fs-writeback.c 74.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11
/*
 * fs/fs-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains all the functions related to writing back and waiting
 * upon dirty inodes against superblocks, and writing back dirty
 * pages against inodes.  ie: data writeback.  Writeout of the
 * inode itself is not handled here.
 *
12
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
13 14 15 16 17
 *		Split out of fs/inode.c
 *		Additions for address_space-based writeback
 */

#include <linux/kernel.h>
18
#include <linux/export.h>
L
Linus Torvalds 已提交
19
#include <linux/spinlock.h>
20
#include <linux/slab.h>
L
Linus Torvalds 已提交
21 22 23
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
24
#include <linux/pagemap.h>
25
#include <linux/kthread.h>
L
Linus Torvalds 已提交
26 27 28
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
29
#include <linux/tracepoint.h>
30
#include <linux/device.h>
31
#include <linux/memcontrol.h>
32
#include "internal.h"
L
Linus Torvalds 已提交
33

34 35 36
/*
 * 4MB minimal write chunk size
 */
37
#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38

39 40 41
/*
 * Passed into wb_writeback(), essentially a subset of writeback_control
 */
42
struct wb_writeback_work {
43 44
	long nr_pages;
	struct super_block *sb;
45
	unsigned long *older_than_this;
46
	enum writeback_sync_modes sync_mode;
47
	unsigned int tagged_writepages:1;
48 49 50
	unsigned int for_kupdate:1;
	unsigned int range_cyclic:1;
	unsigned int for_background:1;
51
	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
52
	unsigned int auto_free:1;	/* free on completion */
53
	enum wb_reason reason;		/* why was writeback initiated? */
54

55
	struct list_head list;		/* pending work list */
56
	struct wb_completion *done;	/* set if the caller waits */
57 58
};

59 60 61 62 63 64 65 66 67 68 69 70
/*
 * If an inode is constantly having its pages dirtied, but then the
 * updates stop dirtytime_expire_interval seconds in the past, it's
 * possible for the worst case time between when an inode has its
 * timestamps updated and when they finally get written out to be two
 * dirtytime_expire_intervals.  We set the default to 12 hours (in
 * seconds), which means most of the time inodes will have their
 * timestamps written to disk after 12 hours, but in the worst case a
 * few inodes might not their timestamps updated for 24 hours.
 */
unsigned int dirtytime_expire_interval = 12 * 60 * 60;

N
Nick Piggin 已提交
71 72
static inline struct inode *wb_inode(struct list_head *head)
{
73
	return list_entry(head, struct inode, i_io_list);
N
Nick Piggin 已提交
74 75
}

76 77 78 79 80 81 82 83
/*
 * Include the creation of the trace points after defining the
 * wb_writeback_work structure and inline functions so that the definition
 * remains local to this file.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/writeback.h>

84 85
EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);

86 87 88 89 90 91
static bool wb_io_lists_populated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb)) {
		return false;
	} else {
		set_bit(WB_has_dirty_io, &wb->state);
92
		WARN_ON_ONCE(!wb->avg_write_bandwidth);
93 94
		atomic_long_add(wb->avg_write_bandwidth,
				&wb->bdi->tot_write_bandwidth);
95 96 97 98 99 100 101
		return true;
	}
}

static void wb_io_lists_depopulated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
102
	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
103
		clear_bit(WB_has_dirty_io, &wb->state);
104 105
		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
					&wb->bdi->tot_write_bandwidth) < 0);
106
	}
107 108 109
}

/**
110
 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
111 112
 * @inode: inode to be moved
 * @wb: target bdi_writeback
113
 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
114
 *
115
 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
116 117 118
 * Returns %true if @inode is the first occupant of the !dirty_time IO
 * lists; otherwise, %false.
 */
119
static bool inode_io_list_move_locked(struct inode *inode,
120 121 122 123 124
				      struct bdi_writeback *wb,
				      struct list_head *head)
{
	assert_spin_locked(&wb->list_lock);

125
	list_move(&inode->i_io_list, head);
126 127 128 129 130 131 132 133 134 135

	/* dirty_time doesn't count as dirty_io until expiration */
	if (head != &wb->b_dirty_time)
		return wb_io_lists_populated(wb);

	wb_io_lists_depopulated(wb);
	return false;
}

/**
136
 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
137 138 139 140 141 142
 * @inode: inode to be removed
 * @wb: bdi_writeback @inode is being removed from
 *
 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 * clear %WB_has_dirty_io if all are empty afterwards.
 */
143
static void inode_io_list_del_locked(struct inode *inode,
144 145 146 147
				     struct bdi_writeback *wb)
{
	assert_spin_locked(&wb->list_lock);

148
	list_del_init(&inode->i_io_list);
149 150 151
	wb_io_lists_depopulated(wb);
}

152
static void wb_wakeup(struct bdi_writeback *wb)
J
Jan Kara 已提交
153
{
154 155 156 157
	spin_lock_bh(&wb->work_lock);
	if (test_bit(WB_registered, &wb->state))
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	spin_unlock_bh(&wb->work_lock);
J
Jan Kara 已提交
158 159
}

160 161 162 163 164 165 166 167
static void finish_writeback_work(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
{
	struct wb_completion *done = work->done;

	if (work->auto_free)
		kfree(work);
	if (done && atomic_dec_and_test(&done->cnt))
168
		wake_up_all(done->waitq);
169 170
}

171 172
static void wb_queue_work(struct bdi_writeback *wb,
			  struct wb_writeback_work *work)
173
{
174
	trace_writeback_queue(wb, work);
175

176 177
	if (work->done)
		atomic_inc(&work->done->cnt);
178 179 180 181 182 183 184 185 186

	spin_lock_bh(&wb->work_lock);

	if (test_bit(WB_registered, &wb->state)) {
		list_add_tail(&work->list, &wb->work_list);
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	} else
		finish_writeback_work(wb, work);

187
	spin_unlock_bh(&wb->work_lock);
L
Linus Torvalds 已提交
188 189
}

190 191 192 193 194
/**
 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 * @done: target wb_completion
 *
 * Wait for one or more work items issued to @bdi with their ->done field
195 196 197
 * set to @done, which should have been initialized with
 * DEFINE_WB_COMPLETION().  This function returns after all such work items
 * are completed.  Work items which are waited upon aren't freed
198 199
 * automatically on completion.
 */
200
void wb_wait_for_completion(struct wb_completion *done)
201 202
{
	atomic_dec(&done->cnt);		/* put down the initial count */
203
	wait_event(*done->waitq, !atomic_read(&done->cnt));
204 205
}

206 207
#ifdef CONFIG_CGROUP_WRITEBACK

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
/*
 * Parameters for foreign inode detection, see wbc_detach_inode() to see
 * how they're used.
 *
 * These paramters are inherently heuristical as the detection target
 * itself is fuzzy.  All we want to do is detaching an inode from the
 * current owner if it's being written to by some other cgroups too much.
 *
 * The current cgroup writeback is built on the assumption that multiple
 * cgroups writing to the same inode concurrently is very rare and a mode
 * of operation which isn't well supported.  As such, the goal is not
 * taking too long when a different cgroup takes over an inode while
 * avoiding too aggressive flip-flops from occasional foreign writes.
 *
 * We record, very roughly, 2s worth of IO time history and if more than
 * half of that is foreign, trigger the switch.  The recording is quantized
 * to 16 slots.  To avoid tiny writes from swinging the decision too much,
 * writes smaller than 1/8 of avg size are ignored.
 */
227 228
#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
229
#define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
230 231 232 233 234 235 236 237 238
#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */

#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
					/* each slot's duration is 2s / 16 */
#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
					/* if foreign slots >= 8, switch */
#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
					/* one round can affect upto 5 slots */
239
#define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
240

241 242 243
static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
static struct workqueue_struct *isw_wq;

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
void __inode_attach_wb(struct inode *inode, struct page *page)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;

	if (inode_cgwb_enabled(inode)) {
		struct cgroup_subsys_state *memcg_css;

		if (page) {
			memcg_css = mem_cgroup_css_from_page(page);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
		} else {
			/* must pin memcg_css, see wb_get_create() */
			memcg_css = task_get_css(current, memory_cgrp_id);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
			css_put(memcg_css);
		}
	}

	if (!wb)
		wb = &bdi->wb;

	/*
	 * There may be multiple instances of this function racing to
	 * update the same inode.  Use cmpxchg() to tell the winner.
	 */
	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
		wb_put(wb);
}
273
EXPORT_SYMBOL_GPL(__inode_attach_wb);
274

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
/**
 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 * @inode: inode of interest with i_lock held
 *
 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 * held on entry and is released on return.  The returned wb is guaranteed
 * to stay @inode's associated wb until its list_lock is released.
 */
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	while (true) {
		struct bdi_writeback *wb = inode_to_wb(inode);

		/*
		 * inode_to_wb() association is protected by both
		 * @inode->i_lock and @wb->list_lock but list_lock nests
		 * outside i_lock.  Drop i_lock and verify that the
		 * association hasn't changed after acquiring list_lock.
		 */
		wb_get(wb);
		spin_unlock(&inode->i_lock);
		spin_lock(&wb->list_lock);

301
		/* i_wb may have changed inbetween, can't use inode_to_wb() */
302 303 304 305
		if (likely(wb == inode->i_wb)) {
			wb_put(wb);	/* @inode already has ref */
			return wb;
		}
306 307

		spin_unlock(&wb->list_lock);
308
		wb_put(wb);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
		cpu_relax();
		spin_lock(&inode->i_lock);
	}
}

/**
 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 * @inode: inode of interest
 *
 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 * on entry.
 */
static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	spin_lock(&inode->i_lock);
	return locked_inode_to_wb_and_lock_list(inode);
}

328 329 330 331 332 333 334 335
struct inode_switch_wbs_context {
	struct inode		*inode;
	struct bdi_writeback	*new_wb;

	struct rcu_head		rcu_head;
	struct work_struct	work;
};

336 337 338 339 340 341 342 343 344 345
static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
{
	down_write(&bdi->wb_switch_rwsem);
}

static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
{
	up_write(&bdi->wb_switch_rwsem);
}

346 347 348 349 350
static void inode_switch_wbs_work_fn(struct work_struct *work)
{
	struct inode_switch_wbs_context *isw =
		container_of(work, struct inode_switch_wbs_context, work);
	struct inode *inode = isw->inode;
351
	struct backing_dev_info *bdi = inode_to_bdi(inode);
352 353
	struct address_space *mapping = inode->i_mapping;
	struct bdi_writeback *old_wb = inode->i_wb;
354
	struct bdi_writeback *new_wb = isw->new_wb;
M
Matthew Wilcox 已提交
355 356
	XA_STATE(xas, &mapping->i_pages, 0);
	struct page *page;
357
	bool switched = false;
358

359 360 361 362 363 364
	/*
	 * If @inode switches cgwb membership while sync_inodes_sb() is
	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
	 */
	down_read(&bdi->wb_switch_rwsem);

365 366 367 368
	/*
	 * By the time control reaches here, RCU grace period has passed
	 * since I_WB_SWITCH assertion and all wb stat update transactions
	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
M
Matthew Wilcox 已提交
369
	 * synchronizing against the i_pages lock.
370
	 *
M
Matthew Wilcox 已提交
371
	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
372 373
	 * gives us exclusion against all wb related operations on @inode
	 * including IO list manipulations and stat updates.
374
	 */
375 376 377 378 379 380 381
	if (old_wb < new_wb) {
		spin_lock(&old_wb->list_lock);
		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
	} else {
		spin_lock(&new_wb->list_lock);
		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
	}
382
	spin_lock(&inode->i_lock);
M
Matthew Wilcox 已提交
383
	xa_lock_irq(&mapping->i_pages);
384 385 386

	/*
	 * Once I_FREEING is visible under i_lock, the eviction path owns
387
	 * the inode and we shouldn't modify ->i_io_list.
388 389 390 391
	 */
	if (unlikely(inode->i_state & I_FREEING))
		goto skip_switch;

392 393
	trace_inode_switch_wbs(inode, old_wb, new_wb);

394 395 396
	/*
	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
M
Matthew Wilcox 已提交
397
	 * pages actually under writeback.
398
	 */
M
Matthew Wilcox 已提交
399 400
	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
		if (PageDirty(page)) {
401 402
			dec_wb_stat(old_wb, WB_RECLAIMABLE);
			inc_wb_stat(new_wb, WB_RECLAIMABLE);
403 404 405
		}
	}

M
Matthew Wilcox 已提交
406 407 408 409 410
	xas_set(&xas, 0);
	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
		WARN_ON_ONCE(!PageWriteback(page));
		dec_wb_stat(old_wb, WB_WRITEBACK);
		inc_wb_stat(new_wb, WB_WRITEBACK);
411 412 413 414 415 416 417 418 419 420
	}

	wb_get(new_wb);

	/*
	 * Transfer to @new_wb's IO list if necessary.  The specific list
	 * @inode was on is ignored and the inode is put on ->b_dirty which
	 * is always correct including from ->b_dirty_time.  The transfer
	 * preserves @inode->dirtied_when ordering.
	 */
421
	if (!list_empty(&inode->i_io_list)) {
422 423
		struct inode *pos;

424
		inode_io_list_del_locked(inode, old_wb);
425
		inode->i_wb = new_wb;
426
		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
427 428 429
			if (time_after_eq(inode->dirtied_when,
					  pos->dirtied_when))
				break;
430
		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
431 432 433
	} else {
		inode->i_wb = new_wb;
	}
434

435
	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
436 437 438
	inode->i_wb_frn_winner = 0;
	inode->i_wb_frn_avg_time = 0;
	inode->i_wb_frn_history = 0;
439 440
	switched = true;
skip_switch:
441 442 443 444 445 446
	/*
	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
	 */
	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);

M
Matthew Wilcox 已提交
447
	xa_unlock_irq(&mapping->i_pages);
448
	spin_unlock(&inode->i_lock);
449 450
	spin_unlock(&new_wb->list_lock);
	spin_unlock(&old_wb->list_lock);
451

452 453
	up_read(&bdi->wb_switch_rwsem);

454 455 456 457
	if (switched) {
		wb_wakeup(new_wb);
		wb_put(old_wb);
	}
458
	wb_put(new_wb);
459 460

	iput(inode);
461
	kfree(isw);
462 463

	atomic_dec(&isw_nr_in_flight);
464 465 466 467 468 469 470 471 472
}

static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
{
	struct inode_switch_wbs_context *isw = container_of(rcu_head,
				struct inode_switch_wbs_context, rcu_head);

	/* needs to grab bh-unsafe locks, bounce to work item */
	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
473
	queue_work(isw_wq, &isw->work);
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
}

/**
 * inode_switch_wbs - change the wb association of an inode
 * @inode: target inode
 * @new_wb_id: ID of the new wb
 *
 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 * switching is performed asynchronously and may fail silently.
 */
static void inode_switch_wbs(struct inode *inode, int new_wb_id)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct cgroup_subsys_state *memcg_css;
	struct inode_switch_wbs_context *isw;

	/* noop if seems to be already in progress */
	if (inode->i_state & I_WB_SWITCH)
		return;

494 495
	/* avoid queueing a new switch if too many are already in flight */
	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
496 497
		return;

498 499
	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
	if (!isw)
500
		return;
501 502 503 504 505 506 507 508 509 510 511 512

	/* find and pin the new wb */
	rcu_read_lock();
	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
	if (memcg_css)
		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
	rcu_read_unlock();
	if (!isw->new_wb)
		goto out_free;

	/* while holding I_WB_SWITCH, no one else can update the association */
	spin_lock(&inode->i_lock);
513
	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
514 515 516 517 518
	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
	    inode_to_wb(inode) == isw->new_wb) {
		spin_unlock(&inode->i_lock);
		goto out_free;
	}
519
	inode->i_state |= I_WB_SWITCH;
520
	__iget(inode);
521 522 523 524 525 526
	spin_unlock(&inode->i_lock);

	isw->inode = inode;

	/*
	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
M
Matthew Wilcox 已提交
527 528
	 * the RCU protected stat update paths to grab the i_page
	 * lock so that stat transfer can synchronize against them.
529 530 531
	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
	 */
	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
532 533

	atomic_inc(&isw_nr_in_flight);
534
	return;
535 536 537 538 539 540 541

out_free:
	if (isw->new_wb)
		wb_put(isw->new_wb);
	kfree(isw);
}

542 543 544 545 546 547 548 549 550 551 552 553 554
/**
 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 * @wbc: writeback_control of interest
 * @inode: target inode
 *
 * @inode is locked and about to be written back under the control of @wbc.
 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 * writeback completion, wbc_detach_inode() should be called.  This is used
 * to track the cgroup writeback context.
 */
void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
				 struct inode *inode)
{
555 556 557 558 559
	if (!inode_cgwb_enabled(inode)) {
		spin_unlock(&inode->i_lock);
		return;
	}

560
	wbc->wb = inode_to_wb(inode);
561 562 563 564 565 566 567 568 569
	wbc->inode = inode;

	wbc->wb_id = wbc->wb->memcg_css->id;
	wbc->wb_lcand_id = inode->i_wb_frn_winner;
	wbc->wb_tcand_id = 0;
	wbc->wb_bytes = 0;
	wbc->wb_lcand_bytes = 0;
	wbc->wb_tcand_bytes = 0;

570 571
	wb_get(wbc->wb);
	spin_unlock(&inode->i_lock);
572 573 574 575 576 577 578

	/*
	 * A dying wb indicates that the memcg-blkcg mapping has changed
	 * and a new wb is already serving the memcg.  Switch immediately.
	 */
	if (unlikely(wb_dying(wbc->wb)))
		inode_switch_wbs(inode, wbc->wb_id);
579
}
580
EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
581 582

/**
583 584
 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 * @wbc: writeback_control of the just finished writeback
585 586 587
 *
 * To be called after a writeback attempt of an inode finishes and undoes
 * wbc_attach_and_unlock_inode().  Can be called under any context.
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
 *
 * As concurrent write sharing of an inode is expected to be very rare and
 * memcg only tracks page ownership on first-use basis severely confining
 * the usefulness of such sharing, cgroup writeback tracks ownership
 * per-inode.  While the support for concurrent write sharing of an inode
 * is deemed unnecessary, an inode being written to by different cgroups at
 * different points in time is a lot more common, and, more importantly,
 * charging only by first-use can too readily lead to grossly incorrect
 * behaviors (single foreign page can lead to gigabytes of writeback to be
 * incorrectly attributed).
 *
 * To resolve this issue, cgroup writeback detects the majority dirtier of
 * an inode and transfers the ownership to it.  To avoid unnnecessary
 * oscillation, the detection mechanism keeps track of history and gives
 * out the switch verdict only if the foreign usage pattern is stable over
 * a certain amount of time and/or writeback attempts.
 *
 * On each writeback attempt, @wbc tries to detect the majority writer
 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 * count from the majority voting, it also counts the bytes written for the
 * current wb and the last round's winner wb (max of last round's current
 * wb, the winner from two rounds ago, and the last round's majority
 * candidate).  Keeping track of the historical winner helps the algorithm
 * to semi-reliably detect the most active writer even when it's not the
 * absolute majority.
 *
 * Once the winner of the round is determined, whether the winner is
 * foreign or not and how much IO time the round consumed is recorded in
 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 * over a certain threshold, the switch verdict is given.
618 619 620
 */
void wbc_detach_inode(struct writeback_control *wbc)
{
621 622
	struct bdi_writeback *wb = wbc->wb;
	struct inode *inode = wbc->inode;
623 624
	unsigned long avg_time, max_bytes, max_time;
	u16 history;
625 626
	int max_id;

627 628 629 630 631 632
	if (!wb)
		return;

	history = inode->i_wb_frn_history;
	avg_time = inode->i_wb_frn_avg_time;

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
	/* pick the winner of this round */
	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_id;
		max_bytes = wbc->wb_bytes;
	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_lcand_id;
		max_bytes = wbc->wb_lcand_bytes;
	} else {
		max_id = wbc->wb_tcand_id;
		max_bytes = wbc->wb_tcand_bytes;
	}

	/*
	 * Calculate the amount of IO time the winner consumed and fold it
	 * into the running average kept per inode.  If the consumed IO
	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
	 * deciding whether to switch or not.  This is to prevent one-off
	 * small dirtiers from skewing the verdict.
	 */
	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
				wb->avg_write_bandwidth);
	if (avg_time)
		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
	else
		avg_time = max_time;	/* immediate catch up on first run */

	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
		int slots;

		/*
		 * The switch verdict is reached if foreign wb's consume
		 * more than a certain proportion of IO time in a
		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
		 * history mask where each bit represents one sixteenth of
		 * the period.  Determine the number of slots to shift into
		 * history from @max_time.
		 */
		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
		history <<= slots;
		if (wbc->wb_id != max_id)
			history |= (1U << slots) - 1;

678 679 680
		if (history)
			trace_inode_foreign_history(inode, wbc, history);

681 682 683 684 685 686 687
		/*
		 * Switch if the current wb isn't the consistent winner.
		 * If there are multiple closely competing dirtiers, the
		 * inode may switch across them repeatedly over time, which
		 * is okay.  The main goal is avoiding keeping an inode on
		 * the wrong wb for an extended period of time.
		 */
688 689
		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
			inode_switch_wbs(inode, max_id);
690 691 692 693 694 695 696 697 698 699
	}

	/*
	 * Multiple instances of this function may race to update the
	 * following fields but we don't mind occassional inaccuracies.
	 */
	inode->i_wb_frn_winner = max_id;
	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
	inode->i_wb_frn_history = history;

700 701 702
	wb_put(wbc->wb);
	wbc->wb = NULL;
}
703
EXPORT_SYMBOL_GPL(wbc_detach_inode);
704

705
/**
706
 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
707 708 709 710 711 712 713 714
 * @wbc: writeback_control of the writeback in progress
 * @page: page being written out
 * @bytes: number of bytes being written out
 *
 * @bytes from @page are about to written out during the writeback
 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 * wbc_detach_inode().
 */
715 716
void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
			      size_t bytes)
717
{
718
	struct cgroup_subsys_state *css;
719 720 721 722 723 724 725 726
	int id;

	/*
	 * pageout() path doesn't attach @wbc to the inode being written
	 * out.  This is intentional as we don't want the function to block
	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
	 * regular writeback instead of writing things out itself.
	 */
727
	if (!wbc->wb || wbc->no_cgroup_owner)
728 729
		return;

730 731 732 733 734 735
	css = mem_cgroup_css_from_page(page);
	/* dead cgroups shouldn't contribute to inode ownership arbitration */
	if (!(css->flags & CSS_ONLINE))
		return;

	id = css->id;
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752

	if (id == wbc->wb_id) {
		wbc->wb_bytes += bytes;
		return;
	}

	if (id == wbc->wb_lcand_id)
		wbc->wb_lcand_bytes += bytes;

	/* Boyer-Moore majority vote algorithm */
	if (!wbc->wb_tcand_bytes)
		wbc->wb_tcand_id = id;
	if (id == wbc->wb_tcand_id)
		wbc->wb_tcand_bytes += bytes;
	else
		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
}
753
EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
754

755 756
/**
 * inode_congested - test whether an inode is congested
757
 * @inode: inode to test for congestion (may be NULL)
758 759 760 761 762 763 764 765 766
 * @cong_bits: mask of WB_[a]sync_congested bits to test
 *
 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 * bits to test and the return value is the mask of set bits.
 *
 * If cgroup writeback is enabled for @inode, the congestion state is
 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 * associated with @inode is congested; otherwise, the root wb's congestion
 * state is used.
767 768 769
 *
 * @inode is allowed to be NULL as this function is often called on
 * mapping->host which is NULL for the swapper space.
770 771 772
 */
int inode_congested(struct inode *inode, int cong_bits)
{
773 774 775 776
	/*
	 * Once set, ->i_wb never becomes NULL while the inode is alive.
	 * Start transaction iff ->i_wb is visible.
	 */
777
	if (inode && inode_to_wb_is_valid(inode)) {
778
		struct bdi_writeback *wb;
G
Greg Thelen 已提交
779 780
		struct wb_lock_cookie lock_cookie = {};
		bool congested;
781

G
Greg Thelen 已提交
782
		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
783
		congested = wb_congested(wb, cong_bits);
G
Greg Thelen 已提交
784
		unlocked_inode_to_wb_end(inode, &lock_cookie);
785
		return congested;
786 787 788 789 790 791
	}

	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
}
EXPORT_SYMBOL_GPL(inode_congested);

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
/**
 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 * @wb: target bdi_writeback to split @nr_pages to
 * @nr_pages: number of pages to write for the whole bdi
 *
 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 * @wb->bdi.
 */
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);

	if (nr_pages == LONG_MAX)
		return LONG_MAX;

	/*
	 * This may be called on clean wb's and proportional distribution
	 * may not make sense, just use the original @nr_pages in those
	 * cases.  In general, we wanna err on the side of writing more.
	 */
	if (!tot_bw || this_bw >= tot_bw)
		return nr_pages;
	else
		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
}

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
/**
 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 * @bdi: target backing_dev_info
 * @base_work: wb_writeback_work to issue
 * @skip_if_busy: skip wb's which already have writeback in progress
 *
 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 * distributed to the busy wbs according to each wb's proportion in the
 * total active write bandwidth of @bdi.
 */
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
835
	struct bdi_writeback *last_wb = NULL;
836 837
	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
					      struct bdi_writeback, bdi_node);
838 839 840 841

	might_sleep();
restart:
	rcu_read_lock();
842
	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
843
		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
844 845 846 847
		struct wb_writeback_work fallback_work;
		struct wb_writeback_work *work;
		long nr_pages;

848 849 850 851 852
		if (last_wb) {
			wb_put(last_wb);
			last_wb = NULL;
		}

853 854 855 856 857 858
		/* SYNC_ALL writes out I_DIRTY_TIME too */
		if (!wb_has_dirty_io(wb) &&
		    (base_work->sync_mode == WB_SYNC_NONE ||
		     list_empty(&wb->b_dirty_time)))
			continue;
		if (skip_if_busy && writeback_in_progress(wb))
859 860
			continue;

861 862 863 864 865 866 867 868 869
		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);

		work = kmalloc(sizeof(*work), GFP_ATOMIC);
		if (work) {
			*work = *base_work;
			work->nr_pages = nr_pages;
			work->auto_free = 1;
			wb_queue_work(wb, work);
			continue;
870
		}
871 872 873 874 875 876 877 878 879 880

		/* alloc failed, execute synchronously using on-stack fallback */
		work = &fallback_work;
		*work = *base_work;
		work->nr_pages = nr_pages;
		work->auto_free = 0;
		work->done = &fallback_work_done;

		wb_queue_work(wb, work);

881 882 883 884 885 886 887 888
		/*
		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
		 * continuing iteration from @wb after dropping and
		 * regrabbing rcu read lock.
		 */
		wb_get(wb);
		last_wb = wb;

889
		rcu_read_unlock();
890
		wb_wait_for_completion(&fallback_work_done);
891
		goto restart;
892 893
	}
	rcu_read_unlock();
894 895 896

	if (last_wb)
		wb_put(last_wb);
897 898
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
/**
 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
 * @bdi_id: target bdi id
 * @memcg_id: target memcg css id
 * @nr_pages: number of pages to write, 0 for best-effort dirty flushing
 * @reason: reason why some writeback work initiated
 * @done: target wb_completion
 *
 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
 * with the specified parameters.
 */
int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
			   enum wb_reason reason, struct wb_completion *done)
{
	struct backing_dev_info *bdi;
	struct cgroup_subsys_state *memcg_css;
	struct bdi_writeback *wb;
	struct wb_writeback_work *work;
	int ret;

	/* lookup bdi and memcg */
	bdi = bdi_get_by_id(bdi_id);
	if (!bdi)
		return -ENOENT;

	rcu_read_lock();
	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
	if (memcg_css && !css_tryget(memcg_css))
		memcg_css = NULL;
	rcu_read_unlock();
	if (!memcg_css) {
		ret = -ENOENT;
		goto out_bdi_put;
	}

	/*
	 * And find the associated wb.  If the wb isn't there already
	 * there's nothing to flush, don't create one.
	 */
	wb = wb_get_lookup(bdi, memcg_css);
	if (!wb) {
		ret = -ENOENT;
		goto out_css_put;
	}

	/*
	 * If @nr is zero, the caller is attempting to write out most of
	 * the currently dirty pages.  Let's take the current dirty page
	 * count and inflate it by 25% which should be large enough to
	 * flush out most dirty pages while avoiding getting livelocked by
	 * concurrent dirtiers.
	 */
	if (!nr) {
		unsigned long filepages, headroom, dirty, writeback;

		mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
				      &writeback);
		nr = dirty * 10 / 8;
	}

	/* issue the writeback work */
	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
	if (work) {
		work->nr_pages = nr;
		work->sync_mode = WB_SYNC_NONE;
		work->range_cyclic = 1;
		work->reason = reason;
		work->done = done;
		work->auto_free = 1;
		wb_queue_work(wb, work);
		ret = 0;
	} else {
		ret = -ENOMEM;
	}

	wb_put(wb);
out_css_put:
	css_put(memcg_css);
out_bdi_put:
	bdi_put(bdi);
	return ret;
}

982 983 984 985 986 987 988 989 990 991 992 993 994
/**
 * cgroup_writeback_umount - flush inode wb switches for umount
 *
 * This function is called when a super_block is about to be destroyed and
 * flushes in-flight inode wb switches.  An inode wb switch goes through
 * RCU and then workqueue, so the two need to be flushed in order to ensure
 * that all previously scheduled switches are finished.  As wb switches are
 * rare occurrences and synchronize_rcu() can take a while, perform
 * flushing iff wb switches are in flight.
 */
void cgroup_writeback_umount(void)
{
	if (atomic_read(&isw_nr_in_flight)) {
995 996 997 998 999
		/*
		 * Use rcu_barrier() to wait for all pending callbacks to
		 * ensure that all in-flight wb switches are in the workqueue.
		 */
		rcu_barrier();
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
		flush_workqueue(isw_wq);
	}
}

static int __init cgroup_writeback_init(void)
{
	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
	if (!isw_wq)
		return -ENOMEM;
	return 0;
}
fs_initcall(cgroup_writeback_init);

1013 1014
#else	/* CONFIG_CGROUP_WRITEBACK */

1015 1016 1017
static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_unlock(&inode->i_lock);
	spin_lock(&wb->list_lock);
	return wb;
}

static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_lock(&wb->list_lock);
	return wb;
}

1039 1040 1041 1042 1043
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	return nr_pages;
}

1044 1045 1046 1047 1048 1049
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	might_sleep();

1050
	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1051 1052 1053 1054 1055
		base_work->auto_free = 0;
		wb_queue_work(&bdi->wb, base_work);
	}
}

1056 1057
#endif	/* CONFIG_CGROUP_WRITEBACK */

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
/*
 * Add in the number of potentially dirty inodes, because each inode
 * write can dirty pagecache in the underlying blockdev.
 */
static unsigned long get_nr_dirty_pages(void)
{
	return global_node_page_state(NR_FILE_DIRTY) +
		global_node_page_state(NR_UNSTABLE_NFS) +
		get_nr_dirty_inodes();
}

static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1070
{
1071 1072 1073
	if (!wb_has_dirty_io(wb))
		return;

1074 1075 1076 1077 1078 1079
	/*
	 * All callers of this function want to start writeback of all
	 * dirty pages. Places like vmscan can call this at a very
	 * high frequency, causing pointless allocations of tons of
	 * work items and keeping the flusher threads busy retrieving
	 * that work. Ensure that we only allow one of them pending and
1080
	 * inflight at the time.
1081
	 */
1082 1083
	if (test_bit(WB_start_all, &wb->state) ||
	    test_and_set_bit(WB_start_all, &wb->state))
1084 1085
		return;

1086 1087
	wb->start_all_reason = reason;
	wb_wakeup(wb);
1088
}
1089

1090
/**
1091 1092
 * wb_start_background_writeback - start background writeback
 * @wb: bdi_writback to write from
1093 1094
 *
 * Description:
1095
 *   This makes sure WB_SYNC_NONE background writeback happens. When
1096
 *   this function returns, it is only guaranteed that for given wb
1097 1098
 *   some IO is happening if we are over background dirty threshold.
 *   Caller need not hold sb s_umount semaphore.
1099
 */
1100
void wb_start_background_writeback(struct bdi_writeback *wb)
1101
{
1102 1103 1104 1105
	/*
	 * We just wake up the flusher thread. It will perform background
	 * writeback as soon as there is no other work to do.
	 */
1106
	trace_writeback_wake_background(wb);
1107
	wb_wakeup(wb);
L
Linus Torvalds 已提交
1108 1109
}

1110 1111 1112
/*
 * Remove the inode from the writeback list it is on.
 */
1113
void inode_io_list_del(struct inode *inode)
1114
{
1115
	struct bdi_writeback *wb;
1116

1117
	wb = inode_to_wb_and_lock_list(inode);
1118
	inode_io_list_del_locked(inode, wb);
1119
	spin_unlock(&wb->list_lock);
1120 1121
}

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
/*
 * mark an inode as under writeback on the sb
 */
void sb_mark_inode_writeback(struct inode *inode)
{
	struct super_block *sb = inode->i_sb;
	unsigned long flags;

	if (list_empty(&inode->i_wb_list)) {
		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1132
		if (list_empty(&inode->i_wb_list)) {
1133
			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1134 1135
			trace_sb_mark_inode_writeback(inode);
		}
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
	}
}

/*
 * clear an inode as under writeback on the sb
 */
void sb_clear_inode_writeback(struct inode *inode)
{
	struct super_block *sb = inode->i_sb;
	unsigned long flags;

	if (!list_empty(&inode->i_wb_list)) {
		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1150 1151 1152 1153
		if (!list_empty(&inode->i_wb_list)) {
			list_del_init(&inode->i_wb_list);
			trace_sb_clear_inode_writeback(inode);
		}
1154 1155 1156 1157
		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
	}
}

1158 1159 1160 1161 1162
/*
 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 * furthest end of its superblock's dirty-inode list.
 *
 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1163
 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1164 1165 1166
 * the case then the inode must have been redirtied while it was being written
 * out and we don't reset its dirtied_when.
 */
1167
static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1168
{
1169
	if (!list_empty(&wb->b_dirty)) {
1170
		struct inode *tail;
1171

N
Nick Piggin 已提交
1172
		tail = wb_inode(wb->b_dirty.next);
1173
		if (time_before(inode->dirtied_when, tail->dirtied_when))
1174 1175
			inode->dirtied_when = jiffies;
	}
1176
	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1177 1178
}

1179
/*
1180
 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1181
 */
1182
static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1183
{
1184
	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1185 1186
}

J
Joern Engel 已提交
1187 1188
static void inode_sync_complete(struct inode *inode)
{
1189
	inode->i_state &= ~I_SYNC;
1190 1191
	/* If inode is clean an unused, put it into LRU now... */
	inode_add_lru(inode);
1192
	/* Waiters must see I_SYNC cleared before being woken up */
J
Joern Engel 已提交
1193 1194 1195 1196
	smp_mb();
	wake_up_bit(&inode->i_state, __I_SYNC);
}

1197 1198 1199 1200 1201 1202 1203 1204
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
{
	bool ret = time_after(inode->dirtied_when, t);
#ifndef CONFIG_64BIT
	/*
	 * For inodes being constantly redirtied, dirtied_when can get stuck.
	 * It _appears_ to be in the future, but is actually in distant past.
	 * This test is necessary to prevent such wrapped-around relative times
1205
	 * from permanently stopping the whole bdi writeback.
1206 1207 1208 1209 1210 1211
	 */
	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
#endif
	return ret;
}

1212 1213
#define EXPIRE_DIRTY_ATIME 0x0001

1214
/*
1215
 * Move expired (dirtied before work->older_than_this) dirty inodes from
J
Jan Kara 已提交
1216
 * @delaying_queue to @dispatch_queue.
1217
 */
1218
static int move_expired_inodes(struct list_head *delaying_queue,
1219
			       struct list_head *dispatch_queue,
1220
			       int flags,
1221
			       struct wb_writeback_work *work)
1222
{
1223 1224
	unsigned long *older_than_this = NULL;
	unsigned long expire_time;
1225 1226
	LIST_HEAD(tmp);
	struct list_head *pos, *node;
1227
	struct super_block *sb = NULL;
1228
	struct inode *inode;
1229
	int do_sb_sort = 0;
1230
	int moved = 0;
1231

1232 1233
	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
		older_than_this = work->older_than_this;
1234 1235
	else if (!work->for_sync) {
		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1236 1237
		older_than_this = &expire_time;
	}
1238
	while (!list_empty(delaying_queue)) {
N
Nick Piggin 已提交
1239
		inode = wb_inode(delaying_queue->prev);
1240 1241
		if (older_than_this &&
		    inode_dirtied_after(inode, *older_than_this))
1242
			break;
1243
		list_move(&inode->i_io_list, &tmp);
1244
		moved++;
1245 1246
		if (flags & EXPIRE_DIRTY_ATIME)
			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1247 1248
		if (sb_is_blkdev_sb(inode->i_sb))
			continue;
1249 1250 1251
		if (sb && sb != inode->i_sb)
			do_sb_sort = 1;
		sb = inode->i_sb;
1252 1253
	}

1254 1255 1256
	/* just one sb in list, splice to dispatch_queue and we're done */
	if (!do_sb_sort) {
		list_splice(&tmp, dispatch_queue);
1257
		goto out;
1258 1259
	}

1260 1261
	/* Move inodes from one superblock together */
	while (!list_empty(&tmp)) {
N
Nick Piggin 已提交
1262
		sb = wb_inode(tmp.prev)->i_sb;
1263
		list_for_each_prev_safe(pos, node, &tmp) {
N
Nick Piggin 已提交
1264
			inode = wb_inode(pos);
1265
			if (inode->i_sb == sb)
1266
				list_move(&inode->i_io_list, dispatch_queue);
1267
		}
1268
	}
1269 1270
out:
	return moved;
1271 1272 1273 1274
}

/*
 * Queue all expired dirty inodes for io, eldest first.
1275 1276 1277 1278 1279 1280 1281 1282
 * Before
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    gf         edc     BA
 * After
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    g          fBAedc
 *                                           |
 *                                           +--> dequeue for IO
1283
 */
1284
static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1285
{
1286
	int moved;
1287

1288
	assert_spin_locked(&wb->list_lock);
1289
	list_splice_init(&wb->b_more_io, &wb->b_io);
1290 1291 1292
	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
				     EXPIRE_DIRTY_ATIME, work);
1293 1294
	if (moved)
		wb_io_lists_populated(wb);
1295
	trace_writeback_queue_io(wb, work, moved);
1296 1297
}

1298
static int write_inode(struct inode *inode, struct writeback_control *wbc)
1299
{
T
Tejun Heo 已提交
1300 1301 1302 1303 1304 1305 1306 1307
	int ret;

	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
		trace_writeback_write_inode_start(inode, wbc);
		ret = inode->i_sb->s_op->write_inode(inode, wbc);
		trace_writeback_write_inode(inode, wbc);
		return ret;
	}
1308
	return 0;
1309 1310
}

L
Linus Torvalds 已提交
1311
/*
1312 1313
 * Wait for writeback on an inode to complete. Called with i_lock held.
 * Caller must make sure inode cannot go away when we drop i_lock.
1314
 */
1315 1316 1317
static void __inode_wait_for_writeback(struct inode *inode)
	__releases(inode->i_lock)
	__acquires(inode->i_lock)
1318 1319 1320 1321 1322
{
	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
	wait_queue_head_t *wqh;

	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1323 1324
	while (inode->i_state & I_SYNC) {
		spin_unlock(&inode->i_lock);
1325 1326
		__wait_on_bit(wqh, &wq, bit_wait,
			      TASK_UNINTERRUPTIBLE);
1327
		spin_lock(&inode->i_lock);
1328
	}
1329 1330
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
/*
 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 */
void inode_wait_for_writeback(struct inode *inode)
{
	spin_lock(&inode->i_lock);
	__inode_wait_for_writeback(inode);
	spin_unlock(&inode->i_lock);
}

/*
 * Sleep until I_SYNC is cleared. This function must be called with i_lock
 * held and drops it. It is aimed for callers not holding any inode reference
 * so once i_lock is dropped, inode can go away.
 */
static void inode_sleep_on_writeback(struct inode *inode)
	__releases(inode->i_lock)
{
	DEFINE_WAIT(wait);
	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
	int sleep;

	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
	sleep = inode->i_state & I_SYNC;
	spin_unlock(&inode->i_lock);
	if (sleep)
		schedule();
	finish_wait(wqh, &wait);
}

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
/*
 * Find proper writeback list for the inode depending on its current state and
 * possibly also change of its state while we were doing writeback.  Here we
 * handle things such as livelock prevention or fairness of writeback among
 * inodes. This function can be called only by flusher thread - noone else
 * processes all inodes in writeback lists and requeueing inodes behind flusher
 * thread's back can have unexpected consequences.
 */
static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
			  struct writeback_control *wbc)
{
	if (inode->i_state & I_FREEING)
		return;

	/*
	 * Sync livelock prevention. Each inode is tagged and synced in one
	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
	 * the dirty time to prevent enqueue and sync it again.
	 */
	if ((inode->i_state & I_DIRTY) &&
	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
		inode->dirtied_when = jiffies;

1384 1385 1386 1387 1388 1389 1390 1391 1392
	if (wbc->pages_skipped) {
		/*
		 * writeback is not making progress due to locked
		 * buffers. Skip this inode for now.
		 */
		redirty_tail(inode, wb);
		return;
	}

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
		/*
		 * We didn't write back all the pages.  nfs_writepages()
		 * sometimes bales out without doing anything.
		 */
		if (wbc->nr_to_write <= 0) {
			/* Slice used up. Queue for next turn. */
			requeue_io(inode, wb);
		} else {
			/*
			 * Writeback blocked by something other than
			 * congestion. Delay the inode for some time to
			 * avoid spinning on the CPU (100% iowait)
			 * retrying writeback of the dirty page/inode
			 * that cannot be performed immediately.
			 */
			redirty_tail(inode, wb);
		}
	} else if (inode->i_state & I_DIRTY) {
		/*
		 * Filesystems can dirty the inode during writeback operations,
		 * such as delayed allocation during submission or metadata
		 * updates after data IO completion.
		 */
		redirty_tail(inode, wb);
1418
	} else if (inode->i_state & I_DIRTY_TIME) {
1419
		inode->dirtied_when = jiffies;
1420
		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1421 1422
	} else {
		/* The inode is clean. Remove from writeback lists. */
1423
		inode_io_list_del_locked(inode, wb);
1424 1425 1426
	}
}

1427
/*
1428 1429 1430
 * Write out an inode and its dirty pages. Do not update the writeback list
 * linkage. That is left to the caller. The caller is also responsible for
 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
L
Linus Torvalds 已提交
1431 1432
 */
static int
1433
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
L
Linus Torvalds 已提交
1434 1435
{
	struct address_space *mapping = inode->i_mapping;
1436
	long nr_to_write = wbc->nr_to_write;
1437
	unsigned dirty;
L
Linus Torvalds 已提交
1438 1439
	int ret;

1440
	WARN_ON(!(inode->i_state & I_SYNC));
L
Linus Torvalds 已提交
1441

T
Tejun Heo 已提交
1442 1443
	trace_writeback_single_inode_start(inode, wbc, nr_to_write);

L
Linus Torvalds 已提交
1444 1445
	ret = do_writepages(mapping, wbc);

1446 1447 1448
	/*
	 * Make sure to wait on the data before writing out the metadata.
	 * This is important for filesystems that modify metadata on data
1449 1450 1451
	 * I/O completion. We don't do it for sync(2) writeback because it has a
	 * separate, external IO completion path and ->sync_fs for guaranteeing
	 * inode metadata is written back correctly.
1452
	 */
1453
	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1454
		int err = filemap_fdatawait(mapping);
L
Linus Torvalds 已提交
1455 1456 1457 1458
		if (ret == 0)
			ret = err;
	}

1459 1460 1461 1462 1463
	/*
	 * Some filesystems may redirty the inode during the writeback
	 * due to delalloc, clear dirty metadata flags right before
	 * write_inode()
	 */
1464
	spin_lock(&inode->i_lock);
1465

1466
	dirty = inode->i_state & I_DIRTY;
1467
	if (inode->i_state & I_DIRTY_TIME) {
1468
		if ((dirty & I_DIRTY_INODE) ||
1469
		    wbc->sync_mode == WB_SYNC_ALL ||
1470 1471 1472 1473 1474 1475 1476 1477 1478
		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
		    unlikely(time_after(jiffies,
					(inode->dirtied_time_when +
					 dirtytime_expire_interval * HZ)))) {
			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
			trace_writeback_lazytime(inode);
		}
	} else
		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1479
	inode->i_state &= ~dirty;
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496

	/*
	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
	 * either they see the I_DIRTY bits cleared or we see the dirtied
	 * inode.
	 *
	 * I_DIRTY_PAGES is always cleared together above even if @mapping
	 * still has dirty pages.  The flag is reinstated after smp_mb() if
	 * necessary.  This guarantees that either __mark_inode_dirty()
	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
	 */
	smp_mb();

	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		inode->i_state |= I_DIRTY_PAGES;

1497
	spin_unlock(&inode->i_lock);
1498

1499 1500
	if (dirty & I_DIRTY_TIME)
		mark_inode_dirty_sync(inode);
1501
	/* Don't write the inode if only I_DIRTY_PAGES was set */
1502
	if (dirty & ~I_DIRTY_PAGES) {
1503
		int err = write_inode(inode, wbc);
L
Linus Torvalds 已提交
1504 1505 1506
		if (ret == 0)
			ret = err;
	}
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	trace_writeback_single_inode(inode, wbc, nr_to_write);
	return ret;
}

/*
 * Write out an inode's dirty pages. Either the caller has an active reference
 * on the inode or the inode has I_WILL_FREE set.
 *
 * This function is designed to be called for writing back one inode which
 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
 * and does more profound writeback list handling in writeback_sb_inodes().
 */
1519 1520
static int writeback_single_inode(struct inode *inode,
				  struct writeback_control *wbc)
1521
{
1522
	struct bdi_writeback *wb;
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	int ret = 0;

	spin_lock(&inode->i_lock);
	if (!atomic_read(&inode->i_count))
		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
	else
		WARN_ON(inode->i_state & I_WILL_FREE);

	if (inode->i_state & I_SYNC) {
		if (wbc->sync_mode != WB_SYNC_ALL)
			goto out;
		/*
1535 1536 1537
		 * It's a data-integrity sync. We must wait. Since callers hold
		 * inode reference or inode has I_WILL_FREE set, it cannot go
		 * away under us.
1538
		 */
1539
		__inode_wait_for_writeback(inode);
1540 1541 1542
	}
	WARN_ON(inode->i_state & I_SYNC);
	/*
J
Jan Kara 已提交
1543 1544 1545 1546 1547 1548
	 * Skip inode if it is clean and we have no outstanding writeback in
	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
	 * function since flusher thread may be doing for example sync in
	 * parallel and if we move the inode, it could get skipped. So here we
	 * make sure inode is on some writeback list and leave it there unless
	 * we have completely cleaned the inode.
1549
	 */
1550
	if (!(inode->i_state & I_DIRTY_ALL) &&
J
Jan Kara 已提交
1551 1552
	    (wbc->sync_mode != WB_SYNC_ALL ||
	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1553 1554
		goto out;
	inode->i_state |= I_SYNC;
1555
	wbc_attach_and_unlock_inode(wbc, inode);
1556

1557
	ret = __writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
1558

1559
	wbc_detach_inode(wbc);
1560 1561

	wb = inode_to_wb_and_lock_list(inode);
1562
	spin_lock(&inode->i_lock);
1563 1564 1565 1566
	/*
	 * If inode is clean, remove it from writeback lists. Otherwise don't
	 * touch it. See comment above for explanation.
	 */
1567
	if (!(inode->i_state & I_DIRTY_ALL))
1568
		inode_io_list_del_locked(inode, wb);
1569
	spin_unlock(&wb->list_lock);
J
Joern Engel 已提交
1570
	inode_sync_complete(inode);
1571 1572
out:
	spin_unlock(&inode->i_lock);
L
Linus Torvalds 已提交
1573 1574 1575
	return ret;
}

1576
static long writeback_chunk_size(struct bdi_writeback *wb,
1577
				 struct wb_writeback_work *work)
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
{
	long pages;

	/*
	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
	 * here avoids calling into writeback_inodes_wb() more than once.
	 *
	 * The intended call sequence for WB_SYNC_ALL writeback is:
	 *
	 *      wb_writeback()
	 *          writeback_sb_inodes()       <== called only once
	 *              write_cache_pages()     <== called once for each inode
	 *                   (quickly) tag currently dirty pages
	 *                   (maybe slowly) sync all tagged pages
	 */
	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
		pages = LONG_MAX;
1596
	else {
1597
		pages = min(wb->avg_write_bandwidth / 2,
1598
			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1599 1600 1601 1602
		pages = min(pages, work->nr_pages);
		pages = round_down(pages + MIN_WRITEBACK_PAGES,
				   MIN_WRITEBACK_PAGES);
	}
1603 1604 1605 1606

	return pages;
}

1607 1608
/*
 * Write a portion of b_io inodes which belong to @sb.
1609
 *
1610
 * Return the number of pages and/or inodes written.
1611 1612 1613 1614
 *
 * NOTE! This is called with wb->list_lock held, and will
 * unlock and relock that for each inode it ends up doing
 * IO for.
1615
 */
1616 1617 1618
static long writeback_sb_inodes(struct super_block *sb,
				struct bdi_writeback *wb,
				struct wb_writeback_work *work)
L
Linus Torvalds 已提交
1619
{
1620 1621 1622 1623 1624
	struct writeback_control wbc = {
		.sync_mode		= work->sync_mode,
		.tagged_writepages	= work->tagged_writepages,
		.for_kupdate		= work->for_kupdate,
		.for_background		= work->for_background,
1625
		.for_sync		= work->for_sync,
1626 1627 1628 1629 1630 1631 1632 1633
		.range_cyclic		= work->range_cyclic,
		.range_start		= 0,
		.range_end		= LLONG_MAX,
	};
	unsigned long start_time = jiffies;
	long write_chunk;
	long wrote = 0;  /* count both pages and inodes */

1634
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1635
		struct inode *inode = wb_inode(wb->b_io.prev);
1636
		struct bdi_writeback *tmp_wb;
1637 1638

		if (inode->i_sb != sb) {
1639
			if (work->sb) {
1640 1641 1642 1643 1644
				/*
				 * We only want to write back data for this
				 * superblock, move all inodes not belonging
				 * to it back onto the dirty list.
				 */
1645
				redirty_tail(inode, wb);
1646 1647 1648 1649 1650 1651 1652 1653
				continue;
			}

			/*
			 * The inode belongs to a different superblock.
			 * Bounce back to the caller to unpin this and
			 * pin the next superblock.
			 */
1654
			break;
1655 1656
		}

1657
		/*
W
Wanpeng Li 已提交
1658 1659
		 * Don't bother with new inodes or inodes being freed, first
		 * kind does not need periodic writeout yet, and for the latter
1660 1661
		 * kind writeout is handled by the freer.
		 */
1662
		spin_lock(&inode->i_lock);
1663
		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1664
			spin_unlock(&inode->i_lock);
1665
			redirty_tail(inode, wb);
1666 1667
			continue;
		}
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
			/*
			 * If this inode is locked for writeback and we are not
			 * doing writeback-for-data-integrity, move it to
			 * b_more_io so that writeback can proceed with the
			 * other inodes on s_io.
			 *
			 * We'll have another go at writing back this inode
			 * when we completed a full scan of b_io.
			 */
			spin_unlock(&inode->i_lock);
			requeue_io(inode, wb);
			trace_writeback_sb_inodes_requeue(inode);
			continue;
		}
1683 1684
		spin_unlock(&wb->list_lock);

1685 1686 1687 1688 1689
		/*
		 * We already requeued the inode if it had I_SYNC set and we
		 * are doing WB_SYNC_NONE writeback. So this catches only the
		 * WB_SYNC_ALL case.
		 */
1690 1691 1692 1693
		if (inode->i_state & I_SYNC) {
			/* Wait for I_SYNC. This function drops i_lock... */
			inode_sleep_on_writeback(inode);
			/* Inode may be gone, start again */
1694
			spin_lock(&wb->list_lock);
1695 1696
			continue;
		}
1697
		inode->i_state |= I_SYNC;
1698
		wbc_attach_and_unlock_inode(&wbc, inode);
1699

1700
		write_chunk = writeback_chunk_size(wb, work);
1701 1702
		wbc.nr_to_write = write_chunk;
		wbc.pages_skipped = 0;
1703

1704 1705 1706 1707
		/*
		 * We use I_SYNC to pin the inode in memory. While it is set
		 * evict_inode() will wait so the inode cannot be freed.
		 */
1708
		__writeback_single_inode(inode, &wbc);
1709

1710
		wbc_detach_inode(&wbc);
1711 1712
		work->nr_pages -= write_chunk - wbc.nr_to_write;
		wrote += write_chunk - wbc.nr_to_write;
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

		if (need_resched()) {
			/*
			 * We're trying to balance between building up a nice
			 * long list of IOs to improve our merge rate, and
			 * getting those IOs out quickly for anyone throttling
			 * in balance_dirty_pages().  cond_resched() doesn't
			 * unplug, so get our IOs out the door before we
			 * give up the CPU.
			 */
			blk_flush_plug(current);
			cond_resched();
		}

1727 1728 1729 1730 1731
		/*
		 * Requeue @inode if still dirty.  Be careful as @inode may
		 * have been switched to another wb in the meantime.
		 */
		tmp_wb = inode_to_wb_and_lock_list(inode);
1732
		spin_lock(&inode->i_lock);
1733
		if (!(inode->i_state & I_DIRTY_ALL))
1734
			wrote++;
1735
		requeue_inode(inode, tmp_wb, &wbc);
1736
		inode_sync_complete(inode);
1737
		spin_unlock(&inode->i_lock);
1738

1739 1740 1741 1742 1743
		if (unlikely(tmp_wb != wb)) {
			spin_unlock(&tmp_wb->list_lock);
			spin_lock(&wb->list_lock);
		}

1744 1745 1746 1747 1748 1749 1750 1751 1752
		/*
		 * bail out to wb_writeback() often enough to check
		 * background threshold and other termination conditions.
		 */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
1753
		}
L
Linus Torvalds 已提交
1754
	}
1755
	return wrote;
1756 1757
}

1758 1759
static long __writeback_inodes_wb(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
1760
{
1761 1762
	unsigned long start_time = jiffies;
	long wrote = 0;
N
Nick Piggin 已提交
1763

1764
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1765
		struct inode *inode = wb_inode(wb->b_io.prev);
1766
		struct super_block *sb = inode->i_sb;
1767

1768
		if (!trylock_super(sb)) {
1769
			/*
1770
			 * trylock_super() may fail consistently due to
1771 1772 1773 1774
			 * s_umount being grabbed by someone else. Don't use
			 * requeue_io() to avoid busy retrying the inode/sb.
			 */
			redirty_tail(inode, wb);
1775
			continue;
1776
		}
1777
		wrote += writeback_sb_inodes(sb, wb, work);
1778
		up_read(&sb->s_umount);
1779

1780 1781 1782 1783 1784 1785 1786
		/* refer to the same tests at the end of writeback_sb_inodes */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
		}
1787
	}
1788
	/* Leave any unwritten inodes on b_io */
1789
	return wrote;
1790 1791
}

1792
static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1793
				enum wb_reason reason)
1794
{
1795 1796 1797 1798
	struct wb_writeback_work work = {
		.nr_pages	= nr_pages,
		.sync_mode	= WB_SYNC_NONE,
		.range_cyclic	= 1,
1799
		.reason		= reason,
1800
	};
1801
	struct blk_plug plug;
1802

1803
	blk_start_plug(&plug);
1804
	spin_lock(&wb->list_lock);
W
Wu Fengguang 已提交
1805
	if (list_empty(&wb->b_io))
1806
		queue_io(wb, &work);
1807
	__writeback_inodes_wb(wb, &work);
1808
	spin_unlock(&wb->list_lock);
1809
	blk_finish_plug(&plug);
1810

1811 1812
	return nr_pages - work.nr_pages;
}
1813 1814 1815

/*
 * Explicit flushing or periodic writeback of "old" data.
1816
 *
1817 1818 1819 1820
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 * dirtying-time in the inode's address_space.  So this periodic writeback code
 * just walks the superblock inode list, writing back any inodes which are
 * older than a specific point in time.
1821
 *
1822 1823 1824
 * Try to run once per dirty_writeback_interval.  But if a writeback event
 * takes longer than a dirty_writeback_interval interval, then leave a
 * one-second gap.
1825
 *
1826 1827
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 * all dirty pages if they are all attached to "old" mappings.
1828
 */
1829
static long wb_writeback(struct bdi_writeback *wb,
1830
			 struct wb_writeback_work *work)
1831
{
1832
	unsigned long wb_start = jiffies;
1833
	long nr_pages = work->nr_pages;
1834
	unsigned long oldest_jif;
J
Jan Kara 已提交
1835
	struct inode *inode;
1836
	long progress;
1837
	struct blk_plug plug;
1838

1839 1840
	oldest_jif = jiffies;
	work->older_than_this = &oldest_jif;
N
Nick Piggin 已提交
1841

1842
	blk_start_plug(&plug);
1843
	spin_lock(&wb->list_lock);
1844 1845
	for (;;) {
		/*
1846
		 * Stop writeback when nr_pages has been consumed
1847
		 */
1848
		if (work->nr_pages <= 0)
1849
			break;
1850

1851 1852 1853 1854 1855 1856 1857
		/*
		 * Background writeout and kupdate-style writeback may
		 * run forever. Stop them if there is other work to do
		 * so that e.g. sync can proceed. They'll be restarted
		 * after the other works are all done.
		 */
		if ((work->for_background || work->for_kupdate) &&
1858
		    !list_empty(&wb->work_list))
1859 1860
			break;

N
Nick Piggin 已提交
1861
		/*
1862 1863
		 * For background writeout, stop when we are below the
		 * background dirty threshold
N
Nick Piggin 已提交
1864
		 */
1865
		if (work->for_background && !wb_over_bg_thresh(wb))
1866
			break;
N
Nick Piggin 已提交
1867

1868 1869 1870 1871 1872 1873
		/*
		 * Kupdate and background works are special and we want to
		 * include all inodes that need writing. Livelock avoidance is
		 * handled by these works yielding to any other work so we are
		 * safe.
		 */
1874
		if (work->for_kupdate) {
1875
			oldest_jif = jiffies -
1876
				msecs_to_jiffies(dirty_expire_interval * 10);
1877
		} else if (work->for_background)
1878
			oldest_jif = jiffies;
1879

1880
		trace_writeback_start(wb, work);
1881
		if (list_empty(&wb->b_io))
1882
			queue_io(wb, work);
1883
		if (work->sb)
1884
			progress = writeback_sb_inodes(work->sb, wb, work);
1885
		else
1886
			progress = __writeback_inodes_wb(wb, work);
1887
		trace_writeback_written(wb, work);
1888

1889
		wb_update_bandwidth(wb, wb_start);
1890 1891

		/*
1892 1893 1894 1895 1896 1897
		 * Did we write something? Try for more
		 *
		 * Dirty inodes are moved to b_io for writeback in batches.
		 * The completion of the current batch does not necessarily
		 * mean the overall work is done. So we keep looping as long
		 * as made some progress on cleaning pages or inodes.
1898
		 */
1899
		if (progress)
1900 1901
			continue;
		/*
1902
		 * No more inodes for IO, bail
1903
		 */
1904
		if (list_empty(&wb->b_more_io))
1905
			break;
1906 1907 1908 1909 1910
		/*
		 * Nothing written. Wait for some inode to
		 * become available for writeback. Otherwise
		 * we'll just busyloop.
		 */
1911 1912 1913 1914 1915 1916 1917
		trace_writeback_wait(wb, work);
		inode = wb_inode(wb->b_more_io.prev);
		spin_lock(&inode->i_lock);
		spin_unlock(&wb->list_lock);
		/* This function drops i_lock... */
		inode_sleep_on_writeback(inode);
		spin_lock(&wb->list_lock);
1918
	}
1919
	spin_unlock(&wb->list_lock);
1920
	blk_finish_plug(&plug);
1921

1922
	return nr_pages - work->nr_pages;
1923 1924 1925
}

/*
1926
 * Return the next wb_writeback_work struct that hasn't been processed yet.
1927
 */
1928
static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1929
{
1930
	struct wb_writeback_work *work = NULL;
1931

1932 1933 1934
	spin_lock_bh(&wb->work_lock);
	if (!list_empty(&wb->work_list)) {
		work = list_entry(wb->work_list.next,
1935 1936
				  struct wb_writeback_work, list);
		list_del_init(&work->list);
1937
	}
1938
	spin_unlock_bh(&wb->work_lock);
1939
	return work;
1940 1941
}

1942 1943
static long wb_check_background_flush(struct bdi_writeback *wb)
{
1944
	if (wb_over_bg_thresh(wb)) {
1945 1946 1947 1948 1949 1950

		struct wb_writeback_work work = {
			.nr_pages	= LONG_MAX,
			.sync_mode	= WB_SYNC_NONE,
			.for_background	= 1,
			.range_cyclic	= 1,
1951
			.reason		= WB_REASON_BACKGROUND,
1952 1953 1954 1955 1956 1957 1958 1959
		};

		return wb_writeback(wb, &work);
	}

	return 0;
}

1960 1961 1962 1963 1964
static long wb_check_old_data_flush(struct bdi_writeback *wb)
{
	unsigned long expired;
	long nr_pages;

1965 1966 1967 1968 1969 1970
	/*
	 * When set to zero, disable periodic writeback
	 */
	if (!dirty_writeback_interval)
		return 0;

1971 1972 1973 1974 1975 1976
	expired = wb->last_old_flush +
			msecs_to_jiffies(dirty_writeback_interval * 10);
	if (time_before(jiffies, expired))
		return 0;

	wb->last_old_flush = jiffies;
1977
	nr_pages = get_nr_dirty_pages();
1978

1979
	if (nr_pages) {
1980
		struct wb_writeback_work work = {
1981 1982 1983 1984
			.nr_pages	= nr_pages,
			.sync_mode	= WB_SYNC_NONE,
			.for_kupdate	= 1,
			.range_cyclic	= 1,
1985
			.reason		= WB_REASON_PERIODIC,
1986 1987
		};

1988
		return wb_writeback(wb, &work);
1989
	}
1990 1991 1992 1993

	return 0;
}

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
static long wb_check_start_all(struct bdi_writeback *wb)
{
	long nr_pages;

	if (!test_bit(WB_start_all, &wb->state))
		return 0;

	nr_pages = get_nr_dirty_pages();
	if (nr_pages) {
		struct wb_writeback_work work = {
			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
			.sync_mode	= WB_SYNC_NONE,
			.range_cyclic	= 1,
			.reason		= wb->start_all_reason,
		};

		nr_pages = wb_writeback(wb, &work);
	}

	clear_bit(WB_start_all, &wb->state);
	return nr_pages;
}


2018 2019 2020
/*
 * Retrieve work items and do the writeback they describe
 */
2021
static long wb_do_writeback(struct bdi_writeback *wb)
2022
{
2023
	struct wb_writeback_work *work;
2024
	long wrote = 0;
2025

2026
	set_bit(WB_writeback_running, &wb->state);
2027
	while ((work = get_next_work_item(wb)) != NULL) {
2028
		trace_writeback_exec(wb, work);
2029
		wrote += wb_writeback(wb, work);
2030
		finish_writeback_work(wb, work);
2031 2032
	}

2033 2034 2035 2036 2037
	/*
	 * Check for a flush-everything request
	 */
	wrote += wb_check_start_all(wb);

2038 2039 2040 2041
	/*
	 * Check for periodic writeback, kupdated() style
	 */
	wrote += wb_check_old_data_flush(wb);
2042
	wrote += wb_check_background_flush(wb);
2043
	clear_bit(WB_writeback_running, &wb->state);
2044 2045 2046 2047 2048 2049

	return wrote;
}

/*
 * Handle writeback of dirty data for the device backed by this bdi. Also
2050
 * reschedules periodically and does kupdated style flushing.
2051
 */
2052
void wb_workfn(struct work_struct *work)
2053
{
2054 2055
	struct bdi_writeback *wb = container_of(to_delayed_work(work),
						struct bdi_writeback, dwork);
2056 2057
	long pages_written;

2058
	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
P
Peter Zijlstra 已提交
2059
	current->flags |= PF_SWAPWRITE;
2060

2061
	if (likely(!current_is_workqueue_rescuer() ||
2062
		   !test_bit(WB_registered, &wb->state))) {
2063
		/*
2064
		 * The normal path.  Keep writing back @wb until its
2065
		 * work_list is empty.  Note that this path is also taken
2066
		 * if @wb is shutting down even when we're running off the
2067
		 * rescuer as work_list needs to be drained.
2068
		 */
2069
		do {
2070
			pages_written = wb_do_writeback(wb);
2071
			trace_writeback_pages_written(pages_written);
2072
		} while (!list_empty(&wb->work_list));
2073 2074 2075 2076 2077 2078
	} else {
		/*
		 * bdi_wq can't get enough workers and we're running off
		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
		 * enough for efficient IO.
		 */
2079
		pages_written = writeback_inodes_wb(wb, 1024,
2080
						    WB_REASON_FORKER_THREAD);
2081
		trace_writeback_pages_written(pages_written);
2082 2083
	}

2084
	if (!list_empty(&wb->work_list))
J
Jan Kara 已提交
2085
		wb_wakeup(wb);
2086
	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2087
		wb_wakeup_delayed(wb);
2088

2089
	current->flags &= ~PF_SWAPWRITE;
2090 2091
}

2092 2093 2094 2095 2096
/*
 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
 * write back the whole world.
 */
static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2097
					 enum wb_reason reason)
2098 2099 2100 2101 2102 2103 2104
{
	struct bdi_writeback *wb;

	if (!bdi_has_dirty_io(bdi))
		return;

	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2105
		wb_start_writeback(wb, reason);
2106 2107 2108 2109 2110 2111
}

void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
				enum wb_reason reason)
{
	rcu_read_lock();
2112
	__wakeup_flusher_threads_bdi(bdi, reason);
2113 2114 2115
	rcu_read_unlock();
}

2116
/*
2117
 * Wakeup the flusher threads to start writeback of all currently dirty pages
2118
 */
2119
void wakeup_flusher_threads(enum wb_reason reason)
2120
{
2121
	struct backing_dev_info *bdi;
2122

2123 2124 2125 2126 2127 2128
	/*
	 * If we are expecting writeback progress we must submit plugged IO.
	 */
	if (blk_needs_flush_plug(current))
		blk_schedule_flush_plug(current);

2129
	rcu_read_lock();
2130
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2131
		__wakeup_flusher_threads_bdi(bdi, reason);
2132
	rcu_read_unlock();
L
Linus Torvalds 已提交
2133 2134
}

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
/*
 * Wake up bdi's periodically to make sure dirtytime inodes gets
 * written back periodically.  We deliberately do *not* check the
 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
 * kernel to be constantly waking up once there are any dirtytime
 * inodes on the system.  So instead we define a separate delayed work
 * function which gets called much more rarely.  (By default, only
 * once every 12 hours.)
 *
 * If there is any other write activity going on in the file system,
 * this function won't be necessary.  But if the only thing that has
 * happened on the file system is a dirtytime inode caused by an atime
 * update, we need this infrastructure below to make sure that inode
 * eventually gets pushed out to disk.
 */
static void wakeup_dirtytime_writeback(struct work_struct *w);
static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);

static void wakeup_dirtytime_writeback(struct work_struct *w)
{
	struct backing_dev_info *bdi;

	rcu_read_lock();
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2159 2160
		struct bdi_writeback *wb;

2161
		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2162 2163
			if (!list_empty(&wb->b_dirty_time))
				wb_wakeup(wb);
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
	}
	rcu_read_unlock();
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
}

static int __init start_dirtytime_writeback(void)
{
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
	return 0;
}
__initcall(start_dirtytime_writeback);

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
int dirtytime_interval_handler(struct ctl_table *table, int write,
			       void __user *buffer, size_t *lenp, loff_t *ppos)
{
	int ret;

	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		mod_delayed_work(system_wq, &dirtytime_work, 0);
	return ret;
}

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
static noinline void block_dump___mark_inode_dirty(struct inode *inode)
{
	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
		struct dentry *dentry;
		const char *name = "?";

		dentry = d_find_alias(inode);
		if (dentry) {
			spin_lock(&dentry->d_lock);
			name = (const char *) dentry->d_name.name;
		}
		printk(KERN_DEBUG
		       "%s(%d): dirtied inode %lu (%s) on %s\n",
		       current->comm, task_pid_nr(current), inode->i_ino,
		       name, inode->i_sb->s_id);
		if (dentry) {
			spin_unlock(&dentry->d_lock);
			dput(dentry);
		}
	}
}

/**
2210 2211 2212 2213 2214 2215 2216
 * __mark_inode_dirty -	internal function
 *
 * @inode: inode to mark
 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 *
 * Mark an inode as dirty. Callers should use mark_inode_dirty or
 * mark_inode_dirty_sync.
L
Linus Torvalds 已提交
2217
 *
2218 2219 2220 2221 2222 2223 2224 2225 2226
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but move it onto the
 * dirty list only if it is hashed or if it refers to a blockdev.
 * If it was not hashed, it will never be added to the dirty list
 * even if it is later hashed, as it will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_ you start marking
 * them dirty.
L
Linus Torvalds 已提交
2227
 *
2228 2229 2230 2231 2232 2233
 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
 * the kernel-internal blockdev inode represents the dirtying time of the
 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
 * page->mapping->host, so the page-dirtying time is recorded in the internal
 * blockdev inode.
L
Linus Torvalds 已提交
2234
 */
2235
void __mark_inode_dirty(struct inode *inode, int flags)
L
Linus Torvalds 已提交
2236
{
2237
	struct super_block *sb = inode->i_sb;
2238 2239 2240
	int dirtytime;

	trace_writeback_mark_inode_dirty(inode, flags);
L
Linus Torvalds 已提交
2241

2242 2243 2244 2245
	/*
	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
	 * dirty the inode itself
	 */
2246
	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
T
Tejun Heo 已提交
2247 2248
		trace_writeback_dirty_inode_start(inode, flags);

2249
		if (sb->s_op->dirty_inode)
2250
			sb->s_op->dirty_inode(inode, flags);
T
Tejun Heo 已提交
2251 2252

		trace_writeback_dirty_inode(inode, flags);
2253
	}
2254 2255 2256
	if (flags & I_DIRTY_INODE)
		flags &= ~I_DIRTY_TIME;
	dirtytime = flags & I_DIRTY_TIME;
2257 2258

	/*
2259 2260
	 * Paired with smp_mb() in __writeback_single_inode() for the
	 * following lockless i_state test.  See there for details.
2261 2262 2263
	 */
	smp_mb();

2264 2265
	if (((inode->i_state & flags) == flags) ||
	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2266 2267 2268 2269 2270
		return;

	if (unlikely(block_dump))
		block_dump___mark_inode_dirty(inode);

2271
	spin_lock(&inode->i_lock);
2272 2273
	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
		goto out_unlock_inode;
2274 2275 2276
	if ((inode->i_state & flags) != flags) {
		const int was_dirty = inode->i_state & I_DIRTY;

2277 2278
		inode_attach_wb(inode, NULL);

2279 2280
		if (flags & I_DIRTY_INODE)
			inode->i_state &= ~I_DIRTY_TIME;
2281 2282 2283 2284 2285 2286 2287 2288
		inode->i_state |= flags;

		/*
		 * If the inode is being synced, just update its dirty state.
		 * The unlocker will place the inode on the appropriate
		 * superblock list, based upon its state.
		 */
		if (inode->i_state & I_SYNC)
2289
			goto out_unlock_inode;
2290 2291 2292 2293 2294 2295

		/*
		 * Only add valid (hashed) inodes to the superblock's
		 * dirty list.  Add blockdev inodes as well.
		 */
		if (!S_ISBLK(inode->i_mode)) {
A
Al Viro 已提交
2296
			if (inode_unhashed(inode))
2297
				goto out_unlock_inode;
2298
		}
A
Al Viro 已提交
2299
		if (inode->i_state & I_FREEING)
2300
			goto out_unlock_inode;
2301 2302 2303 2304 2305 2306

		/*
		 * If the inode was already on b_dirty/b_io/b_more_io, don't
		 * reposition it (that would break b_dirty time-ordering).
		 */
		if (!was_dirty) {
2307
			struct bdi_writeback *wb;
2308
			struct list_head *dirty_list;
2309
			bool wakeup_bdi = false;
2310

2311
			wb = locked_inode_to_wb_and_lock_list(inode);
2312

2313 2314 2315
			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
			     !test_bit(WB_registered, &wb->state),
			     "bdi-%s not registered\n", wb->bdi->name);
2316 2317

			inode->dirtied_when = jiffies;
2318 2319
			if (dirtytime)
				inode->dirtied_time_when = jiffies;
2320

2321
			if (inode->i_state & I_DIRTY)
2322
				dirty_list = &wb->b_dirty;
2323
			else
2324
				dirty_list = &wb->b_dirty_time;
2325

2326
			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2327 2328
							       dirty_list);

2329
			spin_unlock(&wb->list_lock);
2330
			trace_writeback_dirty_inode_enqueue(inode);
2331

2332 2333 2334 2335 2336 2337
			/*
			 * If this is the first dirty inode for this bdi,
			 * we have to wake-up the corresponding bdi thread
			 * to make sure background write-back happens
			 * later.
			 */
2338 2339
			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
				wb_wakeup_delayed(wb);
2340
			return;
L
Linus Torvalds 已提交
2341 2342
		}
	}
2343 2344
out_unlock_inode:
	spin_unlock(&inode->i_lock);
2345 2346 2347
}
EXPORT_SYMBOL(__mark_inode_dirty);

2348 2349 2350 2351 2352 2353 2354 2355 2356
/*
 * The @s_sync_lock is used to serialise concurrent sync operations
 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
 * Concurrent callers will block on the s_sync_lock rather than doing contending
 * walks. The queueing maintains sync(2) required behaviour as all the IO that
 * has been issued up to the time this function is enter is guaranteed to be
 * completed by the time we have gained the lock and waited for all IO that is
 * in progress regardless of the order callers are granted the lock.
 */
2357
static void wait_sb_inodes(struct super_block *sb)
2358
{
2359
	LIST_HEAD(sync_list);
2360 2361 2362 2363 2364

	/*
	 * We need to be protected against the filesystem going from
	 * r/o to r/w or vice versa.
	 */
2365
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2366

2367
	mutex_lock(&sb->s_sync_lock);
2368 2369

	/*
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
	 * Splice the writeback list onto a temporary list to avoid waiting on
	 * inodes that have started writeback after this point.
	 *
	 * Use rcu_read_lock() to keep the inodes around until we have a
	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
	 * the local list because inodes can be dropped from either by writeback
	 * completion.
	 */
	rcu_read_lock();
	spin_lock_irq(&sb->s_inode_wblist_lock);
	list_splice_init(&sb->s_inodes_wb, &sync_list);

	/*
	 * Data integrity sync. Must wait for all pages under writeback, because
	 * there may have been pages dirtied before our sync call, but which had
	 * writeout started before we write it out.  In which case, the inode
	 * may not be on the dirty list, but we still have to wait for that
	 * writeout.
2388
	 */
2389 2390 2391
	while (!list_empty(&sync_list)) {
		struct inode *inode = list_first_entry(&sync_list, struct inode,
						       i_wb_list);
2392
		struct address_space *mapping = inode->i_mapping;
2393

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
		/*
		 * Move each inode back to the wb list before we drop the lock
		 * to preserve consistency between i_wb_list and the mapping
		 * writeback tag. Writeback completion is responsible to remove
		 * the inode from either list once the writeback tag is cleared.
		 */
		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);

		/*
		 * The mapping can appear untagged while still on-list since we
		 * do not have the mapping lock. Skip it here, wb completion
		 * will remove it.
		 */
		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
			continue;

		spin_unlock_irq(&sb->s_inode_wblist_lock);

2412
		spin_lock(&inode->i_lock);
2413
		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2414
			spin_unlock(&inode->i_lock);
2415 2416

			spin_lock_irq(&sb->s_inode_wblist_lock);
2417
			continue;
2418
		}
2419
		__iget(inode);
2420
		spin_unlock(&inode->i_lock);
2421
		rcu_read_unlock();
2422

2423 2424 2425 2426 2427 2428
		/*
		 * We keep the error status of individual mapping so that
		 * applications can catch the writeback error using fsync(2).
		 * See filemap_fdatawait_keep_errors() for details.
		 */
		filemap_fdatawait_keep_errors(mapping);
2429 2430 2431

		cond_resched();

2432 2433 2434 2435
		iput(inode);

		rcu_read_lock();
		spin_lock_irq(&sb->s_inode_wblist_lock);
2436
	}
2437 2438
	spin_unlock_irq(&sb->s_inode_wblist_lock);
	rcu_read_unlock();
2439
	mutex_unlock(&sb->s_sync_lock);
L
Linus Torvalds 已提交
2440 2441
}

2442 2443
static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				     enum wb_reason reason, bool skip_if_busy)
L
Linus Torvalds 已提交
2444
{
2445 2446
	struct backing_dev_info *bdi = sb->s_bdi;
	DEFINE_WB_COMPLETION(done, bdi);
2447
	struct wb_writeback_work work = {
2448 2449 2450 2451 2452
		.sb			= sb,
		.sync_mode		= WB_SYNC_NONE,
		.tagged_writepages	= 1,
		.done			= &done,
		.nr_pages		= nr,
2453
		.reason			= reason,
2454
	};
2455

2456
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2457
		return;
2458
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2459

2460
	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2461
	wb_wait_for_completion(&done);
2462
}
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479

/**
 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
 * @sb: the superblock
 * @nr: the number of pages to write
 * @reason: reason why some writeback work initiated
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
void writeback_inodes_sb_nr(struct super_block *sb,
			    unsigned long nr,
			    enum wb_reason reason)
{
	__writeback_inodes_sb_nr(sb, nr, reason, false);
}
2480 2481 2482 2483 2484
EXPORT_SYMBOL(writeback_inodes_sb_nr);

/**
 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
 * @sb: the superblock
2485
 * @reason: reason why some writeback work was initiated
2486 2487 2488 2489 2490
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
2491
void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2492
{
2493
	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2494
}
2495
EXPORT_SYMBOL(writeback_inodes_sb);
2496

2497
/**
2498
 * try_to_writeback_inodes_sb - try to start writeback if none underway
2499
 * @sb: the superblock
2500
 * @reason: reason why some writeback work was initiated
2501
 *
2502
 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2503
 */
2504
void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2505
{
2506
	if (!down_read_trylock(&sb->s_umount))
2507
		return;
2508

2509
	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2510
	up_read(&sb->s_umount);
2511
}
2512
EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2513

2514 2515
/**
 * sync_inodes_sb	-	sync sb inode pages
2516
 * @sb: the superblock
2517 2518
 *
 * This function writes and waits on any dirty inode belonging to this
2519
 * super_block.
2520
 */
2521
void sync_inodes_sb(struct super_block *sb)
2522
{
2523 2524
	struct backing_dev_info *bdi = sb->s_bdi;
	DEFINE_WB_COMPLETION(done, bdi);
2525
	struct wb_writeback_work work = {
2526 2527 2528 2529
		.sb		= sb,
		.sync_mode	= WB_SYNC_ALL,
		.nr_pages	= LONG_MAX,
		.range_cyclic	= 0,
2530
		.done		= &done,
2531
		.reason		= WB_REASON_SYNC,
2532
		.for_sync	= 1,
2533 2534
	};

2535 2536 2537 2538 2539 2540
	/*
	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
	 * bdi_has_dirty() need to be written out too.
	 */
	if (bdi == &noop_backing_dev_info)
2541
		return;
2542 2543
	WARN_ON(!rwsem_is_locked(&sb->s_umount));

2544 2545
	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
	bdi_down_write_wb_switch_rwsem(bdi);
2546
	bdi_split_work_to_wbs(bdi, &work, false);
2547
	wb_wait_for_completion(&done);
2548
	bdi_up_write_wb_switch_rwsem(bdi);
2549

2550
	wait_sb_inodes(sb);
L
Linus Torvalds 已提交
2551
}
2552
EXPORT_SYMBOL(sync_inodes_sb);
L
Linus Torvalds 已提交
2553 2554

/**
2555 2556 2557 2558 2559 2560
 * write_inode_now	-	write an inode to disk
 * @inode: inode to write to disk
 * @sync: whether the write should be synchronous or not
 *
 * This function commits an inode to disk immediately if it is dirty. This is
 * primarily needed by knfsd.
L
Linus Torvalds 已提交
2561
 *
2562
 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
L
Linus Torvalds 已提交
2563 2564 2565 2566 2567
 */
int write_inode_now(struct inode *inode, int sync)
{
	struct writeback_control wbc = {
		.nr_to_write = LONG_MAX,
2568
		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2569 2570
		.range_start = 0,
		.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
2571 2572 2573
	};

	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2574
		wbc.nr_to_write = 0;
L
Linus Torvalds 已提交
2575 2576

	might_sleep();
2577
	return writeback_single_inode(inode, &wbc);
L
Linus Torvalds 已提交
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
}
EXPORT_SYMBOL(write_inode_now);

/**
 * sync_inode - write an inode and its pages to disk.
 * @inode: the inode to sync
 * @wbc: controls the writeback mode
 *
 * sync_inode() will write an inode and its pages to disk.  It will also
 * correctly update the inode on its superblock's dirty inode lists and will
 * update inode->i_state.
 *
 * The caller must have a ref on the inode.
 */
int sync_inode(struct inode *inode, struct writeback_control *wbc)
{
2594
	return writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
2595 2596
}
EXPORT_SYMBOL(sync_inode);
C
Christoph Hellwig 已提交
2597 2598

/**
A
Andrew Morton 已提交
2599
 * sync_inode_metadata - write an inode to disk
C
Christoph Hellwig 已提交
2600 2601 2602
 * @inode: the inode to sync
 * @wait: wait for I/O to complete.
 *
A
Andrew Morton 已提交
2603
 * Write an inode to disk and adjust its dirty state after completion.
C
Christoph Hellwig 已提交
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
 *
 * Note: only writes the actual inode, no associated data or other metadata.
 */
int sync_inode_metadata(struct inode *inode, int wait)
{
	struct writeback_control wbc = {
		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
		.nr_to_write = 0, /* metadata-only */
	};

	return sync_inode(inode, &wbc);
}
EXPORT_SYMBOL(sync_inode_metadata);