctx);

	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
				   recv_ioctx->ioctx.dma, srp_max_req_size,
				   DMA_FROM_DEVICE);

1490 1491
	if (unlikely(ch->state == CH_CONNECTING))
		goto out_wait;
1492

1493
	if (unlikely(ch->state != CH_LIVE))
1494
		return;
1495 1496 1497

	srp_cmd = recv_ioctx->ioctx.buf;
	if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1498 1499 1500
		if (!send_ioctx) {
			if (!list_empty(&ch->cmd_wait_list))
				goto out_wait;
1501 1502
			send_ioctx = srpt_get_send_ioctx(ch);
		}
1503 1504
		if (unlikely(!send_ioctx))
			goto out_wait;
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	}

	switch (srp_cmd->opcode) {
	case SRP_CMD:
		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
		break;
	case SRP_TSK_MGMT:
		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
		break;
	case SRP_I_LOGOUT:
1515
		pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1516 1517 1518 1519 1520 1521 1522 1523
		break;
	case SRP_CRED_RSP:
		pr_debug("received SRP_CRED_RSP\n");
		break;
	case SRP_AER_RSP:
		pr_debug("received SRP_AER_RSP\n");
		break;
	case SRP_RSP:
1524
		pr_err("Received SRP_RSP\n");
1525 1526
		break;
	default:
1527
		pr_err("received IU with unknown opcode 0x%x\n",
1528 1529 1530 1531
		       srp_cmd->opcode);
		break;
	}

1532
	srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1533
	return;
1534 1535 1536

out_wait:
	list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1537 1538
}

1539
static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1540
{
1541 1542 1543
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_recv_ioctx *ioctx =
		container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1544 1545 1546 1547 1548 1549

	if (wc->status == IB_WC_SUCCESS) {
		int req_lim;

		req_lim = atomic_dec_return(&ch->req_lim);
		if (unlikely(req_lim < 0))
1550
			pr_err("req_lim = %d < 0\n", req_lim);
1551 1552
		srpt_handle_new_iu(ch, ioctx, NULL);
	} else {
1553 1554
		pr_info("receiving failed for ioctx %p with status %d\n",
			ioctx, wc->status);
1555 1556 1557
	}
}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
/*
 * This function must be called from the context in which RDMA completions are
 * processed because it accesses the wait list without protection against
 * access from other threads.
 */
static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
{
	struct srpt_send_ioctx *ioctx;

	while (!list_empty(&ch->cmd_wait_list) &&
	       ch->state >= CH_LIVE &&
	       (ioctx = srpt_get_send_ioctx(ch)) != NULL) {
		struct srpt_recv_ioctx *recv_ioctx;

		recv_ioctx = list_first_entry(&ch->cmd_wait_list,
					      struct srpt_recv_ioctx,
					      wait_list);
		list_del(&recv_ioctx->wait_list);
		srpt_handle_new_iu(ch, recv_ioctx, ioctx);
	}
}

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
/**
 * Note: Although this has not yet been observed during tests, at least in
 * theory it is possible that the srpt_get_send_ioctx() call invoked by
 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
 * value in each response is set to one, and it is possible that this response
 * makes the initiator send a new request before the send completion for that
 * response has been processed. This could e.g. happen if the call to
 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
 * if IB retransmission causes generation of the send completion to be
 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
 * are queued on cmd_wait_list. The code below processes these delayed
 * requests one at a time.
 */
1593
static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1594
{
1595 1596 1597 1598
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_send_ioctx *ioctx =
		container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
	enum srpt_command_state state;
1599

1600 1601 1602 1603 1604
	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);

	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
		state != SRPT_STATE_MGMT_RSP_SENT);

1605
	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1606

1607
	if (wc->status != IB_WC_SUCCESS)
1608 1609 1610 1611 1612
		pr_info("sending response for ioctx 0x%p failed"
			" with status %d\n", ioctx, wc->status);

	if (state != SRPT_STATE_DONE) {
		transport_generic_free_cmd(&ioctx->cmd, 0);
1613
	} else {
1614 1615
		pr_err("IB completion has been received too late for"
		       " wr_id = %u.\n", ioctx->ioctx.index);
1616 1617
	}

1618
	srpt_process_wait_list(ch);
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
}

/**
 * srpt_create_ch_ib() - Create receive and send completion queues.
 */
static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
{
	struct ib_qp_init_attr *qp_init;
	struct srpt_port *sport = ch->sport;
	struct srpt_device *sdev = sport->sdev;
1629
	const struct ib_device_attr *attrs = &sdev->device->attrs;
1630
	u32 srp_sq_size = sport->port_attrib.srp_sq_size;
1631
	int i, ret;
1632 1633 1634 1635

	WARN_ON(ch->rq_size < 1);

	ret = -ENOMEM;
1636
	qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1637 1638 1639
	if (!qp_init)
		goto out;

1640
retry:
1641 1642
	ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + srp_sq_size,
			0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1643 1644
	if (IS_ERR(ch->cq)) {
		ret = PTR_ERR(ch->cq);
1645
		pr_err("failed to create CQ cqe= %d ret= %d\n",
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
		       ch->rq_size + srp_sq_size, ret);
		goto out;
	}

	qp_init->qp_context = (void *)ch;
	qp_init->event_handler
		= (void(*)(struct ib_event *, void*))srpt_qp_event;
	qp_init->send_cq = ch->cq;
	qp_init->recv_cq = ch->cq;
	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
	qp_init->qp_type = IB_QPT_RC;
1657 1658 1659 1660 1661 1662 1663
	/*
	 * We divide up our send queue size into half SEND WRs to send the
	 * completions, and half R/W contexts to actually do the RDMA
	 * READ/WRITE transfers.  Note that we need to allocate CQ slots for
	 * both both, as RDMA contexts will also post completions for the
	 * RDMA READ case.
	 */
1664
	qp_init->cap.max_send_wr = min(srp_sq_size / 2, attrs->max_qp_wr + 0U);
1665
	qp_init->cap.max_rdma_ctxs = srp_sq_size / 2;
1666
	qp_init->cap.max_send_sge = min(attrs->max_sge, SRPT_MAX_SG_PER_WQE);
1667
	qp_init->port_num = ch->sport->port;
1668 1669 1670 1671 1672 1673
	if (sdev->use_srq) {
		qp_init->srq = sdev->srq;
	} else {
		qp_init->cap.max_recv_wr = ch->rq_size;
		qp_init->cap.max_recv_sge = qp_init->cap.max_send_sge;
	}
1674 1675 1676 1677

	ch->qp = ib_create_qp(sdev->pd, qp_init);
	if (IS_ERR(ch->qp)) {
		ret = PTR_ERR(ch->qp);
1678 1679 1680 1681 1682 1683 1684
		if (ret == -ENOMEM) {
			srp_sq_size /= 2;
			if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
				ib_destroy_cq(ch->cq);
				goto retry;
			}
		}
1685
		pr_err("failed to create_qp ret= %d\n", ret);
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
		goto err_destroy_cq;
	}

	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);

	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
		 qp_init->cap.max_send_wr, ch->cm_id);

	ret = srpt_init_ch_qp(ch, ch->qp);
	if (ret)
		goto err_destroy_qp;

1699 1700 1701 1702
	if (!sdev->use_srq)
		for (i = 0; i < ch->rq_size; i++)
			srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);

1703 1704 1705 1706 1707 1708 1709
out:
	kfree(qp_init);
	return ret;

err_destroy_qp:
	ib_destroy_qp(ch->qp);
err_destroy_cq:
1710
	ib_free_cq(ch->cq);
1711 1712 1713 1714 1715 1716
	goto out;
}

static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
{
	ib_destroy_qp(ch->qp);
1717
	ib_free_cq(ch->cq);
1718 1719 1720
}

/**
1721
 * srpt_close_ch() - Close an RDMA channel.
1722
 *
1723 1724
 * Make sure all resources associated with the channel will be deallocated at
 * an appropriate time.
1725
 *
1726 1727
 * Returns true if and only if the channel state has been modified into
 * CH_DRAINING.
1728
 */
1729
static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1730
{
1731
	int ret;
1732

1733 1734 1735 1736
	if (!srpt_set_ch_state(ch, CH_DRAINING)) {
		pr_debug("%s-%d: already closed\n", ch->sess_name,
			 ch->qp->qp_num);
		return false;
1737 1738
	}

1739
	kref_get(&ch->kref);
1740

1741 1742 1743 1744
	ret = srpt_ch_qp_err(ch);
	if (ret < 0)
		pr_err("%s-%d: changing queue pair into error state failed: %d\n",
		       ch->sess_name, ch->qp->qp_num, ret);
1745

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
		 ch->qp->qp_num);
	ret = srpt_zerolength_write(ch);
	if (ret < 0) {
		pr_err("%s-%d: queuing zero-length write failed: %d\n",
		       ch->sess_name, ch->qp->qp_num, ret);
		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
			schedule_work(&ch->release_work);
		else
			WARN_ON_ONCE(true);
	}
1757

1758 1759 1760
	kref_put(&ch->kref, srpt_free_ch);

	return true;
1761 1762
}

1763 1764 1765 1766 1767 1768 1769 1770
/*
 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
 * reached the connected state, close it. If a channel is in the connected
 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
 * the responsibility of the caller to ensure that this function is not
 * invoked concurrently with the code that accepts a connection. This means
 * that this function must either be invoked from inside a CM callback
 * function or that it must be invoked with the srpt_port.mutex held.
1771
 */
1772
static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1773 1774 1775
{
	int ret;

1776 1777
	if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
		return -ENOTCONN;
1778

1779 1780 1781
	ret = ib_send_cm_dreq(ch->cm_id, NULL, 0);
	if (ret < 0)
		ret = ib_send_cm_drep(ch->cm_id, NULL, 0);
1782

1783 1784
	if (ret < 0 && srpt_close_ch(ch))
		ret = 0;
1785

1786 1787 1788
	return ret;
}

1789 1790 1791 1792 1793 1794
/*
 * Send DREQ and wait for DREP. Return true if and only if this function
 * changed the state of @ch.
 */
static bool srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
	__must_hold(&sdev->mutex)
1795
{
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	DECLARE_COMPLETION_ONSTACK(release_done);
	struct srpt_device *sdev = ch->sport->sdev;
	bool wait;

	lockdep_assert_held(&sdev->mutex);

	pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
		 ch->state);

	WARN_ON(ch->release_done);
	ch->release_done = &release_done;
	wait = !list_empty(&ch->list);
	srpt_disconnect_ch(ch);
	mutex_unlock(&sdev->mutex);

	if (!wait)
		goto out;

	while (wait_for_completion_timeout(&release_done, 180 * HZ) == 0)
		pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
			ch->sess_name, ch->qp->qp_num, ch->state);

out:
	mutex_lock(&sdev->mutex);
	return wait;
}

1823 1824
static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
	__must_hold(&sdev->mutex)
1825
{
1826
	struct srpt_device *sdev = sport->sdev;
1827 1828 1829 1830
	struct srpt_rdma_ch *ch;

	lockdep_assert_held(&sdev->mutex);

1831 1832 1833 1834 1835 1836 1837
	if (sport->enabled == enabled)
		return;
	sport->enabled = enabled;
	if (sport->enabled)
		return;

again:
1838
	list_for_each_entry(ch, &sdev->rch_list, list) {
1839 1840 1841 1842 1843 1844 1845
		if (ch->sport == sport) {
			pr_info("%s: closing channel %s-%d\n",
				sdev->device->name, ch->sess_name,
				ch->qp->qp_num);
			if (srpt_disconnect_ch_sync(ch))
				goto again;
		}
1846
	}
1847

1848 1849
}

1850 1851 1852 1853 1854
static void srpt_free_ch(struct kref *kref)
{
	struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);

	kfree(ch);
1855 1856 1857 1858 1859 1860
}

static void srpt_release_channel_work(struct work_struct *w)
{
	struct srpt_rdma_ch *ch;
	struct srpt_device *sdev;
1861
	struct se_session *se_sess;
1862 1863

	ch = container_of(w, struct srpt_rdma_ch, release_work);
1864 1865
	pr_debug("%s: %s-%d; release_done = %p\n", __func__, ch->sess_name,
		 ch->qp->qp_num, ch->release_done);
1866 1867 1868 1869

	sdev = ch->sport->sdev;
	BUG_ON(!sdev);

1870 1871 1872
	se_sess = ch->sess;
	BUG_ON(!se_sess);

1873
	target_sess_cmd_list_set_waiting(se_sess);
1874
	target_wait_for_sess_cmds(se_sess);
1875 1876 1877

	transport_deregister_session_configfs(se_sess);
	transport_deregister_session(se_sess);
1878 1879
	ch->sess = NULL;

1880 1881
	ib_destroy_cm_id(ch->cm_id);

1882 1883 1884 1885 1886 1887
	srpt_destroy_ch_ib(ch);

	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
			     ch->sport->sdev, ch->rq_size,
			     ch->rsp_size, DMA_TO_DEVICE);

1888 1889 1890 1891
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
			     sdev, ch->rq_size,
			     srp_max_req_size, DMA_FROM_DEVICE);

1892
	mutex_lock(&sdev->mutex);
1893
	list_del_init(&ch->list);
1894 1895
	if (ch->release_done)
		complete(ch->release_done);
1896
	mutex_unlock(&sdev->mutex);
1897 1898 1899

	wake_up(&sdev->ch_releaseQ);

1900
	kref_put(&ch->kref, srpt_free_ch);
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
}

/**
 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
 *
 * Ownership of the cm_id is transferred to the target session if this
 * functions returns zero. Otherwise the caller remains the owner of cm_id.
 */
static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
			    struct ib_cm_req_event_param *param,
			    void *private_data)
{
	struct srpt_device *sdev = cm_id->context;
	struct srpt_port *sport = &sdev->port[param->port - 1];
	struct srp_login_req *req;
	struct srp_login_rsp *rsp;
	struct srp_login_rej *rej;
	struct ib_cm_rep_param *rep_param;
	struct srpt_rdma_ch *ch, *tmp_ch;
1920
	__be16 *guid;
1921
	u32 it_iu_len;
1922
	int i, ret = 0;
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932

	WARN_ON_ONCE(irqs_disabled());

	if (WARN_ON(!sdev || !private_data))
		return -EINVAL;

	req = (struct srp_login_req *)private_data;

	it_iu_len = be32_to_cpu(req->req_it_iu_len);

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
	pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
		" t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
		" (guid=0x%llx:0x%llx)\n",
		be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
		be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
		be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
		be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
		it_iu_len,
		param->port,
		be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
		be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
1944

1945 1946 1947
	rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
	rej = kzalloc(sizeof(*rej), GFP_KERNEL);
	rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
1948 1949 1950 1951 1952 1953 1954

	if (!rsp || !rej || !rep_param) {
		ret = -ENOMEM;
		goto out;
	}

	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
1955 1956
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
1957
		ret = -EINVAL;
1958
		pr_err("rejected SRP_LOGIN_REQ because its"
1959 1960 1961 1962 1963 1964
		       " length (%d bytes) is out of range (%d .. %d)\n",
		       it_iu_len, 64, srp_max_req_size);
		goto reject;
	}

	if (!sport->enabled) {
1965 1966
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
1967
		ret = -EINVAL;
1968
		pr_err("rejected SRP_LOGIN_REQ because the target port"
1969 1970 1971 1972 1973 1974 1975
		       " has not yet been enabled\n");
		goto reject;
	}

	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;

1976
		mutex_lock(&sdev->mutex);
1977 1978 1979 1980 1981 1982 1983

		list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
			if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
			    && !memcmp(ch->t_port_id, req->target_port_id, 16)
			    && param->port == ch->sport->port
			    && param->listen_id == ch->sport->sdev->cm_id
			    && ch->cm_id) {
1984
				if (srpt_disconnect_ch(ch) < 0)
1985
					continue;
1986 1987
				pr_info("Relogin - closed existing channel %s\n",
					ch->sess_name);
1988 1989 1990 1991 1992
				rsp->rsp_flags =
					SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
			}
		}

1993
		mutex_unlock(&sdev->mutex);
1994 1995 1996 1997 1998 1999 2000

	} else
		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;

	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
	    || *(__be64 *)(req->target_port_id + 8) !=
	       cpu_to_be64(srpt_service_guid)) {
2001 2002
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2003
		ret = -ENOMEM;
2004
		pr_err("rejected SRP_LOGIN_REQ because it"
2005 2006 2007 2008
		       " has an invalid target port identifier.\n");
		goto reject;
	}

2009
	ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2010
	if (!ch) {
2011 2012
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2013
		pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2014 2015 2016 2017
		ret = -ENOMEM;
		goto reject;
	}

2018 2019
	kref_init(&ch->kref);
	ch->zw_cqe.done = srpt_zerolength_write_done;
2020 2021 2022 2023 2024
	INIT_WORK(&ch->release_work, srpt_release_channel_work);
	memcpy(ch->i_port_id, req->initiator_port_id, 16);
	memcpy(ch->t_port_id, req->target_port_id, 16);
	ch->sport = &sdev->port[param->port - 1];
	ch->cm_id = cm_id;
2025
	cm_id->context = ch;
2026
	/*
2027 2028 2029
	 * ch->rq_size should be at least as large as the initiator queue
	 * depth to avoid that the initiator driver has to report QUEUE_FULL
	 * to the SCSI mid-layer.
2030
	 */
2031
	ch->rq_size = min(SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	spin_lock_init(&ch->spinlock);
	ch->state = CH_CONNECTING;
	INIT_LIST_HEAD(&ch->cmd_wait_list);
	ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;

	ch->ioctx_ring = (struct srpt_send_ioctx **)
		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
				      sizeof(*ch->ioctx_ring[0]),
				      ch->rsp_size, DMA_TO_DEVICE);
	if (!ch->ioctx_ring)
		goto free_ch;

2044 2045 2046 2047 2048
	INIT_LIST_HEAD(&ch->free_list);
	for (i = 0; i < ch->rq_size; i++) {
		ch->ioctx_ring[i]->ch = ch;
		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
	}
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
	if (!sdev->use_srq) {
		ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
			srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
					      sizeof(*ch->ioctx_recv_ring[0]),
					      srp_max_req_size,
					      DMA_FROM_DEVICE);
		if (!ch->ioctx_recv_ring) {
			pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
			rej->reason =
			    cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
			goto free_ring;
		}
	}
2062

2063 2064
	ret = srpt_create_ch_ib(ch);
	if (ret) {
2065 2066
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2067
		pr_err("rejected SRP_LOGIN_REQ because creating"
2068
		       " a new RDMA channel failed.\n");
2069
		goto free_recv_ring;
2070 2071 2072 2073
	}

	ret = srpt_ch_qp_rtr(ch, ch->qp);
	if (ret) {
2074
		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2075
		pr_err("rejected SRP_LOGIN_REQ because enabling"
2076 2077 2078
		       " RTR failed (error code = %d)\n", ret);
		goto destroy_ib;
	}
2079

2080 2081 2082 2083
	guid = (__be16 *)&param->primary_path->sgid.global.interface_id;
	snprintf(ch->ini_guid, sizeof(ch->ini_guid), "%04x:%04x:%04x:%04x",
		 be16_to_cpu(guid[0]), be16_to_cpu(guid[1]),
		 be16_to_cpu(guid[2]), be16_to_cpu(guid[3]));
2084 2085 2086 2087 2088 2089
	snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
			be64_to_cpu(*(__be64 *)ch->i_port_id),
			be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));

	pr_debug("registering session %s\n", ch->sess_name);

2090 2091 2092 2093 2094 2095
	if (sport->port_guid_tpg.se_tpg_wwn)
		ch->sess = target_alloc_session(&sport->port_guid_tpg, 0, 0,
						TARGET_PROT_NORMAL,
						ch->ini_guid, ch, NULL);
	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
		ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2096 2097 2098
					TARGET_PROT_NORMAL, ch->sess_name, ch,
					NULL);
	/* Retry without leading "0x" */
2099 2100
	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
		ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2101 2102
						TARGET_PROT_NORMAL,
						ch->sess_name + 2, ch, NULL);
2103
	if (IS_ERR_OR_NULL(ch->sess)) {
2104 2105
		pr_info("Rejected login because no ACL has been configured yet for initiator %s.\n",
			ch->sess_name);
2106 2107
		rej->reason = cpu_to_be32((PTR_ERR(ch->sess) == -ENOMEM) ?
				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2108 2109
				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
		goto destroy_ib;
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	}

	pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
		 ch->sess_name, ch->cm_id);

	/* create srp_login_response */
	rsp->opcode = SRP_LOGIN_RSP;
	rsp->tag = req->tag;
	rsp->max_it_iu_len = req->req_it_iu_len;
	rsp->max_ti_iu_len = req->req_it_iu_len;
	ch->max_ti_iu_len = it_iu_len;
2121 2122
	rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
				   | SRP_BUF_FORMAT_INDIRECT);
2123 2124 2125 2126 2127 2128 2129
	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
	atomic_set(&ch->req_lim, ch->rq_size);
	atomic_set(&ch->req_lim_delta, 0);

	/* create cm reply */
	rep_param->qp_num = ch->qp->qp_num;
	rep_param->private_data = (void *)rsp;
2130
	rep_param->private_data_len = sizeof(*rsp);
2131 2132 2133 2134 2135 2136 2137 2138 2139
	rep_param->rnr_retry_count = 7;
	rep_param->flow_control = 1;
	rep_param->failover_accepted = 0;
	rep_param->srq = 1;
	rep_param->responder_resources = 4;
	rep_param->initiator_depth = 4;

	ret = ib_send_cm_rep(cm_id, rep_param);
	if (ret) {
2140
		pr_err("sending SRP_LOGIN_REQ response failed"
2141 2142 2143 2144
		       " (error code = %d)\n", ret);
		goto release_channel;
	}

2145
	mutex_lock(&sdev->mutex);
2146
	list_add_tail(&ch->list, &sdev->rch_list);
2147
	mutex_unlock(&sdev->mutex);
2148 2149 2150 2151

	goto out;

release_channel:
2152
	srpt_disconnect_ch(ch);
2153 2154 2155 2156 2157 2158 2159
	transport_deregister_session_configfs(ch->sess);
	transport_deregister_session(ch->sess);
	ch->sess = NULL;

destroy_ib:
	srpt_destroy_ch_ib(ch);

2160 2161 2162 2163 2164
free_recv_ring:
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
			     ch->sport->sdev, ch->rq_size,
			     srp_max_req_size, DMA_FROM_DEVICE);

2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
free_ring:
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
			     ch->sport->sdev, ch->rq_size,
			     ch->rsp_size, DMA_TO_DEVICE);
free_ch:
	kfree(ch);

reject:
	rej->opcode = SRP_LOGIN_REJ;
	rej->tag = req->tag;
2175 2176
	rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
				   | SRP_BUF_FORMAT_INDIRECT);
2177 2178

	ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2179
			     (void *)rej, sizeof(*rej));
2180 2181 2182 2183 2184 2185 2186 2187 2188

out:
	kfree(rep_param);
	kfree(rsp);
	kfree(rej);

	return ret;
}

2189 2190 2191 2192
static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
			     enum ib_cm_rej_reason reason,
			     const u8 *private_data,
			     u8 private_data_len)
2193
{
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	char *priv = NULL;
	int i;

	if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
						GFP_KERNEL))) {
		for (i = 0; i < private_data_len; i++)
			sprintf(priv + 3 * i, " %02x", private_data[i]);
	}
	pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
		ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
		"; private data" : "", priv ? priv : " (?)");
	kfree(priv);
2206 2207 2208 2209 2210 2211 2212 2213
}

/**
 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
 *
 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
 * and that the recipient may begin transmitting (RTU = ready to use).
 */
2214
static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2215 2216 2217
{
	int ret;

2218
	if (srpt_set_ch_state(ch, CH_LIVE)) {
2219 2220
		ret = srpt_ch_qp_rts(ch, ch->qp);

2221 2222 2223 2224 2225
		if (ret == 0) {
			/* Trigger wait list processing. */
			ret = srpt_zerolength_write(ch);
			WARN_ONCE(ret < 0, "%d\n", ret);
		} else {
2226
			srpt_close_ch(ch);
2227
		}
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
	}
}

/**
 * srpt_cm_handler() - IB connection manager callback function.
 *
 * A non-zero return value will cause the caller destroy the CM ID.
 *
 * Note: srpt_cm_handler() must only return a non-zero value when transferring
 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
 * a non-zero value in any other case will trigger a race with the
 * ib_destroy_cm_id() call in srpt_release_channel().
 */
static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
{
2243
	struct srpt_rdma_ch *ch = cm_id->context;
2244 2245 2246 2247 2248 2249 2250 2251 2252
	int ret;

	ret = 0;
	switch (event->event) {
	case IB_CM_REQ_RECEIVED:
		ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
				       event->private_data);
		break;
	case IB_CM_REJ_RECEIVED:
2253 2254 2255
		srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
				 event->private_data,
				 IB_CM_REJ_PRIVATE_DATA_SIZE);
2256 2257 2258
		break;
	case IB_CM_RTU_RECEIVED:
	case IB_CM_USER_ESTABLISHED:
2259
		srpt_cm_rtu_recv(ch);
2260 2261
		break;
	case IB_CM_DREQ_RECEIVED:
2262
		srpt_disconnect_ch(ch);
2263 2264
		break;
	case IB_CM_DREP_RECEIVED:
2265 2266
		pr_info("Received CM DREP message for ch %s-%d.\n",
			ch->sess_name, ch->qp->qp_num);
2267
		srpt_close_ch(ch);
2268 2269
		break;
	case IB_CM_TIMEWAIT_EXIT:
2270 2271
		pr_info("Received CM TimeWait exit for ch %s-%d.\n",
			ch->sess_name, ch->qp->qp_num);
2272
		srpt_close_ch(ch);
2273 2274
		break;
	case IB_CM_REP_ERROR:
2275 2276
		pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
			ch->qp->qp_num);
2277 2278
		break;
	case IB_CM_DREQ_ERROR:
2279
		pr_info("Received CM DREQ ERROR event.\n");
2280 2281
		break;
	case IB_CM_MRA_RECEIVED:
2282
		pr_info("Received CM MRA event\n");
2283 2284
		break;
	default:
2285
		pr_err("received unrecognized CM event %d\n", event->event);
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
		break;
	}

	return ret;
}

static int srpt_write_pending_status(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
	return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
}

/*
 * srpt_write_pending() - Start data transfer from initiator to target (write).
 */
static int srpt_write_pending(struct se_cmd *se_cmd)
{
2305 2306 2307
	struct srpt_send_ioctx *ioctx =
		container_of(se_cmd, struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
2308 2309
	struct ib_send_wr *first_wr = NULL, *bad_wr;
	struct ib_cqe *cqe = &ioctx->rdma_cqe;
2310
	enum srpt_command_state new_state;
2311
	int ret, i;
2312 2313 2314

	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
	WARN_ON(new_state == SRPT_STATE_DONE);
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330

	if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
		pr_warn("%s: IB send queue full (needed %d)\n",
				__func__, ioctx->n_rdma);
		ret = -ENOMEM;
		goto out_undo;
	}

	cqe->done = srpt_rdma_read_done;
	for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
				cqe, first_wr);
		cqe = NULL;
	}
2331

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	ret = ib_post_send(ch->qp, first_wr, &bad_wr);
	if (ret) {
		pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
			 __func__, ret, ioctx->n_rdma,
			 atomic_read(&ch->sq_wr_avail));
		goto out_undo;
	}

	return 0;
out_undo:
	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
	return ret;
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
}

static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
{
	switch (tcm_mgmt_status) {
	case TMR_FUNCTION_COMPLETE:
		return SRP_TSK_MGMT_SUCCESS;
	case TMR_FUNCTION_REJECTED:
		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
	}
	return SRP_TSK_MGMT_FAILED;
}

/**
 * srpt_queue_response() - Transmits the response to a SCSI command.
 *
 * Callback function called by the TCM core. Must not block since it can be
 * invoked on the context of the IB completion handler.
 */
2363
static void srpt_queue_response(struct se_cmd *cmd)
2364
{
2365 2366 2367 2368
	struct srpt_send_ioctx *ioctx =
		container_of(cmd, struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
	struct srpt_device *sdev = ch->sport->sdev;
2369
	struct ib_send_wr send_wr, *first_wr = &send_wr, *bad_wr;
2370
	struct ib_sge sge;
2371 2372
	enum srpt_command_state state;
	unsigned long flags;
2373
	int resp_len, ret, i;
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	u8 srp_tm_status;

	BUG_ON(!ch);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	state = ioctx->state;
	switch (state) {
	case SRPT_STATE_NEW:
	case SRPT_STATE_DATA_IN:
		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
		break;
	case SRPT_STATE_MGMT:
		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
		break;
	default:
		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
			ch, ioctx->ioctx.index, ioctx->state);
		break;
	}
	spin_unlock_irqrestore(&ioctx->spinlock, flags);

B
Bart Van Assche 已提交
2395
	if (unlikely(WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)))
2396
		return;
2397 2398

	/* For read commands, transfer the data to the initiator. */
2399 2400
	if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
	    ioctx->cmd.data_length &&
2401
	    !ioctx->queue_status_only) {
2402 2403 2404 2405
		for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
			struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

			first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2406
					ch->sport->port, NULL, first_wr);
2407 2408 2409 2410
		}
	}

	if (state != SRPT_STATE_MGMT)
2411
		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2412 2413 2414 2415 2416
					      cmd->scsi_status);
	else {
		srp_tm_status
			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2417
						 ioctx->cmd.tag);
2418
	}
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434

	atomic_inc(&ch->req_lim);

	if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
			&ch->sq_wr_avail) < 0)) {
		pr_warn("%s: IB send queue full (needed %d)\n",
				__func__, ioctx->n_rdma);
		ret = -ENOMEM;
		goto out;
	}

	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
				      DMA_TO_DEVICE);

	sge.addr = ioctx->ioctx.dma;
	sge.length = resp_len;
B
Bart Van Assche 已提交
2435
	sge.lkey = sdev->lkey;
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449

	ioctx->ioctx.cqe.done = srpt_send_done;
	send_wr.next = NULL;
	send_wr.wr_cqe = &ioctx->ioctx.cqe;
	send_wr.sg_list = &sge;
	send_wr.num_sge = 1;
	send_wr.opcode = IB_WR_SEND;
	send_wr.send_flags = IB_SEND_SIGNALED;

	ret = ib_post_send(ch->qp, first_wr, &bad_wr);
	if (ret < 0) {
		pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
			__func__, ioctx->cmd.tag, ret);
		goto out;
2450
	}
2451 2452 2453 2454 2455 2456 2457 2458

	return;

out:
	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
	atomic_dec(&ch->req_lim);
	srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
	target_put_sess_cmd(&ioctx->cmd);
2459
}
2460

2461 2462 2463 2464 2465 2466 2467 2468 2469
static int srpt_queue_data_in(struct se_cmd *cmd)
{
	srpt_queue_response(cmd);
	return 0;
}

static void srpt_queue_tm_rsp(struct se_cmd *cmd)
{
	srpt_queue_response(cmd);
2470 2471
}

2472 2473 2474 2475
static void srpt_aborted_task(struct se_cmd *cmd)
{
}

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
static int srpt_queue_status(struct se_cmd *cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
	if (cmd->se_cmd_flags &
	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
	ioctx->queue_status_only = true;
2486 2487
	srpt_queue_response(cmd);
	return 0;
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
}

static void srpt_refresh_port_work(struct work_struct *work)
{
	struct srpt_port *sport = container_of(work, struct srpt_port, work);

	srpt_refresh_port(sport);
}

/**
 * srpt_release_sdev() - Free the channel resources associated with a target.
 */
static int srpt_release_sdev(struct srpt_device *sdev)
{
2502
	int i, res;
2503 2504 2505 2506 2507

	WARN_ON_ONCE(irqs_disabled());

	BUG_ON(!sdev);

2508
	mutex_lock(&sdev->mutex);
2509
	for (i = 0; i < ARRAY_SIZE(sdev->port); i++)
2510
		srpt_set_enabled(&sdev->port[i], false);
2511
	mutex_unlock(&sdev->mutex);
2512 2513

	res = wait_event_interruptible(sdev->ch_releaseQ,
2514
				       list_empty_careful(&sdev->rch_list));
2515
	if (res)
2516
		pr_err("%s: interrupted.\n", __func__);
2517 2518 2519 2520

	return 0;
}

2521
static struct se_wwn *__srpt_lookup_wwn(const char *name)
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
{
	struct ib_device *dev;
	struct srpt_device *sdev;
	struct srpt_port *sport;
	int i;

	list_for_each_entry(sdev, &srpt_dev_list, list) {
		dev = sdev->device;
		if (!dev)
			continue;

		for (i = 0; i < dev->phys_port_cnt; i++) {
			sport = &sdev->port[i];

2536 2537 2538 2539
			if (strcmp(sport->port_guid, name) == 0)
				return &sport->port_guid_wwn;
			if (strcmp(sport->port_gid, name) == 0)
				return &sport->port_gid_wwn;
2540 2541 2542 2543 2544 2545
		}
	}

	return NULL;
}

2546
static struct se_wwn *srpt_lookup_wwn(const char *name)
2547
{
2548
	struct se_wwn *wwn;
2549 2550

	spin_lock(&srpt_dev_lock);
2551
	wwn = __srpt_lookup_wwn(name);
2552 2553
	spin_unlock(&srpt_dev_lock);

2554
	return wwn;
2555 2556
}

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
static void srpt_free_srq(struct srpt_device *sdev)
{
	if (!sdev->srq)
		return;

	ib_destroy_srq(sdev->srq);
	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
			     sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
	sdev->srq = NULL;
}

static int srpt_alloc_srq(struct srpt_device *sdev)
{
	struct ib_srq_init_attr srq_attr = {
		.event_handler = srpt_srq_event,
		.srq_context = (void *)sdev,
		.attr.max_wr = sdev->srq_size,
		.attr.max_sge = 1,
		.srq_type = IB_SRQT_BASIC,
	};
	struct ib_device *device = sdev->device;
	struct ib_srq *srq;
	int i;

	WARN_ON_ONCE(sdev->srq);
	srq = ib_create_srq(sdev->pd, &srq_attr);
	if (IS_ERR(srq)) {
		pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
		return PTR_ERR(srq);
	}

	pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
		 sdev->device->attrs.max_srq_wr, device->name);

	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
				      sizeof(*sdev->ioctx_ring[0]),
				      srp_max_req_size, DMA_FROM_DEVICE);
	if (!sdev->ioctx_ring) {
		ib_destroy_srq(srq);
		return -ENOMEM;
	}

	sdev->use_srq = true;
	sdev->srq = srq;

	for (i = 0; i < sdev->srq_size; ++i)
		srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);

	return 0;
}

static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
{
	struct ib_device *device = sdev->device;
	int ret = 0;

	if (!use_srq) {
		srpt_free_srq(sdev);
		sdev->use_srq = false;
	} else if (use_srq && !sdev->srq) {
		ret = srpt_alloc_srq(sdev);
	}
	pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, device->name,
		 sdev->use_srq, ret);
	return ret;
}

2625 2626 2627 2628 2629 2630 2631 2632 2633
/**
 * srpt_add_one() - Infiniband device addition callback function.
 */
static void srpt_add_one(struct ib_device *device)
{
	struct srpt_device *sdev;
	struct srpt_port *sport;
	int i;

2634
	pr_debug("device = %p\n", device);
2635

2636
	sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
2637 2638 2639 2640 2641 2642
	if (!sdev)
		goto err;

	sdev->device = device;
	INIT_LIST_HEAD(&sdev->rch_list);
	init_waitqueue_head(&sdev->ch_releaseQ);
2643
	mutex_init(&sdev->mutex);
2644

2645
	sdev->pd = ib_alloc_pd(device, 0);
2646 2647 2648
	if (IS_ERR(sdev->pd))
		goto free_dev;

B
Bart Van Assche 已提交
2649
	sdev->lkey = sdev->pd->local_dma_lkey;
2650

2651
	sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
2652

2653
	srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
2654 2655 2656 2657 2658 2659

	if (!srpt_service_guid)
		srpt_service_guid = be64_to_cpu(device->node_guid);

	sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
	if (IS_ERR(sdev->cm_id))
2660
		goto err_ring;
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672

	/* print out target login information */
	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
		 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
		 srpt_service_guid, srpt_service_guid);

	/*
	 * We do not have a consistent service_id (ie. also id_ext of target_id)
	 * to identify this target. We currently use the guid of the first HCA
	 * in the system as service_id; therefore, the target_id will change
	 * if this HCA is gone bad and replaced by different HCA
	 */
H
Haggai Eran 已提交
2673
	if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
2674 2675 2676 2677
		goto err_cm;

	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
			      srpt_event_handler);
2678
	ib_register_event_handler(&sdev->event_handler);
2679

2680
	WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
2681 2682 2683 2684 2685 2686 2687 2688

	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
		sport = &sdev->port[i - 1];
		sport->sdev = sdev;
		sport->port = i;
		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
2689
		sport->port_attrib.use_srq = false;
2690 2691 2692
		INIT_WORK(&sport->work, srpt_refresh_port_work);

		if (srpt_refresh_port(sport)) {
2693
			pr_err("MAD registration failed for %s-%d.\n",
2694
			       sdev->device->name, i);
2695
			goto err_event;
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
		}
	}

	spin_lock(&srpt_dev_lock);
	list_add_tail(&sdev->list, &srpt_dev_list);
	spin_unlock(&srpt_dev_lock);

out:
	ib_set_client_data(device, &srpt_client, sdev);
	pr_debug("added %s.\n", device->name);
	return;

err_event:
	ib_unregister_event_handler(&sdev->event_handler);
err_cm:
	ib_destroy_cm_id(sdev->cm_id);
2712
err_ring:
2713
	srpt_free_srq(sdev);
2714 2715 2716 2717 2718
	ib_dealloc_pd(sdev->pd);
free_dev:
	kfree(sdev);
err:
	sdev = NULL;
2719
	pr_info("%s(%s) failed.\n", __func__, device->name);
2720 2721 2722 2723 2724 2725
	goto out;
}

/**
 * srpt_remove_one() - InfiniBand device removal callback function.
 */
2726
static void srpt_remove_one(struct ib_device *device, void *client_data)
2727
{
2728
	struct srpt_device *sdev = client_data;
2729 2730 2731
	int i;

	if (!sdev) {
2732
		pr_info("%s(%s): nothing to do.\n", __func__, device->name);
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
		return;
	}

	srpt_unregister_mad_agent(sdev);

	ib_unregister_event_handler(&sdev->event_handler);

	/* Cancel any work queued by the just unregistered IB event handler. */
	for (i = 0; i < sdev->device->phys_port_cnt; i++)
		cancel_work_sync(&sdev->port[i].work);

	ib_destroy_cm_id(sdev->cm_id);

	/*
	 * Unregistering a target must happen after destroying sdev->cm_id
	 * such that no new SRP_LOGIN_REQ information units can arrive while
	 * destroying the target.
	 */
	spin_lock(&srpt_dev_lock);
	list_del(&sdev->list);
	spin_unlock(&srpt_dev_lock);
	srpt_release_sdev(sdev);

2756 2757
	srpt_free_srq(sdev);

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
	ib_dealloc_pd(sdev->pd);

	kfree(sdev);
}

static struct ib_client srpt_client = {
	.name = DRV_NAME,
	.add = srpt_add_one,
	.remove = srpt_remove_one
};

static int srpt_check_true(struct se_portal_group *se_tpg)
{
	return 1;
}

static int srpt_check_false(struct se_portal_group *se_tpg)
{
	return 0;
}

static char *srpt_get_fabric_name(void)
{
	return "srpt";
}

2784 2785 2786 2787 2788
static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
{
	return tpg->se_tpg_wwn->priv;
}

2789 2790
static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
{
2791
	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
2792

2793 2794 2795 2796
	WARN_ON_ONCE(tpg != &sport->port_guid_tpg &&
		     tpg != &sport->port_gid_tpg);
	return tpg == &sport->port_guid_tpg ? sport->port_guid :
		sport->port_gid;
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
}

static u16 srpt_get_tag(struct se_portal_group *tpg)
{
	return 1;
}

static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
{
	return 1;
}

static void srpt_release_cmd(struct se_cmd *se_cmd)
{
2811 2812 2813
	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
				struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
2814
	unsigned long flags;
2815

2816 2817
	WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
		     !(ioctx->cmd.transport_state & CMD_T_ABORTED));
2818

2819 2820 2821
	if (ioctx->n_rw_ctx) {
		srpt_free_rw_ctxs(ch, ioctx);
		ioctx->n_rw_ctx = 0;
2822 2823
	}

2824 2825 2826
	spin_lock_irqsave(&ch->spinlock, flags);
	list_add(&ioctx->free_list, &ch->free_list);
	spin_unlock_irqrestore(&ch->spinlock, flags);
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
}

/**
 * srpt_close_session() - Forcibly close a session.
 *
 * Callback function invoked by the TCM core to clean up sessions associated
 * with a node ACL when the user invokes
 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
static void srpt_close_session(struct se_session *se_sess)
{
2838 2839
	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
	struct srpt_device *sdev = ch->sport->sdev;
2840

2841
	mutex_lock(&sdev->mutex);
2842
	srpt_disconnect_ch_sync(ch);
2843
	mutex_unlock(&sdev->mutex);
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
}

/**
 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
 *
 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
 * This object represents an arbitrary integer used to uniquely identify a
 * particular attached remote initiator port to a particular SCSI target port
 * within a particular SCSI target device within a particular SCSI instance.
 */
static u32 srpt_sess_get_index(struct se_session *se_sess)
{
	return 0;
}

static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
{
}

/* Note: only used from inside debug printk's by the TCM core. */
static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
	return srpt_get_cmd_state(ioctx);
}

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
static int srpt_parse_guid(u64 *guid, const char *name)
{
	u16 w[4];
	int ret = -EINVAL;

	if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
		goto out;
	*guid = get_unaligned_be64(w);
	ret = 0;
out:
	return ret;
}

2885 2886 2887 2888 2889 2890 2891 2892 2893
/**
 * srpt_parse_i_port_id() - Parse an initiator port ID.
 * @name: ASCII representation of a 128-bit initiator port ID.
 * @i_port_id: Binary 128-bit port ID.
 */
static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
{
	const char *p;
	unsigned len, count, leading_zero_bytes;
2894
	int ret;
2895 2896

	p = name;
2897
	if (strncasecmp(p, "0x", 2) == 0)
2898 2899 2900 2901 2902 2903 2904 2905
		p += 2;
	ret = -EINVAL;
	len = strlen(p);
	if (len % 2)
		goto out;
	count = min(len / 2, 16U);
	leading_zero_bytes = 16 - count;
	memset(i_port_id, 0, leading_zero_bytes);
2906 2907 2908
	ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
	if (ret < 0)
		pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", ret);
2909 2910 2911 2912 2913 2914 2915 2916
out:
	return ret;
}

/*
 * configfs callback function invoked for
 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
2917
static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
2918
{
2919
	u64 guid;
2920
	u8 i_port_id[16];
2921
	int ret;
2922

2923 2924 2925 2926
	ret = srpt_parse_guid(&guid, name);
	if (ret < 0)
		ret = srpt_parse_i_port_id(i_port_id, name);
	if (ret < 0)
2927
		pr_err("invalid initiator port ID %s\n", name);
2928
	return ret;
2929 2930
}

2931 2932
static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
		char *page)
2933
{
2934
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
2935
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
2936 2937 2938 2939

	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
}

2940 2941
static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
		const char *page, size_t count)
2942
{
2943
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
2944
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
2945 2946 2947
	unsigned long val;
	int ret;

2948
	ret = kstrtoul(page, 0, &val);
2949
	if (ret < 0) {
2950
		pr_err("kstrtoul() failed with ret: %d\n", ret);
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
		return -EINVAL;
	}
	if (val > MAX_SRPT_RDMA_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
			MAX_SRPT_RDMA_SIZE);
		return -EINVAL;
	}
	if (val < DEFAULT_MAX_RDMA_SIZE) {
		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
			val, DEFAULT_MAX_RDMA_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_max_rdma_size = val;

	return count;
}

2968 2969
static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
		char *page)
2970
{
2971
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
2972
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
2973 2974 2975 2976

	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
}

2977 2978
static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
		const char *page, size_t count)
2979
{
2980
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
2981
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
2982 2983 2984
	unsigned long val;
	int ret;

2985
	ret = kstrtoul(page, 0, &val);
2986
	if (ret < 0) {
2987
		pr_err("kstrtoul() failed with ret: %d\n", ret);
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
		return -EINVAL;
	}
	if (val > MAX_SRPT_RSP_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
			MAX_SRPT_RSP_SIZE);
		return -EINVAL;
	}
	if (val < MIN_MAX_RSP_SIZE) {
		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
			MIN_MAX_RSP_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_max_rsp_size = val;

	return count;
}

3005 3006
static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
		char *page)
3007
{
3008
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3009
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3010 3011 3012 3013

	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
}

3014 3015
static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
		const char *page, size_t count)
3016
{
3017
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3018
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3019 3020 3021
	unsigned long val;
	int ret;

3022
	ret = kstrtoul(page, 0, &val);
3023
	if (ret < 0) {
3024
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
		return -EINVAL;
	}
	if (val > MAX_SRPT_SRQ_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
			MAX_SRPT_SRQ_SIZE);
		return -EINVAL;
	}
	if (val < MIN_SRPT_SRQ_SIZE) {
		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
			MIN_SRPT_SRQ_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_sq_size = val;

	return count;
}

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
					    char *page)
{
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);

	return sprintf(page, "%d\n", sport->port_attrib.use_srq);
}

static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
					     const char *page, size_t count)
{
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3056
	struct srpt_device *sdev = sport->sdev;
3057
	unsigned long val;
3058
	bool enabled;
3059 3060 3061 3062 3063 3064 3065
	int ret;

	ret = kstrtoul(page, 0, &val);
	if (ret < 0)
		return ret;
	if (val != !!val)
		return -EINVAL;
3066 3067 3068 3069 3070 3071 3072

	ret = mutex_lock_interruptible(&sdev->mutex);
	if (ret < 0)
		return ret;
	enabled = sport->enabled;
	/* Log out all initiator systems before changing 'use_srq'. */
	srpt_set_enabled(sport, false);
3073
	sport->port_attrib.use_srq = val;
3074 3075 3076
	srpt_use_srq(sdev, sport->port_attrib.use_srq);
	srpt_set_enabled(sport, enabled);
	mutex_unlock(&sdev->mutex);
3077 3078 3079 3080

	return count;
}

3081 3082 3083
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3084
CONFIGFS_ATTR(srpt_tpg_attrib_,  use_srq);
3085 3086

static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3087 3088 3089
	&srpt_tpg_attrib_attr_srp_max_rdma_size,
	&srpt_tpg_attrib_attr_srp_max_rsp_size,
	&srpt_tpg_attrib_attr_srp_sq_size,
3090
	&srpt_tpg_attrib_attr_use_srq,
3091 3092 3093
	NULL,
};

3094
static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3095
{
3096
	struct se_portal_group *se_tpg = to_tpg(item);
3097
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3098 3099 3100 3101

	return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
}

3102 3103
static ssize_t srpt_tpg_enable_store(struct config_item *item,
		const char *page, size_t count)
3104
{
3105
	struct se_portal_group *se_tpg = to_tpg(item);
3106
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3107
	struct srpt_device *sdev = sport->sdev;
3108 3109 3110
	unsigned long tmp;
        int ret;

3111
	ret = kstrtoul(page, 0, &tmp);
3112
	if (ret < 0) {
3113
		pr_err("Unable to extract srpt_tpg_store_enable\n");
3114 3115 3116 3117
		return -EINVAL;
	}

	if ((tmp != 0) && (tmp != 1)) {
3118
		pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3119 3120 3121
		return -EINVAL;
	}

3122
	mutex_lock(&sdev->mutex);
3123
	srpt_set_enabled(sport, tmp);
3124 3125
	mutex_unlock(&sdev->mutex);

3126 3127 3128
	return count;
}

3129
CONFIGFS_ATTR(srpt_tpg_, enable);
3130 3131

static struct configfs_attribute *srpt_tpg_attrs[] = {
3132
	&srpt_tpg_attr_enable,
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
	NULL,
};

/**
 * configfs callback invoked for
 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
 */
static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
					     struct config_group *group,
					     const char *name)
{
3144 3145
	struct srpt_port *sport = wwn->priv;
	static struct se_portal_group *tpg;
3146 3147
	int res;

3148 3149 3150 3151 3152
	WARN_ON_ONCE(wwn != &sport->port_guid_wwn &&
		     wwn != &sport->port_gid_wwn);
	tpg = wwn == &sport->port_guid_wwn ? &sport->port_guid_tpg :
		&sport->port_gid_tpg;
	res = core_tpg_register(wwn, tpg, SCSI_PROTOCOL_SRP);
3153 3154 3155
	if (res)
		return ERR_PTR(res);

3156
	return tpg;
3157 3158 3159 3160 3161 3162 3163 3164
}

/**
 * configfs callback invoked for
 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
 */
static void srpt_drop_tpg(struct se_portal_group *tpg)
{
3165
	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3166 3167

	sport->enabled = false;
3168
	core_tpg_deregister(tpg);
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
}

/**
 * configfs callback invoked for
 * mkdir /sys/kernel/config/target/$driver/$port
 */
static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
				      struct config_group *group,
				      const char *name)
{
3179
	return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL);
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
}

/**
 * configfs callback invoked for
 * rmdir /sys/kernel/config/target/$driver/$port
 */
static void srpt_drop_tport(struct se_wwn *wwn)
{
}

3190
static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3191 3192 3193 3194
{
	return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
}

3195
CONFIGFS_ATTR_RO(srpt_wwn_, version);
3196 3197

static struct configfs_attribute *srpt_wwn_attrs[] = {
3198
	&srpt_wwn_attr_version,
3199 3200 3201
	NULL,
};

3202 3203 3204
static const struct target_core_fabric_ops srpt_template = {
	.module				= THIS_MODULE,
	.name				= "srpt",
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
	.get_fabric_name		= srpt_get_fabric_name,
	.tpg_get_wwn			= srpt_get_fabric_wwn,
	.tpg_get_tag			= srpt_get_tag,
	.tpg_check_demo_mode		= srpt_check_false,
	.tpg_check_demo_mode_cache	= srpt_check_true,
	.tpg_check_demo_mode_write_protect = srpt_check_true,
	.tpg_check_prod_mode_write_protect = srpt_check_false,
	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
	.release_cmd			= srpt_release_cmd,
	.check_stop_free		= srpt_check_stop_free,
	.close_session			= srpt_close_session,
	.sess_get_index			= srpt_sess_get_index,
	.sess_get_initiator_sid		= NULL,
	.write_pending			= srpt_write_pending,
	.write_pending_status		= srpt_write_pending_status,
	.set_default_node_attributes	= srpt_set_default_node_attrs,
	.get_cmd_state			= srpt_get_tcm_cmd_state,
3222
	.queue_data_in			= srpt_queue_data_in,
3223
	.queue_status			= srpt_queue_status,
3224
	.queue_tm_rsp			= srpt_queue_tm_rsp,
3225
	.aborted_task			= srpt_aborted_task,
3226 3227 3228 3229 3230 3231 3232 3233
	/*
	 * Setup function pointers for generic logic in
	 * target_core_fabric_configfs.c
	 */
	.fabric_make_wwn		= srpt_make_tport,
	.fabric_drop_wwn		= srpt_drop_tport,
	.fabric_make_tpg		= srpt_make_tpg,
	.fabric_drop_tpg		= srpt_drop_tpg,
3234
	.fabric_init_nodeacl		= srpt_init_nodeacl,
3235 3236 3237 3238

	.tfc_wwn_attrs			= srpt_wwn_attrs,
	.tfc_tpg_base_attrs		= srpt_tpg_attrs,
	.tfc_tpg_attrib_attrs		= srpt_tpg_attrib_attrs,
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
};

/**
 * srpt_init_module() - Kernel module initialization.
 *
 * Note: Since ib_register_client() registers callback functions, and since at
 * least one of these callback functions (srpt_add_one()) calls target core
 * functions, this driver must be registered with the target core before
 * ib_register_client() is called.
 */
static int __init srpt_init_module(void)
{
	int ret;

	ret = -EINVAL;
	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3255
		pr_err("invalid value %d for kernel module parameter"
3256 3257 3258 3259 3260 3261 3262
		       " srp_max_req_size -- must be at least %d.\n",
		       srp_max_req_size, MIN_MAX_REQ_SIZE);
		goto out;
	}

	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3263
		pr_err("invalid value %d for kernel module parameter"
3264 3265 3266 3267 3268
		       " srpt_srq_size -- must be in the range [%d..%d].\n",
		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
		goto out;
	}

3269 3270
	ret = target_register_template(&srpt_template);
	if (ret)
3271 3272 3273 3274
		goto out;

	ret = ib_register_client(&srpt_client);
	if (ret) {
3275
		pr_err("couldn't register IB client\n");
3276 3277 3278 3279 3280 3281
		goto out_unregister_target;
	}

	return 0;

out_unregister_target:
3282
	target_unregister_template(&srpt_template);
3283 3284 3285 3286 3287 3288 3289
out:
	return ret;
}

static void __exit srpt_cleanup_module(void)
{
	ib_unregister_client(&srpt_client);
3290
	target_unregister_template(&srpt_template);
3291 3292 3293 3294
}

module_init(srpt_init_module);
module_exit(srpt_cleanup_module);