regmap-irq.c 26.7 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: GPL-2.0
//
// regmap based irq_chip
//
// Copyright 2011 Wolfson Microelectronics plc
//
// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8

9
#include <linux/device.h>
10
#include <linux/export.h>
11
#include <linux/interrupt.h>
12
#include <linux/irq.h>
13
#include <linux/irqdomain.h>
14
#include <linux/pm_runtime.h>
15
#include <linux/regmap.h>
16 17 18 19 20 21
#include <linux/slab.h>

#include "internal.h"

struct regmap_irq_chip_data {
	struct mutex lock;
22
	struct irq_chip irq_chip;
23 24

	struct regmap *map;
M
Mark Brown 已提交
25
	const struct regmap_irq_chip *chip;
26 27

	int irq_base;
28
	struct irq_domain *domain;
29

30 31 32
	int irq;
	int wake_count;

33
	void *status_reg_buf;
34
	unsigned int *main_status_buf;
35 36 37
	unsigned int *status_buf;
	unsigned int *mask_buf;
	unsigned int *mask_buf_def;
38
	unsigned int *wake_buf;
39 40
	unsigned int *type_buf;
	unsigned int *type_buf_def;
41 42

	unsigned int irq_reg_stride;
43
	unsigned int type_reg_stride;
44 45

	bool clear_status:1;
46 47 48 49 50 51
};

static inline const
struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
				     int irq)
{
52
	return &data->chip->irqs[irq];
53 54 55 56 57 58 59 60 61
}

static void regmap_irq_lock(struct irq_data *data)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);

	mutex_lock(&d->lock);
}

62 63 64 65 66 67 68 69 70 71
static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
				  unsigned int reg, unsigned int mask,
				  unsigned int val)
{
	if (d->chip->mask_writeonly)
		return regmap_write_bits(d->map, reg, mask, val);
	else
		return regmap_update_bits(d->map, reg, mask, val);
}

72 73 74
static void regmap_irq_sync_unlock(struct irq_data *data)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75
	struct regmap *map = d->map;
76
	int i, ret;
77
	u32 reg;
78
	u32 unmask_offset;
79
	u32 val;
80

81 82 83 84 85 86 87
	if (d->chip->runtime_pm) {
		ret = pm_runtime_get_sync(map->dev);
		if (ret < 0)
			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
				ret);
	}

88 89 90 91 92 93 94 95 96 97 98 99 100 101
	if (d->clear_status) {
		for (i = 0; i < d->chip->num_regs; i++) {
			reg = d->chip->status_base +
				(i * map->reg_stride * d->irq_reg_stride);

			ret = regmap_read(map, reg, &val);
			if (ret)
				dev_err(d->map->dev,
					"Failed to clear the interrupt status bits\n");
		}

		d->clear_status = false;
	}

102 103 104 105 106 107
	/*
	 * If there's been a change in the mask write it back to the
	 * hardware.  We rely on the use of the regmap core cache to
	 * suppress pointless writes.
	 */
	for (i = 0; i < d->chip->num_regs; i++) {
108 109 110
		if (!d->chip->mask_base)
			continue;

111 112
		reg = d->chip->mask_base +
			(i * map->reg_stride * d->irq_reg_stride);
113
		if (d->chip->mask_invert) {
114
			ret = regmap_irq_update_bits(d, reg,
115
					 d->mask_buf_def[i], ~d->mask_buf[i]);
116 117
		} else if (d->chip->unmask_base) {
			/* set mask with mask_base register */
118
			ret = regmap_irq_update_bits(d, reg,
119 120 121 122 123 124 125 126
					d->mask_buf_def[i], ~d->mask_buf[i]);
			if (ret < 0)
				dev_err(d->map->dev,
					"Failed to sync unmasks in %x\n",
					reg);
			unmask_offset = d->chip->unmask_base -
							d->chip->mask_base;
			/* clear mask with unmask_base register */
127
			ret = regmap_irq_update_bits(d,
128 129 130 131
					reg + unmask_offset,
					d->mask_buf_def[i],
					d->mask_buf[i]);
		} else {
132
			ret = regmap_irq_update_bits(d, reg,
133
					 d->mask_buf_def[i], d->mask_buf[i]);
134
		}
135 136
		if (ret != 0)
			dev_err(d->map->dev, "Failed to sync masks in %x\n",
137
				reg);
138 139 140 141

		reg = d->chip->wake_base +
			(i * map->reg_stride * d->irq_reg_stride);
		if (d->wake_buf) {
142
			if (d->chip->wake_invert)
143
				ret = regmap_irq_update_bits(d, reg,
144 145 146
							 d->mask_buf_def[i],
							 ~d->wake_buf[i]);
			else
147
				ret = regmap_irq_update_bits(d, reg,
148 149
							 d->mask_buf_def[i],
							 d->wake_buf[i]);
150 151 152 153 154
			if (ret != 0)
				dev_err(d->map->dev,
					"Failed to sync wakes in %x: %d\n",
					reg, ret);
		}
155 156 157 158

		if (!d->chip->init_ack_masked)
			continue;
		/*
D
dashsriram 已提交
159
		 * Ack all the masked interrupts unconditionally,
160 161 162
		 * OR if there is masked interrupt which hasn't been Acked,
		 * it'll be ignored in irq handler, then may introduce irq storm
		 */
163
		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
164 165
			reg = d->chip->ack_base +
				(i * map->reg_stride * d->irq_reg_stride);
166 167 168 169 170
			/* some chips ack by write 0 */
			if (d->chip->ack_invert)
				ret = regmap_write(map, reg, ~d->mask_buf[i]);
			else
				ret = regmap_write(map, reg, d->mask_buf[i]);
171 172 173 174
			if (ret != 0)
				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
					reg, ret);
		}
175 176
	}

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	/* Don't update the type bits if we're using mask bits for irq type. */
	if (!d->chip->type_in_mask) {
		for (i = 0; i < d->chip->num_type_reg; i++) {
			if (!d->type_buf_def[i])
				continue;
			reg = d->chip->type_base +
				(i * map->reg_stride * d->type_reg_stride);
			if (d->chip->type_invert)
				ret = regmap_irq_update_bits(d, reg,
					d->type_buf_def[i], ~d->type_buf[i]);
			else
				ret = regmap_irq_update_bits(d, reg,
					d->type_buf_def[i], d->type_buf[i]);
			if (ret != 0)
				dev_err(d->map->dev, "Failed to sync type in %x\n",
					reg);
		}
194 195
	}

196 197 198
	if (d->chip->runtime_pm)
		pm_runtime_put(map->dev);

199 200 201 202 203 204 205 206 207 208
	/* If we've changed our wakeup count propagate it to the parent */
	if (d->wake_count < 0)
		for (i = d->wake_count; i < 0; i++)
			irq_set_irq_wake(d->irq, 0);
	else if (d->wake_count > 0)
		for (i = 0; i < d->wake_count; i++)
			irq_set_irq_wake(d->irq, 1);

	d->wake_count = 0;

209 210 211 212 213 214
	mutex_unlock(&d->lock);
}

static void regmap_irq_enable(struct irq_data *data)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
215
	struct regmap *map = d->map;
216
	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
217 218
	unsigned int mask, type;

219
	type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

	/*
	 * The type_in_mask flag means that the underlying hardware uses
	 * separate mask bits for rising and falling edge interrupts, but
	 * we want to make them into a single virtual interrupt with
	 * configurable edge.
	 *
	 * If the interrupt we're enabling defines the falling or rising
	 * masks then instead of using the regular mask bits for this
	 * interrupt, use the value previously written to the type buffer
	 * at the corresponding offset in regmap_irq_set_type().
	 */
	if (d->chip->type_in_mask && type)
		mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
	else
		mask = irq_data->mask;
236

237 238 239
	if (d->chip->clear_on_unmask)
		d->clear_status = true;

240
	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
241 242 243 244 245
}

static void regmap_irq_disable(struct irq_data *data)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
246
	struct regmap *map = d->map;
247
	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
248

249
	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
250 251
}

252 253 254 255 256
static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
	struct regmap *map = d->map;
	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
257 258
	int reg;
	const struct regmap_irq_type *t = &irq_data->type;
259

260
	if ((t->types_supported & type) != type)
261
		return 0;
262

263 264 265 266 267 268 269 270 271
	reg = t->type_reg_offset / map->reg_stride;

	if (t->type_reg_mask)
		d->type_buf[reg] &= ~t->type_reg_mask;
	else
		d->type_buf[reg] &= ~(t->type_falling_val |
				      t->type_rising_val |
				      t->type_level_low_val |
				      t->type_level_high_val);
272 273
	switch (type) {
	case IRQ_TYPE_EDGE_FALLING:
274
		d->type_buf[reg] |= t->type_falling_val;
275 276 277
		break;

	case IRQ_TYPE_EDGE_RISING:
278
		d->type_buf[reg] |= t->type_rising_val;
279 280 281
		break;

	case IRQ_TYPE_EDGE_BOTH:
282 283
		d->type_buf[reg] |= (t->type_falling_val |
					t->type_rising_val);
284 285
		break;

286 287 288 289 290 291 292
	case IRQ_TYPE_LEVEL_HIGH:
		d->type_buf[reg] |= t->type_level_high_val;
		break;

	case IRQ_TYPE_LEVEL_LOW:
		d->type_buf[reg] |= t->type_level_low_val;
		break;
293 294 295 296 297 298
	default:
		return -EINVAL;
	}
	return 0;
}

299 300 301 302 303 304 305
static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
	struct regmap *map = d->map;
	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);

	if (on) {
306 307 308
		if (d->wake_buf)
			d->wake_buf[irq_data->reg_offset / map->reg_stride]
				&= ~irq_data->mask;
309 310
		d->wake_count++;
	} else {
311 312 313
		if (d->wake_buf)
			d->wake_buf[irq_data->reg_offset / map->reg_stride]
				|= irq_data->mask;
314 315 316 317 318 319
		d->wake_count--;
	}

	return 0;
}

320
static const struct irq_chip regmap_irq_chip = {
321 322 323 324
	.irq_bus_lock		= regmap_irq_lock,
	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
	.irq_disable		= regmap_irq_disable,
	.irq_enable		= regmap_irq_enable,
325
	.irq_set_type		= regmap_irq_set_type,
326
	.irq_set_wake		= regmap_irq_set_wake,
327 328
};

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
					   unsigned int b)
{
	const struct regmap_irq_chip *chip = data->chip;
	struct regmap *map = data->map;
	struct regmap_irq_sub_irq_map *subreg;
	int i, ret = 0;

	if (!chip->sub_reg_offsets) {
		/* Assume linear mapping */
		ret = regmap_read(map, chip->status_base +
				  (b * map->reg_stride * data->irq_reg_stride),
				   &data->status_buf[b]);
	} else {
		subreg = &chip->sub_reg_offsets[b];
		for (i = 0; i < subreg->num_regs; i++) {
			unsigned int offset = subreg->offset[i];

			ret = regmap_read(map, chip->status_base + offset,
					  &data->status_buf[offset]);
			if (ret)
				break;
		}
	}
	return ret;
}

356 357 358
static irqreturn_t regmap_irq_thread(int irq, void *d)
{
	struct regmap_irq_chip_data *data = d;
M
Mark Brown 已提交
359
	const struct regmap_irq_chip *chip = data->chip;
360 361
	struct regmap *map = data->map;
	int ret, i;
362
	bool handled = false;
363
	u32 reg;
364

365 366 367
	if (chip->handle_pre_irq)
		chip->handle_pre_irq(chip->irq_drv_data);

368 369 370 371 372
	if (chip->runtime_pm) {
		ret = pm_runtime_get_sync(map->dev);
		if (ret < 0) {
			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
				ret);
373
			goto exit;
374 375 376
		}
	}

377
	/*
378 379 380
	 * Read only registers with active IRQs if the chip has 'main status
	 * register'. Else read in the statuses, using a single bulk read if
	 * possible in order to reduce the I/O overheads.
381
	 */
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

	if (chip->num_main_regs) {
		unsigned int max_main_bits;
		unsigned long size;

		size = chip->num_regs * sizeof(unsigned int);

		max_main_bits = (chip->num_main_status_bits) ?
				 chip->num_main_status_bits : chip->num_regs;
		/* Clear the status buf as we don't read all status regs */
		memset(data->status_buf, 0, size);

		/* We could support bulk read for main status registers
		 * but I don't expect to see devices with really many main
		 * status registers so let's only support single reads for the
		 * sake of simplicity. and add bulk reads only if needed
		 */
		for (i = 0; i < chip->num_main_regs; i++) {
			ret = regmap_read(map, chip->main_status +
				  (i * map->reg_stride
				   * data->irq_reg_stride),
				  &data->main_status_buf[i]);
			if (ret) {
				dev_err(map->dev,
					"Failed to read IRQ status %d\n",
					ret);
				goto exit;
			}
		}

		/* Read sub registers with active IRQs */
		for (i = 0; i < chip->num_main_regs; i++) {
			unsigned int b;
			const unsigned long mreg = data->main_status_buf[i];

			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
				if (i * map->format.val_bytes * 8 + b >
				    max_main_bits)
					break;
				ret = read_sub_irq_data(data, b);

				if (ret != 0) {
					dev_err(map->dev,
						"Failed to read IRQ status %d\n",
						ret);
					goto exit;
				}
			}

		}
	} else if (!map->use_single_read && map->reg_stride == 1 &&
		   data->irq_reg_stride == 1) {

435 436 437
		u8 *buf8 = data->status_reg_buf;
		u16 *buf16 = data->status_reg_buf;
		u32 *buf32 = data->status_reg_buf;
438

439 440 441 442 443
		BUG_ON(!data->status_reg_buf);

		ret = regmap_bulk_read(map, chip->status_base,
				       data->status_reg_buf,
				       chip->num_regs);
444 445
		if (ret != 0) {
			dev_err(map->dev, "Failed to read IRQ status: %d\n",
446
				ret);
447
			goto exit;
448
		}
449 450 451 452 453 454 455 456 457 458 459 460 461 462

		for (i = 0; i < data->chip->num_regs; i++) {
			switch (map->format.val_bytes) {
			case 1:
				data->status_buf[i] = buf8[i];
				break;
			case 2:
				data->status_buf[i] = buf16[i];
				break;
			case 4:
				data->status_buf[i] = buf32[i];
				break;
			default:
				BUG();
463
				goto exit;
464 465 466 467 468 469 470 471 472 473 474 475 476 477
			}
		}

	} else {
		for (i = 0; i < data->chip->num_regs; i++) {
			ret = regmap_read(map, chip->status_base +
					  (i * map->reg_stride
					   * data->irq_reg_stride),
					  &data->status_buf[i]);

			if (ret != 0) {
				dev_err(map->dev,
					"Failed to read IRQ status: %d\n",
					ret);
478
				goto exit;
479 480
			}
		}
481
	}
482

483 484 485 486 487 488 489 490
	/*
	 * Ignore masked IRQs and ack if we need to; we ack early so
	 * there is no race between handling and acknowleding the
	 * interrupt.  We assume that typically few of the interrupts
	 * will fire simultaneously so don't worry about overhead from
	 * doing a write per register.
	 */
	for (i = 0; i < data->chip->num_regs; i++) {
491 492
		data->status_buf[i] &= ~data->mask_buf[i];

493
		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
494 495 496
			reg = chip->ack_base +
				(i * map->reg_stride * data->irq_reg_stride);
			ret = regmap_write(map, reg, data->status_buf[i]);
497 498
			if (ret != 0)
				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
499
					reg, ret);
500 501 502 503
		}
	}

	for (i = 0; i < chip->num_irqs; i++) {
504 505
		if (data->status_buf[chip->irqs[i].reg_offset /
				     map->reg_stride] & chip->irqs[i].mask) {
506
			handle_nested_irq(irq_find_mapping(data->domain, i));
507
			handled = true;
508 509 510
		}
	}

511
exit:
512 513 514
	if (chip->runtime_pm)
		pm_runtime_put(map->dev);

515 516 517
	if (chip->handle_post_irq)
		chip->handle_post_irq(chip->irq_drv_data);

518 519 520 521
	if (handled)
		return IRQ_HANDLED;
	else
		return IRQ_NONE;
522 523
}

524 525 526 527 528 529
static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
			  irq_hw_number_t hw)
{
	struct regmap_irq_chip_data *data = h->host_data;

	irq_set_chip_data(virq, data);
530
	irq_set_chip(virq, &data->irq_chip);
531
	irq_set_nested_thread(virq, 1);
532
	irq_set_parent(virq, data->irq);
533 534 535 536 537
	irq_set_noprobe(virq);

	return 0;
}

538
static const struct irq_domain_ops regmap_domain_ops = {
539
	.map	= regmap_irq_map,
540
	.xlate	= irq_domain_xlate_onetwocell,
541 542
};

543
/**
544
 * regmap_add_irq_chip_np() - Use standard regmap IRQ controller handling
545
 *
546
 * @np: The device_node where the IRQ domain should be added to.
547 548 549 550 551 552
 * @map: The regmap for the device.
 * @irq: The IRQ the device uses to signal interrupts.
 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 * @chip: Configuration for the interrupt controller.
 * @data: Runtime data structure for the controller, allocated on success.
553 554 555 556 557 558 559
 *
 * Returns 0 on success or an errno on failure.
 *
 * In order for this to be efficient the chip really should use a
 * register cache.  The chip driver is responsible for restoring the
 * register values used by the IRQ controller over suspend and resume.
 */
560 561 562 563
int regmap_add_irq_chip_np(struct device_node *np, struct regmap *map, int irq,
			   int irq_flags, int irq_base,
			   const struct regmap_irq_chip *chip,
			   struct regmap_irq_chip_data **data)
564 565
{
	struct regmap_irq_chip_data *d;
566
	int i;
567
	int ret = -ENOMEM;
568
	int num_type_reg;
569
	u32 reg;
570
	u32 unmask_offset;
571

572 573 574
	if (chip->num_regs <= 0)
		return -EINVAL;

575 576 577
	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
		return -EINVAL;

578 579 580 581 582 583 584 585
	for (i = 0; i < chip->num_irqs; i++) {
		if (chip->irqs[i].reg_offset % map->reg_stride)
			return -EINVAL;
		if (chip->irqs[i].reg_offset / map->reg_stride >=
		    chip->num_regs)
			return -EINVAL;
	}

586 587 588 589 590 591 592
	if (irq_base) {
		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
		if (irq_base < 0) {
			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
				 irq_base);
			return irq_base;
		}
593 594 595 596 597 598
	}

	d = kzalloc(sizeof(*d), GFP_KERNEL);
	if (!d)
		return -ENOMEM;

599 600 601 602 603 604 605 606 607
	if (chip->num_main_regs) {
		d->main_status_buf = kcalloc(chip->num_main_regs,
					     sizeof(unsigned int),
					     GFP_KERNEL);

		if (!d->main_status_buf)
			goto err_alloc;
	}

L
lixiubo 已提交
608
	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
609 610 611 612
				GFP_KERNEL);
	if (!d->status_buf)
		goto err_alloc;

L
lixiubo 已提交
613
	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
614 615 616 617
			      GFP_KERNEL);
	if (!d->mask_buf)
		goto err_alloc;

L
lixiubo 已提交
618
	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
619 620 621 622
				  GFP_KERNEL);
	if (!d->mask_buf_def)
		goto err_alloc;

623
	if (chip->wake_base) {
L
lixiubo 已提交
624
		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
625 626 627 628 629
				      GFP_KERNEL);
		if (!d->wake_buf)
			goto err_alloc;
	}

630 631 632 633
	num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
	if (num_type_reg) {
		d->type_buf_def = kcalloc(num_type_reg,
					  sizeof(unsigned int), GFP_KERNEL);
634 635 636
		if (!d->type_buf_def)
			goto err_alloc;

637
		d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
638 639 640 641 642
				      GFP_KERNEL);
		if (!d->type_buf)
			goto err_alloc;
	}

643
	d->irq_chip = regmap_irq_chip;
644
	d->irq_chip.name = chip->name;
645
	d->irq = irq;
646 647 648
	d->map = map;
	d->chip = chip;
	d->irq_base = irq_base;
649 650 651 652 653 654

	if (chip->irq_reg_stride)
		d->irq_reg_stride = chip->irq_reg_stride;
	else
		d->irq_reg_stride = 1;

655 656 657 658 659
	if (chip->type_reg_stride)
		d->type_reg_stride = chip->type_reg_stride;
	else
		d->type_reg_stride = 1;

660
	if (!map->use_single_read && map->reg_stride == 1 &&
661
	    d->irq_reg_stride == 1) {
662 663 664
		d->status_reg_buf = kmalloc_array(chip->num_regs,
						  map->format.val_bytes,
						  GFP_KERNEL);
665 666 667 668
		if (!d->status_reg_buf)
			goto err_alloc;
	}

669 670 671
	mutex_init(&d->lock);

	for (i = 0; i < chip->num_irqs; i++)
672
		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
673 674 675 676 677
			|= chip->irqs[i].mask;

	/* Mask all the interrupts by default */
	for (i = 0; i < chip->num_regs; i++) {
		d->mask_buf[i] = d->mask_buf_def[i];
678 679 680
		if (!chip->mask_base)
			continue;

681 682
		reg = chip->mask_base +
			(i * map->reg_stride * d->irq_reg_stride);
683
		if (chip->mask_invert)
684
			ret = regmap_irq_update_bits(d, reg,
685
					 d->mask_buf[i], ~d->mask_buf[i]);
686 687 688
		else if (d->chip->unmask_base) {
			unmask_offset = d->chip->unmask_base -
					d->chip->mask_base;
689
			ret = regmap_irq_update_bits(d,
690 691 692 693
					reg + unmask_offset,
					d->mask_buf[i],
					d->mask_buf[i]);
		} else
694
			ret = regmap_irq_update_bits(d, reg,
695
					 d->mask_buf[i], d->mask_buf[i]);
696 697
		if (ret != 0) {
			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
698
				reg, ret);
699 700
			goto err_alloc;
		}
701 702 703 704 705 706 707 708 709 710 711 712 713 714

		if (!chip->init_ack_masked)
			continue;

		/* Ack masked but set interrupts */
		reg = chip->status_base +
			(i * map->reg_stride * d->irq_reg_stride);
		ret = regmap_read(map, reg, &d->status_buf[i]);
		if (ret != 0) {
			dev_err(map->dev, "Failed to read IRQ status: %d\n",
				ret);
			goto err_alloc;
		}

715
		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
716 717
			reg = chip->ack_base +
				(i * map->reg_stride * d->irq_reg_stride);
718 719 720 721 722
			if (chip->ack_invert)
				ret = regmap_write(map, reg,
					~(d->status_buf[i] & d->mask_buf[i]));
			else
				ret = regmap_write(map, reg,
723 724 725 726 727 728 729
					d->status_buf[i] & d->mask_buf[i]);
			if (ret != 0) {
				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
					reg, ret);
				goto err_alloc;
			}
		}
730 731
	}

732 733 734 735 736 737
	/* Wake is disabled by default */
	if (d->wake_buf) {
		for (i = 0; i < chip->num_regs; i++) {
			d->wake_buf[i] = d->mask_buf_def[i];
			reg = chip->wake_base +
				(i * map->reg_stride * d->irq_reg_stride);
738 739

			if (chip->wake_invert)
740
				ret = regmap_irq_update_bits(d, reg,
741 742 743
							 d->mask_buf_def[i],
							 0);
			else
744
				ret = regmap_irq_update_bits(d, reg,
745 746
							 d->mask_buf_def[i],
							 d->wake_buf[i]);
747 748 749 750 751 752 753 754
			if (ret != 0) {
				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
					reg, ret);
				goto err_alloc;
			}
		}
	}

755
	if (chip->num_type_reg && !chip->type_in_mask) {
756 757 758
		for (i = 0; i < chip->num_type_reg; ++i) {
			reg = chip->type_base +
				(i * map->reg_stride * d->type_reg_stride);
759 760 761 762 763 764 765 766

			ret = regmap_read(map, reg, &d->type_buf_def[i]);

			if (d->chip->type_invert)
				d->type_buf_def[i] = ~d->type_buf_def[i];

			if (ret) {
				dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
767 768 769 770 771 772
					reg, ret);
				goto err_alloc;
			}
		}
	}

773
	if (irq_base)
774 775
		d->domain = irq_domain_add_legacy(np, chip->num_irqs, irq_base,
						  0, &regmap_domain_ops, d);
776
	else
777
		d->domain = irq_domain_add_linear(np, chip->num_irqs,
778 779 780 781 782
						  &regmap_domain_ops, d);
	if (!d->domain) {
		dev_err(map->dev, "Failed to create IRQ domain\n");
		ret = -ENOMEM;
		goto err_alloc;
783 784
	}

785 786
	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
				   irq_flags | IRQF_ONESHOT,
787 788
				   chip->name, d);
	if (ret != 0) {
789 790
		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
			irq, chip->name, ret);
791
		goto err_domain;
792 793
	}

794 795
	*data = d;

796 797
	return 0;

798 799
err_domain:
	/* Should really dispose of the domain but... */
800
err_alloc:
801 802
	kfree(d->type_buf);
	kfree(d->type_buf_def);
803
	kfree(d->wake_buf);
804 805 806
	kfree(d->mask_buf_def);
	kfree(d->mask_buf);
	kfree(d->status_buf);
807
	kfree(d->status_reg_buf);
808 809 810
	kfree(d);
	return ret;
}
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
EXPORT_SYMBOL_GPL(regmap_add_irq_chip_np);

/**
 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
 *
 * @map: The regmap for the device.
 * @irq: The IRQ the device uses to signal interrupts.
 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 * @chip: Configuration for the interrupt controller.
 * @data: Runtime data structure for the controller, allocated on success.
 *
 * Returns 0 on success or an errno on failure.
 *
 * This is the same as regmap_add_irq_chip_np, except that the device
 * node of the regmap is used.
 */
int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
			int irq_base, const struct regmap_irq_chip *chip,
			struct regmap_irq_chip_data **data)
{
	return regmap_add_irq_chip_np(map->dev->of_node, map, irq, irq_flags,
				      irq_base, chip, data);
}
835 836 837
EXPORT_SYMBOL_GPL(regmap_add_irq_chip);

/**
838
 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
839 840
 *
 * @irq: Primary IRQ for the device
841
 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
842
 *
843
 * This function also disposes of all mapped IRQs on the chip.
844 845 846
 */
void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
{
847 848 849
	unsigned int virq;
	int hwirq;

850 851 852 853
	if (!d)
		return;

	free_irq(irq, d);
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869

	/* Dispose all virtual irq from irq domain before removing it */
	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
		/* Ignore hwirq if holes in the IRQ list */
		if (!d->chip->irqs[hwirq].mask)
			continue;

		/*
		 * Find the virtual irq of hwirq on chip and if it is
		 * there then dispose it
		 */
		virq = irq_find_mapping(d->domain, hwirq);
		if (virq)
			irq_dispose_mapping(virq);
	}

M
Mark Brown 已提交
870
	irq_domain_remove(d->domain);
871 872
	kfree(d->type_buf);
	kfree(d->type_buf_def);
873
	kfree(d->wake_buf);
874 875
	kfree(d->mask_buf_def);
	kfree(d->mask_buf);
876
	kfree(d->status_reg_buf);
877 878 879 880
	kfree(d->status_buf);
	kfree(d);
}
EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
881

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
static void devm_regmap_irq_chip_release(struct device *dev, void *res)
{
	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;

	regmap_del_irq_chip(d->irq, d);
}

static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)

{
	struct regmap_irq_chip_data **r = res;

	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}
	return *r == data;
}

/**
902
 * devm_regmap_add_irq_chip_np() - Resource manager regmap_add_irq_chip_np()
903
 *
904
 * @dev: The device pointer on which irq_chip belongs to.
905
 * @np: The device_node where the IRQ domain should be added to.
906 907
 * @map: The regmap for the device.
 * @irq: The IRQ the device uses to signal interrupts
908
 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
909 910 911
 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 * @chip: Configuration for the interrupt controller.
 * @data: Runtime data structure for the controller, allocated on success
912 913 914
 *
 * Returns 0 on success or an errno on failure.
 *
915
 * The &regmap_irq_chip_data will be automatically released when the device is
916 917
 * unbound.
 */
918 919 920 921 922
int devm_regmap_add_irq_chip_np(struct device *dev, struct device_node *np,
				struct regmap *map, int irq, int irq_flags,
				int irq_base,
				const struct regmap_irq_chip *chip,
				struct regmap_irq_chip_data **data)
923 924 925 926 927 928 929 930 931
{
	struct regmap_irq_chip_data **ptr, *d;
	int ret;

	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
			   GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;

932 933
	ret = regmap_add_irq_chip_np(np, map, irq, irq_flags, irq_base,
				     chip, &d);
934 935 936 937 938 939 940 941 942 943
	if (ret < 0) {
		devres_free(ptr);
		return ret;
	}

	*ptr = d;
	devres_add(dev, ptr);
	*data = d;
	return 0;
}
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_np);

/**
 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
 *
 * @dev: The device pointer on which irq_chip belongs to.
 * @map: The regmap for the device.
 * @irq: The IRQ the device uses to signal interrupts
 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 * @chip: Configuration for the interrupt controller.
 * @data: Runtime data structure for the controller, allocated on success
 *
 * Returns 0 on success or an errno on failure.
 *
 * The &regmap_irq_chip_data will be automatically released when the device is
 * unbound.
 */
int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
			     int irq_flags, int irq_base,
			     const struct regmap_irq_chip *chip,
			     struct regmap_irq_chip_data **data)
{
	return devm_regmap_add_irq_chip_np(dev, map->dev->of_node, map, irq,
					   irq_flags, irq_base, chip, data);
}
970 971 972
EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);

/**
973
 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
974 975
 *
 * @dev: Device for which which resource was allocated.
976 977 978 979
 * @irq: Primary IRQ for the device.
 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
 *
 * A resource managed version of regmap_del_irq_chip().
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
 */
void devm_regmap_del_irq_chip(struct device *dev, int irq,
			      struct regmap_irq_chip_data *data)
{
	int rc;

	WARN_ON(irq != data->irq);
	rc = devres_release(dev, devm_regmap_irq_chip_release,
			    devm_regmap_irq_chip_match, data);

	if (rc != 0)
		WARN_ON(rc);
}
EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);

995
/**
996
 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
997
 *
998
 * @data: regmap irq controller to operate on.
999
 *
1000
 * Useful for drivers to request their own IRQs.
1001 1002 1003
 */
int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
{
1004
	WARN_ON(!data->irq_base);
1005 1006 1007
	return data->irq_base;
}
EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1008 1009

/**
1010
 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1011
 *
1012 1013
 * @data: regmap irq controller to operate on.
 * @irq: index of the interrupt requested in the chip IRQs.
1014
 *
1015
 * Useful for drivers to request their own IRQs.
1016 1017 1018
 */
int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
{
1019 1020 1021 1022
	/* Handle holes in the IRQ list */
	if (!data->chip->irqs[irq].mask)
		return -EINVAL;

1023 1024 1025
	return irq_create_mapping(data->domain, irq);
}
EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1026 1027

/**
1028 1029 1030
 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
 *
 * @data: regmap_irq controller to operate on.
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
 *
 * Useful for drivers to request their own IRQs and for integration
 * with subsystems.  For ease of integration NULL is accepted as a
 * domain, allowing devices to just call this even if no domain is
 * allocated.
 */
struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
{
	if (data)
		return data->domain;
	else
		return NULL;
}
EXPORT_SYMBOL_GPL(regmap_irq_get_domain);