regmap-irq.c 22.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * regmap based irq_chip
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/export.h>
15
#include <linux/interrupt.h>
16
#include <linux/irq.h>
17
#include <linux/irqdomain.h>
18
#include <linux/pm_runtime.h>
19
#include <linux/regmap.h>
20 21 22 23 24 25
#include <linux/slab.h>

#include "internal.h"

struct regmap_irq_chip_data {
	struct mutex lock;
26
	struct irq_chip irq_chip;
27 28

	struct regmap *map;
M
Mark Brown 已提交
29
	const struct regmap_irq_chip *chip;
30 31

	int irq_base;
32
	struct irq_domain *domain;
33

34 35 36
	int irq;
	int wake_count;

37
	void *status_reg_buf;
38 39 40
	unsigned int *status_buf;
	unsigned int *mask_buf;
	unsigned int *mask_buf_def;
41
	unsigned int *wake_buf;
42 43
	unsigned int *type_buf;
	unsigned int *type_buf_def;
44 45

	unsigned int irq_reg_stride;
46
	unsigned int type_reg_stride;
47 48

	bool clear_status:1;
49 50 51 52 53 54
};

static inline const
struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
				     int irq)
{
55
	return &data->chip->irqs[irq];
56 57 58 59 60 61 62 63 64
}

static void regmap_irq_lock(struct irq_data *data)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);

	mutex_lock(&d->lock);
}

65 66 67 68 69 70 71 72 73 74
static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
				  unsigned int reg, unsigned int mask,
				  unsigned int val)
{
	if (d->chip->mask_writeonly)
		return regmap_write_bits(d->map, reg, mask, val);
	else
		return regmap_update_bits(d->map, reg, mask, val);
}

75 76 77
static void regmap_irq_sync_unlock(struct irq_data *data)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
78
	struct regmap *map = d->map;
79
	int i, ret;
80
	u32 reg;
81
	u32 unmask_offset;
82
	u32 val;
83

84 85 86 87 88 89 90
	if (d->chip->runtime_pm) {
		ret = pm_runtime_get_sync(map->dev);
		if (ret < 0)
			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
				ret);
	}

91 92 93 94 95 96 97 98 99 100 101 102 103 104
	if (d->clear_status) {
		for (i = 0; i < d->chip->num_regs; i++) {
			reg = d->chip->status_base +
				(i * map->reg_stride * d->irq_reg_stride);

			ret = regmap_read(map, reg, &val);
			if (ret)
				dev_err(d->map->dev,
					"Failed to clear the interrupt status bits\n");
		}

		d->clear_status = false;
	}

105 106 107 108 109 110
	/*
	 * If there's been a change in the mask write it back to the
	 * hardware.  We rely on the use of the regmap core cache to
	 * suppress pointless writes.
	 */
	for (i = 0; i < d->chip->num_regs; i++) {
111 112
		reg = d->chip->mask_base +
			(i * map->reg_stride * d->irq_reg_stride);
113
		if (d->chip->mask_invert) {
114
			ret = regmap_irq_update_bits(d, reg,
115
					 d->mask_buf_def[i], ~d->mask_buf[i]);
116 117
		} else if (d->chip->unmask_base) {
			/* set mask with mask_base register */
118
			ret = regmap_irq_update_bits(d, reg,
119 120 121 122 123 124 125 126
					d->mask_buf_def[i], ~d->mask_buf[i]);
			if (ret < 0)
				dev_err(d->map->dev,
					"Failed to sync unmasks in %x\n",
					reg);
			unmask_offset = d->chip->unmask_base -
							d->chip->mask_base;
			/* clear mask with unmask_base register */
127
			ret = regmap_irq_update_bits(d,
128 129 130 131
					reg + unmask_offset,
					d->mask_buf_def[i],
					d->mask_buf[i]);
		} else {
132
			ret = regmap_irq_update_bits(d, reg,
133
					 d->mask_buf_def[i], d->mask_buf[i]);
134
		}
135 136
		if (ret != 0)
			dev_err(d->map->dev, "Failed to sync masks in %x\n",
137
				reg);
138 139 140 141

		reg = d->chip->wake_base +
			(i * map->reg_stride * d->irq_reg_stride);
		if (d->wake_buf) {
142
			if (d->chip->wake_invert)
143
				ret = regmap_irq_update_bits(d, reg,
144 145 146
							 d->mask_buf_def[i],
							 ~d->wake_buf[i]);
			else
147
				ret = regmap_irq_update_bits(d, reg,
148 149
							 d->mask_buf_def[i],
							 d->wake_buf[i]);
150 151 152 153 154
			if (ret != 0)
				dev_err(d->map->dev,
					"Failed to sync wakes in %x: %d\n",
					reg, ret);
		}
155 156 157 158

		if (!d->chip->init_ack_masked)
			continue;
		/*
D
dashsriram 已提交
159
		 * Ack all the masked interrupts unconditionally,
160 161 162
		 * OR if there is masked interrupt which hasn't been Acked,
		 * it'll be ignored in irq handler, then may introduce irq storm
		 */
163
		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
164 165
			reg = d->chip->ack_base +
				(i * map->reg_stride * d->irq_reg_stride);
166 167 168 169 170
			/* some chips ack by write 0 */
			if (d->chip->ack_invert)
				ret = regmap_write(map, reg, ~d->mask_buf[i]);
			else
				ret = regmap_write(map, reg, d->mask_buf[i]);
171 172 173 174
			if (ret != 0)
				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
					reg, ret);
		}
175 176
	}

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	/* Don't update the type bits if we're using mask bits for irq type. */
	if (!d->chip->type_in_mask) {
		for (i = 0; i < d->chip->num_type_reg; i++) {
			if (!d->type_buf_def[i])
				continue;
			reg = d->chip->type_base +
				(i * map->reg_stride * d->type_reg_stride);
			if (d->chip->type_invert)
				ret = regmap_irq_update_bits(d, reg,
					d->type_buf_def[i], ~d->type_buf[i]);
			else
				ret = regmap_irq_update_bits(d, reg,
					d->type_buf_def[i], d->type_buf[i]);
			if (ret != 0)
				dev_err(d->map->dev, "Failed to sync type in %x\n",
					reg);
		}
194 195
	}

196 197 198
	if (d->chip->runtime_pm)
		pm_runtime_put(map->dev);

199 200 201 202 203 204 205 206 207 208
	/* If we've changed our wakeup count propagate it to the parent */
	if (d->wake_count < 0)
		for (i = d->wake_count; i < 0; i++)
			irq_set_irq_wake(d->irq, 0);
	else if (d->wake_count > 0)
		for (i = 0; i < d->wake_count; i++)
			irq_set_irq_wake(d->irq, 1);

	d->wake_count = 0;

209 210 211 212 213 214
	mutex_unlock(&d->lock);
}

static void regmap_irq_enable(struct irq_data *data)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
215
	struct regmap *map = d->map;
216
	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
217 218
	unsigned int mask, type;

219
	type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

	/*
	 * The type_in_mask flag means that the underlying hardware uses
	 * separate mask bits for rising and falling edge interrupts, but
	 * we want to make them into a single virtual interrupt with
	 * configurable edge.
	 *
	 * If the interrupt we're enabling defines the falling or rising
	 * masks then instead of using the regular mask bits for this
	 * interrupt, use the value previously written to the type buffer
	 * at the corresponding offset in regmap_irq_set_type().
	 */
	if (d->chip->type_in_mask && type)
		mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
	else
		mask = irq_data->mask;
236

237 238 239
	if (d->chip->clear_on_unmask)
		d->clear_status = true;

240
	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
241 242 243 244 245
}

static void regmap_irq_disable(struct irq_data *data)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
246
	struct regmap *map = d->map;
247
	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
248

249
	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
250 251
}

252 253 254 255 256
static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
	struct regmap *map = d->map;
	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
257 258
	int reg;
	const struct regmap_irq_type *t = &irq_data->type;
259

260 261
	if ((t->types_supported & type) != type)
		return -ENOTSUPP;
262

263 264 265 266 267 268 269 270 271
	reg = t->type_reg_offset / map->reg_stride;

	if (t->type_reg_mask)
		d->type_buf[reg] &= ~t->type_reg_mask;
	else
		d->type_buf[reg] &= ~(t->type_falling_val |
				      t->type_rising_val |
				      t->type_level_low_val |
				      t->type_level_high_val);
272 273
	switch (type) {
	case IRQ_TYPE_EDGE_FALLING:
274
		d->type_buf[reg] |= t->type_falling_val;
275 276 277
		break;

	case IRQ_TYPE_EDGE_RISING:
278
		d->type_buf[reg] |= t->type_rising_val;
279 280 281
		break;

	case IRQ_TYPE_EDGE_BOTH:
282 283
		d->type_buf[reg] |= (t->type_falling_val |
					t->type_rising_val);
284 285
		break;

286 287 288 289 290 291 292
	case IRQ_TYPE_LEVEL_HIGH:
		d->type_buf[reg] |= t->type_level_high_val;
		break;

	case IRQ_TYPE_LEVEL_LOW:
		d->type_buf[reg] |= t->type_level_low_val;
		break;
293 294 295 296 297 298
	default:
		return -EINVAL;
	}
	return 0;
}

299 300 301 302 303 304 305
static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
	struct regmap *map = d->map;
	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);

	if (on) {
306 307 308
		if (d->wake_buf)
			d->wake_buf[irq_data->reg_offset / map->reg_stride]
				&= ~irq_data->mask;
309 310
		d->wake_count++;
	} else {
311 312 313
		if (d->wake_buf)
			d->wake_buf[irq_data->reg_offset / map->reg_stride]
				|= irq_data->mask;
314 315 316 317 318 319
		d->wake_count--;
	}

	return 0;
}

320
static const struct irq_chip regmap_irq_chip = {
321 322 323 324
	.irq_bus_lock		= regmap_irq_lock,
	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
	.irq_disable		= regmap_irq_disable,
	.irq_enable		= regmap_irq_enable,
325
	.irq_set_type		= regmap_irq_set_type,
326
	.irq_set_wake		= regmap_irq_set_wake,
327 328 329 330 331
};

static irqreturn_t regmap_irq_thread(int irq, void *d)
{
	struct regmap_irq_chip_data *data = d;
M
Mark Brown 已提交
332
	const struct regmap_irq_chip *chip = data->chip;
333 334
	struct regmap *map = data->map;
	int ret, i;
335
	bool handled = false;
336
	u32 reg;
337

338 339 340
	if (chip->handle_pre_irq)
		chip->handle_pre_irq(chip->irq_drv_data);

341 342 343 344 345
	if (chip->runtime_pm) {
		ret = pm_runtime_get_sync(map->dev);
		if (ret < 0) {
			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
				ret);
346
			pm_runtime_put(map->dev);
347
			goto exit;
348 349 350
		}
	}

351 352 353 354
	/*
	 * Read in the statuses, using a single bulk read if possible
	 * in order to reduce the I/O overheads.
	 */
355
	if (!map->use_single_read && map->reg_stride == 1 &&
356 357 358 359
	    data->irq_reg_stride == 1) {
		u8 *buf8 = data->status_reg_buf;
		u16 *buf16 = data->status_reg_buf;
		u32 *buf32 = data->status_reg_buf;
360

361 362 363 364 365
		BUG_ON(!data->status_reg_buf);

		ret = regmap_bulk_read(map, chip->status_base,
				       data->status_reg_buf,
				       chip->num_regs);
366 367
		if (ret != 0) {
			dev_err(map->dev, "Failed to read IRQ status: %d\n",
368
				ret);
369
			goto exit;
370
		}
371 372 373 374 375 376 377 378 379 380 381 382 383 384

		for (i = 0; i < data->chip->num_regs; i++) {
			switch (map->format.val_bytes) {
			case 1:
				data->status_buf[i] = buf8[i];
				break;
			case 2:
				data->status_buf[i] = buf16[i];
				break;
			case 4:
				data->status_buf[i] = buf32[i];
				break;
			default:
				BUG();
385
				goto exit;
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
			}
		}

	} else {
		for (i = 0; i < data->chip->num_regs; i++) {
			ret = regmap_read(map, chip->status_base +
					  (i * map->reg_stride
					   * data->irq_reg_stride),
					  &data->status_buf[i]);

			if (ret != 0) {
				dev_err(map->dev,
					"Failed to read IRQ status: %d\n",
					ret);
				if (chip->runtime_pm)
					pm_runtime_put(map->dev);
402
				goto exit;
403 404
			}
		}
405
	}
406

407 408 409 410 411 412 413 414
	/*
	 * Ignore masked IRQs and ack if we need to; we ack early so
	 * there is no race between handling and acknowleding the
	 * interrupt.  We assume that typically few of the interrupts
	 * will fire simultaneously so don't worry about overhead from
	 * doing a write per register.
	 */
	for (i = 0; i < data->chip->num_regs; i++) {
415 416
		data->status_buf[i] &= ~data->mask_buf[i];

417
		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
418 419 420
			reg = chip->ack_base +
				(i * map->reg_stride * data->irq_reg_stride);
			ret = regmap_write(map, reg, data->status_buf[i]);
421 422
			if (ret != 0)
				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
423
					reg, ret);
424 425 426 427
		}
	}

	for (i = 0; i < chip->num_irqs; i++) {
428 429
		if (data->status_buf[chip->irqs[i].reg_offset /
				     map->reg_stride] & chip->irqs[i].mask) {
430
			handle_nested_irq(irq_find_mapping(data->domain, i));
431
			handled = true;
432 433 434
		}
	}

435 436 437
	if (chip->runtime_pm)
		pm_runtime_put(map->dev);

438 439 440 441
exit:
	if (chip->handle_post_irq)
		chip->handle_post_irq(chip->irq_drv_data);

442 443 444 445
	if (handled)
		return IRQ_HANDLED;
	else
		return IRQ_NONE;
446 447
}

448 449 450 451 452 453
static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
			  irq_hw_number_t hw)
{
	struct regmap_irq_chip_data *data = h->host_data;

	irq_set_chip_data(virq, data);
454
	irq_set_chip(virq, &data->irq_chip);
455
	irq_set_nested_thread(virq, 1);
456
	irq_set_parent(virq, data->irq);
457 458 459 460 461
	irq_set_noprobe(virq);

	return 0;
}

462
static const struct irq_domain_ops regmap_domain_ops = {
463
	.map	= regmap_irq_map,
464
	.xlate	= irq_domain_xlate_onetwocell,
465 466
};

467
/**
468
 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
469
 *
470 471 472 473 474 475
 * @map: The regmap for the device.
 * @irq: The IRQ the device uses to signal interrupts.
 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 * @chip: Configuration for the interrupt controller.
 * @data: Runtime data structure for the controller, allocated on success.
476 477 478 479 480 481 482 483
 *
 * Returns 0 on success or an errno on failure.
 *
 * In order for this to be efficient the chip really should use a
 * register cache.  The chip driver is responsible for restoring the
 * register values used by the IRQ controller over suspend and resume.
 */
int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
M
Mark Brown 已提交
484
			int irq_base, const struct regmap_irq_chip *chip,
485 486 487
			struct regmap_irq_chip_data **data)
{
	struct regmap_irq_chip_data *d;
488
	int i;
489
	int ret = -ENOMEM;
490
	int num_type_reg;
491
	u32 reg;
492
	u32 unmask_offset;
493

494 495 496
	if (chip->num_regs <= 0)
		return -EINVAL;

497 498 499
	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
		return -EINVAL;

500 501 502 503 504 505 506 507
	for (i = 0; i < chip->num_irqs; i++) {
		if (chip->irqs[i].reg_offset % map->reg_stride)
			return -EINVAL;
		if (chip->irqs[i].reg_offset / map->reg_stride >=
		    chip->num_regs)
			return -EINVAL;
	}

508 509 510 511 512 513 514
	if (irq_base) {
		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
		if (irq_base < 0) {
			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
				 irq_base);
			return irq_base;
		}
515 516 517 518 519 520
	}

	d = kzalloc(sizeof(*d), GFP_KERNEL);
	if (!d)
		return -ENOMEM;

L
lixiubo 已提交
521
	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
522 523 524 525
				GFP_KERNEL);
	if (!d->status_buf)
		goto err_alloc;

L
lixiubo 已提交
526
	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
527 528 529 530
			      GFP_KERNEL);
	if (!d->mask_buf)
		goto err_alloc;

L
lixiubo 已提交
531
	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
532 533 534 535
				  GFP_KERNEL);
	if (!d->mask_buf_def)
		goto err_alloc;

536
	if (chip->wake_base) {
L
lixiubo 已提交
537
		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
538 539 540 541 542
				      GFP_KERNEL);
		if (!d->wake_buf)
			goto err_alloc;
	}

543 544 545 546
	num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
	if (num_type_reg) {
		d->type_buf_def = kcalloc(num_type_reg,
					  sizeof(unsigned int), GFP_KERNEL);
547 548 549
		if (!d->type_buf_def)
			goto err_alloc;

550
		d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
551 552 553 554 555
				      GFP_KERNEL);
		if (!d->type_buf)
			goto err_alloc;
	}

556
	d->irq_chip = regmap_irq_chip;
557
	d->irq_chip.name = chip->name;
558
	d->irq = irq;
559 560 561
	d->map = map;
	d->chip = chip;
	d->irq_base = irq_base;
562 563 564 565 566 567

	if (chip->irq_reg_stride)
		d->irq_reg_stride = chip->irq_reg_stride;
	else
		d->irq_reg_stride = 1;

568 569 570 571 572
	if (chip->type_reg_stride)
		d->type_reg_stride = chip->type_reg_stride;
	else
		d->type_reg_stride = 1;

573
	if (!map->use_single_read && map->reg_stride == 1 &&
574
	    d->irq_reg_stride == 1) {
575 576 577
		d->status_reg_buf = kmalloc_array(chip->num_regs,
						  map->format.val_bytes,
						  GFP_KERNEL);
578 579 580 581
		if (!d->status_reg_buf)
			goto err_alloc;
	}

582 583 584
	mutex_init(&d->lock);

	for (i = 0; i < chip->num_irqs; i++)
585
		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
586 587 588 589 590
			|= chip->irqs[i].mask;

	/* Mask all the interrupts by default */
	for (i = 0; i < chip->num_regs; i++) {
		d->mask_buf[i] = d->mask_buf_def[i];
591 592
		reg = chip->mask_base +
			(i * map->reg_stride * d->irq_reg_stride);
593
		if (chip->mask_invert)
594
			ret = regmap_irq_update_bits(d, reg,
595
					 d->mask_buf[i], ~d->mask_buf[i]);
596 597 598
		else if (d->chip->unmask_base) {
			unmask_offset = d->chip->unmask_base -
					d->chip->mask_base;
599
			ret = regmap_irq_update_bits(d,
600 601 602 603
					reg + unmask_offset,
					d->mask_buf[i],
					d->mask_buf[i]);
		} else
604
			ret = regmap_irq_update_bits(d, reg,
605
					 d->mask_buf[i], d->mask_buf[i]);
606 607
		if (ret != 0) {
			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
608
				reg, ret);
609 610
			goto err_alloc;
		}
611 612 613 614 615 616 617 618 619 620 621 622 623 624

		if (!chip->init_ack_masked)
			continue;

		/* Ack masked but set interrupts */
		reg = chip->status_base +
			(i * map->reg_stride * d->irq_reg_stride);
		ret = regmap_read(map, reg, &d->status_buf[i]);
		if (ret != 0) {
			dev_err(map->dev, "Failed to read IRQ status: %d\n",
				ret);
			goto err_alloc;
		}

625
		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
626 627
			reg = chip->ack_base +
				(i * map->reg_stride * d->irq_reg_stride);
628 629 630 631 632
			if (chip->ack_invert)
				ret = regmap_write(map, reg,
					~(d->status_buf[i] & d->mask_buf[i]));
			else
				ret = regmap_write(map, reg,
633 634 635 636 637 638 639
					d->status_buf[i] & d->mask_buf[i]);
			if (ret != 0) {
				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
					reg, ret);
				goto err_alloc;
			}
		}
640 641
	}

642 643 644 645 646 647
	/* Wake is disabled by default */
	if (d->wake_buf) {
		for (i = 0; i < chip->num_regs; i++) {
			d->wake_buf[i] = d->mask_buf_def[i];
			reg = chip->wake_base +
				(i * map->reg_stride * d->irq_reg_stride);
648 649

			if (chip->wake_invert)
650
				ret = regmap_irq_update_bits(d, reg,
651 652 653
							 d->mask_buf_def[i],
							 0);
			else
654
				ret = regmap_irq_update_bits(d, reg,
655 656
							 d->mask_buf_def[i],
							 d->wake_buf[i]);
657 658 659 660 661 662 663 664
			if (ret != 0) {
				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
					reg, ret);
				goto err_alloc;
			}
		}
	}

665
	if (chip->num_type_reg && !chip->type_in_mask) {
666 667 668 669 670 671
		for (i = 0; i < chip->num_type_reg; ++i) {
			if (!d->type_buf_def[i])
				continue;

			reg = chip->type_base +
				(i * map->reg_stride * d->type_reg_stride);
672 673 674 675 676 677 678 679

			ret = regmap_read(map, reg, &d->type_buf_def[i]);

			if (d->chip->type_invert)
				d->type_buf_def[i] = ~d->type_buf_def[i];

			if (ret) {
				dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
680 681 682 683 684 685
					reg, ret);
				goto err_alloc;
			}
		}
	}

686 687 688 689 690 691 692 693 694 695 696 697
	if (irq_base)
		d->domain = irq_domain_add_legacy(map->dev->of_node,
						  chip->num_irqs, irq_base, 0,
						  &regmap_domain_ops, d);
	else
		d->domain = irq_domain_add_linear(map->dev->of_node,
						  chip->num_irqs,
						  &regmap_domain_ops, d);
	if (!d->domain) {
		dev_err(map->dev, "Failed to create IRQ domain\n");
		ret = -ENOMEM;
		goto err_alloc;
698 699
	}

700 701
	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
				   irq_flags | IRQF_ONESHOT,
702 703
				   chip->name, d);
	if (ret != 0) {
704 705
		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
			irq, chip->name, ret);
706
		goto err_domain;
707 708
	}

709 710
	*data = d;

711 712
	return 0;

713 714
err_domain:
	/* Should really dispose of the domain but... */
715
err_alloc:
716 717
	kfree(d->type_buf);
	kfree(d->type_buf_def);
718
	kfree(d->wake_buf);
719 720 721
	kfree(d->mask_buf_def);
	kfree(d->mask_buf);
	kfree(d->status_buf);
722
	kfree(d->status_reg_buf);
723 724 725 726 727 728
	kfree(d);
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_add_irq_chip);

/**
729
 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
730 731
 *
 * @irq: Primary IRQ for the device
732
 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
733
 *
734
 * This function also disposes of all mapped IRQs on the chip.
735 736 737
 */
void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
{
738 739 740
	unsigned int virq;
	int hwirq;

741 742 743 744
	if (!d)
		return;

	free_irq(irq, d);
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760

	/* Dispose all virtual irq from irq domain before removing it */
	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
		/* Ignore hwirq if holes in the IRQ list */
		if (!d->chip->irqs[hwirq].mask)
			continue;

		/*
		 * Find the virtual irq of hwirq on chip and if it is
		 * there then dispose it
		 */
		virq = irq_find_mapping(d->domain, hwirq);
		if (virq)
			irq_dispose_mapping(virq);
	}

M
Mark Brown 已提交
761
	irq_domain_remove(d->domain);
762 763
	kfree(d->type_buf);
	kfree(d->type_buf_def);
764
	kfree(d->wake_buf);
765 766
	kfree(d->mask_buf_def);
	kfree(d->mask_buf);
767
	kfree(d->status_reg_buf);
768 769 770 771
	kfree(d->status_buf);
	kfree(d);
}
EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
772

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
static void devm_regmap_irq_chip_release(struct device *dev, void *res)
{
	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;

	regmap_del_irq_chip(d->irq, d);
}

static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)

{
	struct regmap_irq_chip_data **r = res;

	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}
	return *r == data;
}

/**
793
 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
794
 *
795 796 797
 * @dev: The device pointer on which irq_chip belongs to.
 * @map: The regmap for the device.
 * @irq: The IRQ the device uses to signal interrupts
798
 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
799 800 801
 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 * @chip: Configuration for the interrupt controller.
 * @data: Runtime data structure for the controller, allocated on success
802 803 804
 *
 * Returns 0 on success or an errno on failure.
 *
805
 * The &regmap_irq_chip_data will be automatically released when the device is
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
 * unbound.
 */
int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
			     int irq_flags, int irq_base,
			     const struct regmap_irq_chip *chip,
			     struct regmap_irq_chip_data **data)
{
	struct regmap_irq_chip_data **ptr, *d;
	int ret;

	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
			   GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;

	ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
				  chip, &d);
	if (ret < 0) {
		devres_free(ptr);
		return ret;
	}

	*ptr = d;
	devres_add(dev, ptr);
	*data = d;
	return 0;
}
EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);

/**
836
 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
837 838
 *
 * @dev: Device for which which resource was allocated.
839 840 841 842
 * @irq: Primary IRQ for the device.
 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
 *
 * A resource managed version of regmap_del_irq_chip().
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
 */
void devm_regmap_del_irq_chip(struct device *dev, int irq,
			      struct regmap_irq_chip_data *data)
{
	int rc;

	WARN_ON(irq != data->irq);
	rc = devres_release(dev, devm_regmap_irq_chip_release,
			    devm_regmap_irq_chip_match, data);

	if (rc != 0)
		WARN_ON(rc);
}
EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);

858
/**
859
 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
860
 *
861
 * @data: regmap irq controller to operate on.
862
 *
863
 * Useful for drivers to request their own IRQs.
864 865 866
 */
int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
{
867
	WARN_ON(!data->irq_base);
868 869 870
	return data->irq_base;
}
EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
871 872

/**
873
 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
874
 *
875 876
 * @data: regmap irq controller to operate on.
 * @irq: index of the interrupt requested in the chip IRQs.
877
 *
878
 * Useful for drivers to request their own IRQs.
879 880 881
 */
int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
{
882 883 884 885
	/* Handle holes in the IRQ list */
	if (!data->chip->irqs[irq].mask)
		return -EINVAL;

886 887 888
	return irq_create_mapping(data->domain, irq);
}
EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
889 890

/**
891 892 893
 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
 *
 * @data: regmap_irq controller to operate on.
894 895 896 897 898 899 900 901 902 903 904 905 906 907
 *
 * Useful for drivers to request their own IRQs and for integration
 * with subsystems.  For ease of integration NULL is accepted as a
 * domain, allowing devices to just call this even if no domain is
 * allocated.
 */
struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
{
	if (data)
		return data->domain;
	else
		return NULL;
}
EXPORT_SYMBOL_GPL(regmap_irq_get_domain);