polaris10_hwmgr.c 171.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright 2015 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/fb.h>
26
#include <asm/div64.h>
27 28 29
#include "linux/delay.h"
#include "pp_acpi.h"
#include "hwmgr.h"
30 31 32 33
#include "polaris10_hwmgr.h"
#include "polaris10_powertune.h"
#include "polaris10_dyn_defaults.h"
#include "polaris10_smumgr.h"
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#include "pp_debug.h"
#include "ppatomctrl.h"
#include "atombios.h"
#include "tonga_pptable.h"
#include "pppcielanes.h"
#include "amd_pcie_helpers.h"
#include "hardwaremanager.h"
#include "tonga_processpptables.h"
#include "cgs_common.h"
#include "smu74.h"
#include "smu_ucode_xfer_vi.h"
#include "smu74_discrete.h"
#include "smu/smu_7_1_3_d.h"
#include "smu/smu_7_1_3_sh_mask.h"
#include "gmc/gmc_8_1_d.h"
#include "gmc/gmc_8_1_sh_mask.h"
#include "oss/oss_3_0_d.h"
#include "gca/gfx_8_0_d.h"
#include "bif/bif_5_0_d.h"
#include "bif/bif_5_0_sh_mask.h"
#include "gmc/gmc_8_1_d.h"
#include "gmc/gmc_8_1_sh_mask.h"
#include "bif/bif_5_0_d.h"
#include "bif/bif_5_0_sh_mask.h"
#include "dce/dce_10_0_d.h"
#include "dce/dce_10_0_sh_mask.h"

61 62
#include "polaris10_thermal.h"
#include "polaris10_clockpowergating.h"
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
#define MC_CG_ARB_FREQ_F0           0x0a
#define MC_CG_ARB_FREQ_F1           0x0b
#define MC_CG_ARB_FREQ_F2           0x0c
#define MC_CG_ARB_FREQ_F3           0x0d

#define MC_CG_SEQ_DRAMCONF_S0       0x05
#define MC_CG_SEQ_DRAMCONF_S1       0x06
#define MC_CG_SEQ_YCLK_SUSPEND      0x04
#define MC_CG_SEQ_YCLK_RESUME       0x0a


#define SMC_RAM_END 0x40000

#define SMC_CG_IND_START            0xc0030000
#define SMC_CG_IND_END              0xc0040000

#define VOLTAGE_SCALE               4
#define VOLTAGE_VID_OFFSET_SCALE1   625
#define VOLTAGE_VID_OFFSET_SCALE2   100

#define VDDC_VDDCI_DELTA            200

#define MEM_FREQ_LOW_LATENCY        25000
#define MEM_FREQ_HIGH_LATENCY       80000

#define MEM_LATENCY_HIGH            45
#define MEM_LATENCY_LOW             35
#define MEM_LATENCY_ERR             0xFFFF

#define MC_SEQ_MISC0_GDDR5_SHIFT 28
#define MC_SEQ_MISC0_GDDR5_MASK  0xf0000000
#define MC_SEQ_MISC0_GDDR5_VALUE 5


#define PCIE_BUS_CLK                10000
#define TCLK                        (PCIE_BUS_CLK / 10)

101
#define CEILING_UCHAR(double) ((double-(uint8_t)(double)) > 0 ? (uint8_t)(double+1) : (uint8_t)(double))
102

103 104
static const uint16_t polaris10_clock_stretcher_lookup_table[2][4] =
{ {600, 1050, 3, 0}, {600, 1050, 6, 1} };
105 106

/*  [FF, SS] type, [] 4 voltage ranges, and [Floor Freq, Boundary Freq, VID min , VID max] */
107 108 109
static const uint32_t polaris10_clock_stretcher_ddt_table[2][4][4] =
{ { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
  { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
110 111

/*  [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] (coming from PWR_CKS_CNTL.stretch_amount reg spec) */
112 113
static const uint8_t polaris10_clock_stretch_amount_conversion[2][6] =
{ {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
114 115 116 117 118 119 120 121 122 123

/** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
enum DPM_EVENT_SRC {
	DPM_EVENT_SRC_ANALOG = 0,
	DPM_EVENT_SRC_EXTERNAL = 1,
	DPM_EVENT_SRC_DIGITAL = 2,
	DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,
	DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4
};

124
static const unsigned long PhwPolaris10_Magic = (unsigned long)(PHM_VIslands_Magic);
125

126
struct polaris10_power_state *cast_phw_polaris10_power_state(
127 128
				  struct pp_hw_power_state *hw_ps)
{
129
	PP_ASSERT_WITH_CODE((PhwPolaris10_Magic == hw_ps->magic),
130 131 132
				"Invalid Powerstate Type!",
				 return NULL);

133
	return (struct polaris10_power_state *)hw_ps;
134 135
}

136
const struct polaris10_power_state *cast_const_phw_polaris10_power_state(
137 138
				 const struct pp_hw_power_state *hw_ps)
{
139
	PP_ASSERT_WITH_CODE((PhwPolaris10_Magic == hw_ps->magic),
140 141 142
				"Invalid Powerstate Type!",
				 return NULL);

143
	return (const struct polaris10_power_state *)hw_ps;
144 145
}

146
static bool polaris10_is_dpm_running(struct pp_hwmgr *hwmgr)
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
{
	return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
			CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
			? true : false;
}

/**
 * Find the MC microcode version and store it in the HwMgr struct
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
int phm_get_mc_microcode_version (struct pp_hwmgr *hwmgr)
{
	cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);

	hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);

	return 0;
}

uint16_t phm_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
{
	uint32_t speedCntl = 0;

	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
	speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
			ixPCIE_LC_SPEED_CNTL);
	return((uint16_t)PHM_GET_FIELD(speedCntl,
			PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
}

int phm_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
{
	uint32_t link_width;

	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
	link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
			PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);

	PP_ASSERT_WITH_CODE((7 >= link_width),
			"Invalid PCIe lane width!", return 0);

	return decode_pcie_lane_width(link_width);
}

193 194 195 196 197 198
/**
* Enable voltage control
*
* @param    pHwMgr  the address of the powerplay hardware manager.
* @return   always PP_Result_OK
*/
199
int polaris10_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr)
200 201 202 203 204 205 206 207 208
{
	PP_ASSERT_WITH_CODE(
		(hwmgr->smumgr->smumgr_funcs->send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_Voltage_Cntl_Enable) == 0),
		"Failed to enable voltage DPM during DPM Start Function!",
		return 1;
	);

	return 0;
}
209 210 211 212 213 214

/**
* Checks if we want to support voltage control
*
* @param    hwmgr  the address of the powerplay hardware manager.
*/
215
static bool polaris10_voltage_control(const struct pp_hwmgr *hwmgr)
216
{
217 218
	const struct polaris10_hwmgr *data =
			(const struct polaris10_hwmgr *)(hwmgr->backend);
219

220
	return (POLARIS10_VOLTAGE_CONTROL_NONE != data->voltage_control);
221 222 223 224 225 226 227 228
}

/**
* Enable voltage control
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
229
static int polaris10_enable_voltage_control(struct pp_hwmgr *hwmgr)
230 231 232 233 234 235 236 237 238 239 240 241 242 243
{
	/* enable voltage control */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);

	return 0;
}

/**
* Create Voltage Tables.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
244
static int polaris10_construct_voltage_tables(struct pp_hwmgr *hwmgr)
245
{
246
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
247 248 249 250
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)hwmgr->pptable;
	int result;

251
	if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
252 253 254 255 256 257
		result = atomctrl_get_voltage_table_v3(hwmgr,
				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
				&(data->mvdd_voltage_table));
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to retrieve MVDD table.",
				return result);
258
	} else if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
259 260 261 262 263 264 265
		result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table),
				table_info->vdd_dep_on_mclk);
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to retrieve SVI2 MVDD table from dependancy table.",
				return result;);
	}

266
	if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
267 268 269 270 271 272
		result = atomctrl_get_voltage_table_v3(hwmgr,
				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
				&(data->vddci_voltage_table));
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to retrieve VDDCI table.",
				return result);
273
	} else if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
274 275 276 277 278 279 280
		result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table),
				table_info->vdd_dep_on_mclk);
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to retrieve SVI2 VDDCI table from dependancy table.",
				return result);
	}

281
	if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
		result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table),
				table_info->vddc_lookup_table);
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to retrieve SVI2 VDDC table from lookup table.",
				return result);
	}

	PP_ASSERT_WITH_CODE(
			(data->vddc_voltage_table.count <= (SMU74_MAX_LEVELS_VDDC)),
			"Too many voltage values for VDDC. Trimming to fit state table.",
			phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_VDDC,
								&(data->vddc_voltage_table)));

	PP_ASSERT_WITH_CODE(
			(data->vddci_voltage_table.count <= (SMU74_MAX_LEVELS_VDDCI)),
			"Too many voltage values for VDDCI. Trimming to fit state table.",
			phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_VDDCI,
					&(data->vddci_voltage_table)));

	PP_ASSERT_WITH_CODE(
			(data->mvdd_voltage_table.count <= (SMU74_MAX_LEVELS_MVDD)),
			"Too many voltage values for MVDD. Trimming to fit state table.",
			phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_MVDD,
							   &(data->mvdd_voltage_table)));

	return 0;
}

/**
* Programs static screed detection parameters
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
316
static int polaris10_program_static_screen_threshold_parameters(
317 318
							struct pp_hwmgr *hwmgr)
{
319
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

	/* Set static screen threshold unit */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
			data->static_screen_threshold_unit);
	/* Set static screen threshold */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
			data->static_screen_threshold);

	return 0;
}

/**
* Setup display gap for glitch free memory clock switching.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always  0
*/
339
static int polaris10_enable_display_gap(struct pp_hwmgr *hwmgr)
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
{
	uint32_t display_gap =
			cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
					ixCG_DISPLAY_GAP_CNTL);

	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
			DISP_GAP, DISPLAY_GAP_IGNORE);

	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
			DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_DISPLAY_GAP_CNTL, display_gap);

	return 0;
}

/**
* Programs activity state transition voting clients
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always  0
*/
363
static int polaris10_program_voting_clients(struct pp_hwmgr *hwmgr)
364
{
365
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

	/* Clear reset for voting clients before enabling DPM */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);

	return 0;
}

/**
* Get the location of various tables inside the FW image.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always  0
*/
399
static int polaris10_process_firmware_header(struct pp_hwmgr *hwmgr)
400
{
401 402
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
403 404 405 406
	uint32_t tmp;
	int result;
	bool error = false;

407
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
408 409 410 411 412 413 414 415 416
			SMU7_FIRMWARE_HEADER_LOCATION +
			offsetof(SMU74_Firmware_Header, DpmTable),
			&tmp, data->sram_end);

	if (0 == result)
		data->dpm_table_start = tmp;

	error |= (0 != result);

417
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
418 419 420 421 422 423 424 425 426 427 428
			SMU7_FIRMWARE_HEADER_LOCATION +
			offsetof(SMU74_Firmware_Header, SoftRegisters),
			&tmp, data->sram_end);

	if (!result) {
		data->soft_regs_start = tmp;
		smu_data->soft_regs_start = tmp;
	}

	error |= (0 != result);

429
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
430 431 432 433 434 435 436
			SMU7_FIRMWARE_HEADER_LOCATION +
			offsetof(SMU74_Firmware_Header, mcRegisterTable),
			&tmp, data->sram_end);

	if (!result)
		data->mc_reg_table_start = tmp;

437
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
438 439 440 441 442 443 444 445 446
			SMU7_FIRMWARE_HEADER_LOCATION +
			offsetof(SMU74_Firmware_Header, FanTable),
			&tmp, data->sram_end);

	if (!result)
		data->fan_table_start = tmp;

	error |= (0 != result);

447
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
448 449 450 451 452 453 454 455 456
			SMU7_FIRMWARE_HEADER_LOCATION +
			offsetof(SMU74_Firmware_Header, mcArbDramTimingTable),
			&tmp, data->sram_end);

	if (!result)
		data->arb_table_start = tmp;

	error |= (0 != result);

457
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
			SMU7_FIRMWARE_HEADER_LOCATION +
			offsetof(SMU74_Firmware_Header, Version),
			&tmp, data->sram_end);

	if (!result)
		hwmgr->microcode_version_info.SMC = tmp;

	error |= (0 != result);

	return error ? -1 : 0;
}

/* Copy one arb setting to another and then switch the active set.
 * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
 */
473
static int polaris10_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
		uint32_t arb_src, uint32_t arb_dest)
{
	uint32_t mc_arb_dram_timing;
	uint32_t mc_arb_dram_timing2;
	uint32_t burst_time;
	uint32_t mc_cg_config;

	switch (arb_src) {
	case MC_CG_ARB_FREQ_F0:
		mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
		mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
		burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
		break;
	case MC_CG_ARB_FREQ_F1:
		mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
		mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
		burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
		break;
	default:
		return -EINVAL;
	}

	switch (arb_dest) {
	case MC_CG_ARB_FREQ_F0:
		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
		PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
		break;
	case MC_CG_ARB_FREQ_F1:
		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
		PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
		break;
	default:
		return -EINVAL;
	}

	mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
	mc_cg_config |= 0x0000000F;
	cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
	PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);

	return 0;
}

/**
* Initial switch from ARB F0->F1
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
* This function is to be called from the SetPowerState table.
*/
526
static int polaris10_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
527
{
528
	return polaris10_copy_and_switch_arb_sets(hwmgr,
529 530 531
			MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
}

532
static int polaris10_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
533
{
534
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
	uint32_t i, max_entry;

	PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
			data->use_pcie_power_saving_levels), "No pcie performance levels!",
			return -EINVAL);

	if (data->use_pcie_performance_levels &&
			!data->use_pcie_power_saving_levels) {
		data->pcie_gen_power_saving = data->pcie_gen_performance;
		data->pcie_lane_power_saving = data->pcie_lane_performance;
	} else if (!data->use_pcie_performance_levels &&
			data->use_pcie_power_saving_levels) {
		data->pcie_gen_performance = data->pcie_gen_power_saving;
		data->pcie_lane_performance = data->pcie_lane_power_saving;
	}

	phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table,
					SMU74_MAX_LEVELS_LINK,
					MAX_REGULAR_DPM_NUMBER);

	if (pcie_table != NULL) {
		/* max_entry is used to make sure we reserve one PCIE level
		 * for boot level (fix for A+A PSPP issue).
		 * If PCIE table from PPTable have ULV entry + 8 entries,
		 * then ignore the last entry.*/
		max_entry = (SMU74_MAX_LEVELS_LINK < pcie_table->count) ?
				SMU74_MAX_LEVELS_LINK : pcie_table->count;
		for (i = 1; i < max_entry; i++) {
			phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
					get_pcie_gen_support(data->pcie_gen_cap,
							pcie_table->entries[i].gen_speed),
					get_pcie_lane_support(data->pcie_lane_cap,
							pcie_table->entries[i].lane_width));
		}
		data->dpm_table.pcie_speed_table.count = max_entry - 1;
573 574 575 576

		/* Setup BIF_SCLK levels */
		for (i = 0; i < max_entry; i++)
			data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk;
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	} else {
		/* Hardcode Pcie Table */
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Min_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Min_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Max_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Max_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Max_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Max_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));

		data->dpm_table.pcie_speed_table.count = 6;
	}
	/* Populate last level for boot PCIE level, but do not increment count. */
	phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
			data->dpm_table.pcie_speed_table.count,
			get_pcie_gen_support(data->pcie_gen_cap,
					PP_Min_PCIEGen),
			get_pcie_lane_support(data->pcie_lane_cap,
					PP_Max_PCIELane));

	return 0;
}

/*
 * This function is to initalize all DPM state tables
 * for SMU7 based on the dependency table.
 * Dynamic state patching function will then trim these
 * state tables to the allowed range based
 * on the power policy or external client requests,
 * such as UVD request, etc.
 */
631
int polaris10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
632
{
633
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	uint32_t i;

	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
			table_info->vdd_dep_on_sclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
			table_info->vdd_dep_on_mclk;

	PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
			"SCLK dependency table is missing. This table is mandatory",
			return -EINVAL);
	PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
			"SCLK dependency table has to have is missing."
			"This table is mandatory",
			return -EINVAL);

	PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
			"MCLK dependency table is missing. This table is mandatory",
			return -EINVAL);
	PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
			"MCLK dependency table has to have is missing."
			"This table is mandatory",
			return -EINVAL);

	/* clear the state table to reset everything to default */
	phm_reset_single_dpm_table(
			&data->dpm_table.sclk_table, SMU74_MAX_LEVELS_GRAPHICS, MAX_REGULAR_DPM_NUMBER);
	phm_reset_single_dpm_table(
			&data->dpm_table.mclk_table, SMU74_MAX_LEVELS_MEMORY, MAX_REGULAR_DPM_NUMBER);


	/* Initialize Sclk DPM table based on allow Sclk values */
	data->dpm_table.sclk_table.count = 0;
	for (i = 0; i < dep_sclk_table->count; i++) {
		if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value !=
						dep_sclk_table->entries[i].clk) {

			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
					dep_sclk_table->entries[i].clk;

			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled =
					(i == 0) ? true : false;
			data->dpm_table.sclk_table.count++;
		}
	}

	/* Initialize Mclk DPM table based on allow Mclk values */
	data->dpm_table.mclk_table.count = 0;
	for (i = 0; i < dep_mclk_table->count; i++) {
		if (i == 0 || data->dpm_table.mclk_table.dpm_levels
				[data->dpm_table.mclk_table.count - 1].value !=
						dep_mclk_table->entries[i].clk) {
			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
							dep_mclk_table->entries[i].clk;
			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled =
							(i == 0) ? true : false;
			data->dpm_table.mclk_table.count++;
		}
	}

	/* setup PCIE gen speed levels */
696
	polaris10_setup_default_pcie_table(hwmgr);
697 698 699

	/* save a copy of the default DPM table */
	memcpy(&(data->golden_dpm_table), &(data->dpm_table),
700
			sizeof(struct polaris10_dpm_table));
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716

	return 0;
}

uint8_t convert_to_vid(uint16_t vddc)
{
	return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
}

/**
 * Mvdd table preparation for SMC.
 *
 * @param    *hwmgr The address of the hardware manager.
 * @param    *table The SMC DPM table structure to be populated.
 * @return   0
 */
717
static int polaris10_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
718 719
			SMU74_Discrete_DpmTable *table)
{
720
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
721 722
	uint32_t count, level;

723
	if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
		count = data->mvdd_voltage_table.count;
		if (count > SMU_MAX_SMIO_LEVELS)
			count = SMU_MAX_SMIO_LEVELS;
		for (level = 0; level < count; level++) {
			table->SmioTable2.Pattern[level].Voltage =
				PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
			/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
			table->SmioTable2.Pattern[level].Smio =
				(uint8_t) level;
			table->Smio[level] |=
				data->mvdd_voltage_table.entries[level].smio_low;
		}
		table->SmioMask2 = data->vddci_voltage_table.mask_low;

		table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count);
	}

	return 0;
}

744
static int polaris10_populate_smc_vddci_table(struct pp_hwmgr *hwmgr,
745 746 747
					struct SMU74_Discrete_DpmTable *table)
{
	uint32_t count, level;
748
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
749 750 751

	count = data->vddci_voltage_table.count;

752
	if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
		if (count > SMU_MAX_SMIO_LEVELS)
			count = SMU_MAX_SMIO_LEVELS;
		for (level = 0; level < count; ++level) {
			table->SmioTable1.Pattern[level].Voltage =
				PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE);
			table->SmioTable1.Pattern[level].Smio = (uint8_t) level;

			table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low;
		}
	}

	table->SmioMask1 = data->vddci_voltage_table.mask_low;

	return 0;
}

/**
* Preparation of vddc and vddgfx CAC tables for SMC.
*
* @param    hwmgr  the address of the hardware manager
* @param    table  the SMC DPM table structure to be populated
* @return   always 0
*/
776
static int polaris10_populate_cac_table(struct pp_hwmgr *hwmgr,
777 778 779 780
		struct SMU74_Discrete_DpmTable *table)
{
	uint32_t count;
	uint8_t index;
781
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_voltage_lookup_table *lookup_table =
			table_info->vddc_lookup_table;
	/* tables is already swapped, so in order to use the value from it,
	 * we need to swap it back.
	 * We are populating vddc CAC data to BapmVddc table
	 * in split and merged mode
	 */
	for (count = 0; count < lookup_table->count; count++) {
		index = phm_get_voltage_index(lookup_table,
				data->vddc_voltage_table.entries[count].value);
		table->BapmVddcVidLoSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_low);
		table->BapmVddcVidHiSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_mid);
		table->BapmVddcVidHiSidd2[count] = convert_to_vid(lookup_table->entries[index].us_cac_high);
	}

	return 0;
}

/**
* Preparation of voltage tables for SMC.
*
* @param    hwmgr   the address of the hardware manager
* @param    table   the SMC DPM table structure to be populated
* @return   always  0
*/

810
int polaris10_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
811 812
		struct SMU74_Discrete_DpmTable *table)
{
813 814 815
	polaris10_populate_smc_vddci_table(hwmgr, table);
	polaris10_populate_smc_mvdd_table(hwmgr, table);
	polaris10_populate_cac_table(hwmgr, table);
816 817 818 819

	return 0;
}

820
static int polaris10_populate_ulv_level(struct pp_hwmgr *hwmgr,
821 822
		struct SMU74_Discrete_Ulv *state)
{
823
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	state->CcPwrDynRm = 0;
	state->CcPwrDynRm1 = 0;

	state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
	state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
			VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);

	state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1;

	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);

	return 0;
}

843
static int polaris10_populate_ulv_state(struct pp_hwmgr *hwmgr,
844 845
		struct SMU74_Discrete_DpmTable *table)
{
846
	return polaris10_populate_ulv_level(hwmgr, &table->Ulv);
847 848
}

849
static int polaris10_populate_smc_link_level(struct pp_hwmgr *hwmgr,
850 851
		struct SMU74_Discrete_DpmTable *table)
{
852 853
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_dpm_table *dpm_table = &data->dpm_table;
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	int i;

	/* Index (dpm_table->pcie_speed_table.count)
	 * is reserved for PCIE boot level. */
	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
		table->LinkLevel[i].PcieGenSpeed  =
				(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
		table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
				dpm_table->pcie_speed_table.dpm_levels[i].param1);
		table->LinkLevel[i].EnabledForActivity = 1;
		table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
		table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
		table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
	}

	data->smc_state_table.LinkLevelCount =
			(uint8_t)dpm_table->pcie_speed_table.count;
	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);

	return 0;
}

877
static uint32_t polaris10_get_xclk(struct pp_hwmgr *hwmgr)
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
{
	uint32_t reference_clock, tmp;
	struct cgs_display_info info = {0};
	struct cgs_mode_info mode_info;

	info.mode_info = &mode_info;

	tmp = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL_2, MUX_TCLK_TO_XCLK);

	if (tmp)
		return TCLK;

	cgs_get_active_displays_info(hwmgr->device, &info);
	reference_clock = mode_info.ref_clock;

	tmp = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL, XTALIN_DIVIDE);

	if (0 != tmp)
		return reference_clock / 4;

	return reference_clock;
}

/**
* Calculates the SCLK dividers using the provided engine clock
*
* @param    hwmgr  the address of the hardware manager
* @param    clock  the engine clock to use to populate the structure
* @param    sclk   the SMC SCLK structure to be populated
*/
908
static int polaris10_calculate_sclk_params(struct pp_hwmgr *hwmgr,
909 910
		uint32_t clock, SMU_SclkSetting *sclk_setting)
{
911
	const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
	const SMU74_Discrete_DpmTable *table = &(data->smc_state_table);
	struct pp_atomctrl_clock_dividers_ai dividers;

	uint32_t ref_clock;
	uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq;
	uint8_t i;
	int result;
	uint64_t temp;

	sclk_setting->SclkFrequency = clock;
	/* get the engine clock dividers for this clock value */
	result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock,  &dividers);
	if (result == 0) {
		sclk_setting->Fcw_int = dividers.usSclk_fcw_int;
		sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac;
		sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int;
		sclk_setting->PllRange = dividers.ucSclkPllRange;
929 930 931
		sclk_setting->Sclk_slew_rate = 0x400;
		sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac;
		sclk_setting->Pcc_down_slew_rate = 0xffff;
932 933 934
		sclk_setting->SSc_En = dividers.ucSscEnable;
		sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int;
		sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac;
935
		sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac;
936 937 938
		return result;
	}

939
	ref_clock = polaris10_get_xclk(hwmgr);
940 941 942 943 944 945 946 947 948 949 950 951

	for (i = 0; i < NUM_SCLK_RANGE; i++) {
		if (clock > data->range_table[i].trans_lower_frequency
		&& clock <= data->range_table[i].trans_upper_frequency) {
			sclk_setting->PllRange = i;
			break;
		}
	}

	sclk_setting->Fcw_int = (uint16_t)((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock);
	temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
	temp <<= 0x10;
952 953
	do_div(temp, ref_clock);
	sclk_setting->Fcw_frac = temp & 0xffff;
954 955 956 957 958 959 960 961 962 963 964 965 966

	pcc_target_percent = 10; /*  Hardcode 10% for now. */
	pcc_target_freq = clock - (clock * pcc_target_percent / 100);
	sclk_setting->Pcc_fcw_int = (uint16_t)((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock);

	ss_target_percent = 2; /*  Hardcode 2% for now. */
	sclk_setting->SSc_En = 0;
	if (ss_target_percent) {
		sclk_setting->SSc_En = 1;
		ss_target_freq = clock - (clock * ss_target_percent / 100);
		sclk_setting->Fcw1_int = (uint16_t)((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock);
		temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
		temp <<= 0x10;
967 968
		do_div(temp, ref_clock);
		sclk_setting->Fcw1_frac = temp & 0xffff;
969 970 971 972 973
	}

	return 0;
}

974
static int polaris10_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
975 976 977 978 979
		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
		uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
{
	uint32_t i;
	uint16_t vddci;
980
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
981 982 983 984 985 986 987 988 989 990 991 992

	*voltage = *mvdd = 0;

	/* clock - voltage dependency table is empty table */
	if (dep_table->count == 0)
		return -EINVAL;

	for (i = 0; i < dep_table->count; i++) {
		/* find first sclk bigger than request */
		if (dep_table->entries[i].clk >= clock) {
			*voltage |= (dep_table->entries[i].vddc *
					VOLTAGE_SCALE) << VDDC_SHIFT;
993
			if (POLARIS10_VOLTAGE_CONTROL_NONE == data->vddci_control)
994 995 996 997 998 999 1000 1001 1002
				*voltage |= (data->vbios_boot_state.vddci_bootup_value *
						VOLTAGE_SCALE) << VDDCI_SHIFT;
			else if (dep_table->entries[i].vddci)
				*voltage |= (dep_table->entries[i].vddci *
						VOLTAGE_SCALE) << VDDCI_SHIFT;
			else {
				vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
						(dep_table->entries[i].vddc -
								(uint16_t)data->vddc_vddci_delta));
1003
				*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1004 1005
			}

1006
			if (POLARIS10_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
				*mvdd = data->vbios_boot_state.mvdd_bootup_value *
					VOLTAGE_SCALE;
			else if (dep_table->entries[i].mvdd)
				*mvdd = (uint32_t) dep_table->entries[i].mvdd *
					VOLTAGE_SCALE;

			*voltage |= 1 << PHASES_SHIFT;
			return 0;
		}
	}

	/* sclk is bigger than max sclk in the dependence table */
	*voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;

1021
	if (POLARIS10_VOLTAGE_CONTROL_NONE == data->vddci_control)
1022 1023 1024 1025 1026 1027 1028 1029 1030
		*voltage |= (data->vbios_boot_state.vddci_bootup_value *
				VOLTAGE_SCALE) << VDDCI_SHIFT;
	else if (dep_table->entries[i-1].vddci) {
		vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
				(dep_table->entries[i].vddc -
						(uint16_t)data->vddc_vddci_delta));
		*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
	}

1031
	if (POLARIS10_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1032 1033 1034 1035 1036 1037 1038
		*mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
	else if (dep_table->entries[i].mvdd)
		*mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;

	return 0;
}

1039 1040 1041 1042 1043 1044 1045 1046 1047
static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] =
{ {VCO_2_4, POSTDIV_DIV_BY_16,  75, 160, 112},
  {VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160},
  {VCO_2_4, POSTDIV_DIV_BY_8,   75, 160, 112},
  {VCO_3_6, POSTDIV_DIV_BY_8,  112, 224, 160},
  {VCO_2_4, POSTDIV_DIV_BY_4,   75, 160, 112},
  {VCO_3_6, POSTDIV_DIV_BY_4,  112, 216, 160},
  {VCO_2_4, POSTDIV_DIV_BY_2,   75, 160, 108},
  {VCO_3_6, POSTDIV_DIV_BY_2,  112, 216, 160} };
1048

1049
static void polaris10_get_sclk_range_table(struct pp_hwmgr *hwmgr)
1050 1051
{
	uint32_t i, ref_clk;
1052
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1053 1054 1055
	SMU74_Discrete_DpmTable  *table = &(data->smc_state_table);
	struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } };

1056
	ref_clk = polaris10_get_xclk(hwmgr);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

	if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) {
		for (i = 0; i < NUM_SCLK_RANGE; i++) {
			table->SclkFcwRangeTable[i].vco_setting = range_table_from_vbios.entry[i].ucVco_setting;
			table->SclkFcwRangeTable[i].postdiv = range_table_from_vbios.entry[i].ucPostdiv;
			table->SclkFcwRangeTable[i].fcw_pcc = range_table_from_vbios.entry[i].usFcw_pcc;

			table->SclkFcwRangeTable[i].fcw_trans_upper = range_table_from_vbios.entry[i].usFcw_trans_upper;
			table->SclkFcwRangeTable[i].fcw_trans_lower = range_table_from_vbios.entry[i].usRcw_trans_lower;

			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
		}
		return;
	}

	for (i = 0; i < NUM_SCLK_RANGE; i++) {

		data->range_table[i].trans_lower_frequency = (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv;
		data->range_table[i].trans_upper_frequency = (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv;

		table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting;
		table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv;
		table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc;

		table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper;
		table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower;

		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
	}
}

/**
* Populates single SMC SCLK structure using the provided engine clock
*
* @param    hwmgr      the address of the hardware manager
* @param    clock the engine clock to use to populate the structure
* @param    sclk        the SMC SCLK structure to be populated
*/

1100
static int polaris10_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
1101 1102 1103 1104 1105 1106
		uint32_t clock, uint16_t sclk_al_threshold,
		struct SMU74_Discrete_GraphicsLevel *level)
{
	int result, i, temp;
	/* PP_Clocks minClocks; */
	uint32_t mvdd;
1107
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1108 1109 1110 1111
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	SMU_SclkSetting curr_sclk_setting = { 0 };

1112
	result = polaris10_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting);
1113 1114

	/* populate graphics levels */
1115
	result = polaris10_get_dependency_volt_by_clk(hwmgr,
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
			table_info->vdd_dep_on_sclk, clock,
			&level->MinVoltage, &mvdd);

	PP_ASSERT_WITH_CODE((0 == result),
			"can not find VDDC voltage value for "
			"VDDC engine clock dependency table",
			return result);
	level->ActivityLevel = sclk_al_threshold;

	level->CcPwrDynRm = 0;
	level->CcPwrDynRm1 = 0;
	level->EnabledForActivity = 0;
	level->EnabledForThrottle = 1;
	level->UpHyst = 10;
	level->DownHyst = 0;
	level->VoltageDownHyst = 0;
	level->PowerThrottle = 0;

	/*
	* TODO: get minimum clocks from dal configaration
	* PECI_GetMinClockSettings(hwmgr->pPECI, &minClocks);
	*/
	/* data->DisplayTiming.minClockInSR = minClocks.engineClockInSR; */

	/* get level->DeepSleepDivId
	if (phm_cap_enabled(hwmgr->platformDescriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
		level->DeepSleepDivId = PhwFiji_GetSleepDividerIdFromClock(hwmgr, clock, minClocks.engineClockInSR);
	*/
1144
	PP_ASSERT_WITH_CODE((clock >= POLARIS10_MINIMUM_ENGINE_CLOCK), "Engine clock can't satisfy stutter requirement!", return 0);
1145
	for (i = POLARIS10_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
1146
		temp = clock >> i;
1147

1148
		if (temp >= POLARIS10_MINIMUM_ENGINE_CLOCK || i == 0)
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
			break;
	}

	level->DeepSleepDivId = i;

	/* Default to slow, highest DPM level will be
	 * set to PPSMC_DISPLAY_WATERMARK_LOW later.
	 */
	if (data->update_up_hyst)
		level->UpHyst = (uint8_t)data->up_hyst;
	if (data->update_down_hyst)
		level->DownHyst = (uint8_t)data->down_hyst;

	level->SclkSetting = curr_sclk_setting;

	CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
	CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
	CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency);
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int);
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac);
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int);
1172 1173 1174
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate);
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate);
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate);
1175 1176
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int);
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac);
1177
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate);
1178 1179 1180 1181 1182 1183 1184 1185
	return 0;
}

/**
* Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
*
* @param    hwmgr      the address of the hardware manager
*/
1186
static int polaris10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1187
{
1188 1189
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_dpm_table *dpm_table = &data->dpm_table;
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
	uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
	int result = 0;
	uint32_t array = data->dpm_table_start +
			offsetof(SMU74_Discrete_DpmTable, GraphicsLevel);
	uint32_t array_size = sizeof(struct SMU74_Discrete_GraphicsLevel) *
			SMU74_MAX_LEVELS_GRAPHICS;
	struct SMU74_Discrete_GraphicsLevel *levels =
			data->smc_state_table.GraphicsLevel;
	uint32_t i, max_entry;
	uint8_t hightest_pcie_level_enabled = 0,
		lowest_pcie_level_enabled = 0,
		mid_pcie_level_enabled = 0,
		count = 0;

1207
	polaris10_get_sclk_range_table(hwmgr);
1208 1209 1210

	for (i = 0; i < dpm_table->sclk_table.count; i++) {

1211
		result = polaris10_populate_single_graphic_level(hwmgr,
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
				dpm_table->sclk_table.dpm_levels[i].value,
				(uint16_t)data->activity_target[i],
				&(data->smc_state_table.GraphicsLevel[i]));
		if (result)
			return result;

		/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
		if (i > 1)
			levels[i].DeepSleepDivId = 0;
	}
1222 1223 1224
	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_SPLLShutdownSupport))
		data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0;
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272

	data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
	data->smc_state_table.GraphicsDpmLevelCount =
			(uint8_t)dpm_table->sclk_table.count;
	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);


	if (pcie_table != NULL) {
		PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
				"There must be 1 or more PCIE levels defined in PPTable.",
				return -EINVAL);
		max_entry = pcie_entry_cnt - 1;
		for (i = 0; i < dpm_table->sclk_table.count; i++)
			levels[i].pcieDpmLevel =
					(uint8_t) ((i < max_entry) ? i : max_entry);
	} else {
		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
						(1 << (hightest_pcie_level_enabled + 1))) != 0))
			hightest_pcie_level_enabled++;

		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
						(1 << lowest_pcie_level_enabled)) == 0))
			lowest_pcie_level_enabled++;

		while ((count < hightest_pcie_level_enabled) &&
				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
						(1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
			count++;

		mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
				hightest_pcie_level_enabled ?
						(lowest_pcie_level_enabled + 1 + count) :
						hightest_pcie_level_enabled;

		/* set pcieDpmLevel to hightest_pcie_level_enabled */
		for (i = 2; i < dpm_table->sclk_table.count; i++)
			levels[i].pcieDpmLevel = hightest_pcie_level_enabled;

		/* set pcieDpmLevel to lowest_pcie_level_enabled */
		levels[0].pcieDpmLevel = lowest_pcie_level_enabled;

		/* set pcieDpmLevel to mid_pcie_level_enabled */
		levels[1].pcieDpmLevel = mid_pcie_level_enabled;
	}
	/* level count will send to smc once at init smc table and never change */
1273
	result = polaris10_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
1274 1275 1276 1277 1278
			(uint32_t)array_size, data->sram_end);

	return result;
}

1279
static int polaris10_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1280 1281
		uint32_t clock, struct SMU74_Discrete_MemoryLevel *mem_level)
{
1282
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1283 1284 1285 1286 1287 1288 1289 1290
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	int result = 0;
	struct cgs_display_info info = {0, 0, NULL};

	cgs_get_active_displays_info(hwmgr->device, &info);

	if (table_info->vdd_dep_on_mclk) {
1291
		result = polaris10_get_dependency_volt_by_clk(hwmgr,
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
				table_info->vdd_dep_on_mclk, clock,
				&mem_level->MinVoltage, &mem_level->MinMvdd);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find MinVddc voltage value from memory "
				"VDDC voltage dependency table", return result);
	}

	mem_level->MclkFrequency = clock;
	mem_level->EnabledForThrottle = 1;
	mem_level->EnabledForActivity = 0;
	mem_level->UpHyst = 0;
	mem_level->DownHyst = 100;
	mem_level->VoltageDownHyst = 0;
	mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
	mem_level->StutterEnable = false;
	mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;

	data->display_timing.num_existing_displays = info.display_count;

	if ((data->mclk_stutter_mode_threshold) &&
		(clock <= data->mclk_stutter_mode_threshold) &&
		(PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
				STUTTER_ENABLE) & 0x1))
		mem_level->StutterEnable = true;

	if (!result) {
		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
		CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
	}
	return result;
}

/**
* Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
*
* @param    hwmgr      the address of the hardware manager
*/
1331
static int polaris10_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1332
{
1333 1334
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_dpm_table *dpm_table = &data->dpm_table;
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	int result;
	/* populate MCLK dpm table to SMU7 */
	uint32_t array = data->dpm_table_start +
			offsetof(SMU74_Discrete_DpmTable, MemoryLevel);
	uint32_t array_size = sizeof(SMU74_Discrete_MemoryLevel) *
			SMU74_MAX_LEVELS_MEMORY;
	struct SMU74_Discrete_MemoryLevel *levels =
			data->smc_state_table.MemoryLevel;
	uint32_t i;

	for (i = 0; i < dpm_table->mclk_table.count; i++) {
		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
				"can not populate memory level as memory clock is zero",
				return -EINVAL);
1349
		result = polaris10_populate_single_memory_level(hwmgr,
1350 1351
				dpm_table->mclk_table.dpm_levels[i].value,
				&levels[i]);
1352 1353 1354 1355
		if (i == dpm_table->mclk_table.count - 1) {
			levels[i].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
			levels[i].EnabledForActivity = 1;
		}
1356 1357 1358 1359 1360 1361 1362 1363 1364
		if (result)
			return result;
	}

	/* in order to prevent MC activity from stutter mode to push DPM up.
	 * the UVD change complements this by putting the MCLK in
	 * a higher state by default such that we are not effected by
	 * up threshold or and MCLK DPM latency.
	 */
1365
	levels[0].ActivityLevel = 0x1f;
1366 1367 1368 1369 1370 1371 1372 1373
	CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);

	data->smc_state_table.MemoryDpmLevelCount =
			(uint8_t)dpm_table->mclk_table.count;
	data->dpm_level_enable_mask.mclk_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);

	/* level count will send to smc once at init smc table and never change */
1374
	result = polaris10_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
			(uint32_t)array_size, data->sram_end);

	return result;
}

/**
* Populates the SMC MVDD structure using the provided memory clock.
*
* @param    hwmgr      the address of the hardware manager
* @param    mclk        the MCLK value to be used in the decision if MVDD should be high or low.
* @param    voltage     the SMC VOLTAGE structure to be populated
*/
1387
int polaris10_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1388 1389
		uint32_t mclk, SMIO_Pattern *smio_pat)
{
1390
	const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1391 1392 1393 1394
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	uint32_t i = 0;

1395
	if (POLARIS10_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
		/* find mvdd value which clock is more than request */
		for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
			if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
				smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
				break;
			}
		}
		PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
				"MVDD Voltage is outside the supported range.",
				return -EINVAL);
	} else
		return -EINVAL;

	return 0;
}

1412
static int polaris10_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1413 1414 1415 1416
		SMU74_Discrete_DpmTable *table)
{
	int result = 0;
	uint32_t sclk_frequency;
1417
	const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	SMIO_Pattern vol_level;
	uint32_t mvdd;
	uint16_t us_mvdd;

	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;

	if (!data->sclk_dpm_key_disabled) {
		/* Get MinVoltage and Frequency from DPM0,
		 * already converted to SMC_UL */
		sclk_frequency = data->dpm_table.sclk_table.dpm_levels[0].value;
1430
		result = polaris10_get_dependency_volt_by_clk(hwmgr,
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
				table_info->vdd_dep_on_sclk,
				table->ACPILevel.SclkFrequency,
				&table->ACPILevel.MinVoltage, &mvdd);
		PP_ASSERT_WITH_CODE((0 == result),
				"Cannot find ACPI VDDC voltage value "
				"in Clock Dependency Table", );
	} else {
		sclk_frequency = data->vbios_boot_state.sclk_bootup_value;
		table->ACPILevel.MinVoltage =
				data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
	}

1443
	result = polaris10_calculate_sclk_params(hwmgr, sclk_frequency,  &(table->ACPILevel.SclkSetting));
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	PP_ASSERT_WITH_CODE(result == 0, "Error retrieving Engine Clock dividers from VBIOS.", return result);

	table->ACPILevel.DeepSleepDivId = 0;
	table->ACPILevel.CcPwrDynRm = 0;
	table->ACPILevel.CcPwrDynRm1 = 0;

	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);

	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency);
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int);
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac);
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int);
1459 1460 1461
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate);
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate);
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate);
1462 1463
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int);
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac);
1464
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate);
1465 1466 1467 1468 1469

	if (!data->mclk_dpm_key_disabled) {
		/* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
		table->MemoryACPILevel.MclkFrequency =
				data->dpm_table.mclk_table.dpm_levels[0].value;
1470
		result = polaris10_get_dependency_volt_by_clk(hwmgr,
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
				table_info->vdd_dep_on_mclk,
				table->MemoryACPILevel.MclkFrequency,
				&table->MemoryACPILevel.MinVoltage, &mvdd);
		PP_ASSERT_WITH_CODE((0 == result),
				"Cannot find ACPI VDDCI voltage value "
				"in Clock Dependency Table",
				);
	} else {
		table->MemoryACPILevel.MclkFrequency =
				data->vbios_boot_state.mclk_bootup_value;
		table->MemoryACPILevel.MinVoltage =
				data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
	}

	us_mvdd = 0;
1486
	if ((POLARIS10_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
1487 1488 1489
			(data->mclk_dpm_key_disabled))
		us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
	else {
1490
		if (!polaris10_populate_mvdd_value(hwmgr,
1491 1492 1493 1494 1495
				data->dpm_table.mclk_table.dpm_levels[0].value,
				&vol_level))
			us_mvdd = vol_level.Voltage;
	}

1496
	if (0 == polaris10_populate_mvdd_value(hwmgr, 0, &vol_level))
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
		table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage);
	else
		table->MemoryACPILevel.MinMvdd = 0;

	table->MemoryACPILevel.StutterEnable = false;

	table->MemoryACPILevel.EnabledForThrottle = 0;
	table->MemoryACPILevel.EnabledForActivity = 0;
	table->MemoryACPILevel.UpHyst = 0;
	table->MemoryACPILevel.DownHyst = 100;
	table->MemoryACPILevel.VoltageDownHyst = 0;
	table->MemoryACPILevel.ActivityLevel =
			PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);

	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);

	return result;
}

1517
static int polaris10_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1518 1519 1520 1521 1522 1523 1524 1525 1526
		SMU74_Discrete_DpmTable *table)
{
	int result = -EINVAL;
	uint8_t count;
	struct pp_atomctrl_clock_dividers_vi dividers;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
			table_info->mm_dep_table;
1527
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1528 1529 1530 1531 1532 1533

	table->VceLevelCount = (uint8_t)(mm_table->count);
	table->VceBootLevel = 0;

	for (count = 0; count < table->VceLevelCount; count++) {
		table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1534
		table->VceLevel[count].MinVoltage = 0;
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		table->VceLevel[count].MinVoltage |=
				(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
		table->VceLevel[count].MinVoltage |=
				((mm_table->entries[count].vddc - data->vddc_vddci_delta) *
						VOLTAGE_SCALE) << VDDCI_SHIFT;
		table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;

		/*retrieve divider value for VBIOS */
		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->VceLevel[count].Frequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for VCE engine clock",
				return result);

		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;

		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
	}
	return result;
}

1557
static int polaris10_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
1558 1559 1560 1561 1562 1563 1564 1565 1566
		SMU74_Discrete_DpmTable *table)
{
	int result = -EINVAL;
	uint8_t count;
	struct pp_atomctrl_clock_dividers_vi dividers;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
			table_info->mm_dep_table;
1567
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1568 1569 1570 1571 1572 1573

	table->SamuBootLevel = 0;
	table->SamuLevelCount = (uint8_t)(mm_table->count);

	for (count = 0; count < table->SamuLevelCount; count++) {
		/* not sure whether we need evclk or not */
1574
		table->SamuLevel[count].MinVoltage = 0;
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
		table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
		table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
				VOLTAGE_SCALE) << VDDC_SHIFT;
		table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
				data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
		table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;

		/* retrieve divider value for VBIOS */
		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->SamuLevel[count].Frequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for samu clock", return result);

		table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;

		CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
		CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
	}
	return result;
}

1596
static int polaris10_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
		int32_t eng_clock, int32_t mem_clock,
		SMU74_Discrete_MCArbDramTimingTableEntry *arb_regs)
{
	uint32_t dram_timing;
	uint32_t dram_timing2;
	uint32_t burst_time;
	int result;

	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
			eng_clock, mem_clock);
	PP_ASSERT_WITH_CODE(result == 0,
			"Error calling VBIOS to set DRAM_TIMING.", return result);

	dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
	dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
	burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);


	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
	arb_regs->McArbBurstTime   = (uint8_t)burst_time;

	return 0;
}

1622
static int polaris10_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1623
{
1624
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1625 1626 1627 1628 1629 1630
	struct SMU74_Discrete_MCArbDramTimingTable arb_regs;
	uint32_t i, j;
	int result = 0;

	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1631
			result = polaris10_populate_memory_timing_parameters(hwmgr,
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
					data->dpm_table.sclk_table.dpm_levels[i].value,
					data->dpm_table.mclk_table.dpm_levels[j].value,
					&arb_regs.entries[i][j]);
			if (result == 0)
				result = atomctrl_set_ac_timing_ai(hwmgr, data->dpm_table.mclk_table.dpm_levels[j].value, j);
			if (result != 0)
				return result;
		}
	}

1642
	result = polaris10_copy_bytes_to_smc(
1643 1644 1645 1646 1647 1648 1649 1650
			hwmgr->smumgr,
			data->arb_table_start,
			(uint8_t *)&arb_regs,
			sizeof(SMU74_Discrete_MCArbDramTimingTable),
			data->sram_end);
	return result;
}

1651
static int polaris10_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1652 1653 1654 1655 1656 1657 1658 1659 1660
		struct SMU74_Discrete_DpmTable *table)
{
	int result = -EINVAL;
	uint8_t count;
	struct pp_atomctrl_clock_dividers_vi dividers;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
			table_info->mm_dep_table;
1661
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1662 1663 1664 1665 1666

	table->UvdLevelCount = (uint8_t)(mm_table->count);
	table->UvdBootLevel = 0;

	for (count = 0; count < table->UvdLevelCount; count++) {
1667
		table->UvdLevel[count].MinVoltage = 0;
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
		table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
		table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
		table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
				VOLTAGE_SCALE) << VDDC_SHIFT;
		table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
				data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
		table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;

		/* retrieve divider value for VBIOS */
		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->UvdLevel[count].VclkFrequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for Vclk clock", return result);

		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;

		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->UvdLevel[count].DclkFrequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for Dclk clock", return result);

		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;

		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);

	}
	return result;
}

1699
static int polaris10_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1700 1701 1702
		struct SMU74_Discrete_DpmTable *table)
{
	int result = 0;
1703
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

	table->GraphicsBootLevel = 0;
	table->MemoryBootLevel = 0;

	/* find boot level from dpm table */
	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
			data->vbios_boot_state.sclk_bootup_value,
			(uint32_t *)&(table->GraphicsBootLevel));

	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
			data->vbios_boot_state.mclk_bootup_value,
			(uint32_t *)&(table->MemoryBootLevel));

	table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
			VOLTAGE_SCALE;
	table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
			VOLTAGE_SCALE;
	table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
			VOLTAGE_SCALE;

	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
	CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);

	return 0;
}


1732
static int polaris10_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
1733
{
1734
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	uint8_t count, level;

	count = (uint8_t)(table_info->vdd_dep_on_sclk->count);

	for (level = 0; level < count; level++) {
		if (table_info->vdd_dep_on_sclk->entries[level].clk >=
				data->vbios_boot_state.sclk_bootup_value) {
			data->smc_state_table.GraphicsBootLevel = level;
			break;
		}
	}

	count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
	for (level = 0; level < count; level++) {
		if (table_info->vdd_dep_on_mclk->entries[level].clk >=
				data->vbios_boot_state.mclk_bootup_value) {
			data->smc_state_table.MemoryBootLevel = level;
			break;
		}
	}

	return 0;
}

1761
static int polaris10_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1762
{
1763
	uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min;
1764
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1765
	uint8_t i, stretch_amount, stretch_amount2, volt_offset = 0;
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
			table_info->vdd_dep_on_sclk;

	stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;

	/* Read SMU_Eefuse to read and calculate RO and determine
	 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
	 */
	efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1777
			ixSMU_EFUSE_0 + (67 * 4));
1778 1779 1780
	efuse &= 0xFF000000;
	efuse = efuse >> 24;

1781 1782 1783 1784 1785 1786 1787
	if (hwmgr->chip_id == CHIP_POLARIS10) {
		min = 1000;
		max = 2300;
	} else {
		min = 1100;
		max = 2100;
	}
1788

1789
	ro = efuse * (max -min)/255 + min;
1790

1791 1792 1793
	/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset
	 * there is a little difference in calculating
	 * volt_with_cks with windows */
1794 1795 1796
	for (i = 0; i < sclk_table->count; i++) {
		data->smc_state_table.Sclk_CKS_masterEn0_7 |=
				sclk_table->entries[i].cks_enable << i;
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
		if (hwmgr->chip_id == CHIP_POLARIS10) {
			volt_without_cks = (uint32_t)((2753594000 + (sclk_table->entries[i].clk/100) * 136418 -(ro - 70) * 1000000) / \
						(2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000));
			volt_with_cks = (uint32_t)((279720200 + sclk_table->entries[i].clk * 3232 - (ro - 65) * 100000000) / \
					(252248000 - sclk_table->entries[i].clk/100 * 115764));
		} else {
			volt_without_cks = (uint32_t)((2416794800 + (sclk_table->entries[i].clk/100) * 1476925/10 -(ro - 50) * 1000000) / \
						(2625416 - (sclk_table->entries[i].clk/100) * 12586807/10000));
			volt_with_cks = (uint32_t)((2999656000 + sclk_table->entries[i].clk * 392803/100 - (ro - 44) * 1000000) / \
					(3422454 - sclk_table->entries[i].clk/100 * 18886376/10000));
		}
1808

1809
		if (volt_without_cks >= volt_with_cks)
1810 1811
			volt_offset = (uint8_t)CEILING_UCHAR((volt_without_cks - volt_with_cks +
					sclk_table->entries[i].cks_voffset) * 100 / 625);
1812

1813 1814 1815
		data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
	}

R
Rex Zhu 已提交
1816
	data->smc_state_table.LdoRefSel = (table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ? table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 6;
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
	/* Populate CKS Lookup Table */
	if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
		stretch_amount2 = 0;
	else if (stretch_amount == 3 || stretch_amount == 4)
		stretch_amount2 = 1;
	else {
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_ClockStretcher);
		PP_ASSERT_WITH_CODE(false,
				"Stretch Amount in PPTable not supported\n",
				return -EINVAL);
	}

	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
	value &= 0xFFFFFFFE;
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);

	return 0;
}

/**
* Populates the SMC VRConfig field in DPM table.
*
* @param    hwmgr   the address of the hardware manager
* @param    table   the SMC DPM table structure to be populated
* @return   always 0
*/
1844
static int polaris10_populate_vr_config(struct pp_hwmgr *hwmgr,
1845 1846
		struct SMU74_Discrete_DpmTable *table)
{
1847
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1848 1849 1850 1851 1852 1853
	uint16_t config;

	config = VR_MERGED_WITH_VDDC;
	table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);

	/* Set Vddc Voltage Controller */
1854
	if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1855 1856 1857 1858 1859 1860 1861 1862
		config = VR_SVI2_PLANE_1;
		table->VRConfig |= config;
	} else {
		PP_ASSERT_WITH_CODE(false,
				"VDDC should be on SVI2 control in merged mode!",
				);
	}
	/* Set Vddci Voltage Controller */
1863
	if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1864 1865
		config = VR_SVI2_PLANE_2;  /* only in merged mode */
		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1866
	} else if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1867 1868 1869 1870 1871 1872 1873
		config = VR_SMIO_PATTERN_1;
		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
	} else {
		config = VR_STATIC_VOLTAGE;
		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
	}
	/* Set Mvdd Voltage Controller */
1874
	if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1875 1876
		config = VR_SVI2_PLANE_2;
		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1877
	} else if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
		config = VR_SMIO_PATTERN_2;
		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
	} else {
		config = VR_STATIC_VOLTAGE;
		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
	}

	return 0;
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971

int polaris10_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
{
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	SMU74_Discrete_DpmTable  *table = &(data->smc_state_table);
	int result = 0;
	struct pp_atom_ctrl__avfs_parameters avfs_params = {0};
	AVFS_meanNsigma_t AVFS_meanNsigma = { {0} };
	AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} };
	uint32_t tmp, i;
	struct pp_smumgr *smumgr = hwmgr->smumgr;
	struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend);

	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
			table_info->vdd_dep_on_sclk;


	if (smu_data->avfs.avfs_btc_status == AVFS_BTC_NOTSUPPORTED)
		return result;

	result = atomctrl_get_avfs_information(hwmgr, &avfs_params);

	if (0 == result) {
		table->BTCGB_VDROOP_TABLE[0].a0  = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0);
		table->BTCGB_VDROOP_TABLE[0].a1  = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1);
		table->BTCGB_VDROOP_TABLE[0].a2  = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2);
		table->BTCGB_VDROOP_TABLE[1].a0  = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0);
		table->BTCGB_VDROOP_TABLE[1].a1  = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1);
		table->BTCGB_VDROOP_TABLE[1].a2  = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2);
		table->AVFSGB_VDROOP_TABLE[0].m1 = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1);
		table->AVFSGB_VDROOP_TABLE[0].m2 = PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2);
		table->AVFSGB_VDROOP_TABLE[0].b  = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b);
		table->AVFSGB_VDROOP_TABLE[0].m1_shift = 24;
		table->AVFSGB_VDROOP_TABLE[0].m2_shift  = 12;
		table->AVFSGB_VDROOP_TABLE[1].m1 = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
		table->AVFSGB_VDROOP_TABLE[1].m2 = PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2);
		table->AVFSGB_VDROOP_TABLE[1].b  = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b);
		table->AVFSGB_VDROOP_TABLE[1].m1_shift = 24;
		table->AVFSGB_VDROOP_TABLE[1].m2_shift  = 12;
		table->MaxVoltage                = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv);
		AVFS_meanNsigma.Aconstant[0]      = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0);
		AVFS_meanNsigma.Aconstant[1]      = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1);
		AVFS_meanNsigma.Aconstant[2]      = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2);
		AVFS_meanNsigma.DC_tol_sigma      = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma);
		AVFS_meanNsigma.Platform_mean     = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean);
		AVFS_meanNsigma.PSM_Age_CompFactor = PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor);
		AVFS_meanNsigma.Platform_sigma     = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma);

		for (i = 0; i < NUM_VFT_COLUMNS; i++) {
			AVFS_meanNsigma.Static_Voltage_Offset[i] = (uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625);
			AVFS_SclkOffset.Sclk_Offset[i] = PP_HOST_TO_SMC_US((uint16_t)(sclk_table->entries[i].sclk_offset) / 100);
		}

		result = polaris10_read_smc_sram_dword(smumgr,
				SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, AvfsMeanNSigma),
				&tmp, data->sram_end);

		polaris10_copy_bytes_to_smc(smumgr,
					tmp,
					(uint8_t *)&AVFS_meanNsigma,
					sizeof(AVFS_meanNsigma_t),
					data->sram_end);

		result = polaris10_read_smc_sram_dword(smumgr,
				SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, AvfsSclkOffsetTable),
				&tmp, data->sram_end);
		polaris10_copy_bytes_to_smc(smumgr,
					tmp,
					(uint8_t *)&AVFS_SclkOffset,
					sizeof(AVFS_Sclk_Offset_t),
					data->sram_end);

		data->avfs_vdroop_override_setting = (avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) |
						(avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) |
						(avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) |
						(avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT);
		data->apply_avfs_cks_off_voltage = (avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true : false;
	}
	return result;
}


1972 1973 1974 1975 1976 1977
/**
* Initializes the SMC table and uploads it
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
1978
static int polaris10_init_smc_table(struct pp_hwmgr *hwmgr)
1979 1980
{
	int result;
1981
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1982 1983 1984
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct SMU74_Discrete_DpmTable *table = &(data->smc_state_table);
1985
	const struct polaris10_ulv_parm *ulv = &(data->ulv);
1986 1987
	uint8_t i;
	struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1988
	pp_atomctrl_clock_dividers_vi dividers;
1989

1990
	result = polaris10_setup_default_dpm_tables(hwmgr);
1991 1992 1993
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to setup default DPM tables!", return result);

1994 1995
	if (POLARIS10_VOLTAGE_CONTROL_NONE != data->voltage_control)
		polaris10_populate_smc_voltage_tables(hwmgr, table);
1996

1997
	table->SystemFlags = 0;
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_AutomaticDCTransition))
		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_StepVddc))
		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;

	if (data->is_memory_gddr5)
		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;

	if (ulv->ulv_supported && table_info->us_ulv_voltage_offset) {
2010
		result = polaris10_populate_ulv_state(hwmgr, table);
2011 2012 2013
		PP_ASSERT_WITH_CODE(0 == result,
				"Failed to initialize ULV state!", return result);
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2014
				ixCG_ULV_PARAMETER, PPPOLARIS10_CGULVPARAMETER_DFLT);
2015 2016
	}

2017
	result = polaris10_populate_smc_link_level(hwmgr, table);
2018 2019 2020
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize Link Level!", return result);

2021
	result = polaris10_populate_all_graphic_levels(hwmgr);
2022 2023 2024
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize Graphics Level!", return result);

2025
	result = polaris10_populate_all_memory_levels(hwmgr);
2026 2027 2028
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize Memory Level!", return result);

2029
	result = polaris10_populate_smc_acpi_level(hwmgr, table);
2030 2031 2032
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize ACPI Level!", return result);

2033
	result = polaris10_populate_smc_vce_level(hwmgr, table);
2034 2035 2036
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize VCE Level!", return result);

2037
	result = polaris10_populate_smc_samu_level(hwmgr, table);
2038 2039 2040 2041 2042 2043 2044
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize SAMU Level!", return result);

	/* Since only the initial state is completely set up at this point
	 * (the other states are just copies of the boot state) we only
	 * need to populate the  ARB settings for the initial state.
	 */
2045
	result = polaris10_program_memory_timing_parameters(hwmgr);
2046 2047 2048
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to Write ARB settings for the initial state.", return result);

2049
	result = polaris10_populate_smc_uvd_level(hwmgr, table);
2050 2051 2052
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize UVD Level!", return result);

2053
	result = polaris10_populate_smc_boot_level(hwmgr, table);
2054 2055 2056
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize Boot Level!", return result);

2057
	result = polaris10_populate_smc_initailial_state(hwmgr);
2058 2059 2060
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize Boot State!", return result);

2061
	result = polaris10_populate_bapm_parameters_in_dpm_table(hwmgr);
2062 2063 2064 2065 2066
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to populate BAPM Parameters!", return result);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ClockStretcher)) {
2067
		result = polaris10_populate_clock_stretcher_data_table(hwmgr);
2068 2069 2070 2071
		PP_ASSERT_WITH_CODE(0 == result,
				"Failed to populate Clock Stretcher Data Table!",
				return result);
	}
2072 2073 2074 2075

	result = polaris10_populate_avfs_parameters(hwmgr);
	PP_ASSERT_WITH_CODE(0 == result, "Failed to populate AVFS Parameters!", return result;);

2076
	table->CurrSclkPllRange = 0xff;
2077 2078 2079 2080 2081 2082 2083
	table->GraphicsVoltageChangeEnable  = 1;
	table->GraphicsThermThrottleEnable  = 1;
	table->GraphicsInterval = 1;
	table->VoltageInterval  = 1;
	table->ThermalInterval  = 1;
	table->TemperatureLimitHigh =
			table_info->cac_dtp_table->usTargetOperatingTemp *
2084
			POLARIS10_Q88_FORMAT_CONVERSION_UNIT;
2085 2086
	table->TemperatureLimitLow  =
			(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2087
			POLARIS10_Q88_FORMAT_CONVERSION_UNIT;
2088 2089 2090 2091 2092 2093 2094
	table->MemoryVoltageChangeEnable = 1;
	table->MemoryInterval = 1;
	table->VoltageResponseTime = 0;
	table->PhaseResponseTime = 0;
	table->MemoryThermThrottleEnable = 1;
	table->PCIeBootLinkLevel = 0;
	table->PCIeGenInterval = 1;
2095
	table->VRConfig = 0;
2096

2097
	result = polaris10_populate_vr_config(hwmgr, table);
2098 2099 2100 2101 2102 2103 2104 2105 2106
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to populate VRConfig setting!", return result);

	table->ThermGpio = 17;
	table->SclkStepSize = 0x4000;

	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
		table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
	} else {
2107
		table->VRHotGpio = POLARIS10_UNUSED_GPIO_PIN;
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_RegulatorHot);
	}

	if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
			&gpio_pin)) {
		table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_AutomaticDCTransition);
	} else {
2118
		table->AcDcGpio = POLARIS10_UNUSED_GPIO_PIN;
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_AutomaticDCTransition);
	}

	/* Thermal Output GPIO */
	if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
			&gpio_pin)) {
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_ThermalOutGPIO);

		table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;

		/* For porlarity read GPIOPAD_A with assigned Gpio pin
		 * since VBIOS will program this register to set 'inactive state',
		 * driver can then determine 'active state' from this and
		 * program SMU with correct polarity
		 */
		table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A)
					& (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
		table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;

		/* if required, combine VRHot/PCC with thermal out GPIO */
		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot)
		&& phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_CombinePCCWithThermalSignal))
			table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
	} else {
		table->ThermOutGpio = 17;
		table->ThermOutPolarity = 1;
		table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
	}

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
	/* Populate BIF_SCLK levels into SMC DPM table */
	for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++) {
		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, data->bif_sclk_table[i], &dividers);
		PP_ASSERT_WITH_CODE((result == 0), "Can not find DFS divide id for Sclk", return result);

		if (i == 0)
			table->Ulv.BifSclkDfs = PP_HOST_TO_SMC_US((USHORT)(dividers.pll_post_divider));
		else
			table->LinkLevel[i-1].BifSclkDfs = PP_HOST_TO_SMC_US((USHORT)(dividers.pll_post_divider));
	}

2161 2162 2163 2164 2165 2166 2167 2168
	for (i = 0; i < SMU74_MAX_ENTRIES_SMIO; i++)
		table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);

	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2169
	CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange);
2170 2171 2172 2173 2174 2175
	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);

	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2176
	result = polaris10_copy_bytes_to_smc(hwmgr->smumgr,
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
			data->dpm_table_start +
			offsetof(SMU74_Discrete_DpmTable, SystemFlags),
			(uint8_t *)&(table->SystemFlags),
			sizeof(SMU74_Discrete_DpmTable) - 3 * sizeof(SMU74_PIDController),
			data->sram_end);
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to upload dpm data to SMC memory!", return result);

	return 0;
}

/**
* Initialize the ARB DRAM timing table's index field.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
2194
static int polaris10_init_arb_table_index(struct pp_hwmgr *hwmgr)
2195
{
2196
	const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
	uint32_t tmp;
	int result;

	/* This is a read-modify-write on the first byte of the ARB table.
	 * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
	 * is the field 'current'.
	 * This solution is ugly, but we never write the whole table only
	 * individual fields in it.
	 * In reality this field should not be in that structure
	 * but in a soft register.
	 */
2208
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
2209 2210 2211 2212 2213 2214 2215 2216
			data->arb_table_start, &tmp, data->sram_end);

	if (result)
		return result;

	tmp &= 0x00FFFFFF;
	tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;

2217
	return polaris10_write_smc_sram_dword(hwmgr->smumgr,
2218 2219 2220
			data->arb_table_start, tmp, data->sram_end);
}

2221
static int polaris10_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
2222 2223 2224 2225 2226 2227 2228 2229 2230
{
	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_RegulatorHot))
		return smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_EnableVRHotGPIOInterrupt);

	return 0;
}

2231
static int polaris10_enable_sclk_control(struct pp_hwmgr *hwmgr)
2232 2233 2234 2235 2236 2237
{
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
			SCLK_PWRMGT_OFF, 0);
	return 0;
}

2238
static int polaris10_enable_ulv(struct pp_hwmgr *hwmgr)
2239
{
2240 2241
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_ulv_parm *ulv = &(data->ulv);
2242 2243 2244 2245 2246 2247 2248

	if (ulv->ulv_supported)
		return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV);

	return 0;
}

2249
static int polaris10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
{
	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SclkDeepSleep)) {
		if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON))
			PP_ASSERT_WITH_CODE(false,
					"Attempt to enable Master Deep Sleep switch failed!",
					return -1);
	} else {
		if (smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_MASTER_DeepSleep_OFF)) {
			PP_ASSERT_WITH_CODE(false,
					"Attempt to disable Master Deep Sleep switch failed!",
					return -1);
		}
	}

	return 0;
}

2269
static int polaris10_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
2270
{
2271
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2272 2273 2274
	uint32_t soft_register_value = 0;
	uint32_t handshake_disables_offset = data->soft_regs_start
				+ offsetof(SMU74_SoftRegisters, HandshakeDisables);
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284

	/* enable SCLK dpm */
	if (!data->sclk_dpm_key_disabled)
		PP_ASSERT_WITH_CODE(
		(0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)),
		"Failed to enable SCLK DPM during DPM Start Function!",
		return -1);

	/* enable MCLK dpm */
	if (0 == data->mclk_dpm_key_disabled) {
2285 2286 2287 2288 2289 2290
/* Disable UVD - SMU handshake for MCLK. */
		soft_register_value = cgs_read_ind_register(hwmgr->device,
					CGS_IND_REG__SMC, handshake_disables_offset);
		soft_register_value |= SMU7_UVD_MCLK_HANDSHAKE_DISABLE;
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
				handshake_disables_offset, soft_register_value);
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311

		PP_ASSERT_WITH_CODE(
				(0 == smum_send_msg_to_smc(hwmgr->smumgr,
						PPSMC_MSG_MCLKDPM_Enable)),
				"Failed to enable MCLK DPM during DPM Start Function!",
				return -1);

		PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);

		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5);
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5);
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005);
		udelay(10);
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005);
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005);
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005);
	}

	return 0;
}

2312
static int polaris10_start_dpm(struct pp_hwmgr *hwmgr)
2313
{
2314
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332

	/*enable general power management */

	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
			GLOBAL_PWRMGT_EN, 1);

	/* enable sclk deep sleep */

	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
			DYNAMIC_PM_EN, 1);

	/* prepare for PCIE DPM */

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			data->soft_regs_start + offsetof(SMU74_SoftRegisters,
					VoltageChangeTimeout), 0x1000);
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
			SWRST_COMMAND_1, RESETLC, 0x0);
2333
/*
2334 2335 2336 2337 2338
	PP_ASSERT_WITH_CODE(
			(0 == smum_send_msg_to_smc(hwmgr->smumgr,
					PPSMC_MSG_Voltage_Cntl_Enable)),
			"Failed to enable voltage DPM during DPM Start Function!",
			return -1);
2339
*/
2340

2341
	if (polaris10_enable_sclk_mclk_dpm(hwmgr)) {
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
		printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!");
		return -1;
	}

	/* enable PCIE dpm */
	if (0 == data->pcie_dpm_key_disabled) {
		PP_ASSERT_WITH_CODE(
				(0 == smum_send_msg_to_smc(hwmgr->smumgr,
						PPSMC_MSG_PCIeDPM_Enable)),
				"Failed to enable pcie DPM during DPM Start Function!",
				return -1);
	}

2355 2356 2357 2358 2359 2360 2361
	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_Falcon_QuickTransition)) {
		PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_EnableACDCGPIOInterrupt)),
				"Failed to enable AC DC GPIO Interrupt!",
				);
	}
2362 2363 2364 2365

	return 0;
}

2366
static void polaris10_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources)
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
{
	bool protection;
	enum DPM_EVENT_SRC src;

	switch (sources) {
	default:
		printk(KERN_ERR "Unknown throttling event sources.");
		/* fall through */
	case 0:
		protection = false;
		/* src is unused */
		break;
	case (1 << PHM_AutoThrottleSource_Thermal):
		protection = true;
		src = DPM_EVENT_SRC_DIGITAL;
		break;
	case (1 << PHM_AutoThrottleSource_External):
		protection = true;
		src = DPM_EVENT_SRC_EXTERNAL;
		break;
	case (1 << PHM_AutoThrottleSource_External) |
			(1 << PHM_AutoThrottleSource_Thermal):
		protection = true;
		src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
		break;
	}
	/* Order matters - don't enable thermal protection for the wrong source. */
	if (protection) {
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
				DPM_EVENT_SRC, src);
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
				THERMAL_PROTECTION_DIS,
2399
				!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2400 2401 2402 2403 2404 2405
						PHM_PlatformCaps_ThermalController));
	} else
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
				THERMAL_PROTECTION_DIS, 1);
}

2406
static int polaris10_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
2407 2408
		PHM_AutoThrottleSource source)
{
2409
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2410 2411 2412

	if (!(data->active_auto_throttle_sources & (1 << source))) {
		data->active_auto_throttle_sources |= 1 << source;
2413
		polaris10_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
2414 2415 2416 2417
	}
	return 0;
}

2418
static int polaris10_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
2419
{
2420
	return polaris10_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
2421 2422
}

2423
int polaris10_pcie_performance_request(struct pp_hwmgr *hwmgr)
2424
{
2425
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2426 2427 2428 2429 2430
	data->pcie_performance_request = true;

	return 0;
}

2431
int polaris10_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
2432 2433
{
	int tmp_result, result = 0;
2434
	tmp_result = (!polaris10_is_dpm_running(hwmgr)) ? 0 : -1;
2435 2436 2437 2438
	PP_ASSERT_WITH_CODE(result == 0,
			"DPM is already running right now, no need to enable DPM!",
			return 0);

2439 2440
	if (polaris10_voltage_control(hwmgr)) {
		tmp_result = polaris10_enable_voltage_control(hwmgr);
2441 2442 2443 2444
		PP_ASSERT_WITH_CODE(tmp_result == 0,
				"Failed to enable voltage control!",
				result = tmp_result);

2445
		tmp_result = polaris10_construct_voltage_tables(hwmgr);
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
		PP_ASSERT_WITH_CODE((0 == tmp_result),
				"Failed to contruct voltage tables!",
				result = tmp_result);
	}

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_EngineSpreadSpectrumSupport))
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
				GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ThermalController))
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
				GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);

2461
	tmp_result = polaris10_program_static_screen_threshold_parameters(hwmgr);
2462 2463 2464 2465
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to program static screen threshold parameters!",
			result = tmp_result);

2466
	tmp_result = polaris10_enable_display_gap(hwmgr);
2467 2468 2469
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable display gap!", result = tmp_result);

2470
	tmp_result = polaris10_program_voting_clients(hwmgr);
2471 2472 2473
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to program voting clients!", result = tmp_result);

2474
	tmp_result = polaris10_process_firmware_header(hwmgr);
2475 2476 2477
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to process firmware header!", result = tmp_result);

2478
	tmp_result = polaris10_initial_switch_from_arbf0_to_f1(hwmgr);
2479 2480 2481 2482
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to initialize switch from ArbF0 to F1!",
			result = tmp_result);

2483
	tmp_result = polaris10_init_smc_table(hwmgr);
2484 2485 2486
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to initialize SMC table!", result = tmp_result);

2487
	tmp_result = polaris10_init_arb_table_index(hwmgr);
2488 2489 2490
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to initialize ARB table index!", result = tmp_result);

2491
	tmp_result = polaris10_populate_pm_fuses(hwmgr);
2492 2493 2494
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to populate PM fuses!", result = tmp_result);

2495
	tmp_result = polaris10_enable_vrhot_gpio_interrupt(hwmgr);
2496 2497 2498
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable VR hot GPIO interrupt!", result = tmp_result);

R
Rex Zhu 已提交
2499 2500
	smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)PPSMC_HasDisplay);

2501
	tmp_result = polaris10_enable_sclk_control(hwmgr);
2502 2503 2504
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable SCLK control!", result = tmp_result);

2505
	tmp_result = polaris10_enable_smc_voltage_controller(hwmgr);
2506 2507 2508
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable voltage control!", result = tmp_result);

2509
	tmp_result = polaris10_enable_ulv(hwmgr);
2510 2511 2512
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable ULV!", result = tmp_result);

2513
	tmp_result = polaris10_enable_deep_sleep_master_switch(hwmgr);
2514 2515 2516
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable deep sleep master switch!", result = tmp_result);

2517
	tmp_result = polaris10_start_dpm(hwmgr);
2518 2519 2520
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to start DPM!", result = tmp_result);

2521
	tmp_result = polaris10_enable_smc_cac(hwmgr);
2522 2523 2524
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable SMC CAC!", result = tmp_result);

2525
	tmp_result = polaris10_enable_power_containment(hwmgr);
2526 2527 2528
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable power containment!", result = tmp_result);

2529
	tmp_result = polaris10_power_control_set_level(hwmgr);
2530 2531 2532
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to power control set level!", result = tmp_result);

2533
	tmp_result = polaris10_enable_thermal_auto_throttle(hwmgr);
2534 2535 2536
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable thermal auto throttle!", result = tmp_result);

2537
	tmp_result = polaris10_pcie_performance_request(hwmgr);
2538
	PP_ASSERT_WITH_CODE((0 == tmp_result),
2539
			"pcie performance request failed!", result = tmp_result);
2540 2541 2542 2543

	return result;
}

2544
int polaris10_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
2545 2546 2547 2548 2549
{

	return 0;
}

2550
int polaris10_reset_asic_tasks(struct pp_hwmgr *hwmgr)
2551 2552 2553 2554 2555
{

	return 0;
}

2556
int polaris10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
2557
{
2558 2559 2560 2561 2562 2563 2564
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);

	if (data->soft_pp_table) {
		kfree(data->soft_pp_table);
		data->soft_pp_table = NULL;
	}

2565 2566 2567
	return phm_hwmgr_backend_fini(hwmgr);
}

2568
int polaris10_set_features_platform_caps(struct pp_hwmgr *hwmgr)
2569
{
2570
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2571 2572 2573 2574

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SclkDeepSleep);

2575 2576 2577
	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
		PHM_PlatformCaps_DynamicPatchPowerState);

2578
	if (data->mvdd_control == POLARIS10_VOLTAGE_CONTROL_NONE)
2579 2580 2581
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_EnableMVDDControl);

2582
	if (data->vddci_control == POLARIS10_VOLTAGE_CONTROL_NONE)
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_ControlVDDCI);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			 PHM_PlatformCaps_TablelessHardwareInterface);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_EnableSMU7ThermalManagement);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_DynamicPowerManagement);

2595 2596 2597
	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_UnTabledHardwareInterface);

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_TablelessHardwareInterface);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_SMC);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_NonABMSupportInPPLib);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_DynamicUVDState);

	/* power tune caps Assume disabled */
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_SQRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_DBRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_TDRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_TCPRamping);

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_PowerContainment);
	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
							PHM_PlatformCaps_CAC);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_RegulatorHot);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_AutomaticDCTransition);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_ODFuzzyFanControlSupport);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_FanSpeedInTableIsRPM);
2636

2637 2638 2639
	if (hwmgr->chip_id == CHIP_POLARIS11)
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_SPLLShutdownSupport);
2640 2641 2642
	return 0;
}

2643
static void polaris10_init_dpm_defaults(struct pp_hwmgr *hwmgr)
2644
{
2645
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2646

2647
	polaris10_initialize_power_tune_defaults(hwmgr);
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664

	data->pcie_gen_performance.max = PP_PCIEGen1;
	data->pcie_gen_performance.min = PP_PCIEGen3;
	data->pcie_gen_power_saving.max = PP_PCIEGen1;
	data->pcie_gen_power_saving.min = PP_PCIEGen3;
	data->pcie_lane_performance.max = 0;
	data->pcie_lane_performance.min = 16;
	data->pcie_lane_power_saving.max = 0;
	data->pcie_lane_power_saving.min = 16;
}

/**
* Get Leakage VDDC based on leakage ID.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
2665
static int polaris10_get_evv_voltages(struct pp_hwmgr *hwmgr)
2666
{
2667
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
	uint16_t vv_id;
	uint16_t vddc = 0;
	uint16_t i, j;
	uint32_t sclk = 0;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
			table_info->vdd_dep_on_sclk;
	int result;

2678
	for (i = 0; i < POLARIS10_MAX_LEAKAGE_COUNT; i++) {
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
		vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
		if (!phm_get_sclk_for_voltage_evv(hwmgr,
				table_info->vddc_lookup_table, vv_id, &sclk)) {
			if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_ClockStretcher)) {
				for (j = 1; j < sclk_table->count; j++) {
					if (sclk_table->entries[j].clk == sclk &&
							sclk_table->entries[j].cks_enable == 0) {
						sclk += 5000;
						break;
					}
				}
			}


			PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk_ai(hwmgr,
							VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc),
						"Error retrieving EVV voltage value!",
						continue);


			/* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
			PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0),
					"Invalid VDDC value", result = -EINVAL;);

			/* the voltage should not be zero nor equal to leakage ID */
			if (vddc != 0 && vddc != vv_id) {
				data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100);
				data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
				data->vddc_leakage.count++;
			}
		}
	}

	return 0;
}

/**
 * Change virtual leakage voltage to actual value.
 *
 * @param     hwmgr  the address of the powerplay hardware manager.
 * @param     pointer to changing voltage
 * @param     pointer to leakage table
 */
2723 2724
static void polaris10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
		uint16_t *voltage, struct polaris10_leakage_voltage *leakage_table)
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
{
	uint32_t index;

	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
	for (index = 0; index < leakage_table->count; index++) {
		/* if this voltage matches a leakage voltage ID */
		/* patch with actual leakage voltage */
		if (leakage_table->leakage_id[index] == *voltage) {
			*voltage = leakage_table->actual_voltage[index];
			break;
		}
	}

	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
		printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n");
}

/**
* Patch voltage lookup table by EVV leakages.
*
* @param     hwmgr  the address of the powerplay hardware manager.
* @param     pointer to voltage lookup table
* @param     pointer to leakage table
* @return     always 0
*/
2750
static int polaris10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
2751
		phm_ppt_v1_voltage_lookup_table *lookup_table,
2752
		struct polaris10_leakage_voltage *leakage_table)
2753 2754 2755 2756
{
	uint32_t i;

	for (i = 0; i < lookup_table->count; i++)
2757
		polaris10_patch_with_vdd_leakage(hwmgr,
2758 2759 2760 2761 2762
				&lookup_table->entries[i].us_vdd, leakage_table);

	return 0;
}

2763 2764
static int polaris10_patch_clock_voltage_limits_with_vddc_leakage(
		struct pp_hwmgr *hwmgr, struct polaris10_leakage_voltage *leakage_table,
2765 2766 2767 2768
		uint16_t *vddc)
{
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2769
	polaris10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
2770 2771 2772 2773 2774
	hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
			table_info->max_clock_voltage_on_dc.vddc;
	return 0;
}

2775
static int polaris10_patch_voltage_dependency_tables_with_lookup_table(
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
		struct pp_hwmgr *hwmgr)
{
	uint8_t entryId;
	uint8_t voltageId;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
			table_info->vdd_dep_on_sclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
			table_info->vdd_dep_on_mclk;
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
			table_info->mm_dep_table;

	for (entryId = 0; entryId < sclk_table->count; ++entryId) {
		voltageId = sclk_table->entries[entryId].vddInd;
		sclk_table->entries[entryId].vddc =
				table_info->vddc_lookup_table->entries[voltageId].us_vdd;
	}

	for (entryId = 0; entryId < mclk_table->count; ++entryId) {
		voltageId = mclk_table->entries[entryId].vddInd;
		mclk_table->entries[entryId].vddc =
			table_info->vddc_lookup_table->entries[voltageId].us_vdd;
	}

	for (entryId = 0; entryId < mm_table->count; ++entryId) {
		voltageId = mm_table->entries[entryId].vddcInd;
		mm_table->entries[entryId].vddc =
			table_info->vddc_lookup_table->entries[voltageId].us_vdd;
	}

	return 0;

}

2812
static int polaris10_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
2813 2814 2815 2816 2817
{
	/* Need to determine if we need calculated voltage. */
	return 0;
}

2818
static int polaris10_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
2819 2820 2821 2822 2823
{
	/* Need to determine if we need calculated voltage from mm table. */
	return 0;
}

2824
static int polaris10_sort_lookup_table(struct pp_hwmgr *hwmgr,
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
		struct phm_ppt_v1_voltage_lookup_table *lookup_table)
{
	uint32_t table_size, i, j;
	struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
	table_size = lookup_table->count;

	PP_ASSERT_WITH_CODE(0 != lookup_table->count,
		"Lookup table is empty", return -EINVAL);

	/* Sorting voltages */
	for (i = 0; i < table_size - 1; i++) {
		for (j = i + 1; j > 0; j--) {
			if (lookup_table->entries[j].us_vdd <
					lookup_table->entries[j - 1].us_vdd) {
				tmp_voltage_lookup_record = lookup_table->entries[j - 1];
				lookup_table->entries[j - 1] = lookup_table->entries[j];
				lookup_table->entries[j] = tmp_voltage_lookup_record;
			}
		}
	}

	return 0;
}

2849
static int polaris10_complete_dependency_tables(struct pp_hwmgr *hwmgr)
2850 2851 2852
{
	int result = 0;
	int tmp_result;
2853
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2854 2855 2856
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

2857
	tmp_result = polaris10_patch_lookup_table_with_leakage(hwmgr,
2858 2859 2860 2861
			table_info->vddc_lookup_table, &(data->vddc_leakage));
	if (tmp_result)
		result = tmp_result;

2862
	tmp_result = polaris10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
2863 2864 2865 2866
			&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
	if (tmp_result)
		result = tmp_result;

2867
	tmp_result = polaris10_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
2868 2869 2870
	if (tmp_result)
		result = tmp_result;

2871
	tmp_result = polaris10_calc_voltage_dependency_tables(hwmgr);
2872 2873 2874
	if (tmp_result)
		result = tmp_result;

2875
	tmp_result = polaris10_calc_mm_voltage_dependency_table(hwmgr);
2876 2877 2878
	if (tmp_result)
		result = tmp_result;

2879
	tmp_result = polaris10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
2880 2881 2882 2883 2884 2885
	if (tmp_result)
		result = tmp_result;

	return result;
}

2886
static int polaris10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
{
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
						table_info->vdd_dep_on_sclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
						table_info->vdd_dep_on_mclk;

	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
2897
		"VDD dependency on SCLK table is missing.	\
2898 2899
		This table is mandatory", return -EINVAL);
	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
2900
		"VDD dependency on SCLK table has to have is missing.	\
2901 2902 2903
		This table is mandatory", return -EINVAL);

	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
2904
		"VDD dependency on MCLK table is missing.	\
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
		This table is mandatory", return -EINVAL);
	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
		"VDD dependency on MCLK table has to have is missing.	 \
		This table is mandatory", return -EINVAL);

	table_info->max_clock_voltage_on_ac.sclk =
		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
	table_info->max_clock_voltage_on_ac.mclk =
		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
	table_info->max_clock_voltage_on_ac.vddc =
		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
	table_info->max_clock_voltage_on_ac.vddci =
		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;

2919 2920 2921 2922 2923
	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk;
	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk;
	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc;
	hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =table_info->max_clock_voltage_on_ac.vddci;

2924 2925 2926
	return 0;
}

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
int polaris10_patch_voltage_workaround(struct pp_hwmgr *hwmgr)
{
	struct phm_ppt_v1_information *table_info =
		       (struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
			table_info->vdd_dep_on_mclk;
	struct phm_ppt_v1_voltage_lookup_table *lookup_table =
			table_info->vddc_lookup_table;
	uint32_t i;

	if (hwmgr->chip_id == CHIP_POLARIS10 && hwmgr->hw_revision == 0xC7) {
		if (lookup_table->entries[dep_mclk_table->entries[dep_mclk_table->count-1].vddInd].us_vdd >= 1000)
			return 0;

		for (i = 0; i < lookup_table->count; i++) {
			if (lookup_table->entries[i].us_vdd < 0xff01 && lookup_table->entries[i].us_vdd >= 1000) {
				dep_mclk_table->entries[dep_mclk_table->count-1].vddInd = (uint8_t) i;
				return 0;
			}
		}
	}
	return 0;
}


2952
int polaris10_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
2953
{
2954
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2955 2956 2957
	struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
	uint32_t temp_reg;
	int result;
2958 2959
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2960 2961 2962

	data->dll_default_on = false;
	data->sram_end = SMC_RAM_END;
2963
	data->mclk_dpm0_activity_target = 0xa;
2964
	data->disable_dpm_mask = 0xFF;
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	data->static_screen_threshold = PPPOLARIS10_STATICSCREENTHRESHOLD_DFLT;
	data->static_screen_threshold_unit = PPPOLARIS10_STATICSCREENTHRESHOLD_DFLT;
	data->activity_target[0] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[1] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[2] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[3] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[4] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[5] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[6] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[7] = PPPOLARIS10_TARGETACTIVITY_DFLT;

	data->voting_rights_clients0 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT0;
	data->voting_rights_clients1 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT1;
	data->voting_rights_clients2 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT2;
	data->voting_rights_clients3 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT3;
	data->voting_rights_clients4 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT4;
	data->voting_rights_clients5 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT5;
	data->voting_rights_clients6 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT6;
	data->voting_rights_clients7 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT7;
2984 2985 2986

	data->vddc_vddci_delta = VDDC_VDDCI_DELTA;

2987
	data->mclk_activity_target = PPPOLARIS10_MCLK_TARGETACTIVITY_DFLT;
2988 2989

	/* need to set voltage control types before EVV patching */
2990 2991 2992
	data->voltage_control = POLARIS10_VOLTAGE_CONTROL_NONE;
	data->vddci_control = POLARIS10_VOLTAGE_CONTROL_NONE;
	data->mvdd_control = POLARIS10_VOLTAGE_CONTROL_NONE;
2993

2994 2995
	data->enable_tdc_limit_feature = true;
	data->enable_pkg_pwr_tracking_feature = true;
2996
	data->force_pcie_gen = PP_PCIEGenInvalid;
2997
	data->mclk_stutter_mode_threshold = 40000;
2998

2999 3000
	if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
3001
		data->voltage_control = POLARIS10_VOLTAGE_CONTROL_BY_SVID2;
3002 3003 3004 3005 3006

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_EnableMVDDControl)) {
		if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
3007
			data->mvdd_control = POLARIS10_VOLTAGE_CONTROL_BY_GPIO;
3008 3009
		else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2))
3010
			data->mvdd_control = POLARIS10_VOLTAGE_CONTROL_BY_SVID2;
3011 3012 3013 3014 3015 3016
	}

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ControlVDDCI)) {
		if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
3017
			data->vddci_control = POLARIS10_VOLTAGE_CONTROL_BY_GPIO;
3018 3019
		else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
3020
			data->vddci_control = POLARIS10_VOLTAGE_CONTROL_BY_SVID2;
3021 3022
	}

3023 3024 3025 3026
	if (table_info->cac_dtp_table->usClockStretchAmount != 0)
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_ClockStretcher);

3027
	polaris10_set_features_platform_caps(hwmgr);
3028

3029
	polaris10_patch_voltage_workaround(hwmgr);
3030
	polaris10_init_dpm_defaults(hwmgr);
3031 3032

	/* Get leakage voltage based on leakage ID. */
3033
	result = polaris10_get_evv_voltages(hwmgr);
3034 3035 3036 3037 3038 3039

	if (result) {
		printk("Get EVV Voltage Failed.  Abort Driver loading!\n");
		return -1;
	}

3040 3041
	polaris10_complete_dependency_tables(hwmgr);
	polaris10_set_private_data_based_on_pptable(hwmgr);
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051

	/* Initalize Dynamic State Adjustment Rule Settings */
	result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr);

	if (0 == result) {
		struct cgs_system_info sys_info = {0};

		data->is_tlu_enabled = 0;

		hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
3052
							POLARIS10_MAX_HARDWARE_POWERLEVELS;
3053 3054
		hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
		hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
3055

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083

		if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
			temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
			switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
			case 0:
				temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
				break;
			case 1:
				temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
				break;
			case 2:
				temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
				break;
			case 3:
				temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
				break;
			case 4:
				temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
				break;
			default:
				PP_ASSERT_WITH_CODE(0,
				"Failed to setup PCC HW register! Wrong GPIO assigned for VDDC_PCC_GPIO_PINID!",
				);
				break;
			}
			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg);
		}

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
		if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 &&
			hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) {
			hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit =
				(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;

			hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit =
				(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;

			hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1;

			hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100;

			hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit =
				(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;

			hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1;

			table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ?
									(table_info->cac_dtp_table->usDefaultTargetOperatingTemp -50) : 0;

			table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
			table_info->cac_dtp_table->usOperatingTempStep = 1;
			table_info->cac_dtp_table->usOperatingTempHyst = 1;

			hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
				       hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;

			hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
				       hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;

			hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
				       table_info->cac_dtp_table->usOperatingTempMinLimit;

			hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
				       table_info->cac_dtp_table->usOperatingTempMaxLimit;

			hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
				       table_info->cac_dtp_table->usDefaultTargetOperatingTemp;

			hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
				       table_info->cac_dtp_table->usOperatingTempStep;

			hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
				       table_info->cac_dtp_table->usTargetOperatingTemp;
		}

3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
		sys_info.size = sizeof(struct cgs_system_info);
		sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
		result = cgs_query_system_info(hwmgr->device, &sys_info);
		if (result)
			data->pcie_gen_cap = 0x30007;
		else
			data->pcie_gen_cap = (uint32_t)sys_info.value;
		if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
			data->pcie_spc_cap = 20;
		sys_info.size = sizeof(struct cgs_system_info);
		sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
		result = cgs_query_system_info(hwmgr->device, &sys_info);
		if (result)
			data->pcie_lane_cap = 0x2f0000;
		else
			data->pcie_lane_cap = (uint32_t)sys_info.value;
3146 3147 3148 3149 3150

		hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
		hwmgr->platform_descriptor.clockStep.engineClock = 500;
		hwmgr->platform_descriptor.clockStep.memoryClock = 500;
3151 3152
	} else {
		/* Ignore return value in here, we are cleaning up a mess. */
3153
		polaris10_hwmgr_backend_fini(hwmgr);
3154 3155 3156 3157 3158
	}

	return 0;
}

3159
static int polaris10_force_dpm_highest(struct pp_hwmgr *hwmgr)
3160
{
3161
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
	uint32_t level, tmp;

	if (!data->pcie_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
			level = 0;
			tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
			while (tmp >>= 1)
				level++;

			if (level)
				smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
						PPSMC_MSG_PCIeDPM_ForceLevel, level);
		}
	}

	if (!data->sclk_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
			level = 0;
			tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
			while (tmp >>= 1)
				level++;

			if (level)
				smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
						PPSMC_MSG_SCLKDPM_SetEnabledMask,
						(1 << level));
		}
	}

	if (!data->mclk_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
			level = 0;
			tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
			while (tmp >>= 1)
				level++;

			if (level)
				smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
						PPSMC_MSG_MCLKDPM_SetEnabledMask,
						(1 << level));
		}
	}

	return 0;
}

3208
static int polaris10_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
3209
{
3210
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230

	phm_apply_dal_min_voltage_request(hwmgr);

	if (!data->sclk_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_SCLKDPM_SetEnabledMask,
					data->dpm_level_enable_mask.sclk_dpm_enable_mask);
	}

	if (!data->mclk_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask)
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_MCLKDPM_SetEnabledMask,
					data->dpm_level_enable_mask.mclk_dpm_enable_mask);
	}

	return 0;
}

3231
static int polaris10_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3232
{
3233
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3234

3235
	if (!polaris10_is_dpm_running(hwmgr))
3236 3237 3238 3239 3240 3241 3242
		return -EINVAL;

	if (!data->pcie_dpm_key_disabled) {
		smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_PCIeDPM_UnForceLevel);
	}

3243
	return polaris10_upload_dpm_level_enable_mask(hwmgr);
3244 3245
}

3246
static int polaris10_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3247
{
3248 3249
	struct polaris10_hwmgr *data =
			(struct polaris10_hwmgr *)(hwmgr->backend);
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
	uint32_t level;

	if (!data->sclk_dpm_key_disabled)
		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
			level = phm_get_lowest_enabled_level(hwmgr,
							      data->dpm_level_enable_mask.sclk_dpm_enable_mask);
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
							    PPSMC_MSG_SCLKDPM_SetEnabledMask,
							    (1 << level));

	}
3261

3262 3263 3264 3265 3266 3267 3268 3269 3270
	if (!data->mclk_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
			level = phm_get_lowest_enabled_level(hwmgr,
							      data->dpm_level_enable_mask.mclk_dpm_enable_mask);
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
							    PPSMC_MSG_MCLKDPM_SetEnabledMask,
							    (1 << level));
		}
	}
3271

3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
	if (!data->pcie_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
			level = phm_get_lowest_enabled_level(hwmgr,
							      data->dpm_level_enable_mask.pcie_dpm_enable_mask);
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
							    PPSMC_MSG_PCIeDPM_ForceLevel,
							    (level));
		}
	}

	return 0;

}
3285
static int polaris10_force_dpm_level(struct pp_hwmgr *hwmgr,
3286 3287 3288 3289 3290 3291
				enum amd_dpm_forced_level level)
{
	int ret = 0;

	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
3292
		ret = polaris10_force_dpm_highest(hwmgr);
3293 3294 3295 3296
		if (ret)
			return ret;
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
3297
		ret = polaris10_force_dpm_lowest(hwmgr);
3298 3299 3300 3301
		if (ret)
			return ret;
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
3302
		ret = polaris10_unforce_dpm_levels(hwmgr);
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
		if (ret)
			return ret;
		break;
	default:
		break;
	}

	hwmgr->dpm_level = level;

	return ret;
}

3315
static int polaris10_get_power_state_size(struct pp_hwmgr *hwmgr)
3316
{
3317
	return sizeof(struct polaris10_power_state);
3318 3319 3320
}


3321
static int polaris10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3322 3323 3324 3325
				struct pp_power_state *request_ps,
			const struct pp_power_state *current_ps)
{

3326 3327
	struct polaris10_power_state *polaris10_ps =
				cast_phw_polaris10_power_state(&request_ps->hardware);
3328 3329 3330 3331 3332 3333 3334 3335
	uint32_t sclk;
	uint32_t mclk;
	struct PP_Clocks minimum_clocks = {0};
	bool disable_mclk_switching;
	bool disable_mclk_switching_for_frame_lock;
	struct cgs_display_info info = {0};
	const struct phm_clock_and_voltage_limits *max_limits;
	uint32_t i;
3336
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3337 3338 3339 3340 3341 3342 3343 3344
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	int32_t count;
	int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;

	data->battery_state = (PP_StateUILabel_Battery ==
			request_ps->classification.ui_label);

3345
	PP_ASSERT_WITH_CODE(polaris10_ps->performance_level_count == 2,
3346 3347 3348 3349 3350 3351 3352 3353 3354
				 "VI should always have 2 performance levels",
				);

	max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
			&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
			&(hwmgr->dyn_state.max_clock_voltage_on_dc);

	/* Cap clock DPM tables at DC MAX if it is in DC. */
	if (PP_PowerSource_DC == hwmgr->power_source) {
3355 3356 3357 3358 3359
		for (i = 0; i < polaris10_ps->performance_level_count; i++) {
			if (polaris10_ps->performance_levels[i].memory_clock > max_limits->mclk)
				polaris10_ps->performance_levels[i].memory_clock = max_limits->mclk;
			if (polaris10_ps->performance_levels[i].engine_clock > max_limits->sclk)
				polaris10_ps->performance_levels[i].engine_clock = max_limits->sclk;
3360 3361 3362
		}
	}

3363 3364
	polaris10_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk;
	polaris10_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk;
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401

	cgs_get_active_displays_info(hwmgr->device, &info);

	/*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/

	/* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_StablePState)) {
		max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
		stable_pstate_sclk = (max_limits->sclk * 75) / 100;

		for (count = table_info->vdd_dep_on_sclk->count - 1;
				count >= 0; count--) {
			if (stable_pstate_sclk >=
					table_info->vdd_dep_on_sclk->entries[count].clk) {
				stable_pstate_sclk =
						table_info->vdd_dep_on_sclk->entries[count].clk;
				break;
			}
		}

		if (count < 0)
			stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;

		stable_pstate_mclk = max_limits->mclk;

		minimum_clocks.engineClock = stable_pstate_sclk;
		minimum_clocks.memoryClock = stable_pstate_mclk;
	}

	if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
		minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;

	if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
		minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;

3402
	polaris10_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
3403 3404 3405 3406 3407 3408 3409 3410 3411

	if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
		PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <=
				hwmgr->platform_descriptor.overdriveLimit.engineClock),
				"Overdrive sclk exceeds limit",
				hwmgr->gfx_arbiter.sclk_over_drive =
						hwmgr->platform_descriptor.overdriveLimit.engineClock);

		if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
3412
			polaris10_ps->performance_levels[1].engine_clock =
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
					hwmgr->gfx_arbiter.sclk_over_drive;
	}

	if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
		PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <=
				hwmgr->platform_descriptor.overdriveLimit.memoryClock),
				"Overdrive mclk exceeds limit",
				hwmgr->gfx_arbiter.mclk_over_drive =
						hwmgr->platform_descriptor.overdriveLimit.memoryClock);

		if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
3424
			polaris10_ps->performance_levels[1].memory_clock =
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
					hwmgr->gfx_arbiter.mclk_over_drive;
	}

	disable_mclk_switching_for_frame_lock = phm_cap_enabled(
				    hwmgr->platform_descriptor.platformCaps,
				    PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);

	disable_mclk_switching = (1 < info.display_count) ||
				    disable_mclk_switching_for_frame_lock;

3435 3436
	sclk = polaris10_ps->performance_levels[0].engine_clock;
	mclk = polaris10_ps->performance_levels[0].memory_clock;
3437 3438

	if (disable_mclk_switching)
3439 3440
		mclk = polaris10_ps->performance_levels
		[polaris10_ps->performance_level_count - 1].memory_clock;
3441 3442 3443 3444 3445 3446 3447 3448 3449

	if (sclk < minimum_clocks.engineClock)
		sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
				max_limits->sclk : minimum_clocks.engineClock;

	if (mclk < minimum_clocks.memoryClock)
		mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
				max_limits->mclk : minimum_clocks.memoryClock;

3450 3451
	polaris10_ps->performance_levels[0].engine_clock = sclk;
	polaris10_ps->performance_levels[0].memory_clock = mclk;
3452

3453 3454 3455 3456 3457
	polaris10_ps->performance_levels[1].engine_clock =
		(polaris10_ps->performance_levels[1].engine_clock >=
				polaris10_ps->performance_levels[0].engine_clock) ?
						polaris10_ps->performance_levels[1].engine_clock :
						polaris10_ps->performance_levels[0].engine_clock;
3458 3459

	if (disable_mclk_switching) {
3460 3461
		if (mclk < polaris10_ps->performance_levels[1].memory_clock)
			mclk = polaris10_ps->performance_levels[1].memory_clock;
3462

3463 3464
		polaris10_ps->performance_levels[0].memory_clock = mclk;
		polaris10_ps->performance_levels[1].memory_clock = mclk;
3465
	} else {
3466 3467 3468 3469
		if (polaris10_ps->performance_levels[1].memory_clock <
				polaris10_ps->performance_levels[0].memory_clock)
			polaris10_ps->performance_levels[1].memory_clock =
					polaris10_ps->performance_levels[0].memory_clock;
3470 3471 3472 3473
	}

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_StablePState)) {
3474 3475 3476 3477 3478
		for (i = 0; i < polaris10_ps->performance_level_count; i++) {
			polaris10_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
			polaris10_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
			polaris10_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
			polaris10_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
3479 3480 3481 3482 3483 3484
		}
	}
	return 0;
}


3485
static int polaris10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3486 3487
{
	struct pp_power_state  *ps;
3488
	struct polaris10_power_state  *polaris10_ps;
3489 3490 3491 3492 3493 3494 3495 3496 3497

	if (hwmgr == NULL)
		return -EINVAL;

	ps = hwmgr->request_ps;

	if (ps == NULL)
		return -EINVAL;

3498
	polaris10_ps = cast_phw_polaris10_power_state(&ps->hardware);
3499 3500

	if (low)
3501
		return polaris10_ps->performance_levels[0].memory_clock;
3502
	else
3503 3504
		return polaris10_ps->performance_levels
				[polaris10_ps->performance_level_count-1].memory_clock;
3505 3506
}

3507
static int polaris10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3508 3509
{
	struct pp_power_state  *ps;
3510
	struct polaris10_power_state  *polaris10_ps;
3511 3512 3513 3514 3515 3516 3517 3518 3519

	if (hwmgr == NULL)
		return -EINVAL;

	ps = hwmgr->request_ps;

	if (ps == NULL)
		return -EINVAL;

3520
	polaris10_ps = cast_phw_polaris10_power_state(&ps->hardware);
3521 3522

	if (low)
3523
		return polaris10_ps->performance_levels[0].engine_clock;
3524
	else
3525 3526
		return polaris10_ps->performance_levels
				[polaris10_ps->performance_level_count-1].engine_clock;
3527 3528
}

3529
static int polaris10_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
3530 3531
					struct pp_hw_power_state *hw_ps)
{
3532 3533
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_power_state *ps = (struct polaris10_power_state *)hw_ps;
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
	ATOM_FIRMWARE_INFO_V2_2 *fw_info;
	uint16_t size;
	uint8_t frev, crev;
	int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);

	/* First retrieve the Boot clocks and VDDC from the firmware info table.
	 * We assume here that fw_info is unchanged if this call fails.
	 */
	fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
			hwmgr->device, index,
			&size, &frev, &crev);
	if (!fw_info)
		/* During a test, there is no firmware info table. */
		return 0;

	/* Patch the state. */
	data->vbios_boot_state.sclk_bootup_value =
			le32_to_cpu(fw_info->ulDefaultEngineClock);
	data->vbios_boot_state.mclk_bootup_value =
			le32_to_cpu(fw_info->ulDefaultMemoryClock);
	data->vbios_boot_state.mvdd_bootup_value =
			le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
	data->vbios_boot_state.vddc_bootup_value =
			le16_to_cpu(fw_info->usBootUpVDDCVoltage);
	data->vbios_boot_state.vddci_bootup_value =
			le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
	data->vbios_boot_state.pcie_gen_bootup_value =
			phm_get_current_pcie_speed(hwmgr);

	data->vbios_boot_state.pcie_lane_bootup_value =
			(uint16_t)phm_get_current_pcie_lane_number(hwmgr);

	/* set boot power state */
	ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
	ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
	ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
	ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;

	return 0;
}

3575
static int polaris10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
3576 3577 3578
		void *state, struct pp_power_state *power_state,
		void *pp_table, uint32_t classification_flag)
{
3579 3580 3581 3582
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_power_state  *polaris10_power_state =
			(struct polaris10_power_state *)(&(power_state->hardware));
	struct polaris10_performance_level *performance_level;
3583 3584 3585
	ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
	ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
			(ATOM_Tonga_POWERPLAYTABLE *)pp_table;
3586 3587
	PPTable_Generic_SubTable_Header *sclk_dep_table =
			(PPTable_Generic_SubTable_Header *)
3588 3589
			(((unsigned long)powerplay_table) +
				le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
3590

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
	ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
			(ATOM_Tonga_MCLK_Dependency_Table *)
			(((unsigned long)powerplay_table) +
				le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));

	/* The following fields are not initialized here: id orderedList allStatesList */
	power_state->classification.ui_label =
			(le16_to_cpu(state_entry->usClassification) &
			ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
			ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
	power_state->classification.flags = classification_flag;
	/* NOTE: There is a classification2 flag in BIOS that is not being used right now */

	power_state->classification.temporary_state = false;
	power_state->classification.to_be_deleted = false;

	power_state->validation.disallowOnDC =
			(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
					ATOM_Tonga_DISALLOW_ON_DC));

	power_state->pcie.lanes = 0;

	power_state->display.disableFrameModulation = false;
	power_state->display.limitRefreshrate = false;
	power_state->display.enableVariBright =
			(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
					ATOM_Tonga_ENABLE_VARIBRIGHT));

	power_state->validation.supportedPowerLevels = 0;
	power_state->uvd_clocks.VCLK = 0;
	power_state->uvd_clocks.DCLK = 0;
	power_state->temperatures.min = 0;
	power_state->temperatures.max = 0;

3625 3626
	performance_level = &(polaris10_power_state->performance_levels
			[polaris10_power_state->performance_level_count++]);
3627 3628

	PP_ASSERT_WITH_CODE(
3629
			(polaris10_power_state->performance_level_count < SMU74_MAX_LEVELS_GRAPHICS),
3630 3631 3632 3633
			"Performance levels exceeds SMC limit!",
			return -1);

	PP_ASSERT_WITH_CODE(
3634
			(polaris10_power_state->performance_level_count <=
3635 3636 3637 3638 3639 3640 3641
					hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
			"Performance levels exceeds Driver limit!",
			return -1);

	/* Performance levels are arranged from low to high. */
	performance_level->memory_clock = mclk_dep_table->entries
			[state_entry->ucMemoryClockIndexLow].ulMclk;
3642 3643 3644 3645 3646
	if (sclk_dep_table->ucRevId == 0)
		performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
			[state_entry->ucEngineClockIndexLow].ulSclk;
	else if (sclk_dep_table->ucRevId == 1)
		performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3647 3648 3649 3650 3651 3652
			[state_entry->ucEngineClockIndexLow].ulSclk;
	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
			state_entry->ucPCIEGenLow);
	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
			state_entry->ucPCIELaneHigh);

3653 3654
	performance_level = &(polaris10_power_state->performance_levels
			[polaris10_power_state->performance_level_count++]);
3655 3656
	performance_level->memory_clock = mclk_dep_table->entries
			[state_entry->ucMemoryClockIndexHigh].ulMclk;
3657 3658 3659 3660 3661 3662

	if (sclk_dep_table->ucRevId == 0)
		performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
			[state_entry->ucEngineClockIndexHigh].ulSclk;
	else if (sclk_dep_table->ucRevId == 1)
		performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3663
			[state_entry->ucEngineClockIndexHigh].ulSclk;
3664

3665 3666 3667 3668 3669 3670 3671 3672
	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
			state_entry->ucPCIEGenHigh);
	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
			state_entry->ucPCIELaneHigh);

	return 0;
}

3673
static int polaris10_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3674 3675 3676
		unsigned long entry_index, struct pp_power_state *state)
{
	int result;
3677 3678
	struct polaris10_power_state *ps;
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3679 3680 3681 3682 3683 3684 3685
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
			table_info->vdd_dep_on_mclk;

	state->hardware.magic = PHM_VIslands_Magic;

3686
	ps = (struct polaris10_power_state *)(&state->hardware);
3687 3688

	result = tonga_get_powerplay_table_entry(hwmgr, entry_index, state,
3689
			polaris10_get_pp_table_entry_callback_func);
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

	/* This is the earliest time we have all the dependency table and the VBIOS boot state
	 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
	 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
	 */
	if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
		if (dep_mclk_table->entries[0].clk !=
				data->vbios_boot_state.mclk_bootup_value)
			printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
					"does not match VBIOS boot MCLK level");
		if (dep_mclk_table->entries[0].vddci !=
				data->vbios_boot_state.vddci_bootup_value)
			printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
					"does not match VBIOS boot VDDCI level");
	}

	/* set DC compatible flag if this state supports DC */
	if (!state->validation.disallowOnDC)
		ps->dc_compatible = true;

	if (state->classification.flags & PP_StateClassificationFlag_ACPI)
		data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;

	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;

	if (!result) {
		uint32_t i;

		switch (state->classification.ui_label) {
		case PP_StateUILabel_Performance:
			data->use_pcie_performance_levels = true;
			for (i = 0; i < ps->performance_level_count; i++) {
				if (data->pcie_gen_performance.max <
						ps->performance_levels[i].pcie_gen)
					data->pcie_gen_performance.max =
							ps->performance_levels[i].pcie_gen;

				if (data->pcie_gen_performance.min >
						ps->performance_levels[i].pcie_gen)
					data->pcie_gen_performance.min =
							ps->performance_levels[i].pcie_gen;

				if (data->pcie_lane_performance.max <
						ps->performance_levels[i].pcie_lane)
					data->pcie_lane_performance.max =
							ps->performance_levels[i].pcie_lane;
				if (data->pcie_lane_performance.min >
						ps->performance_levels[i].pcie_lane)
					data->pcie_lane_performance.min =
							ps->performance_levels[i].pcie_lane;
			}
			break;
		case PP_StateUILabel_Battery:
			data->use_pcie_power_saving_levels = true;

			for (i = 0; i < ps->performance_level_count; i++) {
				if (data->pcie_gen_power_saving.max <
						ps->performance_levels[i].pcie_gen)
					data->pcie_gen_power_saving.max =
							ps->performance_levels[i].pcie_gen;

				if (data->pcie_gen_power_saving.min >
						ps->performance_levels[i].pcie_gen)
					data->pcie_gen_power_saving.min =
							ps->performance_levels[i].pcie_gen;

				if (data->pcie_lane_power_saving.max <
						ps->performance_levels[i].pcie_lane)
					data->pcie_lane_power_saving.max =
							ps->performance_levels[i].pcie_lane;

				if (data->pcie_lane_power_saving.min >
						ps->performance_levels[i].pcie_lane)
					data->pcie_lane_power_saving.min =
							ps->performance_levels[i].pcie_lane;
			}
			break;
		default:
			break;
		}
	}
	return 0;
}

static void
3776
polaris10_print_current_perforce_level(struct pp_hwmgr *hwmgr, struct seq_file *m)
3777
{
3778 3779 3780
	uint32_t sclk, mclk, activity_percent;
	uint32_t offset;
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790

	smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);

	sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);

	smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);

	mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
	seq_printf(m, "\n [  mclk  ]: %u MHz\n\n [  sclk  ]: %u MHz\n",
			mclk / 100, sclk / 100);
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801

	offset = data->soft_regs_start + offsetof(SMU74_SoftRegisters, AverageGraphicsActivity);
	activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
	activity_percent += 0x80;
	activity_percent >>= 8;

	seq_printf(m, "\n [GPU load]: %u%%\n\n", activity_percent > 100 ? 100 : activity_percent);

	seq_printf(m, "uvd    %sabled\n", data->uvd_power_gated ? "dis" : "en");

	seq_printf(m, "vce    %sabled\n", data->vce_power_gated ? "dis" : "en");
3802 3803
}

3804
static int polaris10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
3805 3806 3807
{
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
3808 3809 3810 3811 3812 3813 3814 3815 3816
	const struct polaris10_power_state *polaris10_ps =
			cast_const_phw_polaris10_power_state(states->pnew_state);
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
	uint32_t sclk = polaris10_ps->performance_levels
			[polaris10_ps->performance_level_count - 1].engine_clock;
	struct polaris10_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
	uint32_t mclk = polaris10_ps->performance_levels
			[polaris10_ps->performance_level_count - 1].memory_clock;
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
	struct PP_Clocks min_clocks = {0};
	uint32_t i;
	struct cgs_display_info info = {0};

	data->need_update_smu7_dpm_table = 0;

	for (i = 0; i < sclk_table->count; i++) {
		if (sclk == sclk_table->dpm_levels[i].value)
			break;
	}

	if (i >= sclk_table->count)
		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
	else {
	/* TODO: Check SCLK in DAL's minimum clocks
	 * in case DeepSleep divider update is required.
	 */
3834 3835 3836
		if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR &&
			(min_clocks.engineClockInSR >= POLARIS10_MINIMUM_ENGINE_CLOCK ||
				data->display_timing.min_clock_in_sr >= POLARIS10_MINIMUM_ENGINE_CLOCK))
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
			data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
	}

	for (i = 0; i < mclk_table->count; i++) {
		if (mclk == mclk_table->dpm_levels[i].value)
			break;
	}

	if (i >= mclk_table->count)
		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;

	cgs_get_active_displays_info(hwmgr->device, &info);

	if (data->display_timing.num_existing_displays != info.display_count)
		data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;

	return 0;
}

3856 3857
static uint16_t polaris10_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
		const struct polaris10_power_state *polaris10_ps)
3858 3859 3860
{
	uint32_t i;
	uint32_t sclk, max_sclk = 0;
3861 3862
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_dpm_table *dpm_table = &data->dpm_table;
3863

3864 3865
	for (i = 0; i < polaris10_ps->performance_level_count; i++) {
		sclk = polaris10_ps->performance_levels[i].engine_clock;
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
		if (max_sclk < sclk)
			max_sclk = sclk;
	}

	for (i = 0; i < dpm_table->sclk_table.count; i++) {
		if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
			return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
					dpm_table->pcie_speed_table.dpm_levels
					[dpm_table->pcie_speed_table.count - 1].value :
					dpm_table->pcie_speed_table.dpm_levels[i].value);
	}

	return 0;
}

3881
static int polaris10_request_link_speed_change_before_state_change(
3882 3883 3884 3885
		struct pp_hwmgr *hwmgr, const void *input)
{
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
3886 3887 3888 3889 3890
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	const struct polaris10_power_state *polaris10_nps =
			cast_const_phw_polaris10_power_state(states->pnew_state);
	const struct polaris10_power_state *polaris10_cps =
			cast_const_phw_polaris10_power_state(states->pcurrent_state);
3891

3892
	uint16_t target_link_speed = polaris10_get_maximum_link_speed(hwmgr, polaris10_nps);
3893 3894 3895
	uint16_t current_link_speed;

	if (data->force_pcie_gen == PP_PCIEGenInvalid)
3896
		current_link_speed = polaris10_get_maximum_link_speed(hwmgr, polaris10_cps);
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
	else
		current_link_speed = data->force_pcie_gen;

	data->force_pcie_gen = PP_PCIEGenInvalid;
	data->pspp_notify_required = false;

	if (target_link_speed > current_link_speed) {
		switch (target_link_speed) {
		case PP_PCIEGen3:
			if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
				break;
			data->force_pcie_gen = PP_PCIEGen2;
			if (current_link_speed == PP_PCIEGen2)
				break;
		case PP_PCIEGen2:
			if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
				break;
		default:
			data->force_pcie_gen = phm_get_current_pcie_speed(hwmgr);
			break;
		}
	} else {
		if (target_link_speed < current_link_speed)
			data->pspp_notify_required = true;
	}

	return 0;
}

3926
static int polaris10_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3927
{
3928
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3929 3930 3931 3932 3933 3934 3935

	if (0 == data->need_update_smu7_dpm_table)
		return 0;

	if ((0 == data->sclk_dpm_key_disabled) &&
		(data->need_update_smu7_dpm_table &
			(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
3936
		PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr),
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
				"Trying to freeze SCLK DPM when DPM is disabled",
				);
		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_SCLKDPM_FreezeLevel),
				"Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
				return -1);
	}

	if ((0 == data->mclk_dpm_key_disabled) &&
		(data->need_update_smu7_dpm_table &
		 DPMTABLE_OD_UPDATE_MCLK)) {
3948
		PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr),
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
				"Trying to freeze MCLK DPM when DPM is disabled",
				);
		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_MCLKDPM_FreezeLevel),
				"Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
				return -1);
	}

	return 0;
}

3960
static int polaris10_populate_and_upload_sclk_mclk_dpm_levels(
3961 3962 3963 3964 3965
		struct pp_hwmgr *hwmgr, const void *input)
{
	int result = 0;
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
	const struct polaris10_power_state *polaris10_ps =
			cast_const_phw_polaris10_power_state(states->pnew_state);
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	uint32_t sclk = polaris10_ps->performance_levels
			[polaris10_ps->performance_level_count - 1].engine_clock;
	uint32_t mclk = polaris10_ps->performance_levels
			[polaris10_ps->performance_level_count - 1].memory_clock;
	struct polaris10_dpm_table *dpm_table = &data->dpm_table;

	struct polaris10_dpm_table *golden_dpm_table = &data->golden_dpm_table;
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
	uint32_t dpm_count, clock_percent;
	uint32_t i;

	if (0 == data->need_update_smu7_dpm_table)
		return 0;

	if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
		dpm_table->sclk_table.dpm_levels
		[dpm_table->sclk_table.count - 1].value = sclk;

		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
		    phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
		/* Need to do calculation based on the golden DPM table
		 * as the Heatmap GPU Clock axis is also based on the default values
		 */
			PP_ASSERT_WITH_CODE(
				(golden_dpm_table->sclk_table.dpm_levels
						[golden_dpm_table->sclk_table.count - 1].value != 0),
				"Divide by 0!",
				return -1);
			dpm_count = dpm_table->sclk_table.count < 2 ? 0 : dpm_table->sclk_table.count - 2;

			for (i = dpm_count; i > 1; i--) {
				if (sclk > golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value) {
					clock_percent =
					      ((sclk
						- golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value
						) * 100)
						/ golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value;

					dpm_table->sclk_table.dpm_levels[i].value =
							golden_dpm_table->sclk_table.dpm_levels[i].value +
							(golden_dpm_table->sclk_table.dpm_levels[i].value *
								clock_percent)/100;

				} else if (golden_dpm_table->sclk_table.dpm_levels[dpm_table->sclk_table.count-1].value > sclk) {
					clock_percent =
						((golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value
						- sclk) * 100)
						/ golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value;

					dpm_table->sclk_table.dpm_levels[i].value =
							golden_dpm_table->sclk_table.dpm_levels[i].value -
							(golden_dpm_table->sclk_table.dpm_levels[i].value *
									clock_percent) / 100;
				} else
					dpm_table->sclk_table.dpm_levels[i].value =
							golden_dpm_table->sclk_table.dpm_levels[i].value;
			}
		}
	}

	if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
		dpm_table->mclk_table.dpm_levels
			[dpm_table->mclk_table.count - 1].value = mclk;

		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
		    phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {

			PP_ASSERT_WITH_CODE(
					(golden_dpm_table->mclk_table.dpm_levels
						[golden_dpm_table->mclk_table.count-1].value != 0),
					"Divide by 0!",
					return -1);
			dpm_count = dpm_table->mclk_table.count < 2 ? 0 : dpm_table->mclk_table.count - 2;
			for (i = dpm_count; i > 1; i--) {
				if (golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value < mclk) {
					clock_percent = ((mclk -
					golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value) * 100)
					/ golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value;

					dpm_table->mclk_table.dpm_levels[i].value =
							golden_dpm_table->mclk_table.dpm_levels[i].value +
							(golden_dpm_table->mclk_table.dpm_levels[i].value *
							clock_percent) / 100;

				} else if (golden_dpm_table->mclk_table.dpm_levels[dpm_table->mclk_table.count-1].value > mclk) {
					clock_percent = (
					 (golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value - mclk)
					* 100)
					/ golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value;

					dpm_table->mclk_table.dpm_levels[i].value =
							golden_dpm_table->mclk_table.dpm_levels[i].value -
							(golden_dpm_table->mclk_table.dpm_levels[i].value *
									clock_percent) / 100;
				} else
					dpm_table->mclk_table.dpm_levels[i].value =
							golden_dpm_table->mclk_table.dpm_levels[i].value;
			}
		}
	}

	if (data->need_update_smu7_dpm_table &
			(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
4071
		result = polaris10_populate_all_graphic_levels(hwmgr);
4072 4073 4074 4075 4076 4077 4078 4079
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
				return result);
	}

	if (data->need_update_smu7_dpm_table &
			(DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
		/*populate MCLK dpm table to SMU7 */
4080
		result = polaris10_populate_all_memory_levels(hwmgr);
4081 4082 4083 4084 4085 4086 4087 4088
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
				return result);
	}

	return result;
}

4089 4090
static int polaris10_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
			  struct polaris10_single_dpm_table *dpm_table,
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
			uint32_t low_limit, uint32_t high_limit)
{
	uint32_t i;

	for (i = 0; i < dpm_table->count; i++) {
		if ((dpm_table->dpm_levels[i].value < low_limit)
		|| (dpm_table->dpm_levels[i].value > high_limit))
			dpm_table->dpm_levels[i].enabled = false;
		else
			dpm_table->dpm_levels[i].enabled = true;
	}

	return 0;
}

4106 4107
static int polaris10_trim_dpm_states(struct pp_hwmgr *hwmgr,
		const struct polaris10_power_state *polaris10_ps)
4108 4109
{
	int result = 0;
4110
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4111 4112
	uint32_t high_limit_count;

4113
	PP_ASSERT_WITH_CODE((polaris10_ps->performance_level_count >= 1),
4114 4115 4116
			"power state did not have any performance level",
			return -1);

4117
	high_limit_count = (1 == polaris10_ps->performance_level_count) ? 0 : 1;
4118

4119
	polaris10_trim_single_dpm_states(hwmgr,
4120
			&(data->dpm_table.sclk_table),
4121 4122
			polaris10_ps->performance_levels[0].engine_clock,
			polaris10_ps->performance_levels[high_limit_count].engine_clock);
4123

4124
	polaris10_trim_single_dpm_states(hwmgr,
4125
			&(data->dpm_table.mclk_table),
4126 4127
			polaris10_ps->performance_levels[0].memory_clock,
			polaris10_ps->performance_levels[high_limit_count].memory_clock);
4128 4129 4130 4131

	return result;
}

4132
static int polaris10_generate_dpm_level_enable_mask(
4133 4134 4135 4136 4137
		struct pp_hwmgr *hwmgr, const void *input)
{
	int result;
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
4138 4139 4140
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	const struct polaris10_power_state *polaris10_ps =
			cast_const_phw_polaris10_power_state(states->pnew_state);
4141

4142
	result = polaris10_trim_dpm_states(hwmgr, polaris10_ps);
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
	if (result)
		return result;

	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
	data->dpm_level_enable_mask.mclk_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);

	return 0;
}

4156
int polaris10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4157 4158
{
	return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
4159 4160 4161 4162
			PPSMC_MSG_UVDDPM_Enable :
			PPSMC_MSG_UVDDPM_Disable);
}

4163
int polaris10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
4164 4165
{
	return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4166 4167 4168 4169
			PPSMC_MSG_VCEDPM_Enable :
			PPSMC_MSG_VCEDPM_Disable);
}

4170
int polaris10_enable_disable_samu_dpm(struct pp_hwmgr *hwmgr, bool enable)
4171 4172 4173 4174 4175 4176
{
	return smum_send_msg_to_smc(hwmgr->smumgr, enable?
			PPSMC_MSG_SAMUDPM_Enable :
			PPSMC_MSG_SAMUDPM_Disable);
}

4177
int polaris10_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4178
{
4179
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
	uint32_t mm_boot_level_offset, mm_boot_level_value;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	if (!bgate) {
		data->smc_state_table.UvdBootLevel = 0;
		if (table_info->mm_dep_table->count > 0)
			data->smc_state_table.UvdBootLevel =
					(uint8_t) (table_info->mm_dep_table->count - 1);
		mm_boot_level_offset = data->dpm_table_start +
				offsetof(SMU74_Discrete_DpmTable, UvdBootLevel);
		mm_boot_level_offset /= 4;
		mm_boot_level_offset *= 4;
		mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
				CGS_IND_REG__SMC, mm_boot_level_offset);
		mm_boot_level_value &= 0x00FFFFFF;
		mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24;
		cgs_write_ind_register(hwmgr->device,
				CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);

		if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_UVDDPM) ||
			phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_StablePState))
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_UVDDPM_SetEnabledMask,
					(uint32_t)(1 << data->smc_state_table.UvdBootLevel));
	}

4209
	return polaris10_enable_disable_uvd_dpm(hwmgr, !bgate);
4210 4211
}

4212
static int polaris10_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
4213 4214 4215
{
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
4216 4217 4218 4219 4220
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	const struct polaris10_power_state *polaris10_nps =
			cast_const_phw_polaris10_power_state(states->pnew_state);
	const struct polaris10_power_state *polaris10_cps =
			cast_const_phw_polaris10_power_state(states->pcurrent_state);
4221 4222 4223 4224 4225

	uint32_t mm_boot_level_offset, mm_boot_level_value;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

4226 4227
	if (polaris10_nps->vce_clks.evclk > 0 &&
	(polaris10_cps == NULL || polaris10_cps->vce_clks.evclk == 0)) {
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247

		data->smc_state_table.VceBootLevel =
				(uint8_t) (table_info->mm_dep_table->count - 1);

		mm_boot_level_offset = data->dpm_table_start +
				offsetof(SMU74_Discrete_DpmTable, VceBootLevel);
		mm_boot_level_offset /= 4;
		mm_boot_level_offset *= 4;
		mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
				CGS_IND_REG__SMC, mm_boot_level_offset);
		mm_boot_level_value &= 0xFF00FFFF;
		mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
		cgs_write_ind_register(hwmgr->device,
				CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);

		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_VCEDPM_SetEnabledMask,
					(uint32_t)1 << data->smc_state_table.VceBootLevel);

4248 4249 4250 4251 4252
			polaris10_enable_disable_vce_dpm(hwmgr, true);
		} else if (polaris10_nps->vce_clks.evclk == 0 &&
				polaris10_cps != NULL &&
				polaris10_cps->vce_clks.evclk > 0)
			polaris10_enable_disable_vce_dpm(hwmgr, false);
4253 4254 4255 4256 4257
	}

	return 0;
}

4258
int polaris10_update_samu_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4259
{
4260
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4261 4262 4263
	uint32_t mm_boot_level_offset, mm_boot_level_value;

	if (!bgate) {
4264
		data->smc_state_table.SamuBootLevel = 0;
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
		mm_boot_level_offset = data->dpm_table_start +
				offsetof(SMU74_Discrete_DpmTable, SamuBootLevel);
		mm_boot_level_offset /= 4;
		mm_boot_level_offset *= 4;
		mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
				CGS_IND_REG__SMC, mm_boot_level_offset);
		mm_boot_level_value &= 0xFFFFFF00;
		mm_boot_level_value |= data->smc_state_table.SamuBootLevel << 0;
		cgs_write_ind_register(hwmgr->device,
				CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);

		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_StablePState))
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_SAMUDPM_SetEnabledMask,
					(uint32_t)(1 << data->smc_state_table.SamuBootLevel));
	}

4283
	return polaris10_enable_disable_samu_dpm(hwmgr, !bgate);
4284 4285
}

4286
static int polaris10_update_sclk_threshold(struct pp_hwmgr *hwmgr)
4287
{
4288
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303

	int result = 0;
	uint32_t low_sclk_interrupt_threshold = 0;

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SclkThrottleLowNotification)
		&& (hwmgr->gfx_arbiter.sclk_threshold !=
				data->low_sclk_interrupt_threshold)) {
		data->low_sclk_interrupt_threshold =
				hwmgr->gfx_arbiter.sclk_threshold;
		low_sclk_interrupt_threshold =
				data->low_sclk_interrupt_threshold;

		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);

4304
		result = polaris10_copy_bytes_to_smc(
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
				hwmgr->smumgr,
				data->dpm_table_start +
				offsetof(SMU74_Discrete_DpmTable,
					LowSclkInterruptThreshold),
				(uint8_t *)&low_sclk_interrupt_threshold,
				sizeof(uint32_t),
				data->sram_end);
	}

	return result;
}

4317
static int polaris10_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
4318
{
4319
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4320 4321 4322

	if (data->need_update_smu7_dpm_table &
		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
4323
		return polaris10_program_memory_timing_parameters(hwmgr);
4324 4325 4326 4327

	return 0;
}

4328
static int polaris10_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4329
{
4330
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4331 4332 4333 4334 4335 4336 4337 4338

	if (0 == data->need_update_smu7_dpm_table)
		return 0;

	if ((0 == data->sclk_dpm_key_disabled) &&
		(data->need_update_smu7_dpm_table &
		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {

4339
		PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr),
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
				"Trying to Unfreeze SCLK DPM when DPM is disabled",
				);
		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_SCLKDPM_UnfreezeLevel),
			"Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
			return -1);
	}

	if ((0 == data->mclk_dpm_key_disabled) &&
		(data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {

4351
		PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr),
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
				"Trying to Unfreeze MCLK DPM when DPM is disabled",
				);
		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_SCLKDPM_UnfreezeLevel),
		    "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
		    return -1);
	}

	data->need_update_smu7_dpm_table = 0;

	return 0;
}

4365
static int polaris10_notify_link_speed_change_after_state_change(
4366 4367 4368 4369
		struct pp_hwmgr *hwmgr, const void *input)
{
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
4370 4371 4372 4373
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	const struct polaris10_power_state *polaris10_ps =
			cast_const_phw_polaris10_power_state(states->pnew_state);
	uint16_t target_link_speed = polaris10_get_maximum_link_speed(hwmgr, polaris10_ps);
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
	uint8_t  request;

	if (data->pspp_notify_required) {
		if (target_link_speed == PP_PCIEGen3)
			request = PCIE_PERF_REQ_GEN3;
		else if (target_link_speed == PP_PCIEGen2)
			request = PCIE_PERF_REQ_GEN2;
		else
			request = PCIE_PERF_REQ_GEN1;

		if (request == PCIE_PERF_REQ_GEN1 &&
				phm_get_current_pcie_speed(hwmgr) > 0)
			return 0;

		if (acpi_pcie_perf_request(hwmgr->device, request, false)) {
			if (PP_PCIEGen2 == target_link_speed)
				printk("PSPP request to switch to Gen2 from Gen3 Failed!");
			else
				printk("PSPP request to switch to Gen1 from Gen2 Failed!");
		}
	}

	return 0;
}

R
Rex Zhu 已提交
4399 4400 4401 4402 4403 4404 4405 4406 4407
static int polaris10_notify_smc_display(struct pp_hwmgr *hwmgr)
{
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);

	smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
		(PPSMC_Msg)PPSMC_MSG_SetVBITimeout, data->frame_time_x2);
	return (smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)PPSMC_HasDisplay) == 0) ?  0 : -EINVAL;
}

4408
static int polaris10_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
4409 4410
{
	int tmp_result, result = 0;
4411
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4412

4413
	tmp_result = polaris10_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
4414 4415 4416 4417 4418 4419 4420
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to find DPM states clocks in DPM table!",
			result = tmp_result);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_PCIEPerformanceRequest)) {
		tmp_result =
4421
			polaris10_request_link_speed_change_before_state_change(hwmgr, input);
4422 4423 4424 4425 4426
		PP_ASSERT_WITH_CODE((0 == tmp_result),
				"Failed to request link speed change before state change!",
				result = tmp_result);
	}

4427
	tmp_result = polaris10_freeze_sclk_mclk_dpm(hwmgr);
4428 4429 4430
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to freeze SCLK MCLK DPM!", result = tmp_result);

4431
	tmp_result = polaris10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
4432 4433 4434 4435
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to populate and upload SCLK MCLK DPM levels!",
			result = tmp_result);

4436
	tmp_result = polaris10_generate_dpm_level_enable_mask(hwmgr, input);
4437 4438 4439 4440
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to generate DPM level enabled mask!",
			result = tmp_result);

4441
	tmp_result = polaris10_update_vce_dpm(hwmgr, input);
4442 4443 4444 4445
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to update VCE DPM!",
			result = tmp_result);

4446
	tmp_result = polaris10_update_sclk_threshold(hwmgr);
4447 4448 4449 4450
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to update SCLK threshold!",
			result = tmp_result);

4451
	tmp_result = polaris10_program_mem_timing_parameters(hwmgr);
4452 4453 4454 4455
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to program memory timing parameters!",
			result = tmp_result);

R
Rex Zhu 已提交
4456 4457 4458 4459 4460
	tmp_result = polaris10_notify_smc_display(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to notify smc display settings!",
			result = tmp_result);

4461
	tmp_result = polaris10_unfreeze_sclk_mclk_dpm(hwmgr);
4462 4463 4464 4465
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to unfreeze SCLK MCLK DPM!",
			result = tmp_result);

4466
	tmp_result = polaris10_upload_dpm_level_enable_mask(hwmgr);
4467 4468 4469 4470 4471 4472 4473
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to upload DPM level enabled mask!",
			result = tmp_result);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_PCIEPerformanceRequest)) {
		tmp_result =
4474
			polaris10_notify_link_speed_change_after_state_change(hwmgr, input);
4475 4476 4477 4478 4479 4480 4481 4482
		PP_ASSERT_WITH_CODE((0 == tmp_result),
				"Failed to notify link speed change after state change!",
				result = tmp_result);
	}
	data->apply_optimized_settings = false;
	return result;
}

4483
static int polaris10_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
4484
{
4485 4486
	hwmgr->thermal_controller.
	advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
4487

4488
	if (phm_is_hw_access_blocked(hwmgr))
4489
		return 0;
4490 4491 4492

	return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
			PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm);
4493 4494
}

R
Rex Zhu 已提交
4495

4496
int polaris10_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display)
4497 4498 4499 4500 4501 4502
{
	PPSMC_Msg msg = has_display ? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay;

	return (smum_send_msg_to_smc(hwmgr->smumgr, msg) == 0) ?  0 : -1;
}

4503
int polaris10_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513
{
	uint32_t num_active_displays = 0;
	struct cgs_display_info info = {0};
	info.mode_info = NULL;

	cgs_get_active_displays_info(hwmgr->device, &info);

	num_active_displays = info.display_count;

	if (num_active_displays > 1)  /* to do && (pHwMgr->pPECI->displayConfiguration.bMultiMonitorInSync != TRUE)) */
4514
		polaris10_notify_smc_display_change(hwmgr, false);
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524

	return 0;
}

/**
* Programs the display gap
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always OK
*/
4525
int polaris10_program_display_gap(struct pp_hwmgr *hwmgr)
4526
{
4527
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
	uint32_t num_active_displays = 0;
	uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
	uint32_t display_gap2;
	uint32_t pre_vbi_time_in_us;
	uint32_t frame_time_in_us;
	uint32_t ref_clock;
	uint32_t refresh_rate = 0;
	struct cgs_display_info info = {0};
	struct cgs_mode_info mode_info;

	info.mode_info = &mode_info;

	cgs_get_active_displays_info(hwmgr->device, &info);
	num_active_displays = info.display_count;

	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (num_active_displays > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);

	ref_clock = mode_info.ref_clock;
	refresh_rate = mode_info.refresh_rate;

	if (0 == refresh_rate)
		refresh_rate = 60;

	frame_time_in_us = 1000000 / refresh_rate;

	pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
R
Rex Zhu 已提交
4555 4556
	data->frame_time_x2 = frame_time_in_us * 2 / 100;

4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
	display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU74_SoftRegisters, PreVBlankGap), 0x64);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU74_SoftRegisters, VBlankTimeout), (frame_time_in_us - pre_vbi_time_in_us));

	return 0;
}


4569
int polaris10_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4570
{
4571
	return polaris10_program_display_gap(hwmgr);
4572 4573 4574 4575 4576 4577 4578 4579 4580
}

/**
*  Set maximum target operating fan output RPM
*
* @param    hwmgr:  the address of the powerplay hardware manager.
* @param    usMaxFanRpm:  max operating fan RPM value.
* @return   The response that came from the SMC.
*/
4581
static int polaris10_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm)
4582
{
4583 4584 4585 4586 4587 4588 4589 4590
	hwmgr->thermal_controller.
	advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;

	if (phm_is_hw_access_blocked(hwmgr))
		return 0;

	return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
			PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm);
4591 4592
}

4593
int polaris10_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
4594 4595 4596 4597 4598
					const void *thermal_interrupt_info)
{
	return 0;
}

4599
bool polaris10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4600
{
4601
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
	bool is_update_required = false;
	struct cgs_display_info info = {0, 0, NULL};

	cgs_get_active_displays_info(hwmgr->device, &info);

	if (data->display_timing.num_existing_displays != info.display_count)
		is_update_required = true;
/* TO DO NEED TO GET DEEP SLEEP CLOCK FROM DAL
	if (phm_cap_enabled(hwmgr->hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
		cgs_get_min_clock_settings(hwmgr->device, &min_clocks);
4612 4613 4614
		if (min_clocks.engineClockInSR != data->display_timing.minClockInSR &&
			(min_clocks.engineClockInSR >= POLARIS10_MINIMUM_ENGINE_CLOCK ||
				data->display_timing.minClockInSR >= POLARIS10_MINIMUM_ENGINE_CLOCK))
4615 4616 4617 4618 4619
			is_update_required = true;
*/
	return is_update_required;
}

4620 4621
static inline bool polaris10_are_power_levels_equal(const struct polaris10_performance_level *pl1,
							   const struct polaris10_performance_level *pl2)
4622 4623 4624 4625 4626 4627 4628
{
	return ((pl1->memory_clock == pl2->memory_clock) &&
		  (pl1->engine_clock == pl2->engine_clock) &&
		  (pl1->pcie_gen == pl2->pcie_gen) &&
		  (pl1->pcie_lane == pl2->pcie_lane));
}

4629
int polaris10_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal)
4630
{
4631 4632
	const struct polaris10_power_state *psa = cast_const_phw_polaris10_power_state(pstate1);
	const struct polaris10_power_state *psb = cast_const_phw_polaris10_power_state(pstate2);
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
	int i;

	if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
		return -EINVAL;

	/* If the two states don't even have the same number of performance levels they cannot be the same state. */
	if (psa->performance_level_count != psb->performance_level_count) {
		*equal = false;
		return 0;
	}

	for (i = 0; i < psa->performance_level_count; i++) {
4645
		if (!polaris10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
			/* If we have found even one performance level pair that is different the states are different. */
			*equal = false;
			return 0;
		}
	}

	/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
	*equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
	*equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
	*equal &= (psa->sclk_threshold == psb->sclk_threshold);

	return 0;
}

4660
int polaris10_upload_mc_firmware(struct pp_hwmgr *hwmgr)
4661
{
4662
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675

	uint32_t vbios_version;

	/*  Read MC indirect register offset 0x9F bits [3:0] to see if VBIOS has already loaded a full version of MC ucode or not.*/

	phm_get_mc_microcode_version(hwmgr);
	vbios_version = hwmgr->microcode_version_info.MC & 0xf;
	/*  Full version of MC ucode has already been loaded. */
	if (vbios_version == 0) {
		data->need_long_memory_training = false;
		return 0;
	}

R
Rex Zhu 已提交
4676
	data->need_long_memory_training = false;
4677 4678

/*
4679
 *	PPMCME_FirmwareDescriptorEntry *pfd = NULL;
4680 4681
	pfd = &tonga_mcmeFirmware;
	if (0 == PHM_READ_FIELD(hwmgr->device, MC_SEQ_SUP_CNTL, RUN))
4682
		polaris10_load_mc_microcode(hwmgr, pfd->dpmThreshold,
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
					pfd->cfgArray, pfd->cfgSize, pfd->ioDebugArray,
					pfd->ioDebugSize, pfd->ucodeArray, pfd->ucodeSize);
*/
	return 0;
}

/**
 * Read clock related registers.
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
4695
static int polaris10_read_clock_registers(struct pp_hwmgr *hwmgr)
4696
{
4697
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719

	data->clock_registers.vCG_SPLL_FUNC_CNTL = cgs_read_ind_register(hwmgr->device,
						CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL)
						& CG_SPLL_FUNC_CNTL__SPLL_BYPASS_EN_MASK;

	data->clock_registers.vCG_SPLL_FUNC_CNTL_2 = cgs_read_ind_register(hwmgr->device,
						CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2)
						& CG_SPLL_FUNC_CNTL_2__SCLK_MUX_SEL_MASK;

	data->clock_registers.vCG_SPLL_FUNC_CNTL_4 = cgs_read_ind_register(hwmgr->device,
						CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4)
						& CG_SPLL_FUNC_CNTL_4__SPLL_SPARE_MASK;

	return 0;
}

/**
 * Find out if memory is GDDR5.
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
4720
static int polaris10_get_memory_type(struct pp_hwmgr *hwmgr)
4721
{
4722
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
	uint32_t temp;

	temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);

	data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
			((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
			 MC_SEQ_MISC0_GDDR5_SHIFT));

	return 0;
}

/**
 * Enables Dynamic Power Management by SMC
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
4740
static int polaris10_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
{
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			GENERAL_PWRMGT, STATIC_PM_EN, 1);

	return 0;
}

/**
 * Initialize PowerGating States for different engines
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
4754
static int polaris10_init_power_gate_state(struct pp_hwmgr *hwmgr)
4755
{
4756
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4757 4758 4759 4760 4761 4762 4763 4764

	data->uvd_power_gated = false;
	data->vce_power_gated = false;
	data->samu_power_gated = false;

	return 0;
}

4765
static int polaris10_init_sclk_threshold(struct pp_hwmgr *hwmgr)
4766
{
4767
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4768 4769 4770 4771 4772
	data->low_sclk_interrupt_threshold = 0;

	return 0;
}

4773
int polaris10_setup_asic_task(struct pp_hwmgr *hwmgr)
4774 4775 4776
{
	int tmp_result, result = 0;

4777
	polaris10_upload_mc_firmware(hwmgr);
4778

4779
	tmp_result = polaris10_read_clock_registers(hwmgr);
4780 4781 4782
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to read clock registers!", result = tmp_result);

4783
	tmp_result = polaris10_get_memory_type(hwmgr);
4784 4785 4786
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to get memory type!", result = tmp_result);

4787
	tmp_result = polaris10_enable_acpi_power_management(hwmgr);
4788 4789 4790
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable ACPI power management!", result = tmp_result);

4791
	tmp_result = polaris10_init_power_gate_state(hwmgr);
4792 4793 4794 4795 4796 4797 4798
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to init power gate state!", result = tmp_result);

	tmp_result = phm_get_mc_microcode_version(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to get MC microcode version!", result = tmp_result);

4799
	tmp_result = polaris10_init_sclk_threshold(hwmgr);
4800 4801 4802 4803 4804 4805
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to init sclk threshold!", result = tmp_result);

	return result;
}

4806 4807 4808 4809
static int polaris10_get_pp_table(struct pp_hwmgr *hwmgr, char **table)
{
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);

4810
	if (!data->soft_pp_table) {
4811 4812 4813
		data->soft_pp_table = kmemdup(hwmgr->soft_pp_table,
					      hwmgr->soft_pp_table_size,
					      GFP_KERNEL);
4814 4815 4816
		if (!data->soft_pp_table)
			return -ENOMEM;
	}
4817

4818 4819 4820
	*table = (char *)&data->soft_pp_table;

	return hwmgr->soft_pp_table_size;
4821 4822 4823 4824 4825 4826
}

static int polaris10_set_pp_table(struct pp_hwmgr *hwmgr, const char *buf, size_t size)
{
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);

4827 4828 4829 4830 4831 4832 4833 4834 4835
	if (!data->soft_pp_table) {
		data->soft_pp_table = kzalloc(hwmgr->soft_pp_table_size, GFP_KERNEL);
		if (!data->soft_pp_table)
			return -ENOMEM;
	}

	memcpy(data->soft_pp_table, buf, size);

	hwmgr->soft_pp_table = data->soft_pp_table;
4836

4837
	/* TODO: re-init powerplay to implement modified pptable */
4838 4839 4840 4841 4842

	return 0;
}

static int polaris10_force_clock_level(struct pp_hwmgr *hwmgr,
4843
		enum pp_clock_type type, uint32_t mask)
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
{
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);

	if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
		return -EINVAL;

	switch (type) {
	case PP_SCLK:
		if (!data->sclk_dpm_key_disabled)
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_SCLKDPM_SetEnabledMask,
4855
					data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask);
4856 4857 4858 4859 4860
		break;
	case PP_MCLK:
		if (!data->mclk_dpm_key_disabled)
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_MCLKDPM_SetEnabledMask,
4861
					data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask);
4862 4863
		break;
	case PP_PCIE:
4864 4865 4866 4867 4868 4869 4870
	{
		uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
		uint32_t level = 0;

		while (tmp >>= 1)
			level++;

4871 4872 4873
		if (!data->pcie_dpm_key_disabled)
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_PCIeDPM_ForceLevel,
4874
					level);
4875
		break;
4876
	}
4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
	default:
		break;
	}

	return 0;
}

static uint16_t polaris10_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
{
	uint32_t speedCntl = 0;

	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
	speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
			ixPCIE_LC_SPEED_CNTL);
	return((uint16_t)PHM_GET_FIELD(speedCntl,
			PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
}

static int polaris10_print_clock_levels(struct pp_hwmgr *hwmgr,
		enum pp_clock_type type, char *buf)
{
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
	struct polaris10_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
	struct polaris10_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
	int i, now, size = 0;
	uint32_t clock, pcie_speed;

	switch (type) {
	case PP_SCLK:
		smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
		clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);

		for (i = 0; i < sclk_table->count; i++) {
			if (clock > sclk_table->dpm_levels[i].value)
				continue;
			break;
		}
		now = i;

		for (i = 0; i < sclk_table->count; i++)
			size += sprintf(buf + size, "%d: %uMhz %s\n",
					i, sclk_table->dpm_levels[i].value / 100,
					(i == now) ? "*" : "");
		break;
	case PP_MCLK:
		smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
		clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);

		for (i = 0; i < mclk_table->count; i++) {
			if (clock > mclk_table->dpm_levels[i].value)
				continue;
			break;
		}
		now = i;

		for (i = 0; i < mclk_table->count; i++)
			size += sprintf(buf + size, "%d: %uMhz %s\n",
					i, mclk_table->dpm_levels[i].value / 100,
					(i == now) ? "*" : "");
		break;
	case PP_PCIE:
		pcie_speed = polaris10_get_current_pcie_speed(hwmgr);
		for (i = 0; i < pcie_table->count; i++) {
			if (pcie_speed != pcie_table->dpm_levels[i].value)
				continue;
			break;
		}
		now = i;

		for (i = 0; i < pcie_table->count; i++)
			size += sprintf(buf + size, "%d: %s %s\n", i,
					(pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x8" :
					(pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" :
					(pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "",
					(i == now) ? "*" : "");
		break;
	default:
		break;
	}
	return size;
}

4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
static int polaris10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
{
	if (mode) {
		/* stop auto-manage */
		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_MicrocodeFanControl))
			polaris10_fan_ctrl_stop_smc_fan_control(hwmgr);
		polaris10_fan_ctrl_set_static_mode(hwmgr, mode);
	} else
		/* restart auto-manage */
		polaris10_fan_ctrl_reset_fan_speed_to_default(hwmgr);

	return 0;
}

static int polaris10_get_fan_control_mode(struct pp_hwmgr *hwmgr)
{
	if (hwmgr->fan_ctrl_is_in_default_mode)
		return hwmgr->fan_ctrl_default_mode;
	else
		return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
				CG_FDO_CTRL2, FDO_PWM_MODE);
}

4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
static const struct pp_hwmgr_func polaris10_hwmgr_funcs = {
	.backend_init = &polaris10_hwmgr_backend_init,
	.backend_fini = &polaris10_hwmgr_backend_fini,
	.asic_setup = &polaris10_setup_asic_task,
	.dynamic_state_management_enable = &polaris10_enable_dpm_tasks,
	.apply_state_adjust_rules = polaris10_apply_state_adjust_rules,
	.force_dpm_level = &polaris10_force_dpm_level,
	.power_state_set = polaris10_set_power_state_tasks,
	.get_power_state_size = polaris10_get_power_state_size,
	.get_mclk = polaris10_dpm_get_mclk,
	.get_sclk = polaris10_dpm_get_sclk,
	.patch_boot_state = polaris10_dpm_patch_boot_state,
	.get_pp_table_entry = polaris10_get_pp_table_entry,
4997
	.get_num_of_pp_table_entries = tonga_get_number_of_powerplay_table_entries,
4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019
	.print_current_perforce_level = polaris10_print_current_perforce_level,
	.powerdown_uvd = polaris10_phm_powerdown_uvd,
	.powergate_uvd = polaris10_phm_powergate_uvd,
	.powergate_vce = polaris10_phm_powergate_vce,
	.disable_clock_power_gating = polaris10_phm_disable_clock_power_gating,
	.update_clock_gatings = polaris10_phm_update_clock_gatings,
	.notify_smc_display_config_after_ps_adjustment = polaris10_notify_smc_display_config_after_ps_adjustment,
	.display_config_changed = polaris10_display_configuration_changed_task,
	.set_max_fan_pwm_output = polaris10_set_max_fan_pwm_output,
	.set_max_fan_rpm_output = polaris10_set_max_fan_rpm_output,
	.get_temperature = polaris10_thermal_get_temperature,
	.stop_thermal_controller = polaris10_thermal_stop_thermal_controller,
	.get_fan_speed_info = polaris10_fan_ctrl_get_fan_speed_info,
	.get_fan_speed_percent = polaris10_fan_ctrl_get_fan_speed_percent,
	.set_fan_speed_percent = polaris10_fan_ctrl_set_fan_speed_percent,
	.reset_fan_speed_to_default = polaris10_fan_ctrl_reset_fan_speed_to_default,
	.get_fan_speed_rpm = polaris10_fan_ctrl_get_fan_speed_rpm,
	.set_fan_speed_rpm = polaris10_fan_ctrl_set_fan_speed_rpm,
	.uninitialize_thermal_controller = polaris10_thermal_ctrl_uninitialize_thermal_controller,
	.register_internal_thermal_interrupt = polaris10_register_internal_thermal_interrupt,
	.check_smc_update_required_for_display_configuration = polaris10_check_smc_update_required_for_display_configuration,
	.check_states_equal = polaris10_check_states_equal,
5020 5021
	.set_fan_control_mode = polaris10_set_fan_control_mode,
	.get_fan_control_mode = polaris10_get_fan_control_mode,
5022 5023 5024 5025 5026
	.get_pp_table = polaris10_get_pp_table,
	.set_pp_table = polaris10_set_pp_table,
	.force_clock_level = polaris10_force_clock_level,
	.print_clock_levels = polaris10_print_clock_levels,
	.enable_per_cu_power_gating = polaris10_phm_enable_per_cu_power_gating,
5027 5028
};

5029
int polaris10_hwmgr_init(struct pp_hwmgr *hwmgr)
5030
{
5031
	struct polaris10_hwmgr  *data;
5032

5033
	data = kzalloc (sizeof(struct polaris10_hwmgr), GFP_KERNEL);
5034 5035 5036 5037
	if (data == NULL)
		return -ENOMEM;

	hwmgr->backend = data;
5038
	hwmgr->hwmgr_func = &polaris10_hwmgr_funcs;
5039
	hwmgr->pptable_func = &tonga_pptable_funcs;
5040
	pp_polaris10_thermal_initialize(hwmgr);
5041 5042 5043

	return 0;
}