i915_vgpu.c 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/*
 * Copyright(c) 2011-2015 Intel Corporation. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "intel_drv.h"
#include "i915_vgpu.h"

/**
 * DOC: Intel GVT-g guest support
 *
 * Intel GVT-g is a graphics virtualization technology which shares the
 * GPU among multiple virtual machines on a time-sharing basis. Each
 * virtual machine is presented a virtual GPU (vGPU), which has equivalent
 * features as the underlying physical GPU (pGPU), so i915 driver can run
 * seamlessly in a virtual machine. This file provides vGPU specific
 * optimizations when running in a virtual machine, to reduce the complexity
 * of vGPU emulation and to improve the overall performance.
 *
 * A primary function introduced here is so-called "address space ballooning"
 * technique. Intel GVT-g partitions global graphics memory among multiple VMs,
 * so each VM can directly access a portion of the memory without hypervisor's
 * intervention, e.g. filling textures or queuing commands. However with the
 * partitioning an unmodified i915 driver would assume a smaller graphics
 * memory starting from address ZERO, then requires vGPU emulation module to
 * translate the graphics address between 'guest view' and 'host view', for
 * all registers and command opcodes which contain a graphics memory address.
 * To reduce the complexity, Intel GVT-g introduces "address space ballooning",
 * by telling the exact partitioning knowledge to each guest i915 driver, which
 * then reserves and prevents non-allocated portions from allocation. Thus vGPU
 * emulation module only needs to scan and validate graphics addresses without
 * complexity of address translation.
 *
 */

/**
55
 * i915_detect_vgpu - detect virtual GPU
56
 * @dev_priv: i915 device private
57 58 59 60
 *
 * This function is called at the initialization stage, to detect whether
 * running on a vGPU.
 */
61
void i915_detect_vgpu(struct drm_i915_private *dev_priv)
62
{
63
	struct pci_dev *pdev = dev_priv->drm.pdev;
64 65
	u64 magic;
	u16 version_major;
66
	void __iomem *shared_area;
67 68 69

	BUILD_BUG_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE);

70 71 72 73 74 75 76 77 78 79 80 81
	/*
	 * This is called before we setup the main MMIO BAR mappings used via
	 * the uncore structure, so we need to access the BAR directly. Since
	 * we do not support VGT on older gens, return early so we don't have
	 * to consider differently numbered or sized MMIO bars
	 */
	if (INTEL_GEN(dev_priv) < 6)
		return;

	shared_area = pci_iomap_range(pdev, 0, VGT_PVINFO_PAGE, VGT_PVINFO_SIZE);
	if (!shared_area) {
		DRM_ERROR("failed to map MMIO bar to check for VGT\n");
82
		return;
83
	}
84

85 86 87 88 89
	magic = readq(shared_area + vgtif_offset(magic));
	if (magic != VGT_MAGIC)
		goto out;

	version_major = readw(shared_area + vgtif_offset(version_major));
90
	if (version_major < VGT_VERSION_MAJOR) {
91
		DRM_INFO("VGT interface version mismatch!\n");
92
		goto out;
93 94
	}

95
	dev_priv->vgpu.caps = readl(shared_area + vgtif_offset(vgt_caps));
96

97 98
	dev_priv->vgpu.active = true;
	DRM_INFO("Virtual GPU for Intel GVT-g detected.\n");
99 100 101

out:
	pci_iounmap(pdev, shared_area);
102
}
103

104
bool intel_vgpu_has_full_ppgtt(struct drm_i915_private *dev_priv)
105
{
106
	return dev_priv->vgpu.caps & VGT_CAPS_FULL_PPGTT;
107 108
}

109 110 111 112 113 114 115 116 117 118 119
struct _balloon_info_ {
	/*
	 * There are up to 2 regions per mappable/unmappable graphic
	 * memory that might be ballooned. Here, index 0/1 is for mappable
	 * graphic memory, 2/3 for unmappable graphic memory.
	 */
	struct drm_mm_node space[4];
};

static struct _balloon_info_ bl_info;

120 121 122 123 124 125 126 127
static void vgt_deballoon_space(struct i915_ggtt *ggtt,
				struct drm_mm_node *node)
{
	DRM_DEBUG_DRIVER("deballoon space: range [0x%llx - 0x%llx] %llu KiB.\n",
			 node->start,
			 node->start + node->size,
			 node->size / 1024);

128
	ggtt->vm.reserved -= node->size;
129 130 131
	drm_mm_remove_node(node);
}

132 133
/**
 * intel_vgt_deballoon - deballoon reserved graphics address trunks
134
 * @dev_priv: i915 device private data
135 136 137 138
 *
 * This function is called to deallocate the ballooned-out graphic memory, when
 * driver is unloaded or when ballooning fails.
 */
139
void intel_vgt_deballoon(struct i915_ggtt *ggtt)
140 141 142
{
	int i;

143
	if (!intel_vgpu_active(ggtt->vm.i915))
144 145
		return;

146 147
	DRM_DEBUG("VGT deballoon.\n");

148
	for (i = 0; i < 4; i++)
149
		vgt_deballoon_space(ggtt, &bl_info.space[i]);
150 151
}

152
static int vgt_balloon_space(struct i915_ggtt *ggtt,
153 154 155 156
			     struct drm_mm_node *node,
			     unsigned long start, unsigned long end)
{
	unsigned long size = end - start;
157
	int ret;
158

159
	if (start >= end)
160 161 162 163
		return -EINVAL;

	DRM_INFO("balloon space: range [ 0x%lx - 0x%lx ] %lu KiB.\n",
		 start, end, size / 1024);
164
	ret = i915_gem_gtt_reserve(&ggtt->vm, node,
165 166 167
				   size, start, I915_COLOR_UNEVICTABLE,
				   0);
	if (!ret)
168
		ggtt->vm.reserved += size;
169 170

	return ret;
171 172 173 174
}

/**
 * intel_vgt_balloon - balloon out reserved graphics address trunks
175
 * @dev_priv: i915 device private data
176 177 178 179 180 181 182 183 184 185 186 187 188 189
 *
 * This function is called at the initialization stage, to balloon out the
 * graphic address space allocated to other vGPUs, by marking these spaces as
 * reserved. The ballooning related knowledge(starting address and size of
 * the mappable/unmappable graphic memory) is described in the vgt_if structure
 * in a reserved mmio range.
 *
 * To give an example, the drawing below depicts one typical scenario after
 * ballooning. Here the vGPU1 has 2 pieces of graphic address spaces ballooned
 * out each for the mappable and the non-mappable part. From the vGPU1 point of
 * view, the total size is the same as the physical one, with the start address
 * of its graphic space being zero. Yet there are some portions ballooned out(
 * the shadow part, which are marked as reserved by drm allocator). From the
 * host point of view, the graphic address space is partitioned by multiple
190
 * vGPUs in different VMs. ::
191
 *
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
 *                         vGPU1 view         Host view
 *              0 ------> +-----------+     +-----------+
 *                ^       |###########|     |   vGPU3   |
 *                |       |###########|     +-----------+
 *                |       |###########|     |   vGPU2   |
 *                |       +-----------+     +-----------+
 *         mappable GM    | available | ==> |   vGPU1   |
 *                |       +-----------+     +-----------+
 *                |       |###########|     |           |
 *                v       |###########|     |   Host    |
 *                +=======+===========+     +===========+
 *                ^       |###########|     |   vGPU3   |
 *                |       |###########|     +-----------+
 *                |       |###########|     |   vGPU2   |
 *                |       +-----------+     +-----------+
 *       unmappable GM    | available | ==> |   vGPU1   |
 *                |       +-----------+     +-----------+
 *                |       |###########|     |           |
 *                |       |###########|     |   Host    |
 *                v       |###########|     |           |
 *  total GM size ------> +-----------+     +-----------+
213 214 215 216
 *
 * Returns:
 * zero on success, non-zero if configuration invalid or ballooning failed
 */
217
int intel_vgt_balloon(struct i915_ggtt *ggtt)
218
{
219
	struct intel_uncore *uncore = &ggtt->vm.i915->uncore;
220
	unsigned long ggtt_end = ggtt->vm.total;
221 222 223 224 225

	unsigned long mappable_base, mappable_size, mappable_end;
	unsigned long unmappable_base, unmappable_size, unmappable_end;
	int ret;

226
	if (!intel_vgpu_active(ggtt->vm.i915))
227 228
		return 0;

229 230 231 232 233 234 235 236
	mappable_base =
	  intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.base));
	mappable_size =
	  intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.size));
	unmappable_base =
	  intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.base));
	unmappable_size =
	  intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.size));
237 238 239 240 241 242 243 244 245 246

	mappable_end = mappable_base + mappable_size;
	unmappable_end = unmappable_base + unmappable_size;

	DRM_INFO("VGT ballooning configuration:\n");
	DRM_INFO("Mappable graphic memory: base 0x%lx size %ldKiB\n",
		 mappable_base, mappable_size / 1024);
	DRM_INFO("Unmappable graphic memory: base 0x%lx size %ldKiB\n",
		 unmappable_base, unmappable_size / 1024);

247
	if (mappable_end > ggtt->mappable_end ||
248 249
	    unmappable_base < ggtt->mappable_end ||
	    unmappable_end > ggtt_end) {
250 251 252 253 254
		DRM_ERROR("Invalid ballooning configuration!\n");
		return -EINVAL;
	}

	/* Unmappable graphic memory ballooning */
255
	if (unmappable_base > ggtt->mappable_end) {
256 257
		ret = vgt_balloon_space(ggtt, &bl_info.space[2],
					ggtt->mappable_end, unmappable_base);
258 259 260 261 262

		if (ret)
			goto err;
	}

263
	if (unmappable_end < ggtt_end) {
264
		ret = vgt_balloon_space(ggtt, &bl_info.space[3],
265
					unmappable_end, ggtt_end);
266
		if (ret)
267
			goto err_upon_mappable;
268 269 270
	}

	/* Mappable graphic memory ballooning */
271
	if (mappable_base) {
272
		ret = vgt_balloon_space(ggtt, &bl_info.space[0],
273
					0, mappable_base);
274 275

		if (ret)
276
			goto err_upon_unmappable;
277 278
	}

279
	if (mappable_end < ggtt->mappable_end) {
280 281
		ret = vgt_balloon_space(ggtt, &bl_info.space[1],
					mappable_end, ggtt->mappable_end);
282 283

		if (ret)
284
			goto err_below_mappable;
285 286 287 288 289
	}

	DRM_INFO("VGT balloon successfully\n");
	return 0;

290 291 292 293 294 295
err_below_mappable:
	vgt_deballoon_space(ggtt, &bl_info.space[0]);
err_upon_unmappable:
	vgt_deballoon_space(ggtt, &bl_info.space[3]);
err_upon_mappable:
	vgt_deballoon_space(ggtt, &bl_info.space[2]);
296 297 298 299
err:
	DRM_ERROR("VGT balloon fail\n");
	return ret;
}