regmap-irq.c 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * regmap based irq_chip
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/export.h>
14
#include <linux/device.h>
15 16 17
#include <linux/regmap.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
18
#include <linux/irqdomain.h>
19
#include <linux/pm_runtime.h>
20 21 22 23 24 25
#include <linux/slab.h>

#include "internal.h"

struct regmap_irq_chip_data {
	struct mutex lock;
26
	struct irq_chip irq_chip;
27 28

	struct regmap *map;
M
Mark Brown 已提交
29
	const struct regmap_irq_chip *chip;
30 31

	int irq_base;
32
	struct irq_domain *domain;
33

34 35 36
	int irq;
	int wake_count;

37
	void *status_reg_buf;
38 39 40
	unsigned int *status_buf;
	unsigned int *mask_buf;
	unsigned int *mask_buf_def;
41
	unsigned int *wake_buf;
42 43

	unsigned int irq_reg_stride;
44 45 46 47 48 49
};

static inline const
struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
				     int irq)
{
50
	return &data->chip->irqs[irq];
51 52 53 54 55 56 57 58 59 60 61 62
}

static void regmap_irq_lock(struct irq_data *data)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);

	mutex_lock(&d->lock);
}

static void regmap_irq_sync_unlock(struct irq_data *data)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
63
	struct regmap *map = d->map;
64
	int i, ret;
65
	u32 reg;
66

67 68 69 70 71 72 73
	if (d->chip->runtime_pm) {
		ret = pm_runtime_get_sync(map->dev);
		if (ret < 0)
			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
				ret);
	}

74 75 76 77 78 79
	/*
	 * If there's been a change in the mask write it back to the
	 * hardware.  We rely on the use of the regmap core cache to
	 * suppress pointless writes.
	 */
	for (i = 0; i < d->chip->num_regs; i++) {
80 81
		reg = d->chip->mask_base +
			(i * map->reg_stride * d->irq_reg_stride);
82 83 84 85 86
		if (d->chip->mask_invert)
			ret = regmap_update_bits(d->map, reg,
					 d->mask_buf_def[i], ~d->mask_buf[i]);
		else
			ret = regmap_update_bits(d->map, reg,
87 88 89
					 d->mask_buf_def[i], d->mask_buf[i]);
		if (ret != 0)
			dev_err(d->map->dev, "Failed to sync masks in %x\n",
90
				reg);
91 92 93 94

		reg = d->chip->wake_base +
			(i * map->reg_stride * d->irq_reg_stride);
		if (d->wake_buf) {
95 96 97 98 99 100 101 102
			if (d->chip->wake_invert)
				ret = regmap_update_bits(d->map, reg,
							 d->mask_buf_def[i],
							 ~d->wake_buf[i]);
			else
				ret = regmap_update_bits(d->map, reg,
							 d->mask_buf_def[i],
							 d->wake_buf[i]);
103 104 105 106 107
			if (ret != 0)
				dev_err(d->map->dev,
					"Failed to sync wakes in %x: %d\n",
					reg, ret);
		}
108 109
	}

110 111 112
	if (d->chip->runtime_pm)
		pm_runtime_put(map->dev);

113 114 115 116 117 118 119 120 121 122
	/* If we've changed our wakeup count propagate it to the parent */
	if (d->wake_count < 0)
		for (i = d->wake_count; i < 0; i++)
			irq_set_irq_wake(d->irq, 0);
	else if (d->wake_count > 0)
		for (i = 0; i < d->wake_count; i++)
			irq_set_irq_wake(d->irq, 1);

	d->wake_count = 0;

123 124 125 126 127 128
	mutex_unlock(&d->lock);
}

static void regmap_irq_enable(struct irq_data *data)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
129
	struct regmap *map = d->map;
130
	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
131

132
	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
133 134 135 136 137
}

static void regmap_irq_disable(struct irq_data *data)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
138
	struct regmap *map = d->map;
139
	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
140

141
	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
142 143
}

144 145 146 147 148 149 150
static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
	struct regmap *map = d->map;
	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);

	if (on) {
151 152 153
		if (d->wake_buf)
			d->wake_buf[irq_data->reg_offset / map->reg_stride]
				&= ~irq_data->mask;
154 155
		d->wake_count++;
	} else {
156 157 158
		if (d->wake_buf)
			d->wake_buf[irq_data->reg_offset / map->reg_stride]
				|= irq_data->mask;
159 160 161 162 163 164
		d->wake_count--;
	}

	return 0;
}

165
static const struct irq_chip regmap_irq_chip = {
166 167 168 169
	.irq_bus_lock		= regmap_irq_lock,
	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
	.irq_disable		= regmap_irq_disable,
	.irq_enable		= regmap_irq_enable,
170
	.irq_set_wake		= regmap_irq_set_wake,
171 172 173 174 175
};

static irqreturn_t regmap_irq_thread(int irq, void *d)
{
	struct regmap_irq_chip_data *data = d;
M
Mark Brown 已提交
176
	const struct regmap_irq_chip *chip = data->chip;
177 178
	struct regmap *map = data->map;
	int ret, i;
179
	bool handled = false;
180
	u32 reg;
181

182 183 184 185 186
	if (chip->runtime_pm) {
		ret = pm_runtime_get_sync(map->dev);
		if (ret < 0) {
			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
				ret);
187
			pm_runtime_put(map->dev);
188 189 190 191
			return IRQ_NONE;
		}
	}

192 193 194 195 196 197 198 199 200
	/*
	 * Read in the statuses, using a single bulk read if possible
	 * in order to reduce the I/O overheads.
	 */
	if (!map->use_single_rw && map->reg_stride == 1 &&
	    data->irq_reg_stride == 1) {
		u8 *buf8 = data->status_reg_buf;
		u16 *buf16 = data->status_reg_buf;
		u32 *buf32 = data->status_reg_buf;
201

202 203 204 205 206
		BUG_ON(!data->status_reg_buf);

		ret = regmap_bulk_read(map, chip->status_base,
				       data->status_reg_buf,
				       chip->num_regs);
207 208
		if (ret != 0) {
			dev_err(map->dev, "Failed to read IRQ status: %d\n",
209
				ret);
210 211
			return IRQ_NONE;
		}
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

		for (i = 0; i < data->chip->num_regs; i++) {
			switch (map->format.val_bytes) {
			case 1:
				data->status_buf[i] = buf8[i];
				break;
			case 2:
				data->status_buf[i] = buf16[i];
				break;
			case 4:
				data->status_buf[i] = buf32[i];
				break;
			default:
				BUG();
				return IRQ_NONE;
			}
		}

	} else {
		for (i = 0; i < data->chip->num_regs; i++) {
			ret = regmap_read(map, chip->status_base +
					  (i * map->reg_stride
					   * data->irq_reg_stride),
					  &data->status_buf[i]);

			if (ret != 0) {
				dev_err(map->dev,
					"Failed to read IRQ status: %d\n",
					ret);
				if (chip->runtime_pm)
					pm_runtime_put(map->dev);
				return IRQ_NONE;
			}
		}
246
	}
247

248 249 250 251 252 253 254 255
	/*
	 * Ignore masked IRQs and ack if we need to; we ack early so
	 * there is no race between handling and acknowleding the
	 * interrupt.  We assume that typically few of the interrupts
	 * will fire simultaneously so don't worry about overhead from
	 * doing a write per register.
	 */
	for (i = 0; i < data->chip->num_regs; i++) {
256 257 258
		data->status_buf[i] &= ~data->mask_buf[i];

		if (data->status_buf[i] && chip->ack_base) {
259 260 261
			reg = chip->ack_base +
				(i * map->reg_stride * data->irq_reg_stride);
			ret = regmap_write(map, reg, data->status_buf[i]);
262 263
			if (ret != 0)
				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
264
					reg, ret);
265 266 267 268
		}
	}

	for (i = 0; i < chip->num_irqs; i++) {
269 270
		if (data->status_buf[chip->irqs[i].reg_offset /
				     map->reg_stride] & chip->irqs[i].mask) {
271
			handle_nested_irq(irq_find_mapping(data->domain, i));
272
			handled = true;
273 274 275
		}
	}

276 277 278
	if (chip->runtime_pm)
		pm_runtime_put(map->dev);

279 280 281 282
	if (handled)
		return IRQ_HANDLED;
	else
		return IRQ_NONE;
283 284
}

285 286 287 288 289 290
static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
			  irq_hw_number_t hw)
{
	struct regmap_irq_chip_data *data = h->host_data;

	irq_set_chip_data(virq, data);
291
	irq_set_chip(virq, &data->irq_chip);
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
	irq_set_nested_thread(virq, 1);

	/* ARM needs us to explicitly flag the IRQ as valid
	 * and will set them noprobe when we do so. */
#ifdef CONFIG_ARM
	set_irq_flags(virq, IRQF_VALID);
#else
	irq_set_noprobe(virq);
#endif

	return 0;
}

static struct irq_domain_ops regmap_domain_ops = {
	.map	= regmap_irq_map,
	.xlate	= irq_domain_xlate_twocell,
};

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/**
 * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
 *
 * map:       The regmap for the device.
 * irq:       The IRQ the device uses to signal interrupts
 * irq_flags: The IRQF_ flags to use for the primary interrupt.
 * chip:      Configuration for the interrupt controller.
 * data:      Runtime data structure for the controller, allocated on success
 *
 * Returns 0 on success or an errno on failure.
 *
 * In order for this to be efficient the chip really should use a
 * register cache.  The chip driver is responsible for restoring the
 * register values used by the IRQ controller over suspend and resume.
 */
int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
M
Mark Brown 已提交
326
			int irq_base, const struct regmap_irq_chip *chip,
327 328 329
			struct regmap_irq_chip_data **data)
{
	struct regmap_irq_chip_data *d;
330
	int i;
331
	int ret = -ENOMEM;
332
	u32 reg;
333

334 335 336 337 338 339 340 341
	for (i = 0; i < chip->num_irqs; i++) {
		if (chip->irqs[i].reg_offset % map->reg_stride)
			return -EINVAL;
		if (chip->irqs[i].reg_offset / map->reg_stride >=
		    chip->num_regs)
			return -EINVAL;
	}

342 343 344 345 346 347 348
	if (irq_base) {
		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
		if (irq_base < 0) {
			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
				 irq_base);
			return irq_base;
		}
349 350 351 352 353 354
	}

	d = kzalloc(sizeof(*d), GFP_KERNEL);
	if (!d)
		return -ENOMEM;

355 356
	*data = d;

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
	d->status_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
				GFP_KERNEL);
	if (!d->status_buf)
		goto err_alloc;

	d->mask_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
			      GFP_KERNEL);
	if (!d->mask_buf)
		goto err_alloc;

	d->mask_buf_def = kzalloc(sizeof(unsigned int) * chip->num_regs,
				  GFP_KERNEL);
	if (!d->mask_buf_def)
		goto err_alloc;

372 373 374 375 376 377 378
	if (chip->wake_base) {
		d->wake_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
				      GFP_KERNEL);
		if (!d->wake_buf)
			goto err_alloc;
	}

379
	d->irq_chip = regmap_irq_chip;
380
	d->irq_chip.name = chip->name;
381
	d->irq = irq;
382 383 384
	d->map = map;
	d->chip = chip;
	d->irq_base = irq_base;
385 386 387 388 389 390

	if (chip->irq_reg_stride)
		d->irq_reg_stride = chip->irq_reg_stride;
	else
		d->irq_reg_stride = 1;

391 392 393 394 395 396 397 398
	if (!map->use_single_rw && map->reg_stride == 1 &&
	    d->irq_reg_stride == 1) {
		d->status_reg_buf = kmalloc(map->format.val_bytes *
					    chip->num_regs, GFP_KERNEL);
		if (!d->status_reg_buf)
			goto err_alloc;
	}

399 400 401
	mutex_init(&d->lock);

	for (i = 0; i < chip->num_irqs; i++)
402
		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
403 404 405 406 407
			|= chip->irqs[i].mask;

	/* Mask all the interrupts by default */
	for (i = 0; i < chip->num_regs; i++) {
		d->mask_buf[i] = d->mask_buf_def[i];
408 409
		reg = chip->mask_base +
			(i * map->reg_stride * d->irq_reg_stride);
410 411 412 413 414
		if (chip->mask_invert)
			ret = regmap_update_bits(map, reg,
					 d->mask_buf[i], ~d->mask_buf[i]);
		else
			ret = regmap_update_bits(map, reg,
415
					 d->mask_buf[i], d->mask_buf[i]);
416 417
		if (ret != 0) {
			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
418
				reg, ret);
419 420 421 422
			goto err_alloc;
		}
	}

423 424 425 426 427 428
	/* Wake is disabled by default */
	if (d->wake_buf) {
		for (i = 0; i < chip->num_regs; i++) {
			d->wake_buf[i] = d->mask_buf_def[i];
			reg = chip->wake_base +
				(i * map->reg_stride * d->irq_reg_stride);
429 430 431 432 433 434 435 436 437

			if (chip->wake_invert)
				ret = regmap_update_bits(map, reg,
							 d->mask_buf_def[i],
							 0);
			else
				ret = regmap_update_bits(map, reg,
							 d->mask_buf_def[i],
							 d->wake_buf[i]);
438 439 440 441 442 443 444 445
			if (ret != 0) {
				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
					reg, ret);
				goto err_alloc;
			}
		}
	}

446 447 448 449 450 451 452 453 454 455 456 457
	if (irq_base)
		d->domain = irq_domain_add_legacy(map->dev->of_node,
						  chip->num_irqs, irq_base, 0,
						  &regmap_domain_ops, d);
	else
		d->domain = irq_domain_add_linear(map->dev->of_node,
						  chip->num_irqs,
						  &regmap_domain_ops, d);
	if (!d->domain) {
		dev_err(map->dev, "Failed to create IRQ domain\n");
		ret = -ENOMEM;
		goto err_alloc;
458 459 460 461 462
	}

	ret = request_threaded_irq(irq, NULL, regmap_irq_thread, irq_flags,
				   chip->name, d);
	if (ret != 0) {
463 464
		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
			irq, chip->name, ret);
465
		goto err_domain;
466 467 468 469
	}

	return 0;

470 471
err_domain:
	/* Should really dispose of the domain but... */
472
err_alloc:
473
	kfree(d->wake_buf);
474 475 476
	kfree(d->mask_buf_def);
	kfree(d->mask_buf);
	kfree(d->status_buf);
477
	kfree(d->status_reg_buf);
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
	kfree(d);
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_add_irq_chip);

/**
 * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
 *
 * @irq: Primary IRQ for the device
 * @d:   regmap_irq_chip_data allocated by regmap_add_irq_chip()
 */
void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
{
	if (!d)
		return;

	free_irq(irq, d);
495
	/* We should unmap the domain but... */
496
	kfree(d->wake_buf);
497 498
	kfree(d->mask_buf_def);
	kfree(d->mask_buf);
499
	kfree(d->status_reg_buf);
500 501 502 503
	kfree(d->status_buf);
	kfree(d);
}
EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
504 505 506 507 508 509 510 511 512 513

/**
 * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
 *
 * Useful for drivers to request their own IRQs.
 *
 * @data: regmap_irq controller to operate on.
 */
int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
{
514
	WARN_ON(!data->irq_base);
515 516 517
	return data->irq_base;
}
EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
518 519 520 521 522 523 524 525 526 527 528

/**
 * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
 *
 * Useful for drivers to request their own IRQs.
 *
 * @data: regmap_irq controller to operate on.
 * @irq: index of the interrupt requested in the chip IRQs
 */
int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
{
529 530 531 532
	/* Handle holes in the IRQ list */
	if (!data->chip->irqs[irq].mask)
		return -EINVAL;

533 534 535
	return irq_create_mapping(data->domain, irq);
}
EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554

/**
 * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
 *
 * Useful for drivers to request their own IRQs and for integration
 * with subsystems.  For ease of integration NULL is accepted as a
 * domain, allowing devices to just call this even if no domain is
 * allocated.
 *
 * @data: regmap_irq controller to operate on.
 */
struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
{
	if (data)
		return data->domain;
	else
		return NULL;
}
EXPORT_SYMBOL_GPL(regmap_irq_get_domain);