polaris10_hwmgr.c 168.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright 2015 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/fb.h>
26
#include <asm/div64.h>
27 28 29
#include "linux/delay.h"
#include "pp_acpi.h"
#include "hwmgr.h"
30 31 32 33
#include "polaris10_hwmgr.h"
#include "polaris10_powertune.h"
#include "polaris10_dyn_defaults.h"
#include "polaris10_smumgr.h"
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#include "pp_debug.h"
#include "ppatomctrl.h"
#include "atombios.h"
#include "tonga_pptable.h"
#include "pppcielanes.h"
#include "amd_pcie_helpers.h"
#include "hardwaremanager.h"
#include "tonga_processpptables.h"
#include "cgs_common.h"
#include "smu74.h"
#include "smu_ucode_xfer_vi.h"
#include "smu74_discrete.h"
#include "smu/smu_7_1_3_d.h"
#include "smu/smu_7_1_3_sh_mask.h"
#include "gmc/gmc_8_1_d.h"
#include "gmc/gmc_8_1_sh_mask.h"
#include "oss/oss_3_0_d.h"
#include "gca/gfx_8_0_d.h"
#include "bif/bif_5_0_d.h"
#include "bif/bif_5_0_sh_mask.h"
#include "gmc/gmc_8_1_d.h"
#include "gmc/gmc_8_1_sh_mask.h"
#include "bif/bif_5_0_d.h"
#include "bif/bif_5_0_sh_mask.h"
#include "dce/dce_10_0_d.h"
#include "dce/dce_10_0_sh_mask.h"

61 62
#include "polaris10_thermal.h"
#include "polaris10_clockpowergating.h"
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#define MC_CG_ARB_FREQ_F0           0x0a
#define MC_CG_ARB_FREQ_F1           0x0b
#define MC_CG_ARB_FREQ_F2           0x0c
#define MC_CG_ARB_FREQ_F3           0x0d

#define MC_CG_SEQ_DRAMCONF_S0       0x05
#define MC_CG_SEQ_DRAMCONF_S1       0x06
#define MC_CG_SEQ_YCLK_SUSPEND      0x04
#define MC_CG_SEQ_YCLK_RESUME       0x0a


#define SMC_RAM_END 0x40000

#define SMC_CG_IND_START            0xc0030000
#define SMC_CG_IND_END              0xc0040000

#define VOLTAGE_SCALE               4
#define VOLTAGE_VID_OFFSET_SCALE1   625
#define VOLTAGE_VID_OFFSET_SCALE2   100

#define VDDC_VDDCI_DELTA            200

#define MEM_FREQ_LOW_LATENCY        25000
#define MEM_FREQ_HIGH_LATENCY       80000

#define MEM_LATENCY_HIGH            45
#define MEM_LATENCY_LOW             35
#define MEM_LATENCY_ERR             0xFFFF

#define MC_SEQ_MISC0_GDDR5_SHIFT 28
#define MC_SEQ_MISC0_GDDR5_MASK  0xf0000000
#define MC_SEQ_MISC0_GDDR5_VALUE 5


#define PCIE_BUS_CLK                10000
#define TCLK                        (PCIE_BUS_CLK / 10)


102 103
static const uint16_t polaris10_clock_stretcher_lookup_table[2][4] =
{ {600, 1050, 3, 0}, {600, 1050, 6, 1} };
104 105

/*  [FF, SS] type, [] 4 voltage ranges, and [Floor Freq, Boundary Freq, VID min , VID max] */
106 107 108
static const uint32_t polaris10_clock_stretcher_ddt_table[2][4][4] =
{ { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
  { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
109 110

/*  [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] (coming from PWR_CKS_CNTL.stretch_amount reg spec) */
111 112
static const uint8_t polaris10_clock_stretch_amount_conversion[2][6] =
{ {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
113 114 115 116 117 118 119 120 121 122

/** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
enum DPM_EVENT_SRC {
	DPM_EVENT_SRC_ANALOG = 0,
	DPM_EVENT_SRC_EXTERNAL = 1,
	DPM_EVENT_SRC_DIGITAL = 2,
	DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,
	DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4
};

123
static const unsigned long PhwPolaris10_Magic = (unsigned long)(PHM_VIslands_Magic);
124

125
struct polaris10_power_state *cast_phw_polaris10_power_state(
126 127
				  struct pp_hw_power_state *hw_ps)
{
128
	PP_ASSERT_WITH_CODE((PhwPolaris10_Magic == hw_ps->magic),
129 130 131
				"Invalid Powerstate Type!",
				 return NULL);

132
	return (struct polaris10_power_state *)hw_ps;
133 134
}

135
const struct polaris10_power_state *cast_const_phw_polaris10_power_state(
136 137
				 const struct pp_hw_power_state *hw_ps)
{
138
	PP_ASSERT_WITH_CODE((PhwPolaris10_Magic == hw_ps->magic),
139 140 141
				"Invalid Powerstate Type!",
				 return NULL);

142
	return (const struct polaris10_power_state *)hw_ps;
143 144
}

145
static bool polaris10_is_dpm_running(struct pp_hwmgr *hwmgr)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
{
	return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
			CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
			? true : false;
}

/**
 * Find the MC microcode version and store it in the HwMgr struct
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
int phm_get_mc_microcode_version (struct pp_hwmgr *hwmgr)
{
	cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);

	hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);

	return 0;
}

uint16_t phm_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
{
	uint32_t speedCntl = 0;

	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
	speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
			ixPCIE_LC_SPEED_CNTL);
	return((uint16_t)PHM_GET_FIELD(speedCntl,
			PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
}

int phm_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
{
	uint32_t link_width;

	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
	link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
			PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);

	PP_ASSERT_WITH_CODE((7 >= link_width),
			"Invalid PCIe lane width!", return 0);

	return decode_pcie_lane_width(link_width);
}

192 193 194 195 196 197
/**
* Enable voltage control
*
* @param    pHwMgr  the address of the powerplay hardware manager.
* @return   always PP_Result_OK
*/
198
int polaris10_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr)
199 200 201 202 203 204 205 206 207
{
	PP_ASSERT_WITH_CODE(
		(hwmgr->smumgr->smumgr_funcs->send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_Voltage_Cntl_Enable) == 0),
		"Failed to enable voltage DPM during DPM Start Function!",
		return 1;
	);

	return 0;
}
208 209 210 211 212 213

/**
* Checks if we want to support voltage control
*
* @param    hwmgr  the address of the powerplay hardware manager.
*/
214
static bool polaris10_voltage_control(const struct pp_hwmgr *hwmgr)
215
{
216 217
	const struct polaris10_hwmgr *data =
			(const struct polaris10_hwmgr *)(hwmgr->backend);
218

219
	return (POLARIS10_VOLTAGE_CONTROL_NONE != data->voltage_control);
220 221 222 223 224 225 226 227
}

/**
* Enable voltage control
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
228
static int polaris10_enable_voltage_control(struct pp_hwmgr *hwmgr)
229 230 231 232 233 234 235 236 237 238 239 240 241 242
{
	/* enable voltage control */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);

	return 0;
}

/**
* Create Voltage Tables.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
243
static int polaris10_construct_voltage_tables(struct pp_hwmgr *hwmgr)
244
{
245
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
246 247 248 249
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)hwmgr->pptable;
	int result;

250
	if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
251 252 253 254 255 256
		result = atomctrl_get_voltage_table_v3(hwmgr,
				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
				&(data->mvdd_voltage_table));
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to retrieve MVDD table.",
				return result);
257
	} else if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
258 259 260 261 262 263 264
		result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table),
				table_info->vdd_dep_on_mclk);
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to retrieve SVI2 MVDD table from dependancy table.",
				return result;);
	}

265
	if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
266 267 268 269 270 271
		result = atomctrl_get_voltage_table_v3(hwmgr,
				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
				&(data->vddci_voltage_table));
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to retrieve VDDCI table.",
				return result);
272
	} else if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
273 274 275 276 277 278 279
		result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table),
				table_info->vdd_dep_on_mclk);
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to retrieve SVI2 VDDCI table from dependancy table.",
				return result);
	}

280
	if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
		result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table),
				table_info->vddc_lookup_table);
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to retrieve SVI2 VDDC table from lookup table.",
				return result);
	}

	PP_ASSERT_WITH_CODE(
			(data->vddc_voltage_table.count <= (SMU74_MAX_LEVELS_VDDC)),
			"Too many voltage values for VDDC. Trimming to fit state table.",
			phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_VDDC,
								&(data->vddc_voltage_table)));

	PP_ASSERT_WITH_CODE(
			(data->vddci_voltage_table.count <= (SMU74_MAX_LEVELS_VDDCI)),
			"Too many voltage values for VDDCI. Trimming to fit state table.",
			phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_VDDCI,
					&(data->vddci_voltage_table)));

	PP_ASSERT_WITH_CODE(
			(data->mvdd_voltage_table.count <= (SMU74_MAX_LEVELS_MVDD)),
			"Too many voltage values for MVDD. Trimming to fit state table.",
			phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_MVDD,
							   &(data->mvdd_voltage_table)));

	return 0;
}

/**
* Programs static screed detection parameters
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
315
static int polaris10_program_static_screen_threshold_parameters(
316 317
							struct pp_hwmgr *hwmgr)
{
318
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

	/* Set static screen threshold unit */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
			data->static_screen_threshold_unit);
	/* Set static screen threshold */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
			data->static_screen_threshold);

	return 0;
}

/**
* Setup display gap for glitch free memory clock switching.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always  0
*/
338
static int polaris10_enable_display_gap(struct pp_hwmgr *hwmgr)
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
{
	uint32_t display_gap =
			cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
					ixCG_DISPLAY_GAP_CNTL);

	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
			DISP_GAP, DISPLAY_GAP_IGNORE);

	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
			DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_DISPLAY_GAP_CNTL, display_gap);

	return 0;
}

/**
* Programs activity state transition voting clients
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always  0
*/
362
static int polaris10_program_voting_clients(struct pp_hwmgr *hwmgr)
363
{
364
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

	/* Clear reset for voting clients before enabling DPM */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);

	return 0;
}

/**
* Get the location of various tables inside the FW image.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always  0
*/
398
static int polaris10_process_firmware_header(struct pp_hwmgr *hwmgr)
399
{
400 401
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
402 403 404 405
	uint32_t tmp;
	int result;
	bool error = false;

406
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
407 408 409 410 411 412 413 414 415
			SMU7_FIRMWARE_HEADER_LOCATION +
			offsetof(SMU74_Firmware_Header, DpmTable),
			&tmp, data->sram_end);

	if (0 == result)
		data->dpm_table_start = tmp;

	error |= (0 != result);

416
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
417 418 419 420 421 422 423 424 425 426 427
			SMU7_FIRMWARE_HEADER_LOCATION +
			offsetof(SMU74_Firmware_Header, SoftRegisters),
			&tmp, data->sram_end);

	if (!result) {
		data->soft_regs_start = tmp;
		smu_data->soft_regs_start = tmp;
	}

	error |= (0 != result);

428
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
429 430 431 432 433 434 435
			SMU7_FIRMWARE_HEADER_LOCATION +
			offsetof(SMU74_Firmware_Header, mcRegisterTable),
			&tmp, data->sram_end);

	if (!result)
		data->mc_reg_table_start = tmp;

436
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
437 438 439 440 441 442 443 444 445
			SMU7_FIRMWARE_HEADER_LOCATION +
			offsetof(SMU74_Firmware_Header, FanTable),
			&tmp, data->sram_end);

	if (!result)
		data->fan_table_start = tmp;

	error |= (0 != result);

446
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
447 448 449 450 451 452 453 454 455
			SMU7_FIRMWARE_HEADER_LOCATION +
			offsetof(SMU74_Firmware_Header, mcArbDramTimingTable),
			&tmp, data->sram_end);

	if (!result)
		data->arb_table_start = tmp;

	error |= (0 != result);

456
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
			SMU7_FIRMWARE_HEADER_LOCATION +
			offsetof(SMU74_Firmware_Header, Version),
			&tmp, data->sram_end);

	if (!result)
		hwmgr->microcode_version_info.SMC = tmp;

	error |= (0 != result);

	return error ? -1 : 0;
}

/* Copy one arb setting to another and then switch the active set.
 * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
 */
472
static int polaris10_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
		uint32_t arb_src, uint32_t arb_dest)
{
	uint32_t mc_arb_dram_timing;
	uint32_t mc_arb_dram_timing2;
	uint32_t burst_time;
	uint32_t mc_cg_config;

	switch (arb_src) {
	case MC_CG_ARB_FREQ_F0:
		mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
		mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
		burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
		break;
	case MC_CG_ARB_FREQ_F1:
		mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
		mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
		burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
		break;
	default:
		return -EINVAL;
	}

	switch (arb_dest) {
	case MC_CG_ARB_FREQ_F0:
		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
		PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
		break;
	case MC_CG_ARB_FREQ_F1:
		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
		PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
		break;
	default:
		return -EINVAL;
	}

	mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
	mc_cg_config |= 0x0000000F;
	cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
	PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);

	return 0;
}

/**
* Initial switch from ARB F0->F1
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
* This function is to be called from the SetPowerState table.
*/
525
static int polaris10_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
526
{
527
	return polaris10_copy_and_switch_arb_sets(hwmgr,
528 529 530
			MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
}

531
static int polaris10_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
532
{
533
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
	uint32_t i, max_entry;

	PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
			data->use_pcie_power_saving_levels), "No pcie performance levels!",
			return -EINVAL);

	if (data->use_pcie_performance_levels &&
			!data->use_pcie_power_saving_levels) {
		data->pcie_gen_power_saving = data->pcie_gen_performance;
		data->pcie_lane_power_saving = data->pcie_lane_performance;
	} else if (!data->use_pcie_performance_levels &&
			data->use_pcie_power_saving_levels) {
		data->pcie_gen_performance = data->pcie_gen_power_saving;
		data->pcie_lane_performance = data->pcie_lane_power_saving;
	}

	phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table,
					SMU74_MAX_LEVELS_LINK,
					MAX_REGULAR_DPM_NUMBER);

	if (pcie_table != NULL) {
		/* max_entry is used to make sure we reserve one PCIE level
		 * for boot level (fix for A+A PSPP issue).
		 * If PCIE table from PPTable have ULV entry + 8 entries,
		 * then ignore the last entry.*/
		max_entry = (SMU74_MAX_LEVELS_LINK < pcie_table->count) ?
				SMU74_MAX_LEVELS_LINK : pcie_table->count;
		for (i = 1; i < max_entry; i++) {
			phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
					get_pcie_gen_support(data->pcie_gen_cap,
							pcie_table->entries[i].gen_speed),
					get_pcie_lane_support(data->pcie_lane_cap,
							pcie_table->entries[i].lane_width));
		}
		data->dpm_table.pcie_speed_table.count = max_entry - 1;
572 573 574 575

		/* Setup BIF_SCLK levels */
		for (i = 0; i < max_entry; i++)
			data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk;
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
	} else {
		/* Hardcode Pcie Table */
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Min_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Min_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Max_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Max_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Max_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Max_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));

		data->dpm_table.pcie_speed_table.count = 6;
	}
	/* Populate last level for boot PCIE level, but do not increment count. */
	phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
			data->dpm_table.pcie_speed_table.count,
			get_pcie_gen_support(data->pcie_gen_cap,
					PP_Min_PCIEGen),
			get_pcie_lane_support(data->pcie_lane_cap,
					PP_Max_PCIELane));

	return 0;
}

/*
 * This function is to initalize all DPM state tables
 * for SMU7 based on the dependency table.
 * Dynamic state patching function will then trim these
 * state tables to the allowed range based
 * on the power policy or external client requests,
 * such as UVD request, etc.
 */
630
int polaris10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
631
{
632
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	uint32_t i;

	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
			table_info->vdd_dep_on_sclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
			table_info->vdd_dep_on_mclk;

	PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
			"SCLK dependency table is missing. This table is mandatory",
			return -EINVAL);
	PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
			"SCLK dependency table has to have is missing."
			"This table is mandatory",
			return -EINVAL);

	PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
			"MCLK dependency table is missing. This table is mandatory",
			return -EINVAL);
	PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
			"MCLK dependency table has to have is missing."
			"This table is mandatory",
			return -EINVAL);

	/* clear the state table to reset everything to default */
	phm_reset_single_dpm_table(
			&data->dpm_table.sclk_table, SMU74_MAX_LEVELS_GRAPHICS, MAX_REGULAR_DPM_NUMBER);
	phm_reset_single_dpm_table(
			&data->dpm_table.mclk_table, SMU74_MAX_LEVELS_MEMORY, MAX_REGULAR_DPM_NUMBER);


	/* Initialize Sclk DPM table based on allow Sclk values */
	data->dpm_table.sclk_table.count = 0;
	for (i = 0; i < dep_sclk_table->count; i++) {
		if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value !=
						dep_sclk_table->entries[i].clk) {

			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
					dep_sclk_table->entries[i].clk;

			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled =
					(i == 0) ? true : false;
			data->dpm_table.sclk_table.count++;
		}
	}

	/* Initialize Mclk DPM table based on allow Mclk values */
	data->dpm_table.mclk_table.count = 0;
	for (i = 0; i < dep_mclk_table->count; i++) {
		if (i == 0 || data->dpm_table.mclk_table.dpm_levels
				[data->dpm_table.mclk_table.count - 1].value !=
						dep_mclk_table->entries[i].clk) {
			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
							dep_mclk_table->entries[i].clk;
			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled =
							(i == 0) ? true : false;
			data->dpm_table.mclk_table.count++;
		}
	}

	/* setup PCIE gen speed levels */
695
	polaris10_setup_default_pcie_table(hwmgr);
696 697 698

	/* save a copy of the default DPM table */
	memcpy(&(data->golden_dpm_table), &(data->dpm_table),
699
			sizeof(struct polaris10_dpm_table));
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715

	return 0;
}

uint8_t convert_to_vid(uint16_t vddc)
{
	return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
}

/**
 * Mvdd table preparation for SMC.
 *
 * @param    *hwmgr The address of the hardware manager.
 * @param    *table The SMC DPM table structure to be populated.
 * @return   0
 */
716
static int polaris10_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
717 718
			SMU74_Discrete_DpmTable *table)
{
719
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
720 721
	uint32_t count, level;

722
	if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
		count = data->mvdd_voltage_table.count;
		if (count > SMU_MAX_SMIO_LEVELS)
			count = SMU_MAX_SMIO_LEVELS;
		for (level = 0; level < count; level++) {
			table->SmioTable2.Pattern[level].Voltage =
				PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
			/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
			table->SmioTable2.Pattern[level].Smio =
				(uint8_t) level;
			table->Smio[level] |=
				data->mvdd_voltage_table.entries[level].smio_low;
		}
		table->SmioMask2 = data->vddci_voltage_table.mask_low;

		table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count);
	}

	return 0;
}

743
static int polaris10_populate_smc_vddci_table(struct pp_hwmgr *hwmgr,
744 745 746
					struct SMU74_Discrete_DpmTable *table)
{
	uint32_t count, level;
747
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
748 749 750

	count = data->vddci_voltage_table.count;

751
	if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
		if (count > SMU_MAX_SMIO_LEVELS)
			count = SMU_MAX_SMIO_LEVELS;
		for (level = 0; level < count; ++level) {
			table->SmioTable1.Pattern[level].Voltage =
				PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE);
			table->SmioTable1.Pattern[level].Smio = (uint8_t) level;

			table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low;
		}
	}

	table->SmioMask1 = data->vddci_voltage_table.mask_low;

	return 0;
}

/**
* Preparation of vddc and vddgfx CAC tables for SMC.
*
* @param    hwmgr  the address of the hardware manager
* @param    table  the SMC DPM table structure to be populated
* @return   always 0
*/
775
static int polaris10_populate_cac_table(struct pp_hwmgr *hwmgr,
776 777 778 779
		struct SMU74_Discrete_DpmTable *table)
{
	uint32_t count;
	uint8_t index;
780
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_voltage_lookup_table *lookup_table =
			table_info->vddc_lookup_table;
	/* tables is already swapped, so in order to use the value from it,
	 * we need to swap it back.
	 * We are populating vddc CAC data to BapmVddc table
	 * in split and merged mode
	 */
	for (count = 0; count < lookup_table->count; count++) {
		index = phm_get_voltage_index(lookup_table,
				data->vddc_voltage_table.entries[count].value);
		table->BapmVddcVidLoSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_low);
		table->BapmVddcVidHiSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_mid);
		table->BapmVddcVidHiSidd2[count] = convert_to_vid(lookup_table->entries[index].us_cac_high);
	}

	return 0;
}

/**
* Preparation of voltage tables for SMC.
*
* @param    hwmgr   the address of the hardware manager
* @param    table   the SMC DPM table structure to be populated
* @return   always  0
*/

809
int polaris10_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
810 811
		struct SMU74_Discrete_DpmTable *table)
{
812 813 814
	polaris10_populate_smc_vddci_table(hwmgr, table);
	polaris10_populate_smc_mvdd_table(hwmgr, table);
	polaris10_populate_cac_table(hwmgr, table);
815 816 817 818

	return 0;
}

819
static int polaris10_populate_ulv_level(struct pp_hwmgr *hwmgr,
820 821
		struct SMU74_Discrete_Ulv *state)
{
822
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	state->CcPwrDynRm = 0;
	state->CcPwrDynRm1 = 0;

	state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
	state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
			VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);

	state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1;

	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);

	return 0;
}

842
static int polaris10_populate_ulv_state(struct pp_hwmgr *hwmgr,
843 844
		struct SMU74_Discrete_DpmTable *table)
{
845
	return polaris10_populate_ulv_level(hwmgr, &table->Ulv);
846 847
}

848
static int polaris10_populate_smc_link_level(struct pp_hwmgr *hwmgr,
849 850
		struct SMU74_Discrete_DpmTable *table)
{
851 852
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_dpm_table *dpm_table = &data->dpm_table;
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	int i;

	/* Index (dpm_table->pcie_speed_table.count)
	 * is reserved for PCIE boot level. */
	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
		table->LinkLevel[i].PcieGenSpeed  =
				(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
		table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
				dpm_table->pcie_speed_table.dpm_levels[i].param1);
		table->LinkLevel[i].EnabledForActivity = 1;
		table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
		table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
		table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
	}

	data->smc_state_table.LinkLevelCount =
			(uint8_t)dpm_table->pcie_speed_table.count;
	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);

	return 0;
}

876
static uint32_t polaris10_get_xclk(struct pp_hwmgr *hwmgr)
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
{
	uint32_t reference_clock, tmp;
	struct cgs_display_info info = {0};
	struct cgs_mode_info mode_info;

	info.mode_info = &mode_info;

	tmp = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL_2, MUX_TCLK_TO_XCLK);

	if (tmp)
		return TCLK;

	cgs_get_active_displays_info(hwmgr->device, &info);
	reference_clock = mode_info.ref_clock;

	tmp = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL, XTALIN_DIVIDE);

	if (0 != tmp)
		return reference_clock / 4;

	return reference_clock;
}

/**
* Calculates the SCLK dividers using the provided engine clock
*
* @param    hwmgr  the address of the hardware manager
* @param    clock  the engine clock to use to populate the structure
* @param    sclk   the SMC SCLK structure to be populated
*/
907
static int polaris10_calculate_sclk_params(struct pp_hwmgr *hwmgr,
908 909
		uint32_t clock, SMU_SclkSetting *sclk_setting)
{
910
	const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	const SMU74_Discrete_DpmTable *table = &(data->smc_state_table);
	struct pp_atomctrl_clock_dividers_ai dividers;

	uint32_t ref_clock;
	uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq;
	uint8_t i;
	int result;
	uint64_t temp;

	sclk_setting->SclkFrequency = clock;
	/* get the engine clock dividers for this clock value */
	result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock,  &dividers);
	if (result == 0) {
		sclk_setting->Fcw_int = dividers.usSclk_fcw_int;
		sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac;
		sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int;
		sclk_setting->PllRange = dividers.ucSclkPllRange;
928 929 930
		sclk_setting->Sclk_slew_rate = 0x400;
		sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac;
		sclk_setting->Pcc_down_slew_rate = 0xffff;
931 932 933
		sclk_setting->SSc_En = dividers.ucSscEnable;
		sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int;
		sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac;
934
		sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac;
935 936 937
		return result;
	}

938
	ref_clock = polaris10_get_xclk(hwmgr);
939 940 941 942 943 944 945 946 947 948 949 950

	for (i = 0; i < NUM_SCLK_RANGE; i++) {
		if (clock > data->range_table[i].trans_lower_frequency
		&& clock <= data->range_table[i].trans_upper_frequency) {
			sclk_setting->PllRange = i;
			break;
		}
	}

	sclk_setting->Fcw_int = (uint16_t)((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock);
	temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
	temp <<= 0x10;
951 952
	do_div(temp, ref_clock);
	sclk_setting->Fcw_frac = temp & 0xffff;
953 954 955 956 957 958 959 960 961 962 963 964 965

	pcc_target_percent = 10; /*  Hardcode 10% for now. */
	pcc_target_freq = clock - (clock * pcc_target_percent / 100);
	sclk_setting->Pcc_fcw_int = (uint16_t)((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock);

	ss_target_percent = 2; /*  Hardcode 2% for now. */
	sclk_setting->SSc_En = 0;
	if (ss_target_percent) {
		sclk_setting->SSc_En = 1;
		ss_target_freq = clock - (clock * ss_target_percent / 100);
		sclk_setting->Fcw1_int = (uint16_t)((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock);
		temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
		temp <<= 0x10;
966 967
		do_div(temp, ref_clock);
		sclk_setting->Fcw1_frac = temp & 0xffff;
968 969 970 971 972
	}

	return 0;
}

973
static int polaris10_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
974 975 976 977 978
		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
		uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
{
	uint32_t i;
	uint16_t vddci;
979
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
980 981 982 983 984 985 986 987 988 989 990 991

	*voltage = *mvdd = 0;

	/* clock - voltage dependency table is empty table */
	if (dep_table->count == 0)
		return -EINVAL;

	for (i = 0; i < dep_table->count; i++) {
		/* find first sclk bigger than request */
		if (dep_table->entries[i].clk >= clock) {
			*voltage |= (dep_table->entries[i].vddc *
					VOLTAGE_SCALE) << VDDC_SHIFT;
992
			if (POLARIS10_VOLTAGE_CONTROL_NONE == data->vddci_control)
993 994 995 996 997 998 999 1000 1001
				*voltage |= (data->vbios_boot_state.vddci_bootup_value *
						VOLTAGE_SCALE) << VDDCI_SHIFT;
			else if (dep_table->entries[i].vddci)
				*voltage |= (dep_table->entries[i].vddci *
						VOLTAGE_SCALE) << VDDCI_SHIFT;
			else {
				vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
						(dep_table->entries[i].vddc -
								(uint16_t)data->vddc_vddci_delta));
1002
				*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1003 1004
			}

1005
			if (POLARIS10_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
				*mvdd = data->vbios_boot_state.mvdd_bootup_value *
					VOLTAGE_SCALE;
			else if (dep_table->entries[i].mvdd)
				*mvdd = (uint32_t) dep_table->entries[i].mvdd *
					VOLTAGE_SCALE;

			*voltage |= 1 << PHASES_SHIFT;
			return 0;
		}
	}

	/* sclk is bigger than max sclk in the dependence table */
	*voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;

1020
	if (POLARIS10_VOLTAGE_CONTROL_NONE == data->vddci_control)
1021 1022 1023 1024 1025 1026 1027 1028 1029
		*voltage |= (data->vbios_boot_state.vddci_bootup_value *
				VOLTAGE_SCALE) << VDDCI_SHIFT;
	else if (dep_table->entries[i-1].vddci) {
		vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
				(dep_table->entries[i].vddc -
						(uint16_t)data->vddc_vddci_delta));
		*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
	}

1030
	if (POLARIS10_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1031 1032 1033 1034 1035 1036 1037
		*mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
	else if (dep_table->entries[i].mvdd)
		*mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;

	return 0;
}

1038 1039 1040 1041 1042 1043 1044 1045 1046
static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] =
{ {VCO_2_4, POSTDIV_DIV_BY_16,  75, 160, 112},
  {VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160},
  {VCO_2_4, POSTDIV_DIV_BY_8,   75, 160, 112},
  {VCO_3_6, POSTDIV_DIV_BY_8,  112, 224, 160},
  {VCO_2_4, POSTDIV_DIV_BY_4,   75, 160, 112},
  {VCO_3_6, POSTDIV_DIV_BY_4,  112, 216, 160},
  {VCO_2_4, POSTDIV_DIV_BY_2,   75, 160, 108},
  {VCO_3_6, POSTDIV_DIV_BY_2,  112, 216, 160} };
1047

1048
static void polaris10_get_sclk_range_table(struct pp_hwmgr *hwmgr)
1049 1050
{
	uint32_t i, ref_clk;
1051
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1052 1053 1054
	SMU74_Discrete_DpmTable  *table = &(data->smc_state_table);
	struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } };

1055
	ref_clk = polaris10_get_xclk(hwmgr);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098

	if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) {
		for (i = 0; i < NUM_SCLK_RANGE; i++) {
			table->SclkFcwRangeTable[i].vco_setting = range_table_from_vbios.entry[i].ucVco_setting;
			table->SclkFcwRangeTable[i].postdiv = range_table_from_vbios.entry[i].ucPostdiv;
			table->SclkFcwRangeTable[i].fcw_pcc = range_table_from_vbios.entry[i].usFcw_pcc;

			table->SclkFcwRangeTable[i].fcw_trans_upper = range_table_from_vbios.entry[i].usFcw_trans_upper;
			table->SclkFcwRangeTable[i].fcw_trans_lower = range_table_from_vbios.entry[i].usRcw_trans_lower;

			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
		}
		return;
	}

	for (i = 0; i < NUM_SCLK_RANGE; i++) {

		data->range_table[i].trans_lower_frequency = (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv;
		data->range_table[i].trans_upper_frequency = (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv;

		table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting;
		table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv;
		table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc;

		table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper;
		table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower;

		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
	}
}

/**
* Populates single SMC SCLK structure using the provided engine clock
*
* @param    hwmgr      the address of the hardware manager
* @param    clock the engine clock to use to populate the structure
* @param    sclk        the SMC SCLK structure to be populated
*/

1099
static int polaris10_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
1100 1101 1102 1103 1104 1105
		uint32_t clock, uint16_t sclk_al_threshold,
		struct SMU74_Discrete_GraphicsLevel *level)
{
	int result, i, temp;
	/* PP_Clocks minClocks; */
	uint32_t mvdd;
1106
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1107 1108 1109 1110
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	SMU_SclkSetting curr_sclk_setting = { 0 };

1111
	result = polaris10_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting);
1112 1113

	/* populate graphics levels */
1114
	result = polaris10_get_dependency_volt_by_clk(hwmgr,
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
			table_info->vdd_dep_on_sclk, clock,
			&level->MinVoltage, &mvdd);

	PP_ASSERT_WITH_CODE((0 == result),
			"can not find VDDC voltage value for "
			"VDDC engine clock dependency table",
			return result);
	level->ActivityLevel = sclk_al_threshold;

	level->CcPwrDynRm = 0;
	level->CcPwrDynRm1 = 0;
	level->EnabledForActivity = 0;
	level->EnabledForThrottle = 1;
	level->UpHyst = 10;
	level->DownHyst = 0;
	level->VoltageDownHyst = 0;
	level->PowerThrottle = 0;

	/*
	* TODO: get minimum clocks from dal configaration
	* PECI_GetMinClockSettings(hwmgr->pPECI, &minClocks);
	*/
	/* data->DisplayTiming.minClockInSR = minClocks.engineClockInSR; */

	/* get level->DeepSleepDivId
	if (phm_cap_enabled(hwmgr->platformDescriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
		level->DeepSleepDivId = PhwFiji_GetSleepDividerIdFromClock(hwmgr, clock, minClocks.engineClockInSR);
	*/
1143
	PP_ASSERT_WITH_CODE((clock >= POLARIS10_MINIMUM_ENGINE_CLOCK), "Engine clock can't satisfy stutter requirement!", return 0);
1144
	for (i = POLARIS10_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
1145
		temp = clock >> i;
1146

1147
		if (temp >= POLARIS10_MINIMUM_ENGINE_CLOCK || i == 0)
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
			break;
	}

	level->DeepSleepDivId = i;

	/* Default to slow, highest DPM level will be
	 * set to PPSMC_DISPLAY_WATERMARK_LOW later.
	 */
	if (data->update_up_hyst)
		level->UpHyst = (uint8_t)data->up_hyst;
	if (data->update_down_hyst)
		level->DownHyst = (uint8_t)data->down_hyst;

	level->SclkSetting = curr_sclk_setting;

	CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
	CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
	CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency);
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int);
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac);
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int);
1171 1172 1173
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate);
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate);
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate);
1174 1175
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int);
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac);
1176
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate);
1177 1178 1179 1180 1181 1182 1183 1184
	return 0;
}

/**
* Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
*
* @param    hwmgr      the address of the hardware manager
*/
1185
static int polaris10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1186
{
1187 1188
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_dpm_table *dpm_table = &data->dpm_table;
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
	uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
	int result = 0;
	uint32_t array = data->dpm_table_start +
			offsetof(SMU74_Discrete_DpmTable, GraphicsLevel);
	uint32_t array_size = sizeof(struct SMU74_Discrete_GraphicsLevel) *
			SMU74_MAX_LEVELS_GRAPHICS;
	struct SMU74_Discrete_GraphicsLevel *levels =
			data->smc_state_table.GraphicsLevel;
	uint32_t i, max_entry;
	uint8_t hightest_pcie_level_enabled = 0,
		lowest_pcie_level_enabled = 0,
		mid_pcie_level_enabled = 0,
		count = 0;

1206
	polaris10_get_sclk_range_table(hwmgr);
1207 1208 1209

	for (i = 0; i < dpm_table->sclk_table.count; i++) {

1210
		result = polaris10_populate_single_graphic_level(hwmgr,
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
				dpm_table->sclk_table.dpm_levels[i].value,
				(uint16_t)data->activity_target[i],
				&(data->smc_state_table.GraphicsLevel[i]));
		if (result)
			return result;

		/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
		if (i > 1)
			levels[i].DeepSleepDivId = 0;
	}
1221 1222 1223
	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_SPLLShutdownSupport))
		data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0;
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

	data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
	data->smc_state_table.GraphicsDpmLevelCount =
			(uint8_t)dpm_table->sclk_table.count;
	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);


	if (pcie_table != NULL) {
		PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
				"There must be 1 or more PCIE levels defined in PPTable.",
				return -EINVAL);
		max_entry = pcie_entry_cnt - 1;
		for (i = 0; i < dpm_table->sclk_table.count; i++)
			levels[i].pcieDpmLevel =
					(uint8_t) ((i < max_entry) ? i : max_entry);
	} else {
		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
						(1 << (hightest_pcie_level_enabled + 1))) != 0))
			hightest_pcie_level_enabled++;

		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
						(1 << lowest_pcie_level_enabled)) == 0))
			lowest_pcie_level_enabled++;

		while ((count < hightest_pcie_level_enabled) &&
				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
						(1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
			count++;

		mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
				hightest_pcie_level_enabled ?
						(lowest_pcie_level_enabled + 1 + count) :
						hightest_pcie_level_enabled;

		/* set pcieDpmLevel to hightest_pcie_level_enabled */
		for (i = 2; i < dpm_table->sclk_table.count; i++)
			levels[i].pcieDpmLevel = hightest_pcie_level_enabled;

		/* set pcieDpmLevel to lowest_pcie_level_enabled */
		levels[0].pcieDpmLevel = lowest_pcie_level_enabled;

		/* set pcieDpmLevel to mid_pcie_level_enabled */
		levels[1].pcieDpmLevel = mid_pcie_level_enabled;
	}
	/* level count will send to smc once at init smc table and never change */
1272
	result = polaris10_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
1273 1274 1275 1276 1277
			(uint32_t)array_size, data->sram_end);

	return result;
}

1278
static int polaris10_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1279 1280
		uint32_t clock, struct SMU74_Discrete_MemoryLevel *mem_level)
{
1281
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1282 1283 1284 1285 1286 1287 1288 1289
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	int result = 0;
	struct cgs_display_info info = {0, 0, NULL};

	cgs_get_active_displays_info(hwmgr->device, &info);

	if (table_info->vdd_dep_on_mclk) {
1290
		result = polaris10_get_dependency_volt_by_clk(hwmgr,
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
				table_info->vdd_dep_on_mclk, clock,
				&mem_level->MinVoltage, &mem_level->MinMvdd);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find MinVddc voltage value from memory "
				"VDDC voltage dependency table", return result);
	}

	mem_level->MclkFrequency = clock;
	mem_level->StutterEnable = 0;
	mem_level->EnabledForThrottle = 1;
	mem_level->EnabledForActivity = 0;
	mem_level->UpHyst = 0;
	mem_level->DownHyst = 100;
	mem_level->VoltageDownHyst = 0;
	mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
	mem_level->StutterEnable = false;

	mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;

	data->display_timing.num_existing_displays = info.display_count;

	if ((data->mclk_stutter_mode_threshold) &&
		(clock <= data->mclk_stutter_mode_threshold) &&
		(PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
				STUTTER_ENABLE) & 0x1))
		mem_level->StutterEnable = true;

	if (!result) {
		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
		CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
	}
	return result;
}

/**
* Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
*
* @param    hwmgr      the address of the hardware manager
*/
1332
static int polaris10_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1333
{
1334 1335
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_dpm_table *dpm_table = &data->dpm_table;
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	int result;
	/* populate MCLK dpm table to SMU7 */
	uint32_t array = data->dpm_table_start +
			offsetof(SMU74_Discrete_DpmTable, MemoryLevel);
	uint32_t array_size = sizeof(SMU74_Discrete_MemoryLevel) *
			SMU74_MAX_LEVELS_MEMORY;
	struct SMU74_Discrete_MemoryLevel *levels =
			data->smc_state_table.MemoryLevel;
	uint32_t i;

	for (i = 0; i < dpm_table->mclk_table.count; i++) {
		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
				"can not populate memory level as memory clock is zero",
				return -EINVAL);
1350
		result = polaris10_populate_single_memory_level(hwmgr,
1351 1352
				dpm_table->mclk_table.dpm_levels[i].value,
				&levels[i]);
1353 1354 1355 1356
		if (i == dpm_table->mclk_table.count - 1) {
			levels[i].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
			levels[i].EnabledForActivity = 1;
		}
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
		if (result)
			return result;
	}

	/* in order to prevent MC activity from stutter mode to push DPM up.
	 * the UVD change complements this by putting the MCLK in
	 * a higher state by default such that we are not effected by
	 * up threshold or and MCLK DPM latency.
	 */
	levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
	CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);

	data->smc_state_table.MemoryDpmLevelCount =
			(uint8_t)dpm_table->mclk_table.count;
	data->dpm_level_enable_mask.mclk_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);

	/* level count will send to smc once at init smc table and never change */
1375
	result = polaris10_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
			(uint32_t)array_size, data->sram_end);

	return result;
}

/**
* Populates the SMC MVDD structure using the provided memory clock.
*
* @param    hwmgr      the address of the hardware manager
* @param    mclk        the MCLK value to be used in the decision if MVDD should be high or low.
* @param    voltage     the SMC VOLTAGE structure to be populated
*/
1388
int polaris10_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1389 1390
		uint32_t mclk, SMIO_Pattern *smio_pat)
{
1391
	const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1392 1393 1394 1395
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	uint32_t i = 0;

1396
	if (POLARIS10_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
		/* find mvdd value which clock is more than request */
		for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
			if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
				smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
				break;
			}
		}
		PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
				"MVDD Voltage is outside the supported range.",
				return -EINVAL);
	} else
		return -EINVAL;

	return 0;
}

1413
static int polaris10_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1414 1415 1416 1417
		SMU74_Discrete_DpmTable *table)
{
	int result = 0;
	uint32_t sclk_frequency;
1418
	const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	SMIO_Pattern vol_level;
	uint32_t mvdd;
	uint16_t us_mvdd;

	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;

	if (!data->sclk_dpm_key_disabled) {
		/* Get MinVoltage and Frequency from DPM0,
		 * already converted to SMC_UL */
		sclk_frequency = data->dpm_table.sclk_table.dpm_levels[0].value;
1431
		result = polaris10_get_dependency_volt_by_clk(hwmgr,
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
				table_info->vdd_dep_on_sclk,
				table->ACPILevel.SclkFrequency,
				&table->ACPILevel.MinVoltage, &mvdd);
		PP_ASSERT_WITH_CODE((0 == result),
				"Cannot find ACPI VDDC voltage value "
				"in Clock Dependency Table", );
	} else {
		sclk_frequency = data->vbios_boot_state.sclk_bootup_value;
		table->ACPILevel.MinVoltage =
				data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
	}

1444
	result = polaris10_calculate_sclk_params(hwmgr, sclk_frequency,  &(table->ACPILevel.SclkSetting));
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	PP_ASSERT_WITH_CODE(result == 0, "Error retrieving Engine Clock dividers from VBIOS.", return result);

	table->ACPILevel.DeepSleepDivId = 0;
	table->ACPILevel.CcPwrDynRm = 0;
	table->ACPILevel.CcPwrDynRm1 = 0;

	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);

	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency);
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int);
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac);
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int);
1460 1461 1462
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate);
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate);
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate);
1463 1464
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int);
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac);
1465
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate);
1466 1467 1468 1469 1470

	if (!data->mclk_dpm_key_disabled) {
		/* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
		table->MemoryACPILevel.MclkFrequency =
				data->dpm_table.mclk_table.dpm_levels[0].value;
1471
		result = polaris10_get_dependency_volt_by_clk(hwmgr,
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
				table_info->vdd_dep_on_mclk,
				table->MemoryACPILevel.MclkFrequency,
				&table->MemoryACPILevel.MinVoltage, &mvdd);
		PP_ASSERT_WITH_CODE((0 == result),
				"Cannot find ACPI VDDCI voltage value "
				"in Clock Dependency Table",
				);
	} else {
		table->MemoryACPILevel.MclkFrequency =
				data->vbios_boot_state.mclk_bootup_value;
		table->MemoryACPILevel.MinVoltage =
				data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
	}

	us_mvdd = 0;
1487
	if ((POLARIS10_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
1488 1489 1490
			(data->mclk_dpm_key_disabled))
		us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
	else {
1491
		if (!polaris10_populate_mvdd_value(hwmgr,
1492 1493 1494 1495 1496
				data->dpm_table.mclk_table.dpm_levels[0].value,
				&vol_level))
			us_mvdd = vol_level.Voltage;
	}

1497
	if (0 == polaris10_populate_mvdd_value(hwmgr, 0, &vol_level))
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
		table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage);
	else
		table->MemoryACPILevel.MinMvdd = 0;

	table->MemoryACPILevel.StutterEnable = false;

	table->MemoryACPILevel.EnabledForThrottle = 0;
	table->MemoryACPILevel.EnabledForActivity = 0;
	table->MemoryACPILevel.UpHyst = 0;
	table->MemoryACPILevel.DownHyst = 100;
	table->MemoryACPILevel.VoltageDownHyst = 0;
	table->MemoryACPILevel.ActivityLevel =
			PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);

	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);

	return result;
}

1518
static int polaris10_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1519 1520 1521 1522 1523 1524 1525 1526 1527
		SMU74_Discrete_DpmTable *table)
{
	int result = -EINVAL;
	uint8_t count;
	struct pp_atomctrl_clock_dividers_vi dividers;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
			table_info->mm_dep_table;
1528
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1529 1530 1531 1532 1533 1534

	table->VceLevelCount = (uint8_t)(mm_table->count);
	table->VceBootLevel = 0;

	for (count = 0; count < table->VceLevelCount; count++) {
		table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1535
		table->VceLevel[count].MinVoltage = 0;
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
		table->VceLevel[count].MinVoltage |=
				(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
		table->VceLevel[count].MinVoltage |=
				((mm_table->entries[count].vddc - data->vddc_vddci_delta) *
						VOLTAGE_SCALE) << VDDCI_SHIFT;
		table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;

		/*retrieve divider value for VBIOS */
		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->VceLevel[count].Frequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for VCE engine clock",
				return result);

		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;

		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
	}
	return result;
}

1558
static int polaris10_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
1559 1560 1561 1562 1563 1564 1565 1566 1567
		SMU74_Discrete_DpmTable *table)
{
	int result = -EINVAL;
	uint8_t count;
	struct pp_atomctrl_clock_dividers_vi dividers;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
			table_info->mm_dep_table;
1568
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1569 1570 1571 1572 1573 1574

	table->SamuBootLevel = 0;
	table->SamuLevelCount = (uint8_t)(mm_table->count);

	for (count = 0; count < table->SamuLevelCount; count++) {
		/* not sure whether we need evclk or not */
1575
		table->SamuLevel[count].MinVoltage = 0;
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
		table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
		table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
				VOLTAGE_SCALE) << VDDC_SHIFT;
		table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
				data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
		table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;

		/* retrieve divider value for VBIOS */
		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->SamuLevel[count].Frequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for samu clock", return result);

		table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;

		CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
		CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
	}
	return result;
}

1597
static int polaris10_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
		int32_t eng_clock, int32_t mem_clock,
		SMU74_Discrete_MCArbDramTimingTableEntry *arb_regs)
{
	uint32_t dram_timing;
	uint32_t dram_timing2;
	uint32_t burst_time;
	int result;

	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
			eng_clock, mem_clock);
	PP_ASSERT_WITH_CODE(result == 0,
			"Error calling VBIOS to set DRAM_TIMING.", return result);

	dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
	dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
	burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);


	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
	arb_regs->McArbBurstTime   = (uint8_t)burst_time;

	return 0;
}

1623
static int polaris10_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1624
{
1625
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1626 1627 1628 1629 1630 1631
	struct SMU74_Discrete_MCArbDramTimingTable arb_regs;
	uint32_t i, j;
	int result = 0;

	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1632
			result = polaris10_populate_memory_timing_parameters(hwmgr,
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
					data->dpm_table.sclk_table.dpm_levels[i].value,
					data->dpm_table.mclk_table.dpm_levels[j].value,
					&arb_regs.entries[i][j]);
			if (result == 0)
				result = atomctrl_set_ac_timing_ai(hwmgr, data->dpm_table.mclk_table.dpm_levels[j].value, j);
			if (result != 0)
				return result;
		}
	}

1643
	result = polaris10_copy_bytes_to_smc(
1644 1645 1646 1647 1648 1649 1650 1651
			hwmgr->smumgr,
			data->arb_table_start,
			(uint8_t *)&arb_regs,
			sizeof(SMU74_Discrete_MCArbDramTimingTable),
			data->sram_end);
	return result;
}

1652
static int polaris10_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1653 1654 1655 1656 1657 1658 1659 1660 1661
		struct SMU74_Discrete_DpmTable *table)
{
	int result = -EINVAL;
	uint8_t count;
	struct pp_atomctrl_clock_dividers_vi dividers;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
			table_info->mm_dep_table;
1662
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1663 1664 1665 1666 1667

	table->UvdLevelCount = (uint8_t)(mm_table->count);
	table->UvdBootLevel = 0;

	for (count = 0; count < table->UvdLevelCount; count++) {
1668
		table->UvdLevel[count].MinVoltage = 0;
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
		table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
		table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
		table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
				VOLTAGE_SCALE) << VDDC_SHIFT;
		table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
				data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
		table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;

		/* retrieve divider value for VBIOS */
		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->UvdLevel[count].VclkFrequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for Vclk clock", return result);

		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;

		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->UvdLevel[count].DclkFrequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for Dclk clock", return result);

		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;

		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);

	}
	return result;
}

1700
static int polaris10_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1701 1702 1703
		struct SMU74_Discrete_DpmTable *table)
{
	int result = 0;
1704
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

	table->GraphicsBootLevel = 0;
	table->MemoryBootLevel = 0;

	/* find boot level from dpm table */
	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
			data->vbios_boot_state.sclk_bootup_value,
			(uint32_t *)&(table->GraphicsBootLevel));

	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
			data->vbios_boot_state.mclk_bootup_value,
			(uint32_t *)&(table->MemoryBootLevel));

	table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
			VOLTAGE_SCALE;
	table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
			VOLTAGE_SCALE;
	table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
			VOLTAGE_SCALE;

	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
	CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);

	return 0;
}


1733
static int polaris10_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
1734
{
1735
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	uint8_t count, level;

	count = (uint8_t)(table_info->vdd_dep_on_sclk->count);

	for (level = 0; level < count; level++) {
		if (table_info->vdd_dep_on_sclk->entries[level].clk >=
				data->vbios_boot_state.sclk_bootup_value) {
			data->smc_state_table.GraphicsBootLevel = level;
			break;
		}
	}

	count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
	for (level = 0; level < count; level++) {
		if (table_info->vdd_dep_on_mclk->entries[level].clk >=
				data->vbios_boot_state.mclk_bootup_value) {
			data->smc_state_table.MemoryBootLevel = level;
			break;
		}
	}

	return 0;
}

1762
static int polaris10_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1763 1764 1765 1766
{
	uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
			volt_with_cks, value;
	uint16_t clock_freq_u16;
1767
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
			volt_offset = 0;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
			table_info->vdd_dep_on_sclk;

	stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;

	/* Read SMU_Eefuse to read and calculate RO and determine
	 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
	 */
	efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixSMU_EFUSE_0 + (146 * 4));
	efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixSMU_EFUSE_0 + (148 * 4));
	efuse &= 0xFF000000;
	efuse = efuse >> 24;
	efuse2 &= 0xF;

	if (efuse2 == 1)
		ro = (2300 - 1350) * efuse / 255 + 1350;
	else
		ro = (2500 - 1000) * efuse / 255 + 1000;

	if (ro >= 1660)
		type = 0;
	else
		type = 1;

	/* Populate Stretch amount */
	data->smc_state_table.ClockStretcherAmount = stretch_amount;

	/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
	for (i = 0; i < sclk_table->count; i++) {
		data->smc_state_table.Sclk_CKS_masterEn0_7 |=
				sclk_table->entries[i].cks_enable << i;
		volt_without_cks = (uint32_t)((14041 *
			(sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
			(4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
		volt_with_cks = (uint32_t)((13946 *
			(sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
			(3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
		if (volt_without_cks >= volt_with_cks)
			volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
					sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
		data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
	}

	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
			STRETCH_ENABLE, 0x0);
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
			masterReset, 0x1);
	/* PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, staticEnable, 0x1); */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
			masterReset, 0x0);

	/* Populate CKS Lookup Table */
	if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
		stretch_amount2 = 0;
	else if (stretch_amount == 3 || stretch_amount == 4)
		stretch_amount2 = 1;
	else {
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_ClockStretcher);
		PP_ASSERT_WITH_CODE(false,
				"Stretch Amount in PPTable not supported\n",
				return -EINVAL);
	}

	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixPWR_CKS_CNTL);
	value &= 0xFFC2FF87;
	data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
1842
			polaris10_clock_stretcher_lookup_table[stretch_amount2][0];
1843
	data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
1844
			polaris10_clock_stretcher_lookup_table[stretch_amount2][1];
1845 1846
	clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(data->smc_state_table.
			GraphicsLevel[data->smc_state_table.GraphicsDpmLevelCount - 1].SclkSetting.SclkFrequency) / 100);
1847 1848
	if (polaris10_clock_stretcher_lookup_table[stretch_amount2][0] < clock_freq_u16
	&& polaris10_clock_stretcher_lookup_table[stretch_amount2][1] > clock_freq_u16) {
1849
		/* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
1850
		value |= (polaris10_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
1851
		/* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
1852
		value |= (polaris10_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
1853
		/* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
1854 1855
		value |= (polaris10_clock_stretch_amount_conversion
				[polaris10_clock_stretcher_lookup_table[stretch_amount2][3]]
1856 1857 1858 1859 1860
				 [stretch_amount]) << 3;
	}
	CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq);
	CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq);
	data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
1861
			polaris10_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
1862
	data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
1863
			(polaris10_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixPWR_CKS_CNTL, value);

	/* Populate DDT Lookup Table */
	for (i = 0; i < 4; i++) {
		/* Assign the minimum and maximum VID stored
		 * in the last row of Clock Stretcher Voltage Table.
		 */
		data->smc_state_table.ClockStretcherDataTable.ClockStretcherDataTableEntry[i].minVID =
1874
				(uint8_t) polaris10_clock_stretcher_ddt_table[type][i][2];
1875
		data->smc_state_table.ClockStretcherDataTable.ClockStretcherDataTableEntry[i].maxVID =
1876
				(uint8_t) polaris10_clock_stretcher_ddt_table[type][i][3];
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
		/* Loop through each SCLK and check the frequency
		 * to see if it lies within the frequency for clock stretcher.
		 */
		for (j = 0; j < data->smc_state_table.GraphicsDpmLevelCount; j++) {
			cks_setting = 0;
			clock_freq = PP_SMC_TO_HOST_UL(
					data->smc_state_table.GraphicsLevel[j].SclkSetting.SclkFrequency);
			/* Check the allowed frequency against the sclk level[j].
			 *  Sclk's endianness has already been converted,
			 *  and it's in 10Khz unit,
			 *  as opposed to Data table, which is in Mhz unit.
			 */
1889
			if (clock_freq >= (polaris10_clock_stretcher_ddt_table[type][i][0]) * 100) {
1890
				cks_setting |= 0x2;
1891
				if (clock_freq < (polaris10_clock_stretcher_ddt_table[type][i][1]) * 100)
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
					cks_setting |= 0x1;
			}
			data->smc_state_table.ClockStretcherDataTable.ClockStretcherDataTableEntry[i].setting
							|= cks_setting << (j * 2);
		}
		CONVERT_FROM_HOST_TO_SMC_US(
			data->smc_state_table.ClockStretcherDataTable.ClockStretcherDataTableEntry[i].setting);
	}

	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
	value &= 0xFFFFFFFE;
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);

	return 0;
}

/**
* Populates the SMC VRConfig field in DPM table.
*
* @param    hwmgr   the address of the hardware manager
* @param    table   the SMC DPM table structure to be populated
* @return   always 0
*/
1915
static int polaris10_populate_vr_config(struct pp_hwmgr *hwmgr,
1916 1917
		struct SMU74_Discrete_DpmTable *table)
{
1918
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1919 1920 1921 1922 1923 1924
	uint16_t config;

	config = VR_MERGED_WITH_VDDC;
	table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);

	/* Set Vddc Voltage Controller */
1925
	if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1926 1927 1928 1929 1930 1931 1932 1933
		config = VR_SVI2_PLANE_1;
		table->VRConfig |= config;
	} else {
		PP_ASSERT_WITH_CODE(false,
				"VDDC should be on SVI2 control in merged mode!",
				);
	}
	/* Set Vddci Voltage Controller */
1934
	if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1935 1936
		config = VR_SVI2_PLANE_2;  /* only in merged mode */
		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1937
	} else if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1938 1939 1940 1941 1942 1943 1944
		config = VR_SMIO_PATTERN_1;
		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
	} else {
		config = VR_STATIC_VOLTAGE;
		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
	}
	/* Set Mvdd Voltage Controller */
1945
	if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1946 1947
		config = VR_SVI2_PLANE_2;
		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1948
	} else if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
		config = VR_SMIO_PATTERN_2;
		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
	} else {
		config = VR_STATIC_VOLTAGE;
		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
	}

	return 0;
}

/**
* Initializes the SMC table and uploads it
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
1965
static int polaris10_init_smc_table(struct pp_hwmgr *hwmgr)
1966 1967
{
	int result;
1968
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1969 1970 1971
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct SMU74_Discrete_DpmTable *table = &(data->smc_state_table);
1972
	const struct polaris10_ulv_parm *ulv = &(data->ulv);
1973 1974
	uint8_t i;
	struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1975
	pp_atomctrl_clock_dividers_vi dividers;
1976

1977
	result = polaris10_setup_default_dpm_tables(hwmgr);
1978 1979 1980
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to setup default DPM tables!", return result);

1981 1982
	if (POLARIS10_VOLTAGE_CONTROL_NONE != data->voltage_control)
		polaris10_populate_smc_voltage_tables(hwmgr, table);
1983

1984
	table->SystemFlags = 0;
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_AutomaticDCTransition))
		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_StepVddc))
		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;

	if (data->is_memory_gddr5)
		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;

	if (ulv->ulv_supported && table_info->us_ulv_voltage_offset) {
1997
		result = polaris10_populate_ulv_state(hwmgr, table);
1998 1999 2000
		PP_ASSERT_WITH_CODE(0 == result,
				"Failed to initialize ULV state!", return result);
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2001
				ixCG_ULV_PARAMETER, PPPOLARIS10_CGULVPARAMETER_DFLT);
2002 2003
	}

2004
	result = polaris10_populate_smc_link_level(hwmgr, table);
2005 2006 2007
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize Link Level!", return result);

2008
	result = polaris10_populate_all_graphic_levels(hwmgr);
2009 2010 2011
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize Graphics Level!", return result);

2012
	result = polaris10_populate_all_memory_levels(hwmgr);
2013 2014 2015
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize Memory Level!", return result);

2016
	result = polaris10_populate_smc_acpi_level(hwmgr, table);
2017 2018 2019
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize ACPI Level!", return result);

2020
	result = polaris10_populate_smc_vce_level(hwmgr, table);
2021 2022 2023
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize VCE Level!", return result);

2024
	result = polaris10_populate_smc_samu_level(hwmgr, table);
2025 2026 2027 2028 2029 2030 2031
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize SAMU Level!", return result);

	/* Since only the initial state is completely set up at this point
	 * (the other states are just copies of the boot state) we only
	 * need to populate the  ARB settings for the initial state.
	 */
2032
	result = polaris10_program_memory_timing_parameters(hwmgr);
2033 2034 2035
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to Write ARB settings for the initial state.", return result);

2036
	result = polaris10_populate_smc_uvd_level(hwmgr, table);
2037 2038 2039
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize UVD Level!", return result);

2040
	result = polaris10_populate_smc_boot_level(hwmgr, table);
2041 2042 2043
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize Boot Level!", return result);

2044
	result = polaris10_populate_smc_initailial_state(hwmgr);
2045 2046 2047
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize Boot State!", return result);

2048
	result = polaris10_populate_bapm_parameters_in_dpm_table(hwmgr);
2049 2050 2051 2052 2053
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to populate BAPM Parameters!", return result);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ClockStretcher)) {
2054
		result = polaris10_populate_clock_stretcher_data_table(hwmgr);
2055 2056 2057 2058
		PP_ASSERT_WITH_CODE(0 == result,
				"Failed to populate Clock Stretcher Data Table!",
				return result);
	}
2059
	table->CurrSclkPllRange = 0xff;
2060 2061 2062 2063 2064 2065 2066
	table->GraphicsVoltageChangeEnable  = 1;
	table->GraphicsThermThrottleEnable  = 1;
	table->GraphicsInterval = 1;
	table->VoltageInterval  = 1;
	table->ThermalInterval  = 1;
	table->TemperatureLimitHigh =
			table_info->cac_dtp_table->usTargetOperatingTemp *
2067
			POLARIS10_Q88_FORMAT_CONVERSION_UNIT;
2068 2069
	table->TemperatureLimitLow  =
			(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2070
			POLARIS10_Q88_FORMAT_CONVERSION_UNIT;
2071 2072 2073 2074 2075 2076 2077
	table->MemoryVoltageChangeEnable = 1;
	table->MemoryInterval = 1;
	table->VoltageResponseTime = 0;
	table->PhaseResponseTime = 0;
	table->MemoryThermThrottleEnable = 1;
	table->PCIeBootLinkLevel = 0;
	table->PCIeGenInterval = 1;
2078
	table->VRConfig = 0;
2079

2080
	result = polaris10_populate_vr_config(hwmgr, table);
2081 2082 2083 2084 2085 2086 2087 2088 2089
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to populate VRConfig setting!", return result);

	table->ThermGpio = 17;
	table->SclkStepSize = 0x4000;

	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
		table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
	} else {
2090
		table->VRHotGpio = POLARIS10_UNUSED_GPIO_PIN;
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_RegulatorHot);
	}

	if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
			&gpio_pin)) {
		table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_AutomaticDCTransition);
	} else {
2101
		table->AcDcGpio = POLARIS10_UNUSED_GPIO_PIN;
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_AutomaticDCTransition);
	}

	/* Thermal Output GPIO */
	if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
			&gpio_pin)) {
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_ThermalOutGPIO);

		table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;

		/* For porlarity read GPIOPAD_A with assigned Gpio pin
		 * since VBIOS will program this register to set 'inactive state',
		 * driver can then determine 'active state' from this and
		 * program SMU with correct polarity
		 */
		table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A)
					& (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
		table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;

		/* if required, combine VRHot/PCC with thermal out GPIO */
		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot)
		&& phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_CombinePCCWithThermalSignal))
			table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
	} else {
		table->ThermOutGpio = 17;
		table->ThermOutPolarity = 1;
		table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
	}

2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	/* Populate BIF_SCLK levels into SMC DPM table */
	for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++) {
		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, data->bif_sclk_table[i], &dividers);
		PP_ASSERT_WITH_CODE((result == 0), "Can not find DFS divide id for Sclk", return result);

		if (i == 0)
			table->Ulv.BifSclkDfs = PP_HOST_TO_SMC_US((USHORT)(dividers.pll_post_divider));
		else
			table->LinkLevel[i-1].BifSclkDfs = PP_HOST_TO_SMC_US((USHORT)(dividers.pll_post_divider));
	}

2144 2145 2146 2147 2148 2149 2150 2151
	for (i = 0; i < SMU74_MAX_ENTRIES_SMIO; i++)
		table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);

	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2152
	CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange);
2153 2154 2155 2156 2157 2158
	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);

	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2159
	result = polaris10_copy_bytes_to_smc(hwmgr->smumgr,
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
			data->dpm_table_start +
			offsetof(SMU74_Discrete_DpmTable, SystemFlags),
			(uint8_t *)&(table->SystemFlags),
			sizeof(SMU74_Discrete_DpmTable) - 3 * sizeof(SMU74_PIDController),
			data->sram_end);
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to upload dpm data to SMC memory!", return result);

	return 0;
}

/**
* Initialize the ARB DRAM timing table's index field.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
2177
static int polaris10_init_arb_table_index(struct pp_hwmgr *hwmgr)
2178
{
2179
	const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	uint32_t tmp;
	int result;

	/* This is a read-modify-write on the first byte of the ARB table.
	 * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
	 * is the field 'current'.
	 * This solution is ugly, but we never write the whole table only
	 * individual fields in it.
	 * In reality this field should not be in that structure
	 * but in a soft register.
	 */
2191
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
2192 2193 2194 2195 2196 2197 2198 2199
			data->arb_table_start, &tmp, data->sram_end);

	if (result)
		return result;

	tmp &= 0x00FFFFFF;
	tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;

2200
	return polaris10_write_smc_sram_dword(hwmgr->smumgr,
2201 2202 2203
			data->arb_table_start, tmp, data->sram_end);
}

2204
static int polaris10_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
2205 2206 2207 2208 2209 2210 2211 2212 2213
{
	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_RegulatorHot))
		return smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_EnableVRHotGPIOInterrupt);

	return 0;
}

2214
static int polaris10_enable_sclk_control(struct pp_hwmgr *hwmgr)
2215 2216 2217 2218 2219 2220
{
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
			SCLK_PWRMGT_OFF, 0);
	return 0;
}

2221
static int polaris10_enable_ulv(struct pp_hwmgr *hwmgr)
2222
{
2223 2224
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_ulv_parm *ulv = &(data->ulv);
2225 2226 2227 2228 2229 2230 2231

	if (ulv->ulv_supported)
		return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV);

	return 0;
}

2232
static int polaris10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
{
	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SclkDeepSleep)) {
		if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON))
			PP_ASSERT_WITH_CODE(false,
					"Attempt to enable Master Deep Sleep switch failed!",
					return -1);
	} else {
		if (smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_MASTER_DeepSleep_OFF)) {
			PP_ASSERT_WITH_CODE(false,
					"Attempt to disable Master Deep Sleep switch failed!",
					return -1);
		}
	}

	return 0;
}

2252
static int polaris10_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
2253
{
2254
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

	/* enable SCLK dpm */
	if (!data->sclk_dpm_key_disabled)
		PP_ASSERT_WITH_CODE(
		(0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)),
		"Failed to enable SCLK DPM during DPM Start Function!",
		return -1);

	/* enable MCLK dpm */
	if (0 == data->mclk_dpm_key_disabled) {

		PP_ASSERT_WITH_CODE(
				(0 == smum_send_msg_to_smc(hwmgr->smumgr,
						PPSMC_MSG_MCLKDPM_Enable)),
				"Failed to enable MCLK DPM during DPM Start Function!",
				return -1);


		PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);

		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5);
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5);
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005);
		udelay(10);
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005);
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005);
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005);
	}

	return 0;
}

2287
static int polaris10_start_dpm(struct pp_hwmgr *hwmgr)
2288
{
2289
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

	/*enable general power management */

	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
			GLOBAL_PWRMGT_EN, 1);

	/* enable sclk deep sleep */

	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
			DYNAMIC_PM_EN, 1);

	/* prepare for PCIE DPM */

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			data->soft_regs_start + offsetof(SMU74_SoftRegisters,
					VoltageChangeTimeout), 0x1000);
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
			SWRST_COMMAND_1, RESETLC, 0x0);
2308
/*
2309 2310 2311 2312 2313
	PP_ASSERT_WITH_CODE(
			(0 == smum_send_msg_to_smc(hwmgr->smumgr,
					PPSMC_MSG_Voltage_Cntl_Enable)),
			"Failed to enable voltage DPM during DPM Start Function!",
			return -1);
2314
*/
2315

2316
	if (polaris10_enable_sclk_mclk_dpm(hwmgr)) {
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
		printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!");
		return -1;
	}

	/* enable PCIE dpm */
	if (0 == data->pcie_dpm_key_disabled) {
		PP_ASSERT_WITH_CODE(
				(0 == smum_send_msg_to_smc(hwmgr->smumgr,
						PPSMC_MSG_PCIeDPM_Enable)),
				"Failed to enable pcie DPM during DPM Start Function!",
				return -1);
	}

2330 2331 2332 2333 2334 2335 2336
	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_Falcon_QuickTransition)) {
		PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_EnableACDCGPIOInterrupt)),
				"Failed to enable AC DC GPIO Interrupt!",
				);
	}
2337 2338 2339 2340

	return 0;
}

2341
static void polaris10_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources)
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
{
	bool protection;
	enum DPM_EVENT_SRC src;

	switch (sources) {
	default:
		printk(KERN_ERR "Unknown throttling event sources.");
		/* fall through */
	case 0:
		protection = false;
		/* src is unused */
		break;
	case (1 << PHM_AutoThrottleSource_Thermal):
		protection = true;
		src = DPM_EVENT_SRC_DIGITAL;
		break;
	case (1 << PHM_AutoThrottleSource_External):
		protection = true;
		src = DPM_EVENT_SRC_EXTERNAL;
		break;
	case (1 << PHM_AutoThrottleSource_External) |
			(1 << PHM_AutoThrottleSource_Thermal):
		protection = true;
		src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
		break;
	}
	/* Order matters - don't enable thermal protection for the wrong source. */
	if (protection) {
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
				DPM_EVENT_SRC, src);
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
				THERMAL_PROTECTION_DIS,
2374
				!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2375 2376 2377 2378 2379 2380
						PHM_PlatformCaps_ThermalController));
	} else
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
				THERMAL_PROTECTION_DIS, 1);
}

2381
static int polaris10_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
2382 2383
		PHM_AutoThrottleSource source)
{
2384
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2385 2386 2387

	if (!(data->active_auto_throttle_sources & (1 << source))) {
		data->active_auto_throttle_sources |= 1 << source;
2388
		polaris10_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
2389 2390 2391 2392
	}
	return 0;
}

2393
static int polaris10_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
2394
{
2395
	return polaris10_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
2396 2397
}

2398
int polaris10_pcie_performance_request(struct pp_hwmgr *hwmgr)
2399
{
2400
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2401 2402 2403 2404 2405
	data->pcie_performance_request = true;

	return 0;
}

2406
int polaris10_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
2407 2408
{
	int tmp_result, result = 0;
2409
	tmp_result = (!polaris10_is_dpm_running(hwmgr)) ? 0 : -1;
2410 2411 2412 2413
	PP_ASSERT_WITH_CODE(result == 0,
			"DPM is already running right now, no need to enable DPM!",
			return 0);

2414 2415
	if (polaris10_voltage_control(hwmgr)) {
		tmp_result = polaris10_enable_voltage_control(hwmgr);
2416 2417 2418 2419
		PP_ASSERT_WITH_CODE(tmp_result == 0,
				"Failed to enable voltage control!",
				result = tmp_result);

2420
		tmp_result = polaris10_construct_voltage_tables(hwmgr);
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
		PP_ASSERT_WITH_CODE((0 == tmp_result),
				"Failed to contruct voltage tables!",
				result = tmp_result);
	}

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_EngineSpreadSpectrumSupport))
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
				GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ThermalController))
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
				GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);

2436
	tmp_result = polaris10_program_static_screen_threshold_parameters(hwmgr);
2437 2438 2439 2440
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to program static screen threshold parameters!",
			result = tmp_result);

2441
	tmp_result = polaris10_enable_display_gap(hwmgr);
2442 2443 2444
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable display gap!", result = tmp_result);

2445
	tmp_result = polaris10_program_voting_clients(hwmgr);
2446 2447 2448
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to program voting clients!", result = tmp_result);

2449
	tmp_result = polaris10_process_firmware_header(hwmgr);
2450 2451 2452
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to process firmware header!", result = tmp_result);

2453
	tmp_result = polaris10_initial_switch_from_arbf0_to_f1(hwmgr);
2454 2455 2456 2457
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to initialize switch from ArbF0 to F1!",
			result = tmp_result);

2458
	tmp_result = polaris10_init_smc_table(hwmgr);
2459 2460 2461
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to initialize SMC table!", result = tmp_result);

2462
	tmp_result = polaris10_init_arb_table_index(hwmgr);
2463 2464 2465
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to initialize ARB table index!", result = tmp_result);

2466
	tmp_result = polaris10_populate_pm_fuses(hwmgr);
2467 2468 2469
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to populate PM fuses!", result = tmp_result);

2470
	tmp_result = polaris10_enable_vrhot_gpio_interrupt(hwmgr);
2471 2472 2473
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable VR hot GPIO interrupt!", result = tmp_result);

2474
	tmp_result = polaris10_enable_sclk_control(hwmgr);
2475 2476 2477
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable SCLK control!", result = tmp_result);

2478
	tmp_result = polaris10_enable_smc_voltage_controller(hwmgr);
2479 2480 2481
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable voltage control!", result = tmp_result);

2482
	tmp_result = polaris10_enable_ulv(hwmgr);
2483 2484 2485
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable ULV!", result = tmp_result);

2486
	tmp_result = polaris10_enable_deep_sleep_master_switch(hwmgr);
2487 2488 2489
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable deep sleep master switch!", result = tmp_result);

2490
	tmp_result = polaris10_start_dpm(hwmgr);
2491 2492 2493
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to start DPM!", result = tmp_result);

2494
	tmp_result = polaris10_enable_smc_cac(hwmgr);
2495 2496 2497
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable SMC CAC!", result = tmp_result);

2498
	tmp_result = polaris10_enable_power_containment(hwmgr);
2499 2500 2501
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable power containment!", result = tmp_result);

2502
	tmp_result = polaris10_power_control_set_level(hwmgr);
2503 2504 2505
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to power control set level!", result = tmp_result);

2506
	tmp_result = polaris10_enable_thermal_auto_throttle(hwmgr);
2507 2508 2509
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable thermal auto throttle!", result = tmp_result);

2510
	tmp_result = polaris10_pcie_performance_request(hwmgr);
2511
	PP_ASSERT_WITH_CODE((0 == tmp_result),
2512
			"pcie performance request failed!", result = tmp_result);
2513 2514 2515 2516

	return result;
}

2517
int polaris10_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
2518 2519 2520 2521 2522
{

	return 0;
}

2523
int polaris10_reset_asic_tasks(struct pp_hwmgr *hwmgr)
2524 2525 2526 2527 2528
{

	return 0;
}

2529
int polaris10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
2530
{
2531 2532 2533 2534 2535 2536 2537
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);

	if (data->soft_pp_table) {
		kfree(data->soft_pp_table);
		data->soft_pp_table = NULL;
	}

2538 2539 2540
	return phm_hwmgr_backend_fini(hwmgr);
}

2541
int polaris10_set_features_platform_caps(struct pp_hwmgr *hwmgr)
2542
{
2543
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2544 2545 2546 2547

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SclkDeepSleep);

2548 2549 2550
	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
		PHM_PlatformCaps_DynamicPatchPowerState);

2551
	if (data->mvdd_control == POLARIS10_VOLTAGE_CONTROL_NONE)
2552 2553 2554
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_EnableMVDDControl);

2555
	if (data->vddci_control == POLARIS10_VOLTAGE_CONTROL_NONE)
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_ControlVDDCI);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			 PHM_PlatformCaps_TablelessHardwareInterface);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_EnableSMU7ThermalManagement);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_DynamicPowerManagement);

2568 2569 2570
	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_UnTabledHardwareInterface);

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_TablelessHardwareInterface);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_SMC);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_NonABMSupportInPPLib);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_DynamicUVDState);

	/* power tune caps Assume disabled */
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_SQRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_DBRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_TDRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_TCPRamping);

2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_PowerContainment);
	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
							PHM_PlatformCaps_CAC);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_RegulatorHot);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_AutomaticDCTransition);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_ODFuzzyFanControlSupport);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_FanSpeedInTableIsRPM);
2609

2610 2611 2612
	if (hwmgr->chip_id == CHIP_POLARIS11)
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_SPLLShutdownSupport);
2613 2614 2615
	return 0;
}

2616
static void polaris10_init_dpm_defaults(struct pp_hwmgr *hwmgr)
2617
{
2618
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2619

2620
	polaris10_initialize_power_tune_defaults(hwmgr);
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637

	data->pcie_gen_performance.max = PP_PCIEGen1;
	data->pcie_gen_performance.min = PP_PCIEGen3;
	data->pcie_gen_power_saving.max = PP_PCIEGen1;
	data->pcie_gen_power_saving.min = PP_PCIEGen3;
	data->pcie_lane_performance.max = 0;
	data->pcie_lane_performance.min = 16;
	data->pcie_lane_power_saving.max = 0;
	data->pcie_lane_power_saving.min = 16;
}

/**
* Get Leakage VDDC based on leakage ID.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
2638
static int polaris10_get_evv_voltages(struct pp_hwmgr *hwmgr)
2639
{
2640
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
	uint16_t vv_id;
	uint16_t vddc = 0;
	uint16_t i, j;
	uint32_t sclk = 0;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
			table_info->vdd_dep_on_sclk;
	int result;

2651
	for (i = 0; i < POLARIS10_MAX_LEAKAGE_COUNT; i++) {
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
		vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
		if (!phm_get_sclk_for_voltage_evv(hwmgr,
				table_info->vddc_lookup_table, vv_id, &sclk)) {
			if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_ClockStretcher)) {
				for (j = 1; j < sclk_table->count; j++) {
					if (sclk_table->entries[j].clk == sclk &&
							sclk_table->entries[j].cks_enable == 0) {
						sclk += 5000;
						break;
					}
				}
			}


			PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk_ai(hwmgr,
							VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc),
						"Error retrieving EVV voltage value!",
						continue);


			/* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
			PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0),
					"Invalid VDDC value", result = -EINVAL;);

			/* the voltage should not be zero nor equal to leakage ID */
			if (vddc != 0 && vddc != vv_id) {
				data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100);
				data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
				data->vddc_leakage.count++;
			}
		}
	}

	return 0;
}

/**
 * Change virtual leakage voltage to actual value.
 *
 * @param     hwmgr  the address of the powerplay hardware manager.
 * @param     pointer to changing voltage
 * @param     pointer to leakage table
 */
2696 2697
static void polaris10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
		uint16_t *voltage, struct polaris10_leakage_voltage *leakage_table)
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
{
	uint32_t index;

	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
	for (index = 0; index < leakage_table->count; index++) {
		/* if this voltage matches a leakage voltage ID */
		/* patch with actual leakage voltage */
		if (leakage_table->leakage_id[index] == *voltage) {
			*voltage = leakage_table->actual_voltage[index];
			break;
		}
	}

	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
		printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n");
}

/**
* Patch voltage lookup table by EVV leakages.
*
* @param     hwmgr  the address of the powerplay hardware manager.
* @param     pointer to voltage lookup table
* @param     pointer to leakage table
* @return     always 0
*/
2723
static int polaris10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
2724
		phm_ppt_v1_voltage_lookup_table *lookup_table,
2725
		struct polaris10_leakage_voltage *leakage_table)
2726 2727 2728 2729
{
	uint32_t i;

	for (i = 0; i < lookup_table->count; i++)
2730
		polaris10_patch_with_vdd_leakage(hwmgr,
2731 2732 2733 2734 2735
				&lookup_table->entries[i].us_vdd, leakage_table);

	return 0;
}

2736 2737
static int polaris10_patch_clock_voltage_limits_with_vddc_leakage(
		struct pp_hwmgr *hwmgr, struct polaris10_leakage_voltage *leakage_table,
2738 2739 2740 2741
		uint16_t *vddc)
{
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2742
	polaris10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
2743 2744 2745 2746 2747
	hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
			table_info->max_clock_voltage_on_dc.vddc;
	return 0;
}

2748
static int polaris10_patch_voltage_dependency_tables_with_lookup_table(
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
		struct pp_hwmgr *hwmgr)
{
	uint8_t entryId;
	uint8_t voltageId;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
			table_info->vdd_dep_on_sclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
			table_info->vdd_dep_on_mclk;
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
			table_info->mm_dep_table;

	for (entryId = 0; entryId < sclk_table->count; ++entryId) {
		voltageId = sclk_table->entries[entryId].vddInd;
		sclk_table->entries[entryId].vddc =
				table_info->vddc_lookup_table->entries[voltageId].us_vdd;
	}

	for (entryId = 0; entryId < mclk_table->count; ++entryId) {
		voltageId = mclk_table->entries[entryId].vddInd;
		mclk_table->entries[entryId].vddc =
			table_info->vddc_lookup_table->entries[voltageId].us_vdd;
	}

	for (entryId = 0; entryId < mm_table->count; ++entryId) {
		voltageId = mm_table->entries[entryId].vddcInd;
		mm_table->entries[entryId].vddc =
			table_info->vddc_lookup_table->entries[voltageId].us_vdd;
	}

	return 0;

}

2785
static int polaris10_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
2786 2787 2788 2789 2790
{
	/* Need to determine if we need calculated voltage. */
	return 0;
}

2791
static int polaris10_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
2792 2793 2794 2795 2796
{
	/* Need to determine if we need calculated voltage from mm table. */
	return 0;
}

2797
static int polaris10_sort_lookup_table(struct pp_hwmgr *hwmgr,
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
		struct phm_ppt_v1_voltage_lookup_table *lookup_table)
{
	uint32_t table_size, i, j;
	struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
	table_size = lookup_table->count;

	PP_ASSERT_WITH_CODE(0 != lookup_table->count,
		"Lookup table is empty", return -EINVAL);

	/* Sorting voltages */
	for (i = 0; i < table_size - 1; i++) {
		for (j = i + 1; j > 0; j--) {
			if (lookup_table->entries[j].us_vdd <
					lookup_table->entries[j - 1].us_vdd) {
				tmp_voltage_lookup_record = lookup_table->entries[j - 1];
				lookup_table->entries[j - 1] = lookup_table->entries[j];
				lookup_table->entries[j] = tmp_voltage_lookup_record;
			}
		}
	}

	return 0;
}

2822
static int polaris10_complete_dependency_tables(struct pp_hwmgr *hwmgr)
2823 2824 2825
{
	int result = 0;
	int tmp_result;
2826
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2827 2828 2829
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

2830
	tmp_result = polaris10_patch_lookup_table_with_leakage(hwmgr,
2831 2832 2833 2834
			table_info->vddc_lookup_table, &(data->vddc_leakage));
	if (tmp_result)
		result = tmp_result;

2835
	tmp_result = polaris10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
2836 2837 2838 2839
			&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
	if (tmp_result)
		result = tmp_result;

2840
	tmp_result = polaris10_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
2841 2842 2843
	if (tmp_result)
		result = tmp_result;

2844
	tmp_result = polaris10_calc_voltage_dependency_tables(hwmgr);
2845 2846 2847
	if (tmp_result)
		result = tmp_result;

2848
	tmp_result = polaris10_calc_mm_voltage_dependency_table(hwmgr);
2849 2850 2851
	if (tmp_result)
		result = tmp_result;

2852
	tmp_result = polaris10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
2853 2854 2855 2856 2857 2858
	if (tmp_result)
		result = tmp_result;

	return result;
}

2859
static int polaris10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
{
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
						table_info->vdd_dep_on_sclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
						table_info->vdd_dep_on_mclk;

	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
2870
		"VDD dependency on SCLK table is missing.	\
2871 2872
		This table is mandatory", return -EINVAL);
	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
2873
		"VDD dependency on SCLK table has to have is missing.	\
2874 2875 2876
		This table is mandatory", return -EINVAL);

	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
2877
		"VDD dependency on MCLK table is missing.	\
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
		This table is mandatory", return -EINVAL);
	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
		"VDD dependency on MCLK table has to have is missing.	 \
		This table is mandatory", return -EINVAL);

	table_info->max_clock_voltage_on_ac.sclk =
		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
	table_info->max_clock_voltage_on_ac.mclk =
		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
	table_info->max_clock_voltage_on_ac.vddc =
		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
	table_info->max_clock_voltage_on_ac.vddci =
		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;

2892 2893 2894 2895 2896
	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk;
	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk;
	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc;
	hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =table_info->max_clock_voltage_on_ac.vddci;

2897 2898 2899
	return 0;
}

2900
int polaris10_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
2901
{
2902
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2903 2904 2905
	struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
	uint32_t temp_reg;
	int result;
2906 2907
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2908 2909 2910

	data->dll_default_on = false;
	data->sram_end = SMC_RAM_END;
2911
	data->mclk_dpm0_activity_target = 0xa;
2912
	data->disable_dpm_mask = 0xFF;
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
	data->static_screen_threshold = PPPOLARIS10_STATICSCREENTHRESHOLD_DFLT;
	data->static_screen_threshold_unit = PPPOLARIS10_STATICSCREENTHRESHOLD_DFLT;
	data->activity_target[0] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[1] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[2] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[3] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[4] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[5] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[6] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[7] = PPPOLARIS10_TARGETACTIVITY_DFLT;

	data->voting_rights_clients0 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT0;
	data->voting_rights_clients1 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT1;
	data->voting_rights_clients2 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT2;
	data->voting_rights_clients3 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT3;
	data->voting_rights_clients4 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT4;
	data->voting_rights_clients5 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT5;
	data->voting_rights_clients6 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT6;
	data->voting_rights_clients7 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT7;
2932 2933 2934

	data->vddc_vddci_delta = VDDC_VDDCI_DELTA;

2935
	data->mclk_activity_target = PPPOLARIS10_MCLK_TARGETACTIVITY_DFLT;
2936 2937

	/* need to set voltage control types before EVV patching */
2938 2939 2940
	data->voltage_control = POLARIS10_VOLTAGE_CONTROL_NONE;
	data->vddci_control = POLARIS10_VOLTAGE_CONTROL_NONE;
	data->mvdd_control = POLARIS10_VOLTAGE_CONTROL_NONE;
2941

2942 2943 2944
	data->enable_tdc_limit_feature = true;
	data->enable_pkg_pwr_tracking_feature = true;

2945 2946
	if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
2947
		data->voltage_control = POLARIS10_VOLTAGE_CONTROL_BY_SVID2;
2948 2949 2950 2951 2952

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_EnableMVDDControl)) {
		if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
2953
			data->mvdd_control = POLARIS10_VOLTAGE_CONTROL_BY_GPIO;
2954 2955
		else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2))
2956
			data->mvdd_control = POLARIS10_VOLTAGE_CONTROL_BY_SVID2;
2957 2958 2959 2960 2961 2962
	}

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ControlVDDCI)) {
		if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
2963
			data->vddci_control = POLARIS10_VOLTAGE_CONTROL_BY_GPIO;
2964 2965
		else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
2966
			data->vddci_control = POLARIS10_VOLTAGE_CONTROL_BY_SVID2;
2967 2968
	}

2969
	polaris10_set_features_platform_caps(hwmgr);
2970

2971
	polaris10_init_dpm_defaults(hwmgr);
2972 2973

	/* Get leakage voltage based on leakage ID. */
2974
	result = polaris10_get_evv_voltages(hwmgr);
2975 2976 2977 2978 2979 2980

	if (result) {
		printk("Get EVV Voltage Failed.  Abort Driver loading!\n");
		return -1;
	}

2981 2982
	polaris10_complete_dependency_tables(hwmgr);
	polaris10_set_private_data_based_on_pptable(hwmgr);
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992

	/* Initalize Dynamic State Adjustment Rule Settings */
	result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr);

	if (0 == result) {
		struct cgs_system_info sys_info = {0};

		data->is_tlu_enabled = 0;

		hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
2993
							POLARIS10_MAX_HARDWARE_POWERLEVELS;
2994 2995
		hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
		hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
2996

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024

		if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
			temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
			switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
			case 0:
				temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
				break;
			case 1:
				temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
				break;
			case 2:
				temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
				break;
			case 3:
				temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
				break;
			case 4:
				temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
				break;
			default:
				PP_ASSERT_WITH_CODE(0,
				"Failed to setup PCC HW register! Wrong GPIO assigned for VDDC_PCC_GPIO_PINID!",
				);
				break;
			}
			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg);
		}

3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
		if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 &&
			hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) {
			hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit =
				(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;

			hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit =
				(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;

			hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1;

			hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100;

			hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit =
				(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;

			hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1;

			table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ?
									(table_info->cac_dtp_table->usDefaultTargetOperatingTemp -50) : 0;

			table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
			table_info->cac_dtp_table->usOperatingTempStep = 1;
			table_info->cac_dtp_table->usOperatingTempHyst = 1;

			hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
				       hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;

			hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
				       hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;

			hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
				       table_info->cac_dtp_table->usOperatingTempMinLimit;

			hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
				       table_info->cac_dtp_table->usOperatingTempMaxLimit;

			hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
				       table_info->cac_dtp_table->usDefaultTargetOperatingTemp;

			hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
				       table_info->cac_dtp_table->usOperatingTempStep;

			hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
				       table_info->cac_dtp_table->usTargetOperatingTemp;
		}

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
		sys_info.size = sizeof(struct cgs_system_info);
		sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
		result = cgs_query_system_info(hwmgr->device, &sys_info);
		if (result)
			data->pcie_gen_cap = 0x30007;
		else
			data->pcie_gen_cap = (uint32_t)sys_info.value;
		if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
			data->pcie_spc_cap = 20;
		sys_info.size = sizeof(struct cgs_system_info);
		sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
		result = cgs_query_system_info(hwmgr->device, &sys_info);
		if (result)
			data->pcie_lane_cap = 0x2f0000;
		else
			data->pcie_lane_cap = (uint32_t)sys_info.value;
3087 3088 3089 3090 3091

		hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
		hwmgr->platform_descriptor.clockStep.engineClock = 500;
		hwmgr->platform_descriptor.clockStep.memoryClock = 500;
3092 3093
	} else {
		/* Ignore return value in here, we are cleaning up a mess. */
3094
		polaris10_hwmgr_backend_fini(hwmgr);
3095 3096 3097 3098 3099
	}

	return 0;
}

3100
static int polaris10_force_dpm_highest(struct pp_hwmgr *hwmgr)
3101
{
3102
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
	uint32_t level, tmp;

	if (!data->pcie_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
			level = 0;
			tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
			while (tmp >>= 1)
				level++;

			if (level)
				smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
						PPSMC_MSG_PCIeDPM_ForceLevel, level);
		}
	}

	if (!data->sclk_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
			level = 0;
			tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
			while (tmp >>= 1)
				level++;

			if (level)
				smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
						PPSMC_MSG_SCLKDPM_SetEnabledMask,
						(1 << level));
		}
	}

	if (!data->mclk_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
			level = 0;
			tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
			while (tmp >>= 1)
				level++;

			if (level)
				smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
						PPSMC_MSG_MCLKDPM_SetEnabledMask,
						(1 << level));
		}
	}

	return 0;
}

3149
static int polaris10_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
3150
{
3151
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171

	phm_apply_dal_min_voltage_request(hwmgr);

	if (!data->sclk_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_SCLKDPM_SetEnabledMask,
					data->dpm_level_enable_mask.sclk_dpm_enable_mask);
	}

	if (!data->mclk_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask)
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_MCLKDPM_SetEnabledMask,
					data->dpm_level_enable_mask.mclk_dpm_enable_mask);
	}

	return 0;
}

3172
static int polaris10_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3173
{
3174
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3175

3176
	if (!polaris10_is_dpm_running(hwmgr))
3177 3178 3179 3180 3181 3182 3183
		return -EINVAL;

	if (!data->pcie_dpm_key_disabled) {
		smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_PCIeDPM_UnForceLevel);
	}

3184
	return polaris10_upload_dpm_level_enable_mask(hwmgr);
3185 3186
}

3187
static int polaris10_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3188
{
3189 3190
	struct polaris10_hwmgr *data =
			(struct polaris10_hwmgr *)(hwmgr->backend);
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
	uint32_t level;

	if (!data->sclk_dpm_key_disabled)
		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
			level = phm_get_lowest_enabled_level(hwmgr,
							      data->dpm_level_enable_mask.sclk_dpm_enable_mask);
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
							    PPSMC_MSG_SCLKDPM_SetEnabledMask,
							    (1 << level));

	}
3202

3203 3204 3205 3206 3207 3208 3209 3210 3211
	if (!data->mclk_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
			level = phm_get_lowest_enabled_level(hwmgr,
							      data->dpm_level_enable_mask.mclk_dpm_enable_mask);
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
							    PPSMC_MSG_MCLKDPM_SetEnabledMask,
							    (1 << level));
		}
	}
3212

3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
	if (!data->pcie_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
			level = phm_get_lowest_enabled_level(hwmgr,
							      data->dpm_level_enable_mask.pcie_dpm_enable_mask);
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
							    PPSMC_MSG_PCIeDPM_ForceLevel,
							    (level));
		}
	}

	return 0;

}
3226
static int polaris10_force_dpm_level(struct pp_hwmgr *hwmgr,
3227 3228 3229 3230 3231 3232
				enum amd_dpm_forced_level level)
{
	int ret = 0;

	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
3233
		ret = polaris10_force_dpm_highest(hwmgr);
3234 3235 3236 3237
		if (ret)
			return ret;
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
3238
		ret = polaris10_force_dpm_lowest(hwmgr);
3239 3240 3241 3242
		if (ret)
			return ret;
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
3243
		ret = polaris10_unforce_dpm_levels(hwmgr);
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
		if (ret)
			return ret;
		break;
	default:
		break;
	}

	hwmgr->dpm_level = level;

	return ret;
}

3256
static int polaris10_get_power_state_size(struct pp_hwmgr *hwmgr)
3257
{
3258
	return sizeof(struct polaris10_power_state);
3259 3260 3261
}


3262
static int polaris10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3263 3264 3265 3266
				struct pp_power_state *request_ps,
			const struct pp_power_state *current_ps)
{

3267 3268
	struct polaris10_power_state *polaris10_ps =
				cast_phw_polaris10_power_state(&request_ps->hardware);
3269 3270 3271 3272 3273 3274 3275 3276
	uint32_t sclk;
	uint32_t mclk;
	struct PP_Clocks minimum_clocks = {0};
	bool disable_mclk_switching;
	bool disable_mclk_switching_for_frame_lock;
	struct cgs_display_info info = {0};
	const struct phm_clock_and_voltage_limits *max_limits;
	uint32_t i;
3277
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3278 3279 3280 3281 3282 3283 3284 3285
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	int32_t count;
	int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;

	data->battery_state = (PP_StateUILabel_Battery ==
			request_ps->classification.ui_label);

3286
	PP_ASSERT_WITH_CODE(polaris10_ps->performance_level_count == 2,
3287 3288 3289 3290 3291 3292 3293 3294 3295
				 "VI should always have 2 performance levels",
				);

	max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
			&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
			&(hwmgr->dyn_state.max_clock_voltage_on_dc);

	/* Cap clock DPM tables at DC MAX if it is in DC. */
	if (PP_PowerSource_DC == hwmgr->power_source) {
3296 3297 3298 3299 3300
		for (i = 0; i < polaris10_ps->performance_level_count; i++) {
			if (polaris10_ps->performance_levels[i].memory_clock > max_limits->mclk)
				polaris10_ps->performance_levels[i].memory_clock = max_limits->mclk;
			if (polaris10_ps->performance_levels[i].engine_clock > max_limits->sclk)
				polaris10_ps->performance_levels[i].engine_clock = max_limits->sclk;
3301 3302 3303
		}
	}

3304 3305
	polaris10_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk;
	polaris10_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk;
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342

	cgs_get_active_displays_info(hwmgr->device, &info);

	/*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/

	/* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_StablePState)) {
		max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
		stable_pstate_sclk = (max_limits->sclk * 75) / 100;

		for (count = table_info->vdd_dep_on_sclk->count - 1;
				count >= 0; count--) {
			if (stable_pstate_sclk >=
					table_info->vdd_dep_on_sclk->entries[count].clk) {
				stable_pstate_sclk =
						table_info->vdd_dep_on_sclk->entries[count].clk;
				break;
			}
		}

		if (count < 0)
			stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;

		stable_pstate_mclk = max_limits->mclk;

		minimum_clocks.engineClock = stable_pstate_sclk;
		minimum_clocks.memoryClock = stable_pstate_mclk;
	}

	if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
		minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;

	if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
		minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;

3343
	polaris10_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
3344 3345 3346 3347 3348 3349 3350 3351 3352

	if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
		PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <=
				hwmgr->platform_descriptor.overdriveLimit.engineClock),
				"Overdrive sclk exceeds limit",
				hwmgr->gfx_arbiter.sclk_over_drive =
						hwmgr->platform_descriptor.overdriveLimit.engineClock);

		if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
3353
			polaris10_ps->performance_levels[1].engine_clock =
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
					hwmgr->gfx_arbiter.sclk_over_drive;
	}

	if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
		PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <=
				hwmgr->platform_descriptor.overdriveLimit.memoryClock),
				"Overdrive mclk exceeds limit",
				hwmgr->gfx_arbiter.mclk_over_drive =
						hwmgr->platform_descriptor.overdriveLimit.memoryClock);

		if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
3365
			polaris10_ps->performance_levels[1].memory_clock =
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
					hwmgr->gfx_arbiter.mclk_over_drive;
	}

	disable_mclk_switching_for_frame_lock = phm_cap_enabled(
				    hwmgr->platform_descriptor.platformCaps,
				    PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);

	disable_mclk_switching = (1 < info.display_count) ||
				    disable_mclk_switching_for_frame_lock;

3376 3377
	sclk = polaris10_ps->performance_levels[0].engine_clock;
	mclk = polaris10_ps->performance_levels[0].memory_clock;
3378 3379

	if (disable_mclk_switching)
3380 3381
		mclk = polaris10_ps->performance_levels
		[polaris10_ps->performance_level_count - 1].memory_clock;
3382 3383 3384 3385 3386 3387 3388 3389 3390

	if (sclk < minimum_clocks.engineClock)
		sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
				max_limits->sclk : minimum_clocks.engineClock;

	if (mclk < minimum_clocks.memoryClock)
		mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
				max_limits->mclk : minimum_clocks.memoryClock;

3391 3392
	polaris10_ps->performance_levels[0].engine_clock = sclk;
	polaris10_ps->performance_levels[0].memory_clock = mclk;
3393

3394 3395 3396 3397 3398
	polaris10_ps->performance_levels[1].engine_clock =
		(polaris10_ps->performance_levels[1].engine_clock >=
				polaris10_ps->performance_levels[0].engine_clock) ?
						polaris10_ps->performance_levels[1].engine_clock :
						polaris10_ps->performance_levels[0].engine_clock;
3399 3400

	if (disable_mclk_switching) {
3401 3402
		if (mclk < polaris10_ps->performance_levels[1].memory_clock)
			mclk = polaris10_ps->performance_levels[1].memory_clock;
3403

3404 3405
		polaris10_ps->performance_levels[0].memory_clock = mclk;
		polaris10_ps->performance_levels[1].memory_clock = mclk;
3406
	} else {
3407 3408 3409 3410
		if (polaris10_ps->performance_levels[1].memory_clock <
				polaris10_ps->performance_levels[0].memory_clock)
			polaris10_ps->performance_levels[1].memory_clock =
					polaris10_ps->performance_levels[0].memory_clock;
3411 3412 3413 3414
	}

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_StablePState)) {
3415 3416 3417 3418 3419
		for (i = 0; i < polaris10_ps->performance_level_count; i++) {
			polaris10_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
			polaris10_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
			polaris10_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
			polaris10_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
3420 3421 3422 3423 3424 3425
		}
	}
	return 0;
}


3426
static int polaris10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3427 3428
{
	struct pp_power_state  *ps;
3429
	struct polaris10_power_state  *polaris10_ps;
3430 3431 3432 3433 3434 3435 3436 3437 3438

	if (hwmgr == NULL)
		return -EINVAL;

	ps = hwmgr->request_ps;

	if (ps == NULL)
		return -EINVAL;

3439
	polaris10_ps = cast_phw_polaris10_power_state(&ps->hardware);
3440 3441

	if (low)
3442
		return polaris10_ps->performance_levels[0].memory_clock;
3443
	else
3444 3445
		return polaris10_ps->performance_levels
				[polaris10_ps->performance_level_count-1].memory_clock;
3446 3447
}

3448
static int polaris10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3449 3450
{
	struct pp_power_state  *ps;
3451
	struct polaris10_power_state  *polaris10_ps;
3452 3453 3454 3455 3456 3457 3458 3459 3460

	if (hwmgr == NULL)
		return -EINVAL;

	ps = hwmgr->request_ps;

	if (ps == NULL)
		return -EINVAL;

3461
	polaris10_ps = cast_phw_polaris10_power_state(&ps->hardware);
3462 3463

	if (low)
3464
		return polaris10_ps->performance_levels[0].engine_clock;
3465
	else
3466 3467
		return polaris10_ps->performance_levels
				[polaris10_ps->performance_level_count-1].engine_clock;
3468 3469
}

3470
static int polaris10_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
3471 3472
					struct pp_hw_power_state *hw_ps)
{
3473 3474
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_power_state *ps = (struct polaris10_power_state *)hw_ps;
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
	ATOM_FIRMWARE_INFO_V2_2 *fw_info;
	uint16_t size;
	uint8_t frev, crev;
	int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);

	/* First retrieve the Boot clocks and VDDC from the firmware info table.
	 * We assume here that fw_info is unchanged if this call fails.
	 */
	fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
			hwmgr->device, index,
			&size, &frev, &crev);
	if (!fw_info)
		/* During a test, there is no firmware info table. */
		return 0;

	/* Patch the state. */
	data->vbios_boot_state.sclk_bootup_value =
			le32_to_cpu(fw_info->ulDefaultEngineClock);
	data->vbios_boot_state.mclk_bootup_value =
			le32_to_cpu(fw_info->ulDefaultMemoryClock);
	data->vbios_boot_state.mvdd_bootup_value =
			le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
	data->vbios_boot_state.vddc_bootup_value =
			le16_to_cpu(fw_info->usBootUpVDDCVoltage);
	data->vbios_boot_state.vddci_bootup_value =
			le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
	data->vbios_boot_state.pcie_gen_bootup_value =
			phm_get_current_pcie_speed(hwmgr);

	data->vbios_boot_state.pcie_lane_bootup_value =
			(uint16_t)phm_get_current_pcie_lane_number(hwmgr);

	/* set boot power state */
	ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
	ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
	ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
	ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;

	return 0;
}

3516
static int polaris10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
3517 3518 3519
		void *state, struct pp_power_state *power_state,
		void *pp_table, uint32_t classification_flag)
{
3520 3521 3522 3523
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_power_state  *polaris10_power_state =
			(struct polaris10_power_state *)(&(power_state->hardware));
	struct polaris10_performance_level *performance_level;
3524 3525 3526
	ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
	ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
			(ATOM_Tonga_POWERPLAYTABLE *)pp_table;
3527 3528
	PPTable_Generic_SubTable_Header *sclk_dep_table =
			(PPTable_Generic_SubTable_Header *)
3529 3530
			(((unsigned long)powerplay_table) +
				le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
3531

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
	ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
			(ATOM_Tonga_MCLK_Dependency_Table *)
			(((unsigned long)powerplay_table) +
				le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));

	/* The following fields are not initialized here: id orderedList allStatesList */
	power_state->classification.ui_label =
			(le16_to_cpu(state_entry->usClassification) &
			ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
			ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
	power_state->classification.flags = classification_flag;
	/* NOTE: There is a classification2 flag in BIOS that is not being used right now */

	power_state->classification.temporary_state = false;
	power_state->classification.to_be_deleted = false;

	power_state->validation.disallowOnDC =
			(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
					ATOM_Tonga_DISALLOW_ON_DC));

	power_state->pcie.lanes = 0;

	power_state->display.disableFrameModulation = false;
	power_state->display.limitRefreshrate = false;
	power_state->display.enableVariBright =
			(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
					ATOM_Tonga_ENABLE_VARIBRIGHT));

	power_state->validation.supportedPowerLevels = 0;
	power_state->uvd_clocks.VCLK = 0;
	power_state->uvd_clocks.DCLK = 0;
	power_state->temperatures.min = 0;
	power_state->temperatures.max = 0;

3566 3567
	performance_level = &(polaris10_power_state->performance_levels
			[polaris10_power_state->performance_level_count++]);
3568 3569

	PP_ASSERT_WITH_CODE(
3570
			(polaris10_power_state->performance_level_count < SMU74_MAX_LEVELS_GRAPHICS),
3571 3572 3573 3574
			"Performance levels exceeds SMC limit!",
			return -1);

	PP_ASSERT_WITH_CODE(
3575
			(polaris10_power_state->performance_level_count <=
3576 3577 3578 3579 3580 3581 3582
					hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
			"Performance levels exceeds Driver limit!",
			return -1);

	/* Performance levels are arranged from low to high. */
	performance_level->memory_clock = mclk_dep_table->entries
			[state_entry->ucMemoryClockIndexLow].ulMclk;
3583 3584 3585 3586 3587
	if (sclk_dep_table->ucRevId == 0)
		performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
			[state_entry->ucEngineClockIndexLow].ulSclk;
	else if (sclk_dep_table->ucRevId == 1)
		performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3588 3589 3590 3591 3592 3593
			[state_entry->ucEngineClockIndexLow].ulSclk;
	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
			state_entry->ucPCIEGenLow);
	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
			state_entry->ucPCIELaneHigh);

3594 3595
	performance_level = &(polaris10_power_state->performance_levels
			[polaris10_power_state->performance_level_count++]);
3596 3597
	performance_level->memory_clock = mclk_dep_table->entries
			[state_entry->ucMemoryClockIndexHigh].ulMclk;
3598 3599 3600 3601 3602 3603

	if (sclk_dep_table->ucRevId == 0)
		performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
			[state_entry->ucEngineClockIndexHigh].ulSclk;
	else if (sclk_dep_table->ucRevId == 1)
		performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3604
			[state_entry->ucEngineClockIndexHigh].ulSclk;
3605

3606 3607 3608 3609 3610 3611 3612 3613
	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
			state_entry->ucPCIEGenHigh);
	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
			state_entry->ucPCIELaneHigh);

	return 0;
}

3614
static int polaris10_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3615 3616 3617
		unsigned long entry_index, struct pp_power_state *state)
{
	int result;
3618 3619
	struct polaris10_power_state *ps;
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3620 3621 3622 3623 3624 3625 3626
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
			table_info->vdd_dep_on_mclk;

	state->hardware.magic = PHM_VIslands_Magic;

3627
	ps = (struct polaris10_power_state *)(&state->hardware);
3628 3629

	result = tonga_get_powerplay_table_entry(hwmgr, entry_index, state,
3630
			polaris10_get_pp_table_entry_callback_func);
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716

	/* This is the earliest time we have all the dependency table and the VBIOS boot state
	 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
	 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
	 */
	if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
		if (dep_mclk_table->entries[0].clk !=
				data->vbios_boot_state.mclk_bootup_value)
			printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
					"does not match VBIOS boot MCLK level");
		if (dep_mclk_table->entries[0].vddci !=
				data->vbios_boot_state.vddci_bootup_value)
			printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
					"does not match VBIOS boot VDDCI level");
	}

	/* set DC compatible flag if this state supports DC */
	if (!state->validation.disallowOnDC)
		ps->dc_compatible = true;

	if (state->classification.flags & PP_StateClassificationFlag_ACPI)
		data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;

	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;

	if (!result) {
		uint32_t i;

		switch (state->classification.ui_label) {
		case PP_StateUILabel_Performance:
			data->use_pcie_performance_levels = true;
			for (i = 0; i < ps->performance_level_count; i++) {
				if (data->pcie_gen_performance.max <
						ps->performance_levels[i].pcie_gen)
					data->pcie_gen_performance.max =
							ps->performance_levels[i].pcie_gen;

				if (data->pcie_gen_performance.min >
						ps->performance_levels[i].pcie_gen)
					data->pcie_gen_performance.min =
							ps->performance_levels[i].pcie_gen;

				if (data->pcie_lane_performance.max <
						ps->performance_levels[i].pcie_lane)
					data->pcie_lane_performance.max =
							ps->performance_levels[i].pcie_lane;
				if (data->pcie_lane_performance.min >
						ps->performance_levels[i].pcie_lane)
					data->pcie_lane_performance.min =
							ps->performance_levels[i].pcie_lane;
			}
			break;
		case PP_StateUILabel_Battery:
			data->use_pcie_power_saving_levels = true;

			for (i = 0; i < ps->performance_level_count; i++) {
				if (data->pcie_gen_power_saving.max <
						ps->performance_levels[i].pcie_gen)
					data->pcie_gen_power_saving.max =
							ps->performance_levels[i].pcie_gen;

				if (data->pcie_gen_power_saving.min >
						ps->performance_levels[i].pcie_gen)
					data->pcie_gen_power_saving.min =
							ps->performance_levels[i].pcie_gen;

				if (data->pcie_lane_power_saving.max <
						ps->performance_levels[i].pcie_lane)
					data->pcie_lane_power_saving.max =
							ps->performance_levels[i].pcie_lane;

				if (data->pcie_lane_power_saving.min >
						ps->performance_levels[i].pcie_lane)
					data->pcie_lane_power_saving.min =
							ps->performance_levels[i].pcie_lane;
			}
			break;
		default:
			break;
		}
	}
	return 0;
}

static void
3717
polaris10_print_current_perforce_level(struct pp_hwmgr *hwmgr, struct seq_file *m)
3718
{
3719 3720 3721
	uint32_t sclk, mclk, activity_percent;
	uint32_t offset;
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731

	smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);

	sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);

	smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);

	mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
	seq_printf(m, "\n [  mclk  ]: %u MHz\n\n [  sclk  ]: %u MHz\n",
			mclk / 100, sclk / 100);
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742

	offset = data->soft_regs_start + offsetof(SMU74_SoftRegisters, AverageGraphicsActivity);
	activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
	activity_percent += 0x80;
	activity_percent >>= 8;

	seq_printf(m, "\n [GPU load]: %u%%\n\n", activity_percent > 100 ? 100 : activity_percent);

	seq_printf(m, "uvd    %sabled\n", data->uvd_power_gated ? "dis" : "en");

	seq_printf(m, "vce    %sabled\n", data->vce_power_gated ? "dis" : "en");
3743 3744
}

3745
static int polaris10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
3746 3747 3748
{
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
3749 3750 3751 3752 3753 3754 3755 3756 3757
	const struct polaris10_power_state *polaris10_ps =
			cast_const_phw_polaris10_power_state(states->pnew_state);
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
	uint32_t sclk = polaris10_ps->performance_levels
			[polaris10_ps->performance_level_count - 1].engine_clock;
	struct polaris10_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
	uint32_t mclk = polaris10_ps->performance_levels
			[polaris10_ps->performance_level_count - 1].memory_clock;
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
	struct PP_Clocks min_clocks = {0};
	uint32_t i;
	struct cgs_display_info info = {0};

	data->need_update_smu7_dpm_table = 0;

	for (i = 0; i < sclk_table->count; i++) {
		if (sclk == sclk_table->dpm_levels[i].value)
			break;
	}

	if (i >= sclk_table->count)
		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
	else {
	/* TODO: Check SCLK in DAL's minimum clocks
	 * in case DeepSleep divider update is required.
	 */
3775 3776 3777
		if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR &&
			(min_clocks.engineClockInSR >= POLARIS10_MINIMUM_ENGINE_CLOCK ||
				data->display_timing.min_clock_in_sr >= POLARIS10_MINIMUM_ENGINE_CLOCK))
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
			data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
	}

	for (i = 0; i < mclk_table->count; i++) {
		if (mclk == mclk_table->dpm_levels[i].value)
			break;
	}

	if (i >= mclk_table->count)
		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;

	cgs_get_active_displays_info(hwmgr->device, &info);

	if (data->display_timing.num_existing_displays != info.display_count)
		data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;

	return 0;
}

3797 3798
static uint16_t polaris10_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
		const struct polaris10_power_state *polaris10_ps)
3799 3800 3801
{
	uint32_t i;
	uint32_t sclk, max_sclk = 0;
3802 3803
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_dpm_table *dpm_table = &data->dpm_table;
3804

3805 3806
	for (i = 0; i < polaris10_ps->performance_level_count; i++) {
		sclk = polaris10_ps->performance_levels[i].engine_clock;
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
		if (max_sclk < sclk)
			max_sclk = sclk;
	}

	for (i = 0; i < dpm_table->sclk_table.count; i++) {
		if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
			return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
					dpm_table->pcie_speed_table.dpm_levels
					[dpm_table->pcie_speed_table.count - 1].value :
					dpm_table->pcie_speed_table.dpm_levels[i].value);
	}

	return 0;
}

3822
static int polaris10_request_link_speed_change_before_state_change(
3823 3824 3825 3826
		struct pp_hwmgr *hwmgr, const void *input)
{
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
3827 3828 3829 3830 3831
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	const struct polaris10_power_state *polaris10_nps =
			cast_const_phw_polaris10_power_state(states->pnew_state);
	const struct polaris10_power_state *polaris10_cps =
			cast_const_phw_polaris10_power_state(states->pcurrent_state);
3832

3833
	uint16_t target_link_speed = polaris10_get_maximum_link_speed(hwmgr, polaris10_nps);
3834 3835 3836
	uint16_t current_link_speed;

	if (data->force_pcie_gen == PP_PCIEGenInvalid)
3837
		current_link_speed = polaris10_get_maximum_link_speed(hwmgr, polaris10_cps);
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
	else
		current_link_speed = data->force_pcie_gen;

	data->force_pcie_gen = PP_PCIEGenInvalid;
	data->pspp_notify_required = false;

	if (target_link_speed > current_link_speed) {
		switch (target_link_speed) {
		case PP_PCIEGen3:
			if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
				break;
			data->force_pcie_gen = PP_PCIEGen2;
			if (current_link_speed == PP_PCIEGen2)
				break;
		case PP_PCIEGen2:
			if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
				break;
		default:
			data->force_pcie_gen = phm_get_current_pcie_speed(hwmgr);
			break;
		}
	} else {
		if (target_link_speed < current_link_speed)
			data->pspp_notify_required = true;
	}

	return 0;
}

3867
static int polaris10_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3868
{
3869
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3870 3871 3872 3873 3874 3875 3876

	if (0 == data->need_update_smu7_dpm_table)
		return 0;

	if ((0 == data->sclk_dpm_key_disabled) &&
		(data->need_update_smu7_dpm_table &
			(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
3877
		PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr),
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
				"Trying to freeze SCLK DPM when DPM is disabled",
				);
		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_SCLKDPM_FreezeLevel),
				"Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
				return -1);
	}

	if ((0 == data->mclk_dpm_key_disabled) &&
		(data->need_update_smu7_dpm_table &
		 DPMTABLE_OD_UPDATE_MCLK)) {
3889
		PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr),
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
				"Trying to freeze MCLK DPM when DPM is disabled",
				);
		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_MCLKDPM_FreezeLevel),
				"Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
				return -1);
	}

	return 0;
}

3901
static int polaris10_populate_and_upload_sclk_mclk_dpm_levels(
3902 3903 3904 3905 3906
		struct pp_hwmgr *hwmgr, const void *input)
{
	int result = 0;
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
	const struct polaris10_power_state *polaris10_ps =
			cast_const_phw_polaris10_power_state(states->pnew_state);
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	uint32_t sclk = polaris10_ps->performance_levels
			[polaris10_ps->performance_level_count - 1].engine_clock;
	uint32_t mclk = polaris10_ps->performance_levels
			[polaris10_ps->performance_level_count - 1].memory_clock;
	struct polaris10_dpm_table *dpm_table = &data->dpm_table;

	struct polaris10_dpm_table *golden_dpm_table = &data->golden_dpm_table;
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
	uint32_t dpm_count, clock_percent;
	uint32_t i;

	if (0 == data->need_update_smu7_dpm_table)
		return 0;

	if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
		dpm_table->sclk_table.dpm_levels
		[dpm_table->sclk_table.count - 1].value = sclk;

		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
		    phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
		/* Need to do calculation based on the golden DPM table
		 * as the Heatmap GPU Clock axis is also based on the default values
		 */
			PP_ASSERT_WITH_CODE(
				(golden_dpm_table->sclk_table.dpm_levels
						[golden_dpm_table->sclk_table.count - 1].value != 0),
				"Divide by 0!",
				return -1);
			dpm_count = dpm_table->sclk_table.count < 2 ? 0 : dpm_table->sclk_table.count - 2;

			for (i = dpm_count; i > 1; i--) {
				if (sclk > golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value) {
					clock_percent =
					      ((sclk
						- golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value
						) * 100)
						/ golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value;

					dpm_table->sclk_table.dpm_levels[i].value =
							golden_dpm_table->sclk_table.dpm_levels[i].value +
							(golden_dpm_table->sclk_table.dpm_levels[i].value *
								clock_percent)/100;

				} else if (golden_dpm_table->sclk_table.dpm_levels[dpm_table->sclk_table.count-1].value > sclk) {
					clock_percent =
						((golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value
						- sclk) * 100)
						/ golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value;

					dpm_table->sclk_table.dpm_levels[i].value =
							golden_dpm_table->sclk_table.dpm_levels[i].value -
							(golden_dpm_table->sclk_table.dpm_levels[i].value *
									clock_percent) / 100;
				} else
					dpm_table->sclk_table.dpm_levels[i].value =
							golden_dpm_table->sclk_table.dpm_levels[i].value;
			}
		}
	}

	if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
		dpm_table->mclk_table.dpm_levels
			[dpm_table->mclk_table.count - 1].value = mclk;

		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
		    phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {

			PP_ASSERT_WITH_CODE(
					(golden_dpm_table->mclk_table.dpm_levels
						[golden_dpm_table->mclk_table.count-1].value != 0),
					"Divide by 0!",
					return -1);
			dpm_count = dpm_table->mclk_table.count < 2 ? 0 : dpm_table->mclk_table.count - 2;
			for (i = dpm_count; i > 1; i--) {
				if (golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value < mclk) {
					clock_percent = ((mclk -
					golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value) * 100)
					/ golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value;

					dpm_table->mclk_table.dpm_levels[i].value =
							golden_dpm_table->mclk_table.dpm_levels[i].value +
							(golden_dpm_table->mclk_table.dpm_levels[i].value *
							clock_percent) / 100;

				} else if (golden_dpm_table->mclk_table.dpm_levels[dpm_table->mclk_table.count-1].value > mclk) {
					clock_percent = (
					 (golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value - mclk)
					* 100)
					/ golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value;

					dpm_table->mclk_table.dpm_levels[i].value =
							golden_dpm_table->mclk_table.dpm_levels[i].value -
							(golden_dpm_table->mclk_table.dpm_levels[i].value *
									clock_percent) / 100;
				} else
					dpm_table->mclk_table.dpm_levels[i].value =
							golden_dpm_table->mclk_table.dpm_levels[i].value;
			}
		}
	}

	if (data->need_update_smu7_dpm_table &
			(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
4012
		result = polaris10_populate_all_graphic_levels(hwmgr);
4013 4014 4015 4016 4017 4018 4019 4020
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
				return result);
	}

	if (data->need_update_smu7_dpm_table &
			(DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
		/*populate MCLK dpm table to SMU7 */
4021
		result = polaris10_populate_all_memory_levels(hwmgr);
4022 4023 4024 4025 4026 4027 4028 4029
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
				return result);
	}

	return result;
}

4030 4031
static int polaris10_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
			  struct polaris10_single_dpm_table *dpm_table,
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
			uint32_t low_limit, uint32_t high_limit)
{
	uint32_t i;

	for (i = 0; i < dpm_table->count; i++) {
		if ((dpm_table->dpm_levels[i].value < low_limit)
		|| (dpm_table->dpm_levels[i].value > high_limit))
			dpm_table->dpm_levels[i].enabled = false;
		else
			dpm_table->dpm_levels[i].enabled = true;
	}

	return 0;
}

4047 4048
static int polaris10_trim_dpm_states(struct pp_hwmgr *hwmgr,
		const struct polaris10_power_state *polaris10_ps)
4049 4050
{
	int result = 0;
4051
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4052 4053
	uint32_t high_limit_count;

4054
	PP_ASSERT_WITH_CODE((polaris10_ps->performance_level_count >= 1),
4055 4056 4057
			"power state did not have any performance level",
			return -1);

4058
	high_limit_count = (1 == polaris10_ps->performance_level_count) ? 0 : 1;
4059

4060
	polaris10_trim_single_dpm_states(hwmgr,
4061
			&(data->dpm_table.sclk_table),
4062 4063
			polaris10_ps->performance_levels[0].engine_clock,
			polaris10_ps->performance_levels[high_limit_count].engine_clock);
4064

4065
	polaris10_trim_single_dpm_states(hwmgr,
4066
			&(data->dpm_table.mclk_table),
4067 4068
			polaris10_ps->performance_levels[0].memory_clock,
			polaris10_ps->performance_levels[high_limit_count].memory_clock);
4069 4070 4071 4072

	return result;
}

4073
static int polaris10_generate_dpm_level_enable_mask(
4074 4075 4076 4077 4078
		struct pp_hwmgr *hwmgr, const void *input)
{
	int result;
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
4079 4080 4081
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	const struct polaris10_power_state *polaris10_ps =
			cast_const_phw_polaris10_power_state(states->pnew_state);
4082

4083
	result = polaris10_trim_dpm_states(hwmgr, polaris10_ps);
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
	if (result)
		return result;

	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
	data->dpm_level_enable_mask.mclk_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);

	return 0;
}

4097
int polaris10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4098 4099
{
	return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
4100 4101 4102 4103
			PPSMC_MSG_UVDDPM_Enable :
			PPSMC_MSG_UVDDPM_Disable);
}

4104
int polaris10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
4105 4106
{
	return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4107 4108 4109 4110
			PPSMC_MSG_VCEDPM_Enable :
			PPSMC_MSG_VCEDPM_Disable);
}

4111
int polaris10_enable_disable_samu_dpm(struct pp_hwmgr *hwmgr, bool enable)
4112 4113 4114 4115 4116 4117
{
	return smum_send_msg_to_smc(hwmgr->smumgr, enable?
			PPSMC_MSG_SAMUDPM_Enable :
			PPSMC_MSG_SAMUDPM_Disable);
}

4118
int polaris10_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4119
{
4120
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
	uint32_t mm_boot_level_offset, mm_boot_level_value;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	if (!bgate) {
		data->smc_state_table.UvdBootLevel = 0;
		if (table_info->mm_dep_table->count > 0)
			data->smc_state_table.UvdBootLevel =
					(uint8_t) (table_info->mm_dep_table->count - 1);
		mm_boot_level_offset = data->dpm_table_start +
				offsetof(SMU74_Discrete_DpmTable, UvdBootLevel);
		mm_boot_level_offset /= 4;
		mm_boot_level_offset *= 4;
		mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
				CGS_IND_REG__SMC, mm_boot_level_offset);
		mm_boot_level_value &= 0x00FFFFFF;
		mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24;
		cgs_write_ind_register(hwmgr->device,
				CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);

		if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_UVDDPM) ||
			phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_StablePState))
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_UVDDPM_SetEnabledMask,
					(uint32_t)(1 << data->smc_state_table.UvdBootLevel));
	}

4150
	return polaris10_enable_disable_uvd_dpm(hwmgr, !bgate);
4151 4152
}

4153
static int polaris10_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
4154 4155 4156
{
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
4157 4158 4159 4160 4161
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	const struct polaris10_power_state *polaris10_nps =
			cast_const_phw_polaris10_power_state(states->pnew_state);
	const struct polaris10_power_state *polaris10_cps =
			cast_const_phw_polaris10_power_state(states->pcurrent_state);
4162 4163 4164 4165 4166

	uint32_t mm_boot_level_offset, mm_boot_level_value;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

4167 4168
	if (polaris10_nps->vce_clks.evclk > 0 &&
	(polaris10_cps == NULL || polaris10_cps->vce_clks.evclk == 0)) {
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188

		data->smc_state_table.VceBootLevel =
				(uint8_t) (table_info->mm_dep_table->count - 1);

		mm_boot_level_offset = data->dpm_table_start +
				offsetof(SMU74_Discrete_DpmTable, VceBootLevel);
		mm_boot_level_offset /= 4;
		mm_boot_level_offset *= 4;
		mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
				CGS_IND_REG__SMC, mm_boot_level_offset);
		mm_boot_level_value &= 0xFF00FFFF;
		mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
		cgs_write_ind_register(hwmgr->device,
				CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);

		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_VCEDPM_SetEnabledMask,
					(uint32_t)1 << data->smc_state_table.VceBootLevel);

4189 4190 4191 4192 4193
			polaris10_enable_disable_vce_dpm(hwmgr, true);
		} else if (polaris10_nps->vce_clks.evclk == 0 &&
				polaris10_cps != NULL &&
				polaris10_cps->vce_clks.evclk > 0)
			polaris10_enable_disable_vce_dpm(hwmgr, false);
4194 4195 4196 4197 4198
	}

	return 0;
}

4199
int polaris10_update_samu_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4200
{
4201
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4202 4203 4204
	uint32_t mm_boot_level_offset, mm_boot_level_value;

	if (!bgate) {
4205
		data->smc_state_table.SamuBootLevel = 0;
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
		mm_boot_level_offset = data->dpm_table_start +
				offsetof(SMU74_Discrete_DpmTable, SamuBootLevel);
		mm_boot_level_offset /= 4;
		mm_boot_level_offset *= 4;
		mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
				CGS_IND_REG__SMC, mm_boot_level_offset);
		mm_boot_level_value &= 0xFFFFFF00;
		mm_boot_level_value |= data->smc_state_table.SamuBootLevel << 0;
		cgs_write_ind_register(hwmgr->device,
				CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);

		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_StablePState))
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_SAMUDPM_SetEnabledMask,
					(uint32_t)(1 << data->smc_state_table.SamuBootLevel));
	}

4224
	return polaris10_enable_disable_samu_dpm(hwmgr, !bgate);
4225 4226
}

4227
static int polaris10_update_sclk_threshold(struct pp_hwmgr *hwmgr)
4228
{
4229
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244

	int result = 0;
	uint32_t low_sclk_interrupt_threshold = 0;

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SclkThrottleLowNotification)
		&& (hwmgr->gfx_arbiter.sclk_threshold !=
				data->low_sclk_interrupt_threshold)) {
		data->low_sclk_interrupt_threshold =
				hwmgr->gfx_arbiter.sclk_threshold;
		low_sclk_interrupt_threshold =
				data->low_sclk_interrupt_threshold;

		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);

4245
		result = polaris10_copy_bytes_to_smc(
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
				hwmgr->smumgr,
				data->dpm_table_start +
				offsetof(SMU74_Discrete_DpmTable,
					LowSclkInterruptThreshold),
				(uint8_t *)&low_sclk_interrupt_threshold,
				sizeof(uint32_t),
				data->sram_end);
	}

	return result;
}

4258
static int polaris10_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
4259
{
4260
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4261 4262 4263

	if (data->need_update_smu7_dpm_table &
		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
4264
		return polaris10_program_memory_timing_parameters(hwmgr);
4265 4266 4267 4268

	return 0;
}

4269
static int polaris10_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4270
{
4271
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4272 4273 4274 4275 4276 4277 4278 4279

	if (0 == data->need_update_smu7_dpm_table)
		return 0;

	if ((0 == data->sclk_dpm_key_disabled) &&
		(data->need_update_smu7_dpm_table &
		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {

4280
		PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr),
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
				"Trying to Unfreeze SCLK DPM when DPM is disabled",
				);
		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_SCLKDPM_UnfreezeLevel),
			"Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
			return -1);
	}

	if ((0 == data->mclk_dpm_key_disabled) &&
		(data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {

4292
		PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr),
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
				"Trying to Unfreeze MCLK DPM when DPM is disabled",
				);
		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_SCLKDPM_UnfreezeLevel),
		    "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
		    return -1);
	}

	data->need_update_smu7_dpm_table = 0;

	return 0;
}

4306
static int polaris10_notify_link_speed_change_after_state_change(
4307 4308 4309 4310
		struct pp_hwmgr *hwmgr, const void *input)
{
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
4311 4312 4313 4314
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	const struct polaris10_power_state *polaris10_ps =
			cast_const_phw_polaris10_power_state(states->pnew_state);
	uint16_t target_link_speed = polaris10_get_maximum_link_speed(hwmgr, polaris10_ps);
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
	uint8_t  request;

	if (data->pspp_notify_required) {
		if (target_link_speed == PP_PCIEGen3)
			request = PCIE_PERF_REQ_GEN3;
		else if (target_link_speed == PP_PCIEGen2)
			request = PCIE_PERF_REQ_GEN2;
		else
			request = PCIE_PERF_REQ_GEN1;

		if (request == PCIE_PERF_REQ_GEN1 &&
				phm_get_current_pcie_speed(hwmgr) > 0)
			return 0;

		if (acpi_pcie_perf_request(hwmgr->device, request, false)) {
			if (PP_PCIEGen2 == target_link_speed)
				printk("PSPP request to switch to Gen2 from Gen3 Failed!");
			else
				printk("PSPP request to switch to Gen1 from Gen2 Failed!");
		}
	}

	return 0;
}

4340
static int polaris10_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
4341 4342
{
	int tmp_result, result = 0;
4343
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4344

4345
	tmp_result = polaris10_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
4346 4347 4348 4349 4350 4351 4352
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to find DPM states clocks in DPM table!",
			result = tmp_result);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_PCIEPerformanceRequest)) {
		tmp_result =
4353
			polaris10_request_link_speed_change_before_state_change(hwmgr, input);
4354 4355 4356 4357 4358
		PP_ASSERT_WITH_CODE((0 == tmp_result),
				"Failed to request link speed change before state change!",
				result = tmp_result);
	}

4359
	tmp_result = polaris10_freeze_sclk_mclk_dpm(hwmgr);
4360 4361 4362
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to freeze SCLK MCLK DPM!", result = tmp_result);

4363
	tmp_result = polaris10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
4364 4365 4366 4367
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to populate and upload SCLK MCLK DPM levels!",
			result = tmp_result);

4368
	tmp_result = polaris10_generate_dpm_level_enable_mask(hwmgr, input);
4369 4370 4371 4372
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to generate DPM level enabled mask!",
			result = tmp_result);

4373
	tmp_result = polaris10_update_vce_dpm(hwmgr, input);
4374 4375 4376 4377
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to update VCE DPM!",
			result = tmp_result);

4378
	tmp_result = polaris10_update_sclk_threshold(hwmgr);
4379 4380 4381 4382
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to update SCLK threshold!",
			result = tmp_result);

4383
	tmp_result = polaris10_program_mem_timing_parameters(hwmgr);
4384 4385 4386 4387
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to program memory timing parameters!",
			result = tmp_result);

4388
	tmp_result = polaris10_unfreeze_sclk_mclk_dpm(hwmgr);
4389 4390 4391 4392
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to unfreeze SCLK MCLK DPM!",
			result = tmp_result);

4393
	tmp_result = polaris10_upload_dpm_level_enable_mask(hwmgr);
4394 4395 4396 4397 4398 4399 4400
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to upload DPM level enabled mask!",
			result = tmp_result);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_PCIEPerformanceRequest)) {
		tmp_result =
4401
			polaris10_notify_link_speed_change_after_state_change(hwmgr, input);
4402 4403 4404 4405 4406 4407 4408 4409
		PP_ASSERT_WITH_CODE((0 == tmp_result),
				"Failed to notify link speed change after state change!",
				result = tmp_result);
	}
	data->apply_optimized_settings = false;
	return result;
}

4410
static int polaris10_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
4411
{
4412 4413
	hwmgr->thermal_controller.
	advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
4414

4415
	if (phm_is_hw_access_blocked(hwmgr))
4416
		return 0;
4417 4418 4419

	return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
			PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm);
4420 4421
}

4422
int polaris10_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display)
4423 4424 4425 4426 4427 4428
{
	PPSMC_Msg msg = has_display ? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay;

	return (smum_send_msg_to_smc(hwmgr->smumgr, msg) == 0) ?  0 : -1;
}

4429
int polaris10_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
{
	uint32_t num_active_displays = 0;
	struct cgs_display_info info = {0};
	info.mode_info = NULL;

	cgs_get_active_displays_info(hwmgr->device, &info);

	num_active_displays = info.display_count;

	if (num_active_displays > 1)  /* to do && (pHwMgr->pPECI->displayConfiguration.bMultiMonitorInSync != TRUE)) */
4440
		polaris10_notify_smc_display_change(hwmgr, false);
4441
	else
4442
		polaris10_notify_smc_display_change(hwmgr, true);
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452

	return 0;
}

/**
* Programs the display gap
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always OK
*/
4453
int polaris10_program_display_gap(struct pp_hwmgr *hwmgr)
4454
{
4455
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
	uint32_t num_active_displays = 0;
	uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
	uint32_t display_gap2;
	uint32_t pre_vbi_time_in_us;
	uint32_t frame_time_in_us;
	uint32_t ref_clock;
	uint32_t refresh_rate = 0;
	struct cgs_display_info info = {0};
	struct cgs_mode_info mode_info;

	info.mode_info = &mode_info;

	cgs_get_active_displays_info(hwmgr->device, &info);
	num_active_displays = info.display_count;

	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (num_active_displays > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);

	ref_clock = mode_info.ref_clock;
	refresh_rate = mode_info.refresh_rate;

	if (0 == refresh_rate)
		refresh_rate = 60;

	frame_time_in_us = 1000000 / refresh_rate;

	pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
	display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU74_SoftRegisters, PreVBlankGap), 0x64);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU74_SoftRegisters, VBlankTimeout), (frame_time_in_us - pre_vbi_time_in_us));

4491
	polaris10_notify_smc_display_change(hwmgr, num_active_displays != 0);
4492 4493 4494 4495 4496

	return 0;
}


4497
int polaris10_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4498
{
4499
	return polaris10_program_display_gap(hwmgr);
4500 4501 4502 4503 4504 4505 4506 4507 4508
}

/**
*  Set maximum target operating fan output RPM
*
* @param    hwmgr:  the address of the powerplay hardware manager.
* @param    usMaxFanRpm:  max operating fan RPM value.
* @return   The response that came from the SMC.
*/
4509
static int polaris10_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm)
4510
{
4511 4512 4513 4514 4515 4516 4517 4518
	hwmgr->thermal_controller.
	advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;

	if (phm_is_hw_access_blocked(hwmgr))
		return 0;

	return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
			PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm);
4519 4520
}

4521
int polaris10_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
4522 4523 4524 4525 4526
					const void *thermal_interrupt_info)
{
	return 0;
}

4527
bool polaris10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4528
{
4529
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
	bool is_update_required = false;
	struct cgs_display_info info = {0, 0, NULL};

	cgs_get_active_displays_info(hwmgr->device, &info);

	if (data->display_timing.num_existing_displays != info.display_count)
		is_update_required = true;
/* TO DO NEED TO GET DEEP SLEEP CLOCK FROM DAL
	if (phm_cap_enabled(hwmgr->hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
		cgs_get_min_clock_settings(hwmgr->device, &min_clocks);
4540 4541 4542
		if (min_clocks.engineClockInSR != data->display_timing.minClockInSR &&
			(min_clocks.engineClockInSR >= POLARIS10_MINIMUM_ENGINE_CLOCK ||
				data->display_timing.minClockInSR >= POLARIS10_MINIMUM_ENGINE_CLOCK))
4543 4544 4545 4546 4547
			is_update_required = true;
*/
	return is_update_required;
}

4548 4549
static inline bool polaris10_are_power_levels_equal(const struct polaris10_performance_level *pl1,
							   const struct polaris10_performance_level *pl2)
4550 4551 4552 4553 4554 4555 4556
{
	return ((pl1->memory_clock == pl2->memory_clock) &&
		  (pl1->engine_clock == pl2->engine_clock) &&
		  (pl1->pcie_gen == pl2->pcie_gen) &&
		  (pl1->pcie_lane == pl2->pcie_lane));
}

4557
int polaris10_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal)
4558
{
4559 4560
	const struct polaris10_power_state *psa = cast_const_phw_polaris10_power_state(pstate1);
	const struct polaris10_power_state *psb = cast_const_phw_polaris10_power_state(pstate2);
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
	int i;

	if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
		return -EINVAL;

	/* If the two states don't even have the same number of performance levels they cannot be the same state. */
	if (psa->performance_level_count != psb->performance_level_count) {
		*equal = false;
		return 0;
	}

	for (i = 0; i < psa->performance_level_count; i++) {
4573
		if (!polaris10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
			/* If we have found even one performance level pair that is different the states are different. */
			*equal = false;
			return 0;
		}
	}

	/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
	*equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
	*equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
	*equal &= (psa->sclk_threshold == psb->sclk_threshold);

	return 0;
}

4588
int polaris10_upload_mc_firmware(struct pp_hwmgr *hwmgr)
4589
{
4590
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606

	uint32_t vbios_version;

	/*  Read MC indirect register offset 0x9F bits [3:0] to see if VBIOS has already loaded a full version of MC ucode or not.*/

	phm_get_mc_microcode_version(hwmgr);
	vbios_version = hwmgr->microcode_version_info.MC & 0xf;
	/*  Full version of MC ucode has already been loaded. */
	if (vbios_version == 0) {
		data->need_long_memory_training = false;
		return 0;
	}

	data->need_long_memory_training = true;

/*
4607
 *	PPMCME_FirmwareDescriptorEntry *pfd = NULL;
4608 4609
	pfd = &tonga_mcmeFirmware;
	if (0 == PHM_READ_FIELD(hwmgr->device, MC_SEQ_SUP_CNTL, RUN))
4610
		polaris10_load_mc_microcode(hwmgr, pfd->dpmThreshold,
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
					pfd->cfgArray, pfd->cfgSize, pfd->ioDebugArray,
					pfd->ioDebugSize, pfd->ucodeArray, pfd->ucodeSize);
*/
	return 0;
}

/**
 * Read clock related registers.
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
4623
static int polaris10_read_clock_registers(struct pp_hwmgr *hwmgr)
4624
{
4625
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647

	data->clock_registers.vCG_SPLL_FUNC_CNTL = cgs_read_ind_register(hwmgr->device,
						CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL)
						& CG_SPLL_FUNC_CNTL__SPLL_BYPASS_EN_MASK;

	data->clock_registers.vCG_SPLL_FUNC_CNTL_2 = cgs_read_ind_register(hwmgr->device,
						CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2)
						& CG_SPLL_FUNC_CNTL_2__SCLK_MUX_SEL_MASK;

	data->clock_registers.vCG_SPLL_FUNC_CNTL_4 = cgs_read_ind_register(hwmgr->device,
						CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4)
						& CG_SPLL_FUNC_CNTL_4__SPLL_SPARE_MASK;

	return 0;
}

/**
 * Find out if memory is GDDR5.
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
4648
static int polaris10_get_memory_type(struct pp_hwmgr *hwmgr)
4649
{
4650
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
	uint32_t temp;

	temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);

	data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
			((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
			 MC_SEQ_MISC0_GDDR5_SHIFT));

	return 0;
}

/**
 * Enables Dynamic Power Management by SMC
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
4668
static int polaris10_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
{
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			GENERAL_PWRMGT, STATIC_PM_EN, 1);

	return 0;
}

/**
 * Initialize PowerGating States for different engines
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
4682
static int polaris10_init_power_gate_state(struct pp_hwmgr *hwmgr)
4683
{
4684
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4685 4686 4687 4688 4689 4690 4691 4692

	data->uvd_power_gated = false;
	data->vce_power_gated = false;
	data->samu_power_gated = false;

	return 0;
}

4693
static int polaris10_init_sclk_threshold(struct pp_hwmgr *hwmgr)
4694
{
4695
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4696 4697 4698 4699 4700
	data->low_sclk_interrupt_threshold = 0;

	return 0;
}

4701
int polaris10_setup_asic_task(struct pp_hwmgr *hwmgr)
4702 4703 4704
{
	int tmp_result, result = 0;

4705
	polaris10_upload_mc_firmware(hwmgr);
4706

4707
	tmp_result = polaris10_read_clock_registers(hwmgr);
4708 4709 4710
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to read clock registers!", result = tmp_result);

4711
	tmp_result = polaris10_get_memory_type(hwmgr);
4712 4713 4714
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to get memory type!", result = tmp_result);

4715
	tmp_result = polaris10_enable_acpi_power_management(hwmgr);
4716 4717 4718
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable ACPI power management!", result = tmp_result);

4719
	tmp_result = polaris10_init_power_gate_state(hwmgr);
4720 4721 4722 4723 4724 4725 4726
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to init power gate state!", result = tmp_result);

	tmp_result = phm_get_mc_microcode_version(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to get MC microcode version!", result = tmp_result);

4727
	tmp_result = polaris10_init_sclk_threshold(hwmgr);
4728 4729 4730 4731 4732 4733
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to init sclk threshold!", result = tmp_result);

	return result;
}

4734 4735 4736 4737
static int polaris10_get_pp_table(struct pp_hwmgr *hwmgr, char **table)
{
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);

4738
	if (!data->soft_pp_table) {
4739 4740 4741
		data->soft_pp_table = kmemdup(hwmgr->soft_pp_table,
					      hwmgr->soft_pp_table_size,
					      GFP_KERNEL);
4742 4743 4744
		if (!data->soft_pp_table)
			return -ENOMEM;
	}
4745

4746 4747 4748
	*table = (char *)&data->soft_pp_table;

	return hwmgr->soft_pp_table_size;
4749 4750 4751 4752 4753 4754
}

static int polaris10_set_pp_table(struct pp_hwmgr *hwmgr, const char *buf, size_t size)
{
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);

4755 4756 4757 4758 4759 4760 4761 4762 4763
	if (!data->soft_pp_table) {
		data->soft_pp_table = kzalloc(hwmgr->soft_pp_table_size, GFP_KERNEL);
		if (!data->soft_pp_table)
			return -ENOMEM;
	}

	memcpy(data->soft_pp_table, buf, size);

	hwmgr->soft_pp_table = data->soft_pp_table;
4764

4765
	/* TODO: re-init powerplay to implement modified pptable */
4766 4767 4768 4769 4770

	return 0;
}

static int polaris10_force_clock_level(struct pp_hwmgr *hwmgr,
4771
		enum pp_clock_type type, uint32_t mask)
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
{
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);

	if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
		return -EINVAL;

	switch (type) {
	case PP_SCLK:
		if (!data->sclk_dpm_key_disabled)
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_SCLKDPM_SetEnabledMask,
4783
					data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask);
4784 4785 4786 4787 4788
		break;
	case PP_MCLK:
		if (!data->mclk_dpm_key_disabled)
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_MCLKDPM_SetEnabledMask,
4789
					data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask);
4790 4791
		break;
	case PP_PCIE:
4792 4793 4794 4795 4796 4797 4798
	{
		uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
		uint32_t level = 0;

		while (tmp >>= 1)
			level++;

4799 4800 4801
		if (!data->pcie_dpm_key_disabled)
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_PCIeDPM_ForceLevel,
4802
					level);
4803
		break;
4804
	}
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
	default:
		break;
	}

	return 0;
}

static uint16_t polaris10_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
{
	uint32_t speedCntl = 0;

	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
	speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
			ixPCIE_LC_SPEED_CNTL);
	return((uint16_t)PHM_GET_FIELD(speedCntl,
			PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
}

static int polaris10_print_clock_levels(struct pp_hwmgr *hwmgr,
		enum pp_clock_type type, char *buf)
{
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
	struct polaris10_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
	struct polaris10_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
	int i, now, size = 0;
	uint32_t clock, pcie_speed;

	switch (type) {
	case PP_SCLK:
		smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
		clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);

		for (i = 0; i < sclk_table->count; i++) {
			if (clock > sclk_table->dpm_levels[i].value)
				continue;
			break;
		}
		now = i;

		for (i = 0; i < sclk_table->count; i++)
			size += sprintf(buf + size, "%d: %uMhz %s\n",
					i, sclk_table->dpm_levels[i].value / 100,
					(i == now) ? "*" : "");
		break;
	case PP_MCLK:
		smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
		clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);

		for (i = 0; i < mclk_table->count; i++) {
			if (clock > mclk_table->dpm_levels[i].value)
				continue;
			break;
		}
		now = i;

		for (i = 0; i < mclk_table->count; i++)
			size += sprintf(buf + size, "%d: %uMhz %s\n",
					i, mclk_table->dpm_levels[i].value / 100,
					(i == now) ? "*" : "");
		break;
	case PP_PCIE:
		pcie_speed = polaris10_get_current_pcie_speed(hwmgr);
		for (i = 0; i < pcie_table->count; i++) {
			if (pcie_speed != pcie_table->dpm_levels[i].value)
				continue;
			break;
		}
		now = i;

		for (i = 0; i < pcie_table->count; i++)
			size += sprintf(buf + size, "%d: %s %s\n", i,
					(pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x8" :
					(pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" :
					(pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "",
					(i == now) ? "*" : "");
		break;
	default:
		break;
	}
	return size;
}

4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911
static int polaris10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
{
	if (mode) {
		/* stop auto-manage */
		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_MicrocodeFanControl))
			polaris10_fan_ctrl_stop_smc_fan_control(hwmgr);
		polaris10_fan_ctrl_set_static_mode(hwmgr, mode);
	} else
		/* restart auto-manage */
		polaris10_fan_ctrl_reset_fan_speed_to_default(hwmgr);

	return 0;
}

static int polaris10_get_fan_control_mode(struct pp_hwmgr *hwmgr)
{
	if (hwmgr->fan_ctrl_is_in_default_mode)
		return hwmgr->fan_ctrl_default_mode;
	else
		return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
				CG_FDO_CTRL2, FDO_PWM_MODE);
}

4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
static const struct pp_hwmgr_func polaris10_hwmgr_funcs = {
	.backend_init = &polaris10_hwmgr_backend_init,
	.backend_fini = &polaris10_hwmgr_backend_fini,
	.asic_setup = &polaris10_setup_asic_task,
	.dynamic_state_management_enable = &polaris10_enable_dpm_tasks,
	.apply_state_adjust_rules = polaris10_apply_state_adjust_rules,
	.force_dpm_level = &polaris10_force_dpm_level,
	.power_state_set = polaris10_set_power_state_tasks,
	.get_power_state_size = polaris10_get_power_state_size,
	.get_mclk = polaris10_dpm_get_mclk,
	.get_sclk = polaris10_dpm_get_sclk,
	.patch_boot_state = polaris10_dpm_patch_boot_state,
	.get_pp_table_entry = polaris10_get_pp_table_entry,
4925
	.get_num_of_pp_table_entries = tonga_get_number_of_powerplay_table_entries,
4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
	.print_current_perforce_level = polaris10_print_current_perforce_level,
	.powerdown_uvd = polaris10_phm_powerdown_uvd,
	.powergate_uvd = polaris10_phm_powergate_uvd,
	.powergate_vce = polaris10_phm_powergate_vce,
	.disable_clock_power_gating = polaris10_phm_disable_clock_power_gating,
	.update_clock_gatings = polaris10_phm_update_clock_gatings,
	.notify_smc_display_config_after_ps_adjustment = polaris10_notify_smc_display_config_after_ps_adjustment,
	.display_config_changed = polaris10_display_configuration_changed_task,
	.set_max_fan_pwm_output = polaris10_set_max_fan_pwm_output,
	.set_max_fan_rpm_output = polaris10_set_max_fan_rpm_output,
	.get_temperature = polaris10_thermal_get_temperature,
	.stop_thermal_controller = polaris10_thermal_stop_thermal_controller,
	.get_fan_speed_info = polaris10_fan_ctrl_get_fan_speed_info,
	.get_fan_speed_percent = polaris10_fan_ctrl_get_fan_speed_percent,
	.set_fan_speed_percent = polaris10_fan_ctrl_set_fan_speed_percent,
	.reset_fan_speed_to_default = polaris10_fan_ctrl_reset_fan_speed_to_default,
	.get_fan_speed_rpm = polaris10_fan_ctrl_get_fan_speed_rpm,
	.set_fan_speed_rpm = polaris10_fan_ctrl_set_fan_speed_rpm,
	.uninitialize_thermal_controller = polaris10_thermal_ctrl_uninitialize_thermal_controller,
	.register_internal_thermal_interrupt = polaris10_register_internal_thermal_interrupt,
	.check_smc_update_required_for_display_configuration = polaris10_check_smc_update_required_for_display_configuration,
	.check_states_equal = polaris10_check_states_equal,
4948 4949
	.set_fan_control_mode = polaris10_set_fan_control_mode,
	.get_fan_control_mode = polaris10_get_fan_control_mode,
4950 4951 4952 4953 4954
	.get_pp_table = polaris10_get_pp_table,
	.set_pp_table = polaris10_set_pp_table,
	.force_clock_level = polaris10_force_clock_level,
	.print_clock_levels = polaris10_print_clock_levels,
	.enable_per_cu_power_gating = polaris10_phm_enable_per_cu_power_gating,
4955 4956
};

4957
int polaris10_hwmgr_init(struct pp_hwmgr *hwmgr)
4958
{
4959
	struct polaris10_hwmgr  *data;
4960

4961
	data = kzalloc (sizeof(struct polaris10_hwmgr), GFP_KERNEL);
4962 4963 4964 4965
	if (data == NULL)
		return -ENOMEM;

	hwmgr->backend = data;
4966
	hwmgr->hwmgr_func = &polaris10_hwmgr_funcs;
4967
	hwmgr->pptable_func = &tonga_pptable_funcs;
4968
	pp_polaris10_thermal_initialize(hwmgr);
4969 4970 4971

	return 0;
}