polaris10_hwmgr.c 163.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright 2015 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/fb.h>
#include "linux/delay.h"
#include "pp_acpi.h"
#include "hwmgr.h"
29 30 31 32
#include "polaris10_hwmgr.h"
#include "polaris10_powertune.h"
#include "polaris10_dyn_defaults.h"
#include "polaris10_smumgr.h"
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
#include "pp_debug.h"
#include "ppatomctrl.h"
#include "atombios.h"
#include "tonga_pptable.h"
#include "pppcielanes.h"
#include "amd_pcie_helpers.h"
#include "hardwaremanager.h"
#include "tonga_processpptables.h"
#include "cgs_common.h"
#include "smu74.h"
#include "smu_ucode_xfer_vi.h"
#include "smu74_discrete.h"
#include "smu/smu_7_1_3_d.h"
#include "smu/smu_7_1_3_sh_mask.h"
#include "gmc/gmc_8_1_d.h"
#include "gmc/gmc_8_1_sh_mask.h"
#include "oss/oss_3_0_d.h"
#include "gca/gfx_8_0_d.h"
#include "bif/bif_5_0_d.h"
#include "bif/bif_5_0_sh_mask.h"
#include "gmc/gmc_8_1_d.h"
#include "gmc/gmc_8_1_sh_mask.h"
#include "bif/bif_5_0_d.h"
#include "bif/bif_5_0_sh_mask.h"
#include "dce/dce_10_0_d.h"
#include "dce/dce_10_0_sh_mask.h"

60 61
#include "polaris10_thermal.h"
#include "polaris10_clockpowergating.h"
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
#define MC_CG_ARB_FREQ_F0           0x0a
#define MC_CG_ARB_FREQ_F1           0x0b
#define MC_CG_ARB_FREQ_F2           0x0c
#define MC_CG_ARB_FREQ_F3           0x0d

#define MC_CG_SEQ_DRAMCONF_S0       0x05
#define MC_CG_SEQ_DRAMCONF_S1       0x06
#define MC_CG_SEQ_YCLK_SUSPEND      0x04
#define MC_CG_SEQ_YCLK_RESUME       0x0a


#define SMC_RAM_END 0x40000

#define SMC_CG_IND_START            0xc0030000
#define SMC_CG_IND_END              0xc0040000

#define VOLTAGE_SCALE               4
#define VOLTAGE_VID_OFFSET_SCALE1   625
#define VOLTAGE_VID_OFFSET_SCALE2   100

#define VDDC_VDDCI_DELTA            200

#define MEM_FREQ_LOW_LATENCY        25000
#define MEM_FREQ_HIGH_LATENCY       80000

#define MEM_LATENCY_HIGH            45
#define MEM_LATENCY_LOW             35
#define MEM_LATENCY_ERR             0xFFFF

#define MC_SEQ_MISC0_GDDR5_SHIFT 28
#define MC_SEQ_MISC0_GDDR5_MASK  0xf0000000
#define MC_SEQ_MISC0_GDDR5_VALUE 5


#define PCIE_BUS_CLK                10000
#define TCLK                        (PCIE_BUS_CLK / 10)


101
uint16_t polaris10_clock_stretcher_lookup_table[2][4] = { {600, 1050, 3, 0},
102 103 104
							  {600, 1050, 6, 1} };

/*  [FF, SS] type, [] 4 voltage ranges, and [Floor Freq, Boundary Freq, VID min , VID max] */
105
uint32_t polaris10_clock_stretcher_ddt_table[2][4][4] = { { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
106 107 108
							{ {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };

/*  [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] (coming from PWR_CKS_CNTL.stretch_amount reg spec) */
109
uint8_t polaris10_clock_stretch_amount_conversion[2][6] = { {0, 1, 3, 2, 4, 5},
110 111 112 113 114 115 116 117 118 119 120
							    {0, 2, 4, 5, 6, 5} };

/** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
enum DPM_EVENT_SRC {
	DPM_EVENT_SRC_ANALOG = 0,
	DPM_EVENT_SRC_EXTERNAL = 1,
	DPM_EVENT_SRC_DIGITAL = 2,
	DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,
	DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4
};

121
const unsigned long PhwPolaris10_Magic = (unsigned long)(PHM_VIslands_Magic);
122

123
struct polaris10_power_state *cast_phw_polaris10_power_state(
124 125
				  struct pp_hw_power_state *hw_ps)
{
126
	PP_ASSERT_WITH_CODE((PhwPolaris10_Magic == hw_ps->magic),
127 128 129
				"Invalid Powerstate Type!",
				 return NULL);

130
	return (struct polaris10_power_state *)hw_ps;
131 132
}

133
const struct polaris10_power_state *cast_const_phw_polaris10_power_state(
134 135
				 const struct pp_hw_power_state *hw_ps)
{
136
	PP_ASSERT_WITH_CODE((PhwPolaris10_Magic == hw_ps->magic),
137 138 139
				"Invalid Powerstate Type!",
				 return NULL);

140
	return (const struct polaris10_power_state *)hw_ps;
141 142
}

143
static bool polaris10_is_dpm_running(struct pp_hwmgr *hwmgr)
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
{
	return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
			CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
			? true : false;
}

/**
 * Find the MC microcode version and store it in the HwMgr struct
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
int phm_get_mc_microcode_version (struct pp_hwmgr *hwmgr)
{
	cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);

	hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);

	return 0;
}

uint16_t phm_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
{
	uint32_t speedCntl = 0;

	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
	speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
			ixPCIE_LC_SPEED_CNTL);
	return((uint16_t)PHM_GET_FIELD(speedCntl,
			PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
}

int phm_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
{
	uint32_t link_width;

	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
	link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
			PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);

	PP_ASSERT_WITH_CODE((7 >= link_width),
			"Invalid PCIe lane width!", return 0);

	return decode_pcie_lane_width(link_width);
}

void phm_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr)
{
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)hwmgr->pptable;
	struct phm_clock_voltage_dependency_table *table =
				table_info->vddc_dep_on_dal_pwrl;
	struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table;
	enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level;
	uint32_t req_vddc = 0, req_volt, i;

	if (!table && !(dal_power_level >= PP_DAL_POWERLEVEL_ULTRALOW &&
			dal_power_level <= PP_DAL_POWERLEVEL_PERFORMANCE))
		return;

	for (i = 0; i < table->count; i++) {
		if (dal_power_level == table->entries[i].clk) {
			req_vddc = table->entries[i].v;
			break;
		}
	}

	vddc_table = table_info->vdd_dep_on_sclk;
	for (i = 0; i < vddc_table->count; i++) {
		if (req_vddc <= vddc_table->entries[i].vddc) {
			req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE)
					<< VDDC_SHIFT;
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_VddC_Request, req_volt);
			return;
		}
	}
	printk(KERN_ERR "DAL requested level can not"
			" found a available voltage in VDDC DPM Table \n");
}

225 226 227 228 229 230
/**
* Enable voltage control
*
* @param    pHwMgr  the address of the powerplay hardware manager.
* @return   always PP_Result_OK
*/
231
int polaris10_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr)
232 233 234 235 236 237 238 239 240
{
	PP_ASSERT_WITH_CODE(
		(hwmgr->smumgr->smumgr_funcs->send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_Voltage_Cntl_Enable) == 0),
		"Failed to enable voltage DPM during DPM Start Function!",
		return 1;
	);

	return 0;
}
241 242 243 244 245 246

/**
* Checks if we want to support voltage control
*
* @param    hwmgr  the address of the powerplay hardware manager.
*/
247
static bool polaris10_voltage_control(const struct pp_hwmgr *hwmgr)
248
{
249 250
	const struct polaris10_hwmgr *data =
			(const struct polaris10_hwmgr *)(hwmgr->backend);
251

252
	return (POLARIS10_VOLTAGE_CONTROL_NONE != data->voltage_control);
253 254 255 256 257 258 259 260
}

/**
* Enable voltage control
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
261
static int polaris10_enable_voltage_control(struct pp_hwmgr *hwmgr)
262 263 264 265 266 267 268 269 270 271 272 273 274 275
{
	/* enable voltage control */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);

	return 0;
}

/**
* Create Voltage Tables.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
276
static int polaris10_construct_voltage_tables(struct pp_hwmgr *hwmgr)
277
{
278
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
279 280 281 282
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)hwmgr->pptable;
	int result;

283
	if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
284 285 286 287 288 289
		result = atomctrl_get_voltage_table_v3(hwmgr,
				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
				&(data->mvdd_voltage_table));
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to retrieve MVDD table.",
				return result);
290
	} else if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
291 292 293 294 295 296 297
		result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table),
				table_info->vdd_dep_on_mclk);
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to retrieve SVI2 MVDD table from dependancy table.",
				return result;);
	}

298
	if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
299 300 301 302 303 304
		result = atomctrl_get_voltage_table_v3(hwmgr,
				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
				&(data->vddci_voltage_table));
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to retrieve VDDCI table.",
				return result);
305
	} else if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
306 307 308 309 310 311 312
		result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table),
				table_info->vdd_dep_on_mclk);
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to retrieve SVI2 VDDCI table from dependancy table.",
				return result);
	}

313
	if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
		result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table),
				table_info->vddc_lookup_table);
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to retrieve SVI2 VDDC table from lookup table.",
				return result);
	}

	PP_ASSERT_WITH_CODE(
			(data->vddc_voltage_table.count <= (SMU74_MAX_LEVELS_VDDC)),
			"Too many voltage values for VDDC. Trimming to fit state table.",
			phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_VDDC,
								&(data->vddc_voltage_table)));

	PP_ASSERT_WITH_CODE(
			(data->vddci_voltage_table.count <= (SMU74_MAX_LEVELS_VDDCI)),
			"Too many voltage values for VDDCI. Trimming to fit state table.",
			phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_VDDCI,
					&(data->vddci_voltage_table)));

	PP_ASSERT_WITH_CODE(
			(data->mvdd_voltage_table.count <= (SMU74_MAX_LEVELS_MVDD)),
			"Too many voltage values for MVDD. Trimming to fit state table.",
			phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_MVDD,
							   &(data->mvdd_voltage_table)));

	return 0;
}

/**
* Programs static screed detection parameters
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
348
static int polaris10_program_static_screen_threshold_parameters(
349 350
							struct pp_hwmgr *hwmgr)
{
351
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

	/* Set static screen threshold unit */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
			data->static_screen_threshold_unit);
	/* Set static screen threshold */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
			data->static_screen_threshold);

	return 0;
}

/**
* Setup display gap for glitch free memory clock switching.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always  0
*/
371
static int polaris10_enable_display_gap(struct pp_hwmgr *hwmgr)
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
{
	uint32_t display_gap =
			cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
					ixCG_DISPLAY_GAP_CNTL);

	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
			DISP_GAP, DISPLAY_GAP_IGNORE);

	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
			DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_DISPLAY_GAP_CNTL, display_gap);

	return 0;
}

/**
* Programs activity state transition voting clients
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always  0
*/
395
static int polaris10_program_voting_clients(struct pp_hwmgr *hwmgr)
396
{
397
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430

	/* Clear reset for voting clients before enabling DPM */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);

	return 0;
}

/**
* Get the location of various tables inside the FW image.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always  0
*/
431
static int polaris10_process_firmware_header(struct pp_hwmgr *hwmgr)
432
{
433 434
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
435 436 437 438
	uint32_t tmp;
	int result;
	bool error = false;

439
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
440 441 442 443 444 445 446 447 448
			SMU7_FIRMWARE_HEADER_LOCATION +
			offsetof(SMU74_Firmware_Header, DpmTable),
			&tmp, data->sram_end);

	if (0 == result)
		data->dpm_table_start = tmp;

	error |= (0 != result);

449
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
450 451 452 453 454 455 456 457 458 459 460
			SMU7_FIRMWARE_HEADER_LOCATION +
			offsetof(SMU74_Firmware_Header, SoftRegisters),
			&tmp, data->sram_end);

	if (!result) {
		data->soft_regs_start = tmp;
		smu_data->soft_regs_start = tmp;
	}

	error |= (0 != result);

461
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
462 463 464 465 466 467 468
			SMU7_FIRMWARE_HEADER_LOCATION +
			offsetof(SMU74_Firmware_Header, mcRegisterTable),
			&tmp, data->sram_end);

	if (!result)
		data->mc_reg_table_start = tmp;

469
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
470 471 472 473 474 475 476 477 478
			SMU7_FIRMWARE_HEADER_LOCATION +
			offsetof(SMU74_Firmware_Header, FanTable),
			&tmp, data->sram_end);

	if (!result)
		data->fan_table_start = tmp;

	error |= (0 != result);

479
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
480 481 482 483 484 485 486 487 488
			SMU7_FIRMWARE_HEADER_LOCATION +
			offsetof(SMU74_Firmware_Header, mcArbDramTimingTable),
			&tmp, data->sram_end);

	if (!result)
		data->arb_table_start = tmp;

	error |= (0 != result);

489
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
			SMU7_FIRMWARE_HEADER_LOCATION +
			offsetof(SMU74_Firmware_Header, Version),
			&tmp, data->sram_end);

	if (!result)
		hwmgr->microcode_version_info.SMC = tmp;

	error |= (0 != result);

	return error ? -1 : 0;
}

/* Copy one arb setting to another and then switch the active set.
 * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
 */
505
static int polaris10_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
		uint32_t arb_src, uint32_t arb_dest)
{
	uint32_t mc_arb_dram_timing;
	uint32_t mc_arb_dram_timing2;
	uint32_t burst_time;
	uint32_t mc_cg_config;

	switch (arb_src) {
	case MC_CG_ARB_FREQ_F0:
		mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
		mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
		burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
		break;
	case MC_CG_ARB_FREQ_F1:
		mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
		mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
		burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
		break;
	default:
		return -EINVAL;
	}

	switch (arb_dest) {
	case MC_CG_ARB_FREQ_F0:
		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
		PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
		break;
	case MC_CG_ARB_FREQ_F1:
		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
		PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
		break;
	default:
		return -EINVAL;
	}

	mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
	mc_cg_config |= 0x0000000F;
	cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
	PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);

	return 0;
}

/**
* Initial switch from ARB F0->F1
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
* This function is to be called from the SetPowerState table.
*/
558
static int polaris10_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
559
{
560
	return polaris10_copy_and_switch_arb_sets(hwmgr,
561 562 563
			MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
}

564
static int polaris10_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
565
{
566
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
	uint32_t i, max_entry;

	PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
			data->use_pcie_power_saving_levels), "No pcie performance levels!",
			return -EINVAL);

	if (data->use_pcie_performance_levels &&
			!data->use_pcie_power_saving_levels) {
		data->pcie_gen_power_saving = data->pcie_gen_performance;
		data->pcie_lane_power_saving = data->pcie_lane_performance;
	} else if (!data->use_pcie_performance_levels &&
			data->use_pcie_power_saving_levels) {
		data->pcie_gen_performance = data->pcie_gen_power_saving;
		data->pcie_lane_performance = data->pcie_lane_power_saving;
	}

	phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table,
					SMU74_MAX_LEVELS_LINK,
					MAX_REGULAR_DPM_NUMBER);

	if (pcie_table != NULL) {
		/* max_entry is used to make sure we reserve one PCIE level
		 * for boot level (fix for A+A PSPP issue).
		 * If PCIE table from PPTable have ULV entry + 8 entries,
		 * then ignore the last entry.*/
		max_entry = (SMU74_MAX_LEVELS_LINK < pcie_table->count) ?
				SMU74_MAX_LEVELS_LINK : pcie_table->count;
		for (i = 1; i < max_entry; i++) {
			phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
					get_pcie_gen_support(data->pcie_gen_cap,
							pcie_table->entries[i].gen_speed),
					get_pcie_lane_support(data->pcie_lane_cap,
							pcie_table->entries[i].lane_width));
		}
		data->dpm_table.pcie_speed_table.count = max_entry - 1;
605 606 607 608

		/* Setup BIF_SCLK levels */
		for (i = 0; i < max_entry; i++)
			data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk;
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
	} else {
		/* Hardcode Pcie Table */
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Min_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Min_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Max_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Max_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Max_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));
		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
				get_pcie_gen_support(data->pcie_gen_cap,
						PP_Max_PCIEGen),
				get_pcie_lane_support(data->pcie_lane_cap,
						PP_Max_PCIELane));

		data->dpm_table.pcie_speed_table.count = 6;
	}
	/* Populate last level for boot PCIE level, but do not increment count. */
	phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
			data->dpm_table.pcie_speed_table.count,
			get_pcie_gen_support(data->pcie_gen_cap,
					PP_Min_PCIEGen),
			get_pcie_lane_support(data->pcie_lane_cap,
					PP_Max_PCIELane));

	return 0;
}

/*
 * This function is to initalize all DPM state tables
 * for SMU7 based on the dependency table.
 * Dynamic state patching function will then trim these
 * state tables to the allowed range based
 * on the power policy or external client requests,
 * such as UVD request, etc.
 */
663
int polaris10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
664
{
665
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	uint32_t i;

	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
			table_info->vdd_dep_on_sclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
			table_info->vdd_dep_on_mclk;

	PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
			"SCLK dependency table is missing. This table is mandatory",
			return -EINVAL);
	PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
			"SCLK dependency table has to have is missing."
			"This table is mandatory",
			return -EINVAL);

	PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
			"MCLK dependency table is missing. This table is mandatory",
			return -EINVAL);
	PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
			"MCLK dependency table has to have is missing."
			"This table is mandatory",
			return -EINVAL);

	/* clear the state table to reset everything to default */
	phm_reset_single_dpm_table(
			&data->dpm_table.sclk_table, SMU74_MAX_LEVELS_GRAPHICS, MAX_REGULAR_DPM_NUMBER);
	phm_reset_single_dpm_table(
			&data->dpm_table.mclk_table, SMU74_MAX_LEVELS_MEMORY, MAX_REGULAR_DPM_NUMBER);


	/* Initialize Sclk DPM table based on allow Sclk values */
	data->dpm_table.sclk_table.count = 0;
	for (i = 0; i < dep_sclk_table->count; i++) {
		if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value !=
						dep_sclk_table->entries[i].clk) {

			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
					dep_sclk_table->entries[i].clk;

			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled =
					(i == 0) ? true : false;
			data->dpm_table.sclk_table.count++;
		}
	}

	/* Initialize Mclk DPM table based on allow Mclk values */
	data->dpm_table.mclk_table.count = 0;
	for (i = 0; i < dep_mclk_table->count; i++) {
		if (i == 0 || data->dpm_table.mclk_table.dpm_levels
				[data->dpm_table.mclk_table.count - 1].value !=
						dep_mclk_table->entries[i].clk) {
			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
							dep_mclk_table->entries[i].clk;
			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled =
							(i == 0) ? true : false;
			data->dpm_table.mclk_table.count++;
		}
	}

	/* setup PCIE gen speed levels */
728
	polaris10_setup_default_pcie_table(hwmgr);
729 730 731

	/* save a copy of the default DPM table */
	memcpy(&(data->golden_dpm_table), &(data->dpm_table),
732
			sizeof(struct polaris10_dpm_table));
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748

	return 0;
}

uint8_t convert_to_vid(uint16_t vddc)
{
	return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
}

/**
 * Mvdd table preparation for SMC.
 *
 * @param    *hwmgr The address of the hardware manager.
 * @param    *table The SMC DPM table structure to be populated.
 * @return   0
 */
749
static int polaris10_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
750 751
			SMU74_Discrete_DpmTable *table)
{
752
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
753 754
	uint32_t count, level;

755
	if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
		count = data->mvdd_voltage_table.count;
		if (count > SMU_MAX_SMIO_LEVELS)
			count = SMU_MAX_SMIO_LEVELS;
		for (level = 0; level < count; level++) {
			table->SmioTable2.Pattern[level].Voltage =
				PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
			/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
			table->SmioTable2.Pattern[level].Smio =
				(uint8_t) level;
			table->Smio[level] |=
				data->mvdd_voltage_table.entries[level].smio_low;
		}
		table->SmioMask2 = data->vddci_voltage_table.mask_low;

		table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count);
	}

	return 0;
}

776
static int polaris10_populate_smc_vddci_table(struct pp_hwmgr *hwmgr,
777 778 779
					struct SMU74_Discrete_DpmTable *table)
{
	uint32_t count, level;
780
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
781 782 783

	count = data->vddci_voltage_table.count;

784
	if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
		if (count > SMU_MAX_SMIO_LEVELS)
			count = SMU_MAX_SMIO_LEVELS;
		for (level = 0; level < count; ++level) {
			table->SmioTable1.Pattern[level].Voltage =
				PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE);
			table->SmioTable1.Pattern[level].Smio = (uint8_t) level;

			table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low;
		}
	}

	table->SmioMask1 = data->vddci_voltage_table.mask_low;

	return 0;
}

/**
* Preparation of vddc and vddgfx CAC tables for SMC.
*
* @param    hwmgr  the address of the hardware manager
* @param    table  the SMC DPM table structure to be populated
* @return   always 0
*/
808
static int polaris10_populate_cac_table(struct pp_hwmgr *hwmgr,
809 810 811 812
		struct SMU74_Discrete_DpmTable *table)
{
	uint32_t count;
	uint8_t index;
813
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_voltage_lookup_table *lookup_table =
			table_info->vddc_lookup_table;
	/* tables is already swapped, so in order to use the value from it,
	 * we need to swap it back.
	 * We are populating vddc CAC data to BapmVddc table
	 * in split and merged mode
	 */
	for (count = 0; count < lookup_table->count; count++) {
		index = phm_get_voltage_index(lookup_table,
				data->vddc_voltage_table.entries[count].value);
		table->BapmVddcVidLoSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_low);
		table->BapmVddcVidHiSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_mid);
		table->BapmVddcVidHiSidd2[count] = convert_to_vid(lookup_table->entries[index].us_cac_high);
	}

	return 0;
}

/**
* Preparation of voltage tables for SMC.
*
* @param    hwmgr   the address of the hardware manager
* @param    table   the SMC DPM table structure to be populated
* @return   always  0
*/

842
int polaris10_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
843 844
		struct SMU74_Discrete_DpmTable *table)
{
845 846 847
	polaris10_populate_smc_vddci_table(hwmgr, table);
	polaris10_populate_smc_mvdd_table(hwmgr, table);
	polaris10_populate_cac_table(hwmgr, table);
848 849 850 851

	return 0;
}

852
static int polaris10_populate_ulv_level(struct pp_hwmgr *hwmgr,
853 854
		struct SMU74_Discrete_Ulv *state)
{
855
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	state->CcPwrDynRm = 0;
	state->CcPwrDynRm1 = 0;

	state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
	state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
			VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);

	state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1;

	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);

	return 0;
}

875
static int polaris10_populate_ulv_state(struct pp_hwmgr *hwmgr,
876 877
		struct SMU74_Discrete_DpmTable *table)
{
878
	return polaris10_populate_ulv_level(hwmgr, &table->Ulv);
879 880
}

881
static int polaris10_populate_smc_link_level(struct pp_hwmgr *hwmgr,
882 883
		struct SMU74_Discrete_DpmTable *table)
{
884 885
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_dpm_table *dpm_table = &data->dpm_table;
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
	int i;

	/* Index (dpm_table->pcie_speed_table.count)
	 * is reserved for PCIE boot level. */
	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
		table->LinkLevel[i].PcieGenSpeed  =
				(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
		table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
				dpm_table->pcie_speed_table.dpm_levels[i].param1);
		table->LinkLevel[i].EnabledForActivity = 1;
		table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
		table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
		table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
	}

	data->smc_state_table.LinkLevelCount =
			(uint8_t)dpm_table->pcie_speed_table.count;
	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);

	return 0;
}

909
static uint32_t polaris10_get_xclk(struct pp_hwmgr *hwmgr)
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
{
	uint32_t reference_clock, tmp;
	struct cgs_display_info info = {0};
	struct cgs_mode_info mode_info;

	info.mode_info = &mode_info;

	tmp = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL_2, MUX_TCLK_TO_XCLK);

	if (tmp)
		return TCLK;

	cgs_get_active_displays_info(hwmgr->device, &info);
	reference_clock = mode_info.ref_clock;

	tmp = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL, XTALIN_DIVIDE);

	if (0 != tmp)
		return reference_clock / 4;

	return reference_clock;
}

/**
* Calculates the SCLK dividers using the provided engine clock
*
* @param    hwmgr  the address of the hardware manager
* @param    clock  the engine clock to use to populate the structure
* @param    sclk   the SMC SCLK structure to be populated
*/
940
static int polaris10_calculate_sclk_params(struct pp_hwmgr *hwmgr,
941 942
		uint32_t clock, SMU_SclkSetting *sclk_setting)
{
943
	const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
	const SMU74_Discrete_DpmTable *table = &(data->smc_state_table);
	struct pp_atomctrl_clock_dividers_ai dividers;

	uint32_t ref_clock;
	uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq;
	uint8_t i;
	int result;
	uint64_t temp;

	sclk_setting->SclkFrequency = clock;
	/* get the engine clock dividers for this clock value */
	result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock,  &dividers);
	if (result == 0) {
		sclk_setting->Fcw_int = dividers.usSclk_fcw_int;
		sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac;
		sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int;
		sclk_setting->PllRange = dividers.ucSclkPllRange;
961 962 963
		sclk_setting->Sclk_slew_rate = 0x400;
		sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac;
		sclk_setting->Pcc_down_slew_rate = 0xffff;
964 965 966
		sclk_setting->SSc_En = dividers.ucSscEnable;
		sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int;
		sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac;
967
		sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac;
968 969 970
		return result;
	}

971
	ref_clock = polaris10_get_xclk(hwmgr);
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

	for (i = 0; i < NUM_SCLK_RANGE; i++) {
		if (clock > data->range_table[i].trans_lower_frequency
		&& clock <= data->range_table[i].trans_upper_frequency) {
			sclk_setting->PllRange = i;
			break;
		}
	}

	sclk_setting->Fcw_int = (uint16_t)((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock);
	temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
	temp <<= 0x10;
	sclk_setting->Fcw_frac = (uint16_t)(0xFFFF & (temp / ref_clock));

	pcc_target_percent = 10; /*  Hardcode 10% for now. */
	pcc_target_freq = clock - (clock * pcc_target_percent / 100);
	sclk_setting->Pcc_fcw_int = (uint16_t)((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock);

	ss_target_percent = 2; /*  Hardcode 2% for now. */
	sclk_setting->SSc_En = 0;
	if (ss_target_percent) {
		sclk_setting->SSc_En = 1;
		ss_target_freq = clock - (clock * ss_target_percent / 100);
		sclk_setting->Fcw1_int = (uint16_t)((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock);
		temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
		temp <<= 0x10;
		sclk_setting->Fcw1_frac = (uint16_t)(0xFFFF & (temp / ref_clock));
	}

	return 0;
}

1004
static int polaris10_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
1005 1006 1007 1008 1009
		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
		uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
{
	uint32_t i;
	uint16_t vddci;
1010
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

	*voltage = *mvdd = 0;

	/* clock - voltage dependency table is empty table */
	if (dep_table->count == 0)
		return -EINVAL;

	for (i = 0; i < dep_table->count; i++) {
		/* find first sclk bigger than request */
		if (dep_table->entries[i].clk >= clock) {
			*voltage |= (dep_table->entries[i].vddc *
					VOLTAGE_SCALE) << VDDC_SHIFT;
1023
			if (POLARIS10_VOLTAGE_CONTROL_NONE == data->vddci_control)
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
				*voltage |= (data->vbios_boot_state.vddci_bootup_value *
						VOLTAGE_SCALE) << VDDCI_SHIFT;
			else if (dep_table->entries[i].vddci)
				*voltage |= (dep_table->entries[i].vddci *
						VOLTAGE_SCALE) << VDDCI_SHIFT;
			else {
				vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
						(dep_table->entries[i].vddc -
								(uint16_t)data->vddc_vddci_delta));
				*voltage |= (vddci * VOLTAGE_SCALE) <<	VDDCI_SHIFT;
			}

1036
			if (POLARIS10_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
				*mvdd = data->vbios_boot_state.mvdd_bootup_value *
					VOLTAGE_SCALE;
			else if (dep_table->entries[i].mvdd)
				*mvdd = (uint32_t) dep_table->entries[i].mvdd *
					VOLTAGE_SCALE;

			*voltage |= 1 << PHASES_SHIFT;
			return 0;
		}
	}

	/* sclk is bigger than max sclk in the dependence table */
	*voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;

1051
	if (POLARIS10_VOLTAGE_CONTROL_NONE == data->vddci_control)
1052 1053 1054 1055 1056 1057 1058 1059 1060
		*voltage |= (data->vbios_boot_state.vddci_bootup_value *
				VOLTAGE_SCALE) << VDDCI_SHIFT;
	else if (dep_table->entries[i-1].vddci) {
		vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
				(dep_table->entries[i].vddc -
						(uint16_t)data->vddc_vddci_delta));
		*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
	}

1061
	if (POLARIS10_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
		*mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
	else if (dep_table->entries[i].mvdd)
		*mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;

	return 0;
}

sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] = { {VCO_2_4, POSTDIV_DIV_BY_16,  75, 160, 112},
						{VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160},
						{VCO_2_4, POSTDIV_DIV_BY_8,   75, 160, 112},
						{VCO_3_6, POSTDIV_DIV_BY_8,  112, 224, 160},
						{VCO_2_4, POSTDIV_DIV_BY_4,   75, 160, 112},
						{VCO_3_6, POSTDIV_DIV_BY_4,  112, 216, 160},
						{VCO_2_4, POSTDIV_DIV_BY_2,   75, 160, 108},
						{VCO_3_6, POSTDIV_DIV_BY_2,  112, 216, 160} };

1078
static void polaris10_get_sclk_range_table(struct pp_hwmgr *hwmgr)
1079 1080
{
	uint32_t i, ref_clk;
1081
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1082 1083 1084
	SMU74_Discrete_DpmTable  *table = &(data->smc_state_table);
	struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } };

1085
	ref_clk = polaris10_get_xclk(hwmgr);
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

	if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) {
		for (i = 0; i < NUM_SCLK_RANGE; i++) {
			table->SclkFcwRangeTable[i].vco_setting = range_table_from_vbios.entry[i].ucVco_setting;
			table->SclkFcwRangeTable[i].postdiv = range_table_from_vbios.entry[i].ucPostdiv;
			table->SclkFcwRangeTable[i].fcw_pcc = range_table_from_vbios.entry[i].usFcw_pcc;

			table->SclkFcwRangeTable[i].fcw_trans_upper = range_table_from_vbios.entry[i].usFcw_trans_upper;
			table->SclkFcwRangeTable[i].fcw_trans_lower = range_table_from_vbios.entry[i].usRcw_trans_lower;

			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
		}
		return;
	}

	for (i = 0; i < NUM_SCLK_RANGE; i++) {

		data->range_table[i].trans_lower_frequency = (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv;
		data->range_table[i].trans_upper_frequency = (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv;

		table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting;
		table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv;
		table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc;

		table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper;
		table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower;

		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
	}
}

/**
* Populates single SMC SCLK structure using the provided engine clock
*
* @param    hwmgr      the address of the hardware manager
* @param    clock the engine clock to use to populate the structure
* @param    sclk        the SMC SCLK structure to be populated
*/

1129
static int polaris10_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
1130 1131 1132 1133 1134 1135
		uint32_t clock, uint16_t sclk_al_threshold,
		struct SMU74_Discrete_GraphicsLevel *level)
{
	int result, i, temp;
	/* PP_Clocks minClocks; */
	uint32_t mvdd;
1136
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1137 1138 1139 1140
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	SMU_SclkSetting curr_sclk_setting = { 0 };

1141
	result = polaris10_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting);
1142 1143

	/* populate graphics levels */
1144
	result = polaris10_get_dependency_volt_by_clk(hwmgr,
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
			table_info->vdd_dep_on_sclk, clock,
			&level->MinVoltage, &mvdd);

	PP_ASSERT_WITH_CODE((0 == result),
			"can not find VDDC voltage value for "
			"VDDC engine clock dependency table",
			return result);
	level->ActivityLevel = sclk_al_threshold;

	level->CcPwrDynRm = 0;
	level->CcPwrDynRm1 = 0;
	level->EnabledForActivity = 0;
	level->EnabledForThrottle = 1;
	level->UpHyst = 10;
	level->DownHyst = 0;
	level->VoltageDownHyst = 0;
	level->PowerThrottle = 0;

	/*
	* TODO: get minimum clocks from dal configaration
	* PECI_GetMinClockSettings(hwmgr->pPECI, &minClocks);
	*/
	/* data->DisplayTiming.minClockInSR = minClocks.engineClockInSR; */

	/* get level->DeepSleepDivId
	if (phm_cap_enabled(hwmgr->platformDescriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
		level->DeepSleepDivId = PhwFiji_GetSleepDividerIdFromClock(hwmgr, clock, minClocks.engineClockInSR);
	*/
	PP_ASSERT_WITH_CODE((clock >= 2500), "Engine clock can't satisfy stutter requirement!", return 0);
1174
	for (i = POLARIS10_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
		temp = clock / (1UL << i);

		if (temp >= 2500 || i == 0)
			break;
	}

	level->DeepSleepDivId = i;

	/* Default to slow, highest DPM level will be
	 * set to PPSMC_DISPLAY_WATERMARK_LOW later.
	 */
	if (data->update_up_hyst)
		level->UpHyst = (uint8_t)data->up_hyst;
	if (data->update_down_hyst)
		level->DownHyst = (uint8_t)data->down_hyst;

	level->SclkSetting = curr_sclk_setting;

	CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
	CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
	CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency);
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int);
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac);
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int);
1201 1202 1203
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate);
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate);
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate);
1204 1205
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int);
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac);
1206
	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate);
1207 1208 1209 1210 1211 1212 1213 1214
	return 0;
}

/**
* Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
*
* @param    hwmgr      the address of the hardware manager
*/
1215
static int polaris10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1216
{
1217 1218
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_dpm_table *dpm_table = &data->dpm_table;
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
	uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
	int result = 0;
	uint32_t array = data->dpm_table_start +
			offsetof(SMU74_Discrete_DpmTable, GraphicsLevel);
	uint32_t array_size = sizeof(struct SMU74_Discrete_GraphicsLevel) *
			SMU74_MAX_LEVELS_GRAPHICS;
	struct SMU74_Discrete_GraphicsLevel *levels =
			data->smc_state_table.GraphicsLevel;
	uint32_t i, max_entry;
	uint8_t hightest_pcie_level_enabled = 0,
		lowest_pcie_level_enabled = 0,
		mid_pcie_level_enabled = 0,
		count = 0;

1236
	polaris10_get_sclk_range_table(hwmgr);
1237 1238 1239

	for (i = 0; i < dpm_table->sclk_table.count; i++) {

1240
		result = polaris10_populate_single_graphic_level(hwmgr,
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
				dpm_table->sclk_table.dpm_levels[i].value,
				(uint16_t)data->activity_target[i],
				&(data->smc_state_table.GraphicsLevel[i]));
		if (result)
			return result;

		/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
		if (i > 1)
			levels[i].DeepSleepDivId = 0;
	}

	data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
	data->smc_state_table.GraphicsDpmLevelCount =
			(uint8_t)dpm_table->sclk_table.count;
	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);


	if (pcie_table != NULL) {
		PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
				"There must be 1 or more PCIE levels defined in PPTable.",
				return -EINVAL);
		max_entry = pcie_entry_cnt - 1;
		for (i = 0; i < dpm_table->sclk_table.count; i++)
			levels[i].pcieDpmLevel =
					(uint8_t) ((i < max_entry) ? i : max_entry);
	} else {
		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
						(1 << (hightest_pcie_level_enabled + 1))) != 0))
			hightest_pcie_level_enabled++;

		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
						(1 << lowest_pcie_level_enabled)) == 0))
			lowest_pcie_level_enabled++;

		while ((count < hightest_pcie_level_enabled) &&
				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
						(1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
			count++;

		mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
				hightest_pcie_level_enabled ?
						(lowest_pcie_level_enabled + 1 + count) :
						hightest_pcie_level_enabled;

		/* set pcieDpmLevel to hightest_pcie_level_enabled */
		for (i = 2; i < dpm_table->sclk_table.count; i++)
			levels[i].pcieDpmLevel = hightest_pcie_level_enabled;

		/* set pcieDpmLevel to lowest_pcie_level_enabled */
		levels[0].pcieDpmLevel = lowest_pcie_level_enabled;

		/* set pcieDpmLevel to mid_pcie_level_enabled */
		levels[1].pcieDpmLevel = mid_pcie_level_enabled;
	}
	/* level count will send to smc once at init smc table and never change */
1299
	result = polaris10_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
1300 1301 1302 1303 1304
			(uint32_t)array_size, data->sram_end);

	return result;
}

1305
static int polaris10_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1306 1307
		uint32_t clock, struct SMU74_Discrete_MemoryLevel *mem_level)
{
1308
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1309 1310 1311 1312 1313 1314 1315 1316
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	int result = 0;
	struct cgs_display_info info = {0, 0, NULL};

	cgs_get_active_displays_info(hwmgr->device, &info);

	if (table_info->vdd_dep_on_mclk) {
1317
		result = polaris10_get_dependency_volt_by_clk(hwmgr,
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
				table_info->vdd_dep_on_mclk, clock,
				&mem_level->MinVoltage, &mem_level->MinMvdd);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find MinVddc voltage value from memory "
				"VDDC voltage dependency table", return result);
	}

	mem_level->MclkFrequency = clock;
	mem_level->StutterEnable = 0;
	mem_level->EnabledForThrottle = 1;
	mem_level->EnabledForActivity = 0;
	mem_level->UpHyst = 0;
	mem_level->DownHyst = 100;
	mem_level->VoltageDownHyst = 0;
	mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
	mem_level->StutterEnable = false;

	mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;

	data->display_timing.num_existing_displays = info.display_count;

	if ((data->mclk_stutter_mode_threshold) &&
		(clock <= data->mclk_stutter_mode_threshold) &&
		(PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
				STUTTER_ENABLE) & 0x1))
		mem_level->StutterEnable = true;

	if (!result) {
		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
		CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
	}
	return result;
}

/**
* Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
*
* @param    hwmgr      the address of the hardware manager
*/
1359
static int polaris10_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1360
{
1361 1362
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_dpm_table *dpm_table = &data->dpm_table;
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	int result;
	/* populate MCLK dpm table to SMU7 */
	uint32_t array = data->dpm_table_start +
			offsetof(SMU74_Discrete_DpmTable, MemoryLevel);
	uint32_t array_size = sizeof(SMU74_Discrete_MemoryLevel) *
			SMU74_MAX_LEVELS_MEMORY;
	struct SMU74_Discrete_MemoryLevel *levels =
			data->smc_state_table.MemoryLevel;
	uint32_t i;

	for (i = 0; i < dpm_table->mclk_table.count; i++) {
		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
				"can not populate memory level as memory clock is zero",
				return -EINVAL);
1377
		result = polaris10_populate_single_memory_level(hwmgr,
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
				dpm_table->mclk_table.dpm_levels[i].value,
				&levels[i]);
		if (result)
			return result;
	}

	/* Only enable level 0 for now. */
	levels[0].EnabledForActivity = 1;

	/* in order to prevent MC activity from stutter mode to push DPM up.
	 * the UVD change complements this by putting the MCLK in
	 * a higher state by default such that we are not effected by
	 * up threshold or and MCLK DPM latency.
	 */
	levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
	CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);

	data->smc_state_table.MemoryDpmLevelCount =
			(uint8_t)dpm_table->mclk_table.count;
	data->dpm_level_enable_mask.mclk_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
	/* set highest level watermark to high */
	levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
			PPSMC_DISPLAY_WATERMARK_HIGH;

	/* level count will send to smc once at init smc table and never change */
1404
	result = polaris10_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
			(uint32_t)array_size, data->sram_end);

	return result;
}

/**
* Populates the SMC MVDD structure using the provided memory clock.
*
* @param    hwmgr      the address of the hardware manager
* @param    mclk        the MCLK value to be used in the decision if MVDD should be high or low.
* @param    voltage     the SMC VOLTAGE structure to be populated
*/
1417
int polaris10_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1418 1419
		uint32_t mclk, SMIO_Pattern *smio_pat)
{
1420
	const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1421 1422 1423 1424
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	uint32_t i = 0;

1425
	if (POLARIS10_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
		/* find mvdd value which clock is more than request */
		for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
			if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
				smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
				break;
			}
		}
		PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
				"MVDD Voltage is outside the supported range.",
				return -EINVAL);
	} else
		return -EINVAL;

	return 0;
}

1442
static int polaris10_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1443 1444 1445 1446
		SMU74_Discrete_DpmTable *table)
{
	int result = 0;
	uint32_t sclk_frequency;
1447
	const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	SMIO_Pattern vol_level;
	uint32_t mvdd;
	uint16_t us_mvdd;

	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;

	if (!data->sclk_dpm_key_disabled) {
		/* Get MinVoltage and Frequency from DPM0,
		 * already converted to SMC_UL */
		sclk_frequency = data->dpm_table.sclk_table.dpm_levels[0].value;
1460
		result = polaris10_get_dependency_volt_by_clk(hwmgr,
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
				table_info->vdd_dep_on_sclk,
				table->ACPILevel.SclkFrequency,
				&table->ACPILevel.MinVoltage, &mvdd);
		PP_ASSERT_WITH_CODE((0 == result),
				"Cannot find ACPI VDDC voltage value "
				"in Clock Dependency Table", );
	} else {
		sclk_frequency = data->vbios_boot_state.sclk_bootup_value;
		table->ACPILevel.MinVoltage =
				data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
	}

1473
	result = polaris10_calculate_sclk_params(hwmgr, sclk_frequency,  &(table->ACPILevel.SclkSetting));
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	PP_ASSERT_WITH_CODE(result == 0, "Error retrieving Engine Clock dividers from VBIOS.", return result);

	table->ACPILevel.DeepSleepDivId = 0;
	table->ACPILevel.CcPwrDynRm = 0;
	table->ACPILevel.CcPwrDynRm1 = 0;

	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);

	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency);
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int);
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac);
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int);
1489 1490 1491
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate);
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate);
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate);
1492 1493
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int);
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac);
1494
	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate);
1495 1496 1497 1498 1499

	if (!data->mclk_dpm_key_disabled) {
		/* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
		table->MemoryACPILevel.MclkFrequency =
				data->dpm_table.mclk_table.dpm_levels[0].value;
1500
		result = polaris10_get_dependency_volt_by_clk(hwmgr,
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
				table_info->vdd_dep_on_mclk,
				table->MemoryACPILevel.MclkFrequency,
				&table->MemoryACPILevel.MinVoltage, &mvdd);
		PP_ASSERT_WITH_CODE((0 == result),
				"Cannot find ACPI VDDCI voltage value "
				"in Clock Dependency Table",
				);
	} else {
		table->MemoryACPILevel.MclkFrequency =
				data->vbios_boot_state.mclk_bootup_value;
		table->MemoryACPILevel.MinVoltage =
				data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
	}

	us_mvdd = 0;
1516
	if ((POLARIS10_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
1517 1518 1519
			(data->mclk_dpm_key_disabled))
		us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
	else {
1520
		if (!polaris10_populate_mvdd_value(hwmgr,
1521 1522 1523 1524 1525
				data->dpm_table.mclk_table.dpm_levels[0].value,
				&vol_level))
			us_mvdd = vol_level.Voltage;
	}

1526
	if (0 == polaris10_populate_mvdd_value(hwmgr, 0, &vol_level))
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
		table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage);
	else
		table->MemoryACPILevel.MinMvdd = 0;

	table->MemoryACPILevel.StutterEnable = false;

	table->MemoryACPILevel.EnabledForThrottle = 0;
	table->MemoryACPILevel.EnabledForActivity = 0;
	table->MemoryACPILevel.UpHyst = 0;
	table->MemoryACPILevel.DownHyst = 100;
	table->MemoryACPILevel.VoltageDownHyst = 0;
	table->MemoryACPILevel.ActivityLevel =
			PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);

	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);

	return result;
}

1547
static int polaris10_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1548 1549 1550 1551 1552 1553 1554 1555 1556
		SMU74_Discrete_DpmTable *table)
{
	int result = -EINVAL;
	uint8_t count;
	struct pp_atomctrl_clock_dividers_vi dividers;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
			table_info->mm_dep_table;
1557
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585

	table->VceLevelCount = (uint8_t)(mm_table->count);
	table->VceBootLevel = 0;

	for (count = 0; count < table->VceLevelCount; count++) {
		table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
		table->VceLevel[count].MinVoltage |=
				(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
		table->VceLevel[count].MinVoltage |=
				((mm_table->entries[count].vddc - data->vddc_vddci_delta) *
						VOLTAGE_SCALE) << VDDCI_SHIFT;
		table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;

		/*retrieve divider value for VBIOS */
		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->VceLevel[count].Frequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for VCE engine clock",
				return result);

		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;

		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
	}
	return result;
}

1586
static int polaris10_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
1587 1588 1589 1590 1591 1592 1593 1594 1595
		SMU74_Discrete_DpmTable *table)
{
	int result = -EINVAL;
	uint8_t count;
	struct pp_atomctrl_clock_dividers_vi dividers;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
			table_info->mm_dep_table;
1596
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623

	table->SamuBootLevel = 0;
	table->SamuLevelCount = (uint8_t)(mm_table->count);

	for (count = 0; count < table->SamuLevelCount; count++) {
		/* not sure whether we need evclk or not */
		table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
		table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
				VOLTAGE_SCALE) << VDDC_SHIFT;
		table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
				data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
		table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;

		/* retrieve divider value for VBIOS */
		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->SamuLevel[count].Frequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for samu clock", return result);

		table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;

		CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
		CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
	}
	return result;
}

1624
static int polaris10_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
		int32_t eng_clock, int32_t mem_clock,
		SMU74_Discrete_MCArbDramTimingTableEntry *arb_regs)
{
	uint32_t dram_timing;
	uint32_t dram_timing2;
	uint32_t burst_time;
	int result;

	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
			eng_clock, mem_clock);
	PP_ASSERT_WITH_CODE(result == 0,
			"Error calling VBIOS to set DRAM_TIMING.", return result);

	dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
	dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
	burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);


	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
	arb_regs->McArbBurstTime   = (uint8_t)burst_time;

	return 0;
}

1650
static int polaris10_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1651
{
1652
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1653 1654 1655 1656 1657 1658
	struct SMU74_Discrete_MCArbDramTimingTable arb_regs;
	uint32_t i, j;
	int result = 0;

	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1659
			result = polaris10_populate_memory_timing_parameters(hwmgr,
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
					data->dpm_table.sclk_table.dpm_levels[i].value,
					data->dpm_table.mclk_table.dpm_levels[j].value,
					&arb_regs.entries[i][j]);
			if (result == 0)
				result = atomctrl_set_ac_timing_ai(hwmgr, data->dpm_table.mclk_table.dpm_levels[j].value, j);
			if (result != 0)
				return result;
		}
	}

1670
	result = polaris10_copy_bytes_to_smc(
1671 1672 1673 1674 1675 1676 1677 1678
			hwmgr->smumgr,
			data->arb_table_start,
			(uint8_t *)&arb_regs,
			sizeof(SMU74_Discrete_MCArbDramTimingTable),
			data->sram_end);
	return result;
}

1679
static int polaris10_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1680 1681 1682 1683 1684 1685 1686 1687 1688
		struct SMU74_Discrete_DpmTable *table)
{
	int result = -EINVAL;
	uint8_t count;
	struct pp_atomctrl_clock_dividers_vi dividers;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
			table_info->mm_dep_table;
1689
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725

	table->UvdLevelCount = (uint8_t)(mm_table->count);
	table->UvdBootLevel = 0;

	for (count = 0; count < table->UvdLevelCount; count++) {
		table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
		table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
		table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
				VOLTAGE_SCALE) << VDDC_SHIFT;
		table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
				data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
		table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;

		/* retrieve divider value for VBIOS */
		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->UvdLevel[count].VclkFrequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for Vclk clock", return result);

		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;

		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->UvdLevel[count].DclkFrequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for Dclk clock", return result);

		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;

		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);

	}
	return result;
}

1726
static int polaris10_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1727 1728 1729
		struct SMU74_Discrete_DpmTable *table)
{
	int result = 0;
1730
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758

	table->GraphicsBootLevel = 0;
	table->MemoryBootLevel = 0;

	/* find boot level from dpm table */
	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
			data->vbios_boot_state.sclk_bootup_value,
			(uint32_t *)&(table->GraphicsBootLevel));

	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
			data->vbios_boot_state.mclk_bootup_value,
			(uint32_t *)&(table->MemoryBootLevel));

	table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
			VOLTAGE_SCALE;
	table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
			VOLTAGE_SCALE;
	table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
			VOLTAGE_SCALE;

	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
	CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);

	return 0;
}


1759
static int polaris10_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
1760
{
1761
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	uint8_t count, level;

	count = (uint8_t)(table_info->vdd_dep_on_sclk->count);

	for (level = 0; level < count; level++) {
		if (table_info->vdd_dep_on_sclk->entries[level].clk >=
				data->vbios_boot_state.sclk_bootup_value) {
			data->smc_state_table.GraphicsBootLevel = level;
			break;
		}
	}

	count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
	for (level = 0; level < count; level++) {
		if (table_info->vdd_dep_on_mclk->entries[level].clk >=
				data->vbios_boot_state.mclk_bootup_value) {
			data->smc_state_table.MemoryBootLevel = level;
			break;
		}
	}

	return 0;
}

1788
static int polaris10_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1789 1790 1791 1792
{
	uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
			volt_with_cks, value;
	uint16_t clock_freq_u16;
1793
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
			volt_offset = 0;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
			table_info->vdd_dep_on_sclk;

	stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;

	/* Read SMU_Eefuse to read and calculate RO and determine
	 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
	 */
	efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixSMU_EFUSE_0 + (146 * 4));
	efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixSMU_EFUSE_0 + (148 * 4));
	efuse &= 0xFF000000;
	efuse = efuse >> 24;
	efuse2 &= 0xF;

	if (efuse2 == 1)
		ro = (2300 - 1350) * efuse / 255 + 1350;
	else
		ro = (2500 - 1000) * efuse / 255 + 1000;

	if (ro >= 1660)
		type = 0;
	else
		type = 1;

	/* Populate Stretch amount */
	data->smc_state_table.ClockStretcherAmount = stretch_amount;

	/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
	for (i = 0; i < sclk_table->count; i++) {
		data->smc_state_table.Sclk_CKS_masterEn0_7 |=
				sclk_table->entries[i].cks_enable << i;
		volt_without_cks = (uint32_t)((14041 *
			(sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
			(4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
		volt_with_cks = (uint32_t)((13946 *
			(sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
			(3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
		if (volt_without_cks >= volt_with_cks)
			volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
					sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
		data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
	}

	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
			STRETCH_ENABLE, 0x0);
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
			masterReset, 0x1);
	/* PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, staticEnable, 0x1); */
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
			masterReset, 0x0);

	/* Populate CKS Lookup Table */
	if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
		stretch_amount2 = 0;
	else if (stretch_amount == 3 || stretch_amount == 4)
		stretch_amount2 = 1;
	else {
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_ClockStretcher);
		PP_ASSERT_WITH_CODE(false,
				"Stretch Amount in PPTable not supported\n",
				return -EINVAL);
	}

	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixPWR_CKS_CNTL);
	value &= 0xFFC2FF87;
	data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
1868
			polaris10_clock_stretcher_lookup_table[stretch_amount2][0];
1869
	data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
1870
			polaris10_clock_stretcher_lookup_table[stretch_amount2][1];
1871 1872
	clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(data->smc_state_table.
			GraphicsLevel[data->smc_state_table.GraphicsDpmLevelCount - 1].SclkSetting.SclkFrequency) / 100);
1873 1874
	if (polaris10_clock_stretcher_lookup_table[stretch_amount2][0] < clock_freq_u16
	&& polaris10_clock_stretcher_lookup_table[stretch_amount2][1] > clock_freq_u16) {
1875
		/* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
1876
		value |= (polaris10_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
1877
		/* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
1878
		value |= (polaris10_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
1879
		/* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
1880 1881
		value |= (polaris10_clock_stretch_amount_conversion
				[polaris10_clock_stretcher_lookup_table[stretch_amount2][3]]
1882 1883 1884 1885 1886
				 [stretch_amount]) << 3;
	}
	CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq);
	CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq);
	data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
1887
			polaris10_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
1888
	data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
1889
			(polaris10_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixPWR_CKS_CNTL, value);

	/* Populate DDT Lookup Table */
	for (i = 0; i < 4; i++) {
		/* Assign the minimum and maximum VID stored
		 * in the last row of Clock Stretcher Voltage Table.
		 */
		data->smc_state_table.ClockStretcherDataTable.ClockStretcherDataTableEntry[i].minVID =
1900
				(uint8_t) polaris10_clock_stretcher_ddt_table[type][i][2];
1901
		data->smc_state_table.ClockStretcherDataTable.ClockStretcherDataTableEntry[i].maxVID =
1902
				(uint8_t) polaris10_clock_stretcher_ddt_table[type][i][3];
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
		/* Loop through each SCLK and check the frequency
		 * to see if it lies within the frequency for clock stretcher.
		 */
		for (j = 0; j < data->smc_state_table.GraphicsDpmLevelCount; j++) {
			cks_setting = 0;
			clock_freq = PP_SMC_TO_HOST_UL(
					data->smc_state_table.GraphicsLevel[j].SclkSetting.SclkFrequency);
			/* Check the allowed frequency against the sclk level[j].
			 *  Sclk's endianness has already been converted,
			 *  and it's in 10Khz unit,
			 *  as opposed to Data table, which is in Mhz unit.
			 */
1915
			if (clock_freq >= (polaris10_clock_stretcher_ddt_table[type][i][0]) * 100) {
1916
				cks_setting |= 0x2;
1917
				if (clock_freq < (polaris10_clock_stretcher_ddt_table[type][i][1]) * 100)
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
					cks_setting |= 0x1;
			}
			data->smc_state_table.ClockStretcherDataTable.ClockStretcherDataTableEntry[i].setting
							|= cks_setting << (j * 2);
		}
		CONVERT_FROM_HOST_TO_SMC_US(
			data->smc_state_table.ClockStretcherDataTable.ClockStretcherDataTableEntry[i].setting);
	}

	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
	value &= 0xFFFFFFFE;
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);

	return 0;
}

/**
* Populates the SMC VRConfig field in DPM table.
*
* @param    hwmgr   the address of the hardware manager
* @param    table   the SMC DPM table structure to be populated
* @return   always 0
*/
1941
static int polaris10_populate_vr_config(struct pp_hwmgr *hwmgr,
1942 1943
		struct SMU74_Discrete_DpmTable *table)
{
1944
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1945 1946 1947 1948 1949 1950
	uint16_t config;

	config = VR_MERGED_WITH_VDDC;
	table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);

	/* Set Vddc Voltage Controller */
1951
	if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1952 1953 1954 1955 1956 1957 1958 1959
		config = VR_SVI2_PLANE_1;
		table->VRConfig |= config;
	} else {
		PP_ASSERT_WITH_CODE(false,
				"VDDC should be on SVI2 control in merged mode!",
				);
	}
	/* Set Vddci Voltage Controller */
1960
	if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1961 1962
		config = VR_SVI2_PLANE_2;  /* only in merged mode */
		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1963
	} else if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1964 1965 1966 1967 1968 1969 1970
		config = VR_SMIO_PATTERN_1;
		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
	} else {
		config = VR_STATIC_VOLTAGE;
		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
	}
	/* Set Mvdd Voltage Controller */
1971
	if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1972 1973
		config = VR_SVI2_PLANE_2;
		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1974
	} else if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
		config = VR_SMIO_PATTERN_2;
		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
	} else {
		config = VR_STATIC_VOLTAGE;
		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
	}

	return 0;
}

/**
* Initializes the SMC table and uploads it
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
1991
static int polaris10_init_smc_table(struct pp_hwmgr *hwmgr)
1992 1993
{
	int result;
1994
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1995 1996 1997
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct SMU74_Discrete_DpmTable *table = &(data->smc_state_table);
1998
	const struct polaris10_ulv_parm *ulv = &(data->ulv);
1999 2000
	uint8_t i;
	struct pp_atomctrl_gpio_pin_assignment gpio_pin;
2001
	pp_atomctrl_clock_dividers_vi dividers;
2002

2003
	result = polaris10_setup_default_dpm_tables(hwmgr);
2004 2005 2006
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to setup default DPM tables!", return result);

2007 2008
	if (POLARIS10_VOLTAGE_CONTROL_NONE != data->voltage_control)
		polaris10_populate_smc_voltage_tables(hwmgr, table);
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_AutomaticDCTransition))
		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_StepVddc))
		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;

	if (data->is_memory_gddr5)
		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;

	if (ulv->ulv_supported && table_info->us_ulv_voltage_offset) {
2022
		result = polaris10_populate_ulv_state(hwmgr, table);
2023 2024 2025
		PP_ASSERT_WITH_CODE(0 == result,
				"Failed to initialize ULV state!", return result);
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2026
				ixCG_ULV_PARAMETER, PPPOLARIS10_CGULVPARAMETER_DFLT);
2027 2028
	}

2029
	result = polaris10_populate_smc_link_level(hwmgr, table);
2030 2031 2032
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize Link Level!", return result);

2033
	result = polaris10_populate_all_graphic_levels(hwmgr);
2034 2035 2036
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize Graphics Level!", return result);

2037
	result = polaris10_populate_all_memory_levels(hwmgr);
2038 2039 2040
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize Memory Level!", return result);

2041
	result = polaris10_populate_smc_acpi_level(hwmgr, table);
2042 2043 2044
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize ACPI Level!", return result);

2045
	result = polaris10_populate_smc_vce_level(hwmgr, table);
2046 2047 2048
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize VCE Level!", return result);

2049
	result = polaris10_populate_smc_samu_level(hwmgr, table);
2050 2051 2052 2053 2054 2055 2056
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize SAMU Level!", return result);

	/* Since only the initial state is completely set up at this point
	 * (the other states are just copies of the boot state) we only
	 * need to populate the  ARB settings for the initial state.
	 */
2057
	result = polaris10_program_memory_timing_parameters(hwmgr);
2058 2059 2060
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to Write ARB settings for the initial state.", return result);

2061
	result = polaris10_populate_smc_uvd_level(hwmgr, table);
2062 2063 2064
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize UVD Level!", return result);

2065
	result = polaris10_populate_smc_boot_level(hwmgr, table);
2066 2067 2068
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize Boot Level!", return result);

2069
	result = polaris10_populate_smc_initailial_state(hwmgr);
2070 2071 2072
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize Boot State!", return result);

2073
	result = polaris10_populate_bapm_parameters_in_dpm_table(hwmgr);
2074 2075 2076 2077 2078
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to populate BAPM Parameters!", return result);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ClockStretcher)) {
2079
		result = polaris10_populate_clock_stretcher_data_table(hwmgr);
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
		PP_ASSERT_WITH_CODE(0 == result,
				"Failed to populate Clock Stretcher Data Table!",
				return result);
	}

	table->GraphicsVoltageChangeEnable  = 1;
	table->GraphicsThermThrottleEnable  = 1;
	table->GraphicsInterval = 1;
	table->VoltageInterval  = 1;
	table->ThermalInterval  = 1;
	table->TemperatureLimitHigh =
			table_info->cac_dtp_table->usTargetOperatingTemp *
2092
			POLARIS10_Q88_FORMAT_CONVERSION_UNIT;
2093 2094
	table->TemperatureLimitLow  =
			(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2095
			POLARIS10_Q88_FORMAT_CONVERSION_UNIT;
2096 2097 2098 2099 2100 2101 2102 2103
	table->MemoryVoltageChangeEnable = 1;
	table->MemoryInterval = 1;
	table->VoltageResponseTime = 0;
	table->PhaseResponseTime = 0;
	table->MemoryThermThrottleEnable = 1;
	table->PCIeBootLinkLevel = 0;
	table->PCIeGenInterval = 1;

2104
	result = polaris10_populate_vr_config(hwmgr, table);
2105 2106 2107 2108 2109 2110 2111 2112 2113
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to populate VRConfig setting!", return result);

	table->ThermGpio = 17;
	table->SclkStepSize = 0x4000;

	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
		table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
	} else {
2114
		table->VRHotGpio = POLARIS10_UNUSED_GPIO_PIN;
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_RegulatorHot);
	}

	if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
			&gpio_pin)) {
		table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_AutomaticDCTransition);
	} else {
2125
		table->AcDcGpio = POLARIS10_UNUSED_GPIO_PIN;
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_AutomaticDCTransition);
	}

	/* Thermal Output GPIO */
	if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
			&gpio_pin)) {
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_ThermalOutGPIO);

		table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;

		/* For porlarity read GPIOPAD_A with assigned Gpio pin
		 * since VBIOS will program this register to set 'inactive state',
		 * driver can then determine 'active state' from this and
		 * program SMU with correct polarity
		 */
		table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A)
					& (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
		table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;

		/* if required, combine VRHot/PCC with thermal out GPIO */
		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot)
		&& phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_CombinePCCWithThermalSignal))
			table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
	} else {
		table->ThermOutGpio = 17;
		table->ThermOutPolarity = 1;
		table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
	}

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
	/* Populate BIF_SCLK levels into SMC DPM table */
	for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++) {
		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, data->bif_sclk_table[i], &dividers);
		PP_ASSERT_WITH_CODE((result == 0), "Can not find DFS divide id for Sclk", return result);

		if (i == 0)
			table->Ulv.BifSclkDfs = PP_HOST_TO_SMC_US((USHORT)(dividers.pll_post_divider));
		else
			table->LinkLevel[i-1].BifSclkDfs = PP_HOST_TO_SMC_US((USHORT)(dividers.pll_post_divider));
	}

2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
	for (i = 0; i < SMU74_MAX_ENTRIES_SMIO; i++)
		table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);

	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);

	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2182
	result = polaris10_copy_bytes_to_smc(hwmgr->smumgr,
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
			data->dpm_table_start +
			offsetof(SMU74_Discrete_DpmTable, SystemFlags),
			(uint8_t *)&(table->SystemFlags),
			sizeof(SMU74_Discrete_DpmTable) - 3 * sizeof(SMU74_PIDController),
			data->sram_end);
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to upload dpm data to SMC memory!", return result);

	return 0;
}

/**
* Initialize the ARB DRAM timing table's index field.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
2200
static int polaris10_init_arb_table_index(struct pp_hwmgr *hwmgr)
2201
{
2202
	const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	uint32_t tmp;
	int result;

	/* This is a read-modify-write on the first byte of the ARB table.
	 * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
	 * is the field 'current'.
	 * This solution is ugly, but we never write the whole table only
	 * individual fields in it.
	 * In reality this field should not be in that structure
	 * but in a soft register.
	 */
2214
	result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
2215 2216 2217 2218 2219 2220 2221 2222
			data->arb_table_start, &tmp, data->sram_end);

	if (result)
		return result;

	tmp &= 0x00FFFFFF;
	tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;

2223
	return polaris10_write_smc_sram_dword(hwmgr->smumgr,
2224 2225 2226
			data->arb_table_start, tmp, data->sram_end);
}

2227
static int polaris10_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
2228 2229 2230 2231 2232 2233 2234 2235 2236
{
	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_RegulatorHot))
		return smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_EnableVRHotGPIOInterrupt);

	return 0;
}

2237
static int polaris10_enable_sclk_control(struct pp_hwmgr *hwmgr)
2238 2239 2240 2241 2242 2243
{
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
			SCLK_PWRMGT_OFF, 0);
	return 0;
}

2244
static int polaris10_enable_ulv(struct pp_hwmgr *hwmgr)
2245
{
2246 2247
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_ulv_parm *ulv = &(data->ulv);
2248 2249 2250 2251 2252 2253 2254

	if (ulv->ulv_supported)
		return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV);

	return 0;
}

2255
static int polaris10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
{
	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SclkDeepSleep)) {
		if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON))
			PP_ASSERT_WITH_CODE(false,
					"Attempt to enable Master Deep Sleep switch failed!",
					return -1);
	} else {
		if (smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_MASTER_DeepSleep_OFF)) {
			PP_ASSERT_WITH_CODE(false,
					"Attempt to disable Master Deep Sleep switch failed!",
					return -1);
		}
	}

	return 0;
}

2275
static int polaris10_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
2276
{
2277
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309

	/* enable SCLK dpm */
	if (!data->sclk_dpm_key_disabled)
		PP_ASSERT_WITH_CODE(
		(0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)),
		"Failed to enable SCLK DPM during DPM Start Function!",
		return -1);

	/* enable MCLK dpm */
	if (0 == data->mclk_dpm_key_disabled) {

		PP_ASSERT_WITH_CODE(
				(0 == smum_send_msg_to_smc(hwmgr->smumgr,
						PPSMC_MSG_MCLKDPM_Enable)),
				"Failed to enable MCLK DPM during DPM Start Function!",
				return -1);


		PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);

		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5);
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5);
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005);
		udelay(10);
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005);
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005);
		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005);
	}

	return 0;
}

2310
static int polaris10_start_dpm(struct pp_hwmgr *hwmgr)
2311
{
2312
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330

	/*enable general power management */

	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
			GLOBAL_PWRMGT_EN, 1);

	/* enable sclk deep sleep */

	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
			DYNAMIC_PM_EN, 1);

	/* prepare for PCIE DPM */

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			data->soft_regs_start + offsetof(SMU74_SoftRegisters,
					VoltageChangeTimeout), 0x1000);
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
			SWRST_COMMAND_1, RESETLC, 0x0);
2331
/*
2332 2333 2334 2335 2336
	PP_ASSERT_WITH_CODE(
			(0 == smum_send_msg_to_smc(hwmgr->smumgr,
					PPSMC_MSG_Voltage_Cntl_Enable)),
			"Failed to enable voltage DPM during DPM Start Function!",
			return -1);
2337
*/
2338

2339
	if (polaris10_enable_sclk_mclk_dpm(hwmgr)) {
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
		printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!");
		return -1;
	}

	/* enable PCIE dpm */
	if (0 == data->pcie_dpm_key_disabled) {
		PP_ASSERT_WITH_CODE(
				(0 == smum_send_msg_to_smc(hwmgr->smumgr,
						PPSMC_MSG_PCIeDPM_Enable)),
				"Failed to enable pcie DPM during DPM Start Function!",
				return -1);
	}

	PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr->smumgr,
					PPSMC_MSG_EnableACDCGPIOInterrupt)),
					"Failed to enable AC DC GPIO Interrupt!",
			);

	return 0;
}

2361
static void polaris10_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources)
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
{
	bool protection;
	enum DPM_EVENT_SRC src;

	switch (sources) {
	default:
		printk(KERN_ERR "Unknown throttling event sources.");
		/* fall through */
	case 0:
		protection = false;
		/* src is unused */
		break;
	case (1 << PHM_AutoThrottleSource_Thermal):
		protection = true;
		src = DPM_EVENT_SRC_DIGITAL;
		break;
	case (1 << PHM_AutoThrottleSource_External):
		protection = true;
		src = DPM_EVENT_SRC_EXTERNAL;
		break;
	case (1 << PHM_AutoThrottleSource_External) |
			(1 << PHM_AutoThrottleSource_Thermal):
		protection = true;
		src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
		break;
	}
	/* Order matters - don't enable thermal protection for the wrong source. */
	if (protection) {
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
				DPM_EVENT_SRC, src);
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
				THERMAL_PROTECTION_DIS,
				phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_ThermalController));
	} else
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
				THERMAL_PROTECTION_DIS, 1);
}

2401
static int polaris10_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
2402 2403
		PHM_AutoThrottleSource source)
{
2404
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2405 2406 2407

	if (!(data->active_auto_throttle_sources & (1 << source))) {
		data->active_auto_throttle_sources |= 1 << source;
2408
		polaris10_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
2409 2410 2411 2412
	}
	return 0;
}

2413
static int polaris10_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
2414
{
2415
	return polaris10_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
2416 2417
}

2418
int polaris10_pcie_performance_request(struct pp_hwmgr *hwmgr)
2419
{
2420
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2421 2422 2423 2424 2425
	data->pcie_performance_request = true;

	return 0;
}

2426
int polaris10_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
2427 2428
{
	int tmp_result, result = 0;
2429
	tmp_result = (!polaris10_is_dpm_running(hwmgr)) ? 0 : -1;
2430 2431 2432 2433
	PP_ASSERT_WITH_CODE(result == 0,
			"DPM is already running right now, no need to enable DPM!",
			return 0);

2434 2435
	if (polaris10_voltage_control(hwmgr)) {
		tmp_result = polaris10_enable_voltage_control(hwmgr);
2436 2437 2438 2439
		PP_ASSERT_WITH_CODE(tmp_result == 0,
				"Failed to enable voltage control!",
				result = tmp_result);

2440
		tmp_result = polaris10_construct_voltage_tables(hwmgr);
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
		PP_ASSERT_WITH_CODE((0 == tmp_result),
				"Failed to contruct voltage tables!",
				result = tmp_result);
	}

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_EngineSpreadSpectrumSupport))
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
				GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ThermalController))
		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
				GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);

2456
	tmp_result = polaris10_program_static_screen_threshold_parameters(hwmgr);
2457 2458 2459 2460
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to program static screen threshold parameters!",
			result = tmp_result);

2461
	tmp_result = polaris10_enable_display_gap(hwmgr);
2462 2463 2464
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable display gap!", result = tmp_result);

2465
	tmp_result = polaris10_program_voting_clients(hwmgr);
2466 2467 2468
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to program voting clients!", result = tmp_result);

2469
	tmp_result = polaris10_process_firmware_header(hwmgr);
2470 2471 2472
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to process firmware header!", result = tmp_result);

2473
	tmp_result = polaris10_initial_switch_from_arbf0_to_f1(hwmgr);
2474 2475 2476 2477
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to initialize switch from ArbF0 to F1!",
			result = tmp_result);

2478
	tmp_result = polaris10_init_smc_table(hwmgr);
2479 2480 2481
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to initialize SMC table!", result = tmp_result);

2482
	tmp_result = polaris10_init_arb_table_index(hwmgr);
2483 2484 2485
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to initialize ARB table index!", result = tmp_result);

2486
	tmp_result = polaris10_populate_pm_fuses(hwmgr);
2487 2488 2489
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to populate PM fuses!", result = tmp_result);

2490
	tmp_result = polaris10_enable_vrhot_gpio_interrupt(hwmgr);
2491 2492 2493
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable VR hot GPIO interrupt!", result = tmp_result);

2494
	tmp_result = polaris10_enable_sclk_control(hwmgr);
2495 2496 2497
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable SCLK control!", result = tmp_result);

2498
	tmp_result = polaris10_enable_smc_voltage_controller(hwmgr);
2499 2500 2501
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable voltage control!", result = tmp_result);

2502
	tmp_result = polaris10_enable_ulv(hwmgr);
2503 2504 2505
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable ULV!", result = tmp_result);

2506
	tmp_result = polaris10_enable_deep_sleep_master_switch(hwmgr);
2507 2508 2509
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable deep sleep master switch!", result = tmp_result);

2510
	tmp_result = polaris10_start_dpm(hwmgr);
2511 2512 2513
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to start DPM!", result = tmp_result);

2514
	tmp_result = polaris10_enable_smc_cac(hwmgr);
2515 2516 2517
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable SMC CAC!", result = tmp_result);

2518
	tmp_result = polaris10_enable_power_containment(hwmgr);
2519 2520 2521
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable power containment!", result = tmp_result);

2522
	tmp_result = polaris10_power_control_set_level(hwmgr);
2523 2524 2525
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to power control set level!", result = tmp_result);

2526
	tmp_result = polaris10_enable_thermal_auto_throttle(hwmgr);
2527 2528 2529
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable thermal auto throttle!", result = tmp_result);

2530
	tmp_result = polaris10_pcie_performance_request(hwmgr);
2531 2532 2533 2534 2535 2536
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable thermal auto throttle!", result = tmp_result);

	return result;
}

2537
int polaris10_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
2538 2539 2540 2541 2542
{

	return 0;
}

2543
int polaris10_reset_asic_tasks(struct pp_hwmgr *hwmgr)
2544 2545 2546 2547 2548
{

	return 0;
}

2549
int polaris10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
2550 2551 2552 2553
{
	return phm_hwmgr_backend_fini(hwmgr);
}

2554
int polaris10_set_features_platform_caps(struct pp_hwmgr *hwmgr)
2555
{
2556
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2557 2558 2559 2560

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SclkDeepSleep);

2561
	if (data->mvdd_control == POLARIS10_VOLTAGE_CONTROL_NONE)
2562 2563 2564
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_EnableMVDDControl);

2565
	if (data->vddci_control == POLARIS10_VOLTAGE_CONTROL_NONE)
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_ControlVDDCI);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			 PHM_PlatformCaps_TablelessHardwareInterface);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_EnableSMU7ThermalManagement);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_DynamicPowerManagement);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_TablelessHardwareInterface);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_SMC);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_NonABMSupportInPPLib);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_DynamicUVDState);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_SclkThrottleLowNotification);

	/* power tune caps Assume disabled */
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_PowerContainment);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
							PHM_PlatformCaps_CAC);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_SQRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_DBRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_TDRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
						PHM_PlatformCaps_TCPRamping);

	return 0;
}

2610
static void polaris10_init_dpm_defaults(struct pp_hwmgr *hwmgr)
2611
{
2612
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2613

2614
	polaris10_initialize_power_tune_defaults(hwmgr);
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631

	data->pcie_gen_performance.max = PP_PCIEGen1;
	data->pcie_gen_performance.min = PP_PCIEGen3;
	data->pcie_gen_power_saving.max = PP_PCIEGen1;
	data->pcie_gen_power_saving.min = PP_PCIEGen3;
	data->pcie_lane_performance.max = 0;
	data->pcie_lane_performance.min = 16;
	data->pcie_lane_power_saving.max = 0;
	data->pcie_lane_power_saving.min = 16;
}

/**
* Get Leakage VDDC based on leakage ID.
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always 0
*/
2632
static int polaris10_get_evv_voltages(struct pp_hwmgr *hwmgr)
2633
{
2634
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
	uint16_t vv_id;
	uint16_t vddc = 0;
	uint16_t i, j;
	uint32_t sclk = 0;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)hwmgr->pptable;
	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
			table_info->vdd_dep_on_sclk;
	int result;

2645
	for (i = 0; i < POLARIS10_MAX_LEAKAGE_COUNT; i++) {
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
		vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
		if (!phm_get_sclk_for_voltage_evv(hwmgr,
				table_info->vddc_lookup_table, vv_id, &sclk)) {
			if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_ClockStretcher)) {
				for (j = 1; j < sclk_table->count; j++) {
					if (sclk_table->entries[j].clk == sclk &&
							sclk_table->entries[j].cks_enable == 0) {
						sclk += 5000;
						break;
					}
				}
			}


			PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk_ai(hwmgr,
							VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc),
						"Error retrieving EVV voltage value!",
						continue);


			/* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
			PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0),
					"Invalid VDDC value", result = -EINVAL;);

			/* the voltage should not be zero nor equal to leakage ID */
			if (vddc != 0 && vddc != vv_id) {
				data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100);
				data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
				data->vddc_leakage.count++;
			}
		}
	}

	return 0;
}

/**
 * Change virtual leakage voltage to actual value.
 *
 * @param     hwmgr  the address of the powerplay hardware manager.
 * @param     pointer to changing voltage
 * @param     pointer to leakage table
 */
2690 2691
static void polaris10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
		uint16_t *voltage, struct polaris10_leakage_voltage *leakage_table)
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
{
	uint32_t index;

	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
	for (index = 0; index < leakage_table->count; index++) {
		/* if this voltage matches a leakage voltage ID */
		/* patch with actual leakage voltage */
		if (leakage_table->leakage_id[index] == *voltage) {
			*voltage = leakage_table->actual_voltage[index];
			break;
		}
	}

	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
		printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n");
}

/**
* Patch voltage lookup table by EVV leakages.
*
* @param     hwmgr  the address of the powerplay hardware manager.
* @param     pointer to voltage lookup table
* @param     pointer to leakage table
* @return     always 0
*/
2717
static int polaris10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
2718
		phm_ppt_v1_voltage_lookup_table *lookup_table,
2719
		struct polaris10_leakage_voltage *leakage_table)
2720 2721 2722 2723
{
	uint32_t i;

	for (i = 0; i < lookup_table->count; i++)
2724
		polaris10_patch_with_vdd_leakage(hwmgr,
2725 2726 2727 2728 2729
				&lookup_table->entries[i].us_vdd, leakage_table);

	return 0;
}

2730 2731
static int polaris10_patch_clock_voltage_limits_with_vddc_leakage(
		struct pp_hwmgr *hwmgr, struct polaris10_leakage_voltage *leakage_table,
2732 2733 2734 2735
		uint16_t *vddc)
{
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2736
	polaris10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
2737 2738 2739 2740 2741
	hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
			table_info->max_clock_voltage_on_dc.vddc;
	return 0;
}

2742
static int polaris10_patch_voltage_dependency_tables_with_lookup_table(
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
		struct pp_hwmgr *hwmgr)
{
	uint8_t entryId;
	uint8_t voltageId;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
			table_info->vdd_dep_on_sclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
			table_info->vdd_dep_on_mclk;
	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
			table_info->mm_dep_table;

	for (entryId = 0; entryId < sclk_table->count; ++entryId) {
		voltageId = sclk_table->entries[entryId].vddInd;
		sclk_table->entries[entryId].vddc =
				table_info->vddc_lookup_table->entries[voltageId].us_vdd;
	}

	for (entryId = 0; entryId < mclk_table->count; ++entryId) {
		voltageId = mclk_table->entries[entryId].vddInd;
		mclk_table->entries[entryId].vddc =
			table_info->vddc_lookup_table->entries[voltageId].us_vdd;
	}

	for (entryId = 0; entryId < mm_table->count; ++entryId) {
		voltageId = mm_table->entries[entryId].vddcInd;
		mm_table->entries[entryId].vddc =
			table_info->vddc_lookup_table->entries[voltageId].us_vdd;
	}

	return 0;

}

2779
static int polaris10_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
2780 2781 2782 2783 2784
{
	/* Need to determine if we need calculated voltage. */
	return 0;
}

2785
static int polaris10_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
2786 2787 2788 2789 2790
{
	/* Need to determine if we need calculated voltage from mm table. */
	return 0;
}

2791
static int polaris10_sort_lookup_table(struct pp_hwmgr *hwmgr,
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
		struct phm_ppt_v1_voltage_lookup_table *lookup_table)
{
	uint32_t table_size, i, j;
	struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
	table_size = lookup_table->count;

	PP_ASSERT_WITH_CODE(0 != lookup_table->count,
		"Lookup table is empty", return -EINVAL);

	/* Sorting voltages */
	for (i = 0; i < table_size - 1; i++) {
		for (j = i + 1; j > 0; j--) {
			if (lookup_table->entries[j].us_vdd <
					lookup_table->entries[j - 1].us_vdd) {
				tmp_voltage_lookup_record = lookup_table->entries[j - 1];
				lookup_table->entries[j - 1] = lookup_table->entries[j];
				lookup_table->entries[j] = tmp_voltage_lookup_record;
			}
		}
	}

	return 0;
}

2816
static int polaris10_complete_dependency_tables(struct pp_hwmgr *hwmgr)
2817 2818 2819
{
	int result = 0;
	int tmp_result;
2820
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2821 2822 2823
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

2824
	tmp_result = polaris10_patch_lookup_table_with_leakage(hwmgr,
2825 2826 2827 2828
			table_info->vddc_lookup_table, &(data->vddc_leakage));
	if (tmp_result)
		result = tmp_result;

2829
	tmp_result = polaris10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
2830 2831 2832 2833
			&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
	if (tmp_result)
		result = tmp_result;

2834
	tmp_result = polaris10_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
2835 2836 2837
	if (tmp_result)
		result = tmp_result;

2838
	tmp_result = polaris10_calc_voltage_dependency_tables(hwmgr);
2839 2840 2841
	if (tmp_result)
		result = tmp_result;

2842
	tmp_result = polaris10_calc_mm_voltage_dependency_table(hwmgr);
2843 2844 2845
	if (tmp_result)
		result = tmp_result;

2846
	tmp_result = polaris10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
2847 2848 2849 2850 2851 2852
	if (tmp_result)
		result = tmp_result;

	return result;
}

2853
static int polaris10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
{
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
						table_info->vdd_dep_on_sclk;
	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
						table_info->vdd_dep_on_mclk;

	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
		"VDD dependency on SCLK table is missing. 	\
		This table is mandatory", return -EINVAL);
	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
		"VDD dependency on SCLK table has to have is missing. 	\
		This table is mandatory", return -EINVAL);

	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
		"VDD dependency on MCLK table is missing. 	\
		This table is mandatory", return -EINVAL);
	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
		"VDD dependency on MCLK table has to have is missing.	 \
		This table is mandatory", return -EINVAL);

	table_info->max_clock_voltage_on_ac.sclk =
		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
	table_info->max_clock_voltage_on_ac.mclk =
		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
	table_info->max_clock_voltage_on_ac.vddc =
		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
	table_info->max_clock_voltage_on_ac.vddci =
		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;

	return 0;
}

2889
int polaris10_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
2890
{
2891
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2892 2893 2894 2895 2896 2897 2898 2899
	struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
	uint32_t temp_reg;
	int result;

	data->dll_default_on = false;
	data->sram_end = SMC_RAM_END;

	data->disable_dpm_mask = 0xFF;
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
	data->static_screen_threshold = PPPOLARIS10_STATICSCREENTHRESHOLD_DFLT;
	data->static_screen_threshold_unit = PPPOLARIS10_STATICSCREENTHRESHOLD_DFLT;
	data->activity_target[0] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[1] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[2] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[3] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[4] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[5] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[6] = PPPOLARIS10_TARGETACTIVITY_DFLT;
	data->activity_target[7] = PPPOLARIS10_TARGETACTIVITY_DFLT;

	data->voting_rights_clients0 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT0;
	data->voting_rights_clients1 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT1;
	data->voting_rights_clients2 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT2;
	data->voting_rights_clients3 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT3;
	data->voting_rights_clients4 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT4;
	data->voting_rights_clients5 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT5;
	data->voting_rights_clients6 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT6;
	data->voting_rights_clients7 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT7;
2919 2920 2921

	data->vddc_vddci_delta = VDDC_VDDCI_DELTA;

2922
	data->mclk_activity_target = PPPOLARIS10_MCLK_TARGETACTIVITY_DFLT;
2923 2924

	/* need to set voltage control types before EVV patching */
2925 2926 2927
	data->voltage_control = POLARIS10_VOLTAGE_CONTROL_NONE;
	data->vddci_control = POLARIS10_VOLTAGE_CONTROL_NONE;
	data->mvdd_control = POLARIS10_VOLTAGE_CONTROL_NONE;
2928 2929 2930

	if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
2931
		data->voltage_control = POLARIS10_VOLTAGE_CONTROL_BY_SVID2;
2932 2933 2934 2935 2936 2937 2938 2939

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
		PHM_PlatformCaps_DynamicPatchPowerState);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_EnableMVDDControl)) {
		if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
2940
			data->mvdd_control = POLARIS10_VOLTAGE_CONTROL_BY_GPIO;
2941 2942
		else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2))
2943
			data->mvdd_control = POLARIS10_VOLTAGE_CONTROL_BY_SVID2;
2944 2945 2946 2947 2948 2949
	}

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ControlVDDCI)) {
		if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
2950
			data->vddci_control = POLARIS10_VOLTAGE_CONTROL_BY_GPIO;
2951 2952
		else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
2953
			data->vddci_control = POLARIS10_VOLTAGE_CONTROL_BY_SVID2;
2954 2955
	}

2956
	polaris10_set_features_platform_caps(hwmgr);
2957

2958
	polaris10_init_dpm_defaults(hwmgr);
2959 2960

	/* Get leakage voltage based on leakage ID. */
2961
	result = polaris10_get_evv_voltages(hwmgr);
2962 2963 2964 2965 2966 2967

	if (result) {
		printk("Get EVV Voltage Failed.  Abort Driver loading!\n");
		return -1;
	}

2968 2969
	polaris10_complete_dependency_tables(hwmgr);
	polaris10_set_private_data_based_on_pptable(hwmgr);
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979

	/* Initalize Dynamic State Adjustment Rule Settings */
	result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr);

	if (0 == result) {
		struct cgs_system_info sys_info = {0};

		data->is_tlu_enabled = 0;

		hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
2980
							POLARIS10_MAX_HARDWARE_POWERLEVELS;
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
		hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
		hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
		hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
		hwmgr->platform_descriptor.clockStep.engineClock = 500;
		hwmgr->platform_descriptor.clockStep.memoryClock = 500;

		if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
			temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
			switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
			case 0:
				temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
				break;
			case 1:
				temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
				break;
			case 2:
				temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
				break;
			case 3:
				temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
				break;
			case 4:
				temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
				break;
			default:
				PP_ASSERT_WITH_CODE(0,
				"Failed to setup PCC HW register! Wrong GPIO assigned for VDDC_PCC_GPIO_PINID!",
				);
				break;
			}
			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg);
		}

		sys_info.size = sizeof(struct cgs_system_info);
		sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
		result = cgs_query_system_info(hwmgr->device, &sys_info);
		if (result)
			data->pcie_gen_cap = 0x30007;
		else
			data->pcie_gen_cap = (uint32_t)sys_info.value;
		if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
			data->pcie_spc_cap = 20;
		sys_info.size = sizeof(struct cgs_system_info);
		sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
		result = cgs_query_system_info(hwmgr->device, &sys_info);
		if (result)
			data->pcie_lane_cap = 0x2f0000;
		else
			data->pcie_lane_cap = (uint32_t)sys_info.value;
	} else {
		/* Ignore return value in here, we are cleaning up a mess. */
3033
		polaris10_hwmgr_backend_fini(hwmgr);
3034 3035 3036 3037 3038
	}

	return 0;
}

3039
static int polaris10_force_dpm_highest(struct pp_hwmgr *hwmgr)
3040
{
3041
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
	uint32_t level, tmp;

	if (!data->pcie_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
			level = 0;
			tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
			while (tmp >>= 1)
				level++;

			if (level)
				smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
						PPSMC_MSG_PCIeDPM_ForceLevel, level);
		}
	}

	if (!data->sclk_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
			level = 0;
			tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
			while (tmp >>= 1)
				level++;

			if (level)
				smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
						PPSMC_MSG_SCLKDPM_SetEnabledMask,
						(1 << level));
		}
	}

	if (!data->mclk_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
			level = 0;
			tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
			while (tmp >>= 1)
				level++;

			if (level)
				smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
						PPSMC_MSG_MCLKDPM_SetEnabledMask,
						(1 << level));
		}
	}

	return 0;
}

3088
static int polaris10_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
3089
{
3090
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110

	phm_apply_dal_min_voltage_request(hwmgr);

	if (!data->sclk_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_SCLKDPM_SetEnabledMask,
					data->dpm_level_enable_mask.sclk_dpm_enable_mask);
	}

	if (!data->mclk_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask)
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_MCLKDPM_SetEnabledMask,
					data->dpm_level_enable_mask.mclk_dpm_enable_mask);
	}

	return 0;
}

3111
static int polaris10_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3112
{
3113
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3114

3115
	if (!polaris10_is_dpm_running(hwmgr))
3116 3117 3118 3119 3120 3121 3122
		return -EINVAL;

	if (!data->pcie_dpm_key_disabled) {
		smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_PCIeDPM_UnForceLevel);
	}

3123
	return polaris10_upload_dpm_level_enable_mask(hwmgr);
3124 3125
}

3126
static int polaris10_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3127
{
3128 3129
	struct polaris10_hwmgr *data =
			(struct polaris10_hwmgr *)(hwmgr->backend);
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
	uint32_t level;

	if (!data->sclk_dpm_key_disabled)
		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
			level = phm_get_lowest_enabled_level(hwmgr,
							      data->dpm_level_enable_mask.sclk_dpm_enable_mask);
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
							    PPSMC_MSG_SCLKDPM_SetEnabledMask,
							    (1 << level));

	}
/* uvd is enabled, can't set mclk low right now
	if (!data->mclk_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
			level = phm_get_lowest_enabled_level(hwmgr,
							      data->dpm_level_enable_mask.mclk_dpm_enable_mask);
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
							    PPSMC_MSG_MCLKDPM_SetEnabledMask,
							    (1 << level));
		}
	}
*/
	if (!data->pcie_dpm_key_disabled) {
		if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
			level = phm_get_lowest_enabled_level(hwmgr,
							      data->dpm_level_enable_mask.pcie_dpm_enable_mask);
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
							    PPSMC_MSG_PCIeDPM_ForceLevel,
							    (level));
		}
	}

	return 0;

}
3165
static int polaris10_force_dpm_level(struct pp_hwmgr *hwmgr,
3166 3167 3168 3169 3170 3171
				enum amd_dpm_forced_level level)
{
	int ret = 0;

	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
3172
		ret = polaris10_force_dpm_highest(hwmgr);
3173 3174 3175 3176
		if (ret)
			return ret;
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
3177
		ret = polaris10_force_dpm_lowest(hwmgr);
3178 3179 3180 3181
		if (ret)
			return ret;
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
3182
		ret = polaris10_unforce_dpm_levels(hwmgr);
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
		if (ret)
			return ret;
		break;
	default:
		break;
	}

	hwmgr->dpm_level = level;

	return ret;
}

3195
static int polaris10_get_power_state_size(struct pp_hwmgr *hwmgr)
3196
{
3197
	return sizeof(struct polaris10_power_state);
3198 3199 3200
}


3201
static int polaris10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3202 3203 3204 3205
				struct pp_power_state *request_ps,
			const struct pp_power_state *current_ps)
{

3206 3207
	struct polaris10_power_state *polaris10_ps =
				cast_phw_polaris10_power_state(&request_ps->hardware);
3208 3209 3210 3211 3212 3213 3214 3215
	uint32_t sclk;
	uint32_t mclk;
	struct PP_Clocks minimum_clocks = {0};
	bool disable_mclk_switching;
	bool disable_mclk_switching_for_frame_lock;
	struct cgs_display_info info = {0};
	const struct phm_clock_and_voltage_limits *max_limits;
	uint32_t i;
3216
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3217 3218 3219 3220 3221 3222 3223 3224
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	int32_t count;
	int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;

	data->battery_state = (PP_StateUILabel_Battery ==
			request_ps->classification.ui_label);

3225
	PP_ASSERT_WITH_CODE(polaris10_ps->performance_level_count == 2,
3226 3227 3228 3229 3230 3231 3232 3233 3234
				 "VI should always have 2 performance levels",
				);

	max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
			&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
			&(hwmgr->dyn_state.max_clock_voltage_on_dc);

	/* Cap clock DPM tables at DC MAX if it is in DC. */
	if (PP_PowerSource_DC == hwmgr->power_source) {
3235 3236 3237 3238 3239
		for (i = 0; i < polaris10_ps->performance_level_count; i++) {
			if (polaris10_ps->performance_levels[i].memory_clock > max_limits->mclk)
				polaris10_ps->performance_levels[i].memory_clock = max_limits->mclk;
			if (polaris10_ps->performance_levels[i].engine_clock > max_limits->sclk)
				polaris10_ps->performance_levels[i].engine_clock = max_limits->sclk;
3240 3241 3242
		}
	}

3243 3244
	polaris10_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk;
	polaris10_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk;
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281

	cgs_get_active_displays_info(hwmgr->device, &info);

	/*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/

	/* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_StablePState)) {
		max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
		stable_pstate_sclk = (max_limits->sclk * 75) / 100;

		for (count = table_info->vdd_dep_on_sclk->count - 1;
				count >= 0; count--) {
			if (stable_pstate_sclk >=
					table_info->vdd_dep_on_sclk->entries[count].clk) {
				stable_pstate_sclk =
						table_info->vdd_dep_on_sclk->entries[count].clk;
				break;
			}
		}

		if (count < 0)
			stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;

		stable_pstate_mclk = max_limits->mclk;

		minimum_clocks.engineClock = stable_pstate_sclk;
		minimum_clocks.memoryClock = stable_pstate_mclk;
	}

	if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
		minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;

	if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
		minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;

3282
	polaris10_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
3283 3284 3285 3286 3287 3288 3289 3290 3291

	if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
		PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <=
				hwmgr->platform_descriptor.overdriveLimit.engineClock),
				"Overdrive sclk exceeds limit",
				hwmgr->gfx_arbiter.sclk_over_drive =
						hwmgr->platform_descriptor.overdriveLimit.engineClock);

		if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
3292
			polaris10_ps->performance_levels[1].engine_clock =
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
					hwmgr->gfx_arbiter.sclk_over_drive;
	}

	if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
		PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <=
				hwmgr->platform_descriptor.overdriveLimit.memoryClock),
				"Overdrive mclk exceeds limit",
				hwmgr->gfx_arbiter.mclk_over_drive =
						hwmgr->platform_descriptor.overdriveLimit.memoryClock);

		if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
3304
			polaris10_ps->performance_levels[1].memory_clock =
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
					hwmgr->gfx_arbiter.mclk_over_drive;
	}

	disable_mclk_switching_for_frame_lock = phm_cap_enabled(
				    hwmgr->platform_descriptor.platformCaps,
				    PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);

	disable_mclk_switching = (1 < info.display_count) ||
				    disable_mclk_switching_for_frame_lock;

3315 3316
	sclk = polaris10_ps->performance_levels[0].engine_clock;
	mclk = polaris10_ps->performance_levels[0].memory_clock;
3317 3318

	if (disable_mclk_switching)
3319 3320
		mclk = polaris10_ps->performance_levels
		[polaris10_ps->performance_level_count - 1].memory_clock;
3321 3322 3323 3324 3325 3326 3327 3328 3329

	if (sclk < minimum_clocks.engineClock)
		sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
				max_limits->sclk : minimum_clocks.engineClock;

	if (mclk < minimum_clocks.memoryClock)
		mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
				max_limits->mclk : minimum_clocks.memoryClock;

3330 3331
	polaris10_ps->performance_levels[0].engine_clock = sclk;
	polaris10_ps->performance_levels[0].memory_clock = mclk;
3332

3333 3334 3335 3336 3337
	polaris10_ps->performance_levels[1].engine_clock =
		(polaris10_ps->performance_levels[1].engine_clock >=
				polaris10_ps->performance_levels[0].engine_clock) ?
						polaris10_ps->performance_levels[1].engine_clock :
						polaris10_ps->performance_levels[0].engine_clock;
3338 3339

	if (disable_mclk_switching) {
3340 3341
		if (mclk < polaris10_ps->performance_levels[1].memory_clock)
			mclk = polaris10_ps->performance_levels[1].memory_clock;
3342

3343 3344
		polaris10_ps->performance_levels[0].memory_clock = mclk;
		polaris10_ps->performance_levels[1].memory_clock = mclk;
3345
	} else {
3346 3347 3348 3349
		if (polaris10_ps->performance_levels[1].memory_clock <
				polaris10_ps->performance_levels[0].memory_clock)
			polaris10_ps->performance_levels[1].memory_clock =
					polaris10_ps->performance_levels[0].memory_clock;
3350 3351 3352 3353
	}

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_StablePState)) {
3354 3355 3356 3357 3358
		for (i = 0; i < polaris10_ps->performance_level_count; i++) {
			polaris10_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
			polaris10_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
			polaris10_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
			polaris10_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
3359 3360 3361 3362 3363 3364
		}
	}
	return 0;
}


3365
static int polaris10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3366 3367
{
	struct pp_power_state  *ps;
3368
	struct polaris10_power_state  *polaris10_ps;
3369 3370 3371 3372 3373 3374 3375 3376 3377

	if (hwmgr == NULL)
		return -EINVAL;

	ps = hwmgr->request_ps;

	if (ps == NULL)
		return -EINVAL;

3378
	polaris10_ps = cast_phw_polaris10_power_state(&ps->hardware);
3379 3380

	if (low)
3381
		return polaris10_ps->performance_levels[0].memory_clock;
3382
	else
3383 3384
		return polaris10_ps->performance_levels
				[polaris10_ps->performance_level_count-1].memory_clock;
3385 3386
}

3387
static int polaris10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3388 3389
{
	struct pp_power_state  *ps;
3390
	struct polaris10_power_state  *polaris10_ps;
3391 3392 3393 3394 3395 3396 3397 3398 3399

	if (hwmgr == NULL)
		return -EINVAL;

	ps = hwmgr->request_ps;

	if (ps == NULL)
		return -EINVAL;

3400
	polaris10_ps = cast_phw_polaris10_power_state(&ps->hardware);
3401 3402

	if (low)
3403
		return polaris10_ps->performance_levels[0].engine_clock;
3404
	else
3405 3406
		return polaris10_ps->performance_levels
				[polaris10_ps->performance_level_count-1].engine_clock;
3407 3408
}

3409
static int polaris10_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
3410 3411
					struct pp_hw_power_state *hw_ps)
{
3412 3413
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_power_state *ps = (struct polaris10_power_state *)hw_ps;
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	ATOM_FIRMWARE_INFO_V2_2 *fw_info;
	uint16_t size;
	uint8_t frev, crev;
	int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);

	/* First retrieve the Boot clocks and VDDC from the firmware info table.
	 * We assume here that fw_info is unchanged if this call fails.
	 */
	fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
			hwmgr->device, index,
			&size, &frev, &crev);
	if (!fw_info)
		/* During a test, there is no firmware info table. */
		return 0;

	/* Patch the state. */
	data->vbios_boot_state.sclk_bootup_value =
			le32_to_cpu(fw_info->ulDefaultEngineClock);
	data->vbios_boot_state.mclk_bootup_value =
			le32_to_cpu(fw_info->ulDefaultMemoryClock);
	data->vbios_boot_state.mvdd_bootup_value =
			le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
	data->vbios_boot_state.vddc_bootup_value =
			le16_to_cpu(fw_info->usBootUpVDDCVoltage);
	data->vbios_boot_state.vddci_bootup_value =
			le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
	data->vbios_boot_state.pcie_gen_bootup_value =
			phm_get_current_pcie_speed(hwmgr);

	data->vbios_boot_state.pcie_lane_bootup_value =
			(uint16_t)phm_get_current_pcie_lane_number(hwmgr);

	/* set boot power state */
	ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
	ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
	ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
	ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;

	return 0;
}

3455
static int polaris10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
3456 3457 3458
		void *state, struct pp_power_state *power_state,
		void *pp_table, uint32_t classification_flag)
{
3459 3460 3461 3462
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_power_state  *polaris10_power_state =
			(struct polaris10_power_state *)(&(power_state->hardware));
	struct polaris10_performance_level *performance_level;
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
	ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
	ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
			(ATOM_Tonga_POWERPLAYTABLE *)pp_table;
	ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
			(ATOM_Tonga_SCLK_Dependency_Table *)
			(((unsigned long)powerplay_table) +
				le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
	ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
			(ATOM_Tonga_MCLK_Dependency_Table *)
			(((unsigned long)powerplay_table) +
				le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));

	/* The following fields are not initialized here: id orderedList allStatesList */
	power_state->classification.ui_label =
			(le16_to_cpu(state_entry->usClassification) &
			ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
			ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
	power_state->classification.flags = classification_flag;
	/* NOTE: There is a classification2 flag in BIOS that is not being used right now */

	power_state->classification.temporary_state = false;
	power_state->classification.to_be_deleted = false;

	power_state->validation.disallowOnDC =
			(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
					ATOM_Tonga_DISALLOW_ON_DC));

	power_state->pcie.lanes = 0;

	power_state->display.disableFrameModulation = false;
	power_state->display.limitRefreshrate = false;
	power_state->display.enableVariBright =
			(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
					ATOM_Tonga_ENABLE_VARIBRIGHT));

	power_state->validation.supportedPowerLevels = 0;
	power_state->uvd_clocks.VCLK = 0;
	power_state->uvd_clocks.DCLK = 0;
	power_state->temperatures.min = 0;
	power_state->temperatures.max = 0;

3504 3505
	performance_level = &(polaris10_power_state->performance_levels
			[polaris10_power_state->performance_level_count++]);
3506 3507

	PP_ASSERT_WITH_CODE(
3508
			(polaris10_power_state->performance_level_count < SMU74_MAX_LEVELS_GRAPHICS),
3509 3510 3511 3512
			"Performance levels exceeds SMC limit!",
			return -1);

	PP_ASSERT_WITH_CODE(
3513
			(polaris10_power_state->performance_level_count <=
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
					hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
			"Performance levels exceeds Driver limit!",
			return -1);

	/* Performance levels are arranged from low to high. */
	performance_level->memory_clock = mclk_dep_table->entries
			[state_entry->ucMemoryClockIndexLow].ulMclk;
	performance_level->engine_clock = sclk_dep_table->entries
			[state_entry->ucEngineClockIndexLow].ulSclk;
	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
			state_entry->ucPCIEGenLow);
	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
			state_entry->ucPCIELaneHigh);

3528 3529
	performance_level = &(polaris10_power_state->performance_levels
			[polaris10_power_state->performance_level_count++]);
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
	performance_level->memory_clock = mclk_dep_table->entries
			[state_entry->ucMemoryClockIndexHigh].ulMclk;
	performance_level->engine_clock = sclk_dep_table->entries
			[state_entry->ucEngineClockIndexHigh].ulSclk;
	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
			state_entry->ucPCIEGenHigh);
	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
			state_entry->ucPCIELaneHigh);

	return 0;
}

3542
static int polaris10_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3543 3544 3545
		unsigned long entry_index, struct pp_power_state *state)
{
	int result;
3546 3547
	struct polaris10_power_state *ps;
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3548 3549 3550 3551 3552 3553 3554
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);
	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
			table_info->vdd_dep_on_mclk;

	state->hardware.magic = PHM_VIslands_Magic;

3555
	ps = (struct polaris10_power_state *)(&state->hardware);
3556 3557

	result = tonga_get_powerplay_table_entry(hwmgr, entry_index, state,
3558
			polaris10_get_pp_table_entry_callback_func);
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646

	/* This is the earliest time we have all the dependency table and the VBIOS boot state
	 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
	 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
	 */
	if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
		if (dep_mclk_table->entries[0].clk !=
				data->vbios_boot_state.mclk_bootup_value)
			printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
					"does not match VBIOS boot MCLK level");
		if (dep_mclk_table->entries[0].vddci !=
				data->vbios_boot_state.vddci_bootup_value)
			printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
					"does not match VBIOS boot VDDCI level");
	}

	/* set DC compatible flag if this state supports DC */
	if (!state->validation.disallowOnDC)
		ps->dc_compatible = true;

	if (state->classification.flags & PP_StateClassificationFlag_ACPI)
		data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;

	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;

	if (!result) {
		uint32_t i;

		switch (state->classification.ui_label) {
		case PP_StateUILabel_Performance:
			data->use_pcie_performance_levels = true;

			for (i = 0; i < ps->performance_level_count; i++) {
				if (data->pcie_gen_performance.max <
						ps->performance_levels[i].pcie_gen)
					data->pcie_gen_performance.max =
							ps->performance_levels[i].pcie_gen;

				if (data->pcie_gen_performance.min >
						ps->performance_levels[i].pcie_gen)
					data->pcie_gen_performance.min =
							ps->performance_levels[i].pcie_gen;

				if (data->pcie_lane_performance.max <
						ps->performance_levels[i].pcie_lane)
					data->pcie_lane_performance.max =
							ps->performance_levels[i].pcie_lane;

				if (data->pcie_lane_performance.min >
						ps->performance_levels[i].pcie_lane)
					data->pcie_lane_performance.min =
							ps->performance_levels[i].pcie_lane;
			}
			break;
		case PP_StateUILabel_Battery:
			data->use_pcie_power_saving_levels = true;

			for (i = 0; i < ps->performance_level_count; i++) {
				if (data->pcie_gen_power_saving.max <
						ps->performance_levels[i].pcie_gen)
					data->pcie_gen_power_saving.max =
							ps->performance_levels[i].pcie_gen;

				if (data->pcie_gen_power_saving.min >
						ps->performance_levels[i].pcie_gen)
					data->pcie_gen_power_saving.min =
							ps->performance_levels[i].pcie_gen;

				if (data->pcie_lane_power_saving.max <
						ps->performance_levels[i].pcie_lane)
					data->pcie_lane_power_saving.max =
							ps->performance_levels[i].pcie_lane;

				if (data->pcie_lane_power_saving.min >
						ps->performance_levels[i].pcie_lane)
					data->pcie_lane_power_saving.min =
							ps->performance_levels[i].pcie_lane;
			}
			break;
		default:
			break;
		}
	}
	return 0;
}

static void
3647
polaris10_print_current_perforce_level(struct pp_hwmgr *hwmgr, struct seq_file *m)
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
{
	uint32_t sclk, mclk;

	smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);

	sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);

	smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);

	mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
	seq_printf(m, "\n [  mclk  ]: %u MHz\n\n [  sclk  ]: %u MHz\n",
			mclk / 100, sclk / 100);
}

3662
static int polaris10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
3663 3664 3665
{
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
3666 3667 3668 3669 3670 3671 3672 3673 3674
	const struct polaris10_power_state *polaris10_ps =
			cast_const_phw_polaris10_power_state(states->pnew_state);
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
	uint32_t sclk = polaris10_ps->performance_levels
			[polaris10_ps->performance_level_count - 1].engine_clock;
	struct polaris10_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
	uint32_t mclk = polaris10_ps->performance_levels
			[polaris10_ps->performance_level_count - 1].memory_clock;
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
	struct PP_Clocks min_clocks = {0};
	uint32_t i;
	struct cgs_display_info info = {0};

	data->need_update_smu7_dpm_table = 0;

	for (i = 0; i < sclk_table->count; i++) {
		if (sclk == sclk_table->dpm_levels[i].value)
			break;
	}

	if (i >= sclk_table->count)
		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
	else {
	/* TODO: Check SCLK in DAL's minimum clocks
	 * in case DeepSleep divider update is required.
	 */
3692 3693 3694
		if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR &&
			(min_clocks.engineClockInSR >= POLARIS10_MINIMUM_ENGINE_CLOCK ||
				data->display_timing.min_clock_in_sr >= POLARIS10_MINIMUM_ENGINE_CLOCK))
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
			data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
	}

	for (i = 0; i < mclk_table->count; i++) {
		if (mclk == mclk_table->dpm_levels[i].value)
			break;
	}

	if (i >= mclk_table->count)
		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;

	cgs_get_active_displays_info(hwmgr->device, &info);

	if (data->display_timing.num_existing_displays != info.display_count)
		data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;

	return 0;
}

3714 3715
static uint16_t polaris10_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
		const struct polaris10_power_state *polaris10_ps)
3716 3717 3718
{
	uint32_t i;
	uint32_t sclk, max_sclk = 0;
3719 3720
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_dpm_table *dpm_table = &data->dpm_table;
3721

3722 3723
	for (i = 0; i < polaris10_ps->performance_level_count; i++) {
		sclk = polaris10_ps->performance_levels[i].engine_clock;
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
		if (max_sclk < sclk)
			max_sclk = sclk;
	}

	for (i = 0; i < dpm_table->sclk_table.count; i++) {
		if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
			return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
					dpm_table->pcie_speed_table.dpm_levels
					[dpm_table->pcie_speed_table.count - 1].value :
					dpm_table->pcie_speed_table.dpm_levels[i].value);
	}

	return 0;
}

3739
static int polaris10_request_link_speed_change_before_state_change(
3740 3741 3742 3743
		struct pp_hwmgr *hwmgr, const void *input)
{
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
3744 3745 3746 3747 3748
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	const struct polaris10_power_state *polaris10_nps =
			cast_const_phw_polaris10_power_state(states->pnew_state);
	const struct polaris10_power_state *polaris10_cps =
			cast_const_phw_polaris10_power_state(states->pcurrent_state);
3749

3750
	uint16_t target_link_speed = polaris10_get_maximum_link_speed(hwmgr, polaris10_nps);
3751 3752 3753
	uint16_t current_link_speed;

	if (data->force_pcie_gen == PP_PCIEGenInvalid)
3754
		current_link_speed = polaris10_get_maximum_link_speed(hwmgr, polaris10_cps);
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
	else
		current_link_speed = data->force_pcie_gen;

	data->force_pcie_gen = PP_PCIEGenInvalid;
	data->pspp_notify_required = false;

	if (target_link_speed > current_link_speed) {
		switch (target_link_speed) {
		case PP_PCIEGen3:
			if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
				break;
			data->force_pcie_gen = PP_PCIEGen2;
			if (current_link_speed == PP_PCIEGen2)
				break;
		case PP_PCIEGen2:
			if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
				break;
		default:
			data->force_pcie_gen = phm_get_current_pcie_speed(hwmgr);
			break;
		}
	} else {
		if (target_link_speed < current_link_speed)
			data->pspp_notify_required = true;
	}

	return 0;
}

3784
static int polaris10_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3785
{
3786
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3787 3788 3789 3790 3791 3792 3793

	if (0 == data->need_update_smu7_dpm_table)
		return 0;

	if ((0 == data->sclk_dpm_key_disabled) &&
		(data->need_update_smu7_dpm_table &
			(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
3794
		PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr),
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
				"Trying to freeze SCLK DPM when DPM is disabled",
				);
		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_SCLKDPM_FreezeLevel),
				"Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
				return -1);
	}

	if ((0 == data->mclk_dpm_key_disabled) &&
		(data->need_update_smu7_dpm_table &
		 DPMTABLE_OD_UPDATE_MCLK)) {
3806
		PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr),
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
				"Trying to freeze MCLK DPM when DPM is disabled",
				);
		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_MCLKDPM_FreezeLevel),
				"Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
				return -1);
	}

	return 0;
}

3818
static int polaris10_populate_and_upload_sclk_mclk_dpm_levels(
3819 3820 3821 3822 3823
		struct pp_hwmgr *hwmgr, const void *input)
{
	int result = 0;
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
	const struct polaris10_power_state *polaris10_ps =
			cast_const_phw_polaris10_power_state(states->pnew_state);
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	uint32_t sclk = polaris10_ps->performance_levels
			[polaris10_ps->performance_level_count - 1].engine_clock;
	uint32_t mclk = polaris10_ps->performance_levels
			[polaris10_ps->performance_level_count - 1].memory_clock;
	struct polaris10_dpm_table *dpm_table = &data->dpm_table;

	struct polaris10_dpm_table *golden_dpm_table = &data->golden_dpm_table;
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
	uint32_t dpm_count, clock_percent;
	uint32_t i;

	if (0 == data->need_update_smu7_dpm_table)
		return 0;

	if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
		dpm_table->sclk_table.dpm_levels
		[dpm_table->sclk_table.count - 1].value = sclk;

		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
		    phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
		/* Need to do calculation based on the golden DPM table
		 * as the Heatmap GPU Clock axis is also based on the default values
		 */
			PP_ASSERT_WITH_CODE(
				(golden_dpm_table->sclk_table.dpm_levels
						[golden_dpm_table->sclk_table.count - 1].value != 0),
				"Divide by 0!",
				return -1);
			dpm_count = dpm_table->sclk_table.count < 2 ? 0 : dpm_table->sclk_table.count - 2;

			for (i = dpm_count; i > 1; i--) {
				if (sclk > golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value) {
					clock_percent =
					      ((sclk
						- golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value
						) * 100)
						/ golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value;

					dpm_table->sclk_table.dpm_levels[i].value =
							golden_dpm_table->sclk_table.dpm_levels[i].value +
							(golden_dpm_table->sclk_table.dpm_levels[i].value *
								clock_percent)/100;

				} else if (golden_dpm_table->sclk_table.dpm_levels[dpm_table->sclk_table.count-1].value > sclk) {
					clock_percent =
						((golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value
						- sclk) * 100)
						/ golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value;

					dpm_table->sclk_table.dpm_levels[i].value =
							golden_dpm_table->sclk_table.dpm_levels[i].value -
							(golden_dpm_table->sclk_table.dpm_levels[i].value *
									clock_percent) / 100;
				} else
					dpm_table->sclk_table.dpm_levels[i].value =
							golden_dpm_table->sclk_table.dpm_levels[i].value;
			}
		}
	}

	if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
		dpm_table->mclk_table.dpm_levels
			[dpm_table->mclk_table.count - 1].value = mclk;

		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
		    phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {

			PP_ASSERT_WITH_CODE(
					(golden_dpm_table->mclk_table.dpm_levels
						[golden_dpm_table->mclk_table.count-1].value != 0),
					"Divide by 0!",
					return -1);
			dpm_count = dpm_table->mclk_table.count < 2 ? 0 : dpm_table->mclk_table.count - 2;
			for (i = dpm_count; i > 1; i--) {
				if (golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value < mclk) {
					clock_percent = ((mclk -
					golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value) * 100)
					/ golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value;

					dpm_table->mclk_table.dpm_levels[i].value =
							golden_dpm_table->mclk_table.dpm_levels[i].value +
							(golden_dpm_table->mclk_table.dpm_levels[i].value *
							clock_percent) / 100;

				} else if (golden_dpm_table->mclk_table.dpm_levels[dpm_table->mclk_table.count-1].value > mclk) {
					clock_percent = (
					 (golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value - mclk)
					* 100)
					/ golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value;

					dpm_table->mclk_table.dpm_levels[i].value =
							golden_dpm_table->mclk_table.dpm_levels[i].value -
							(golden_dpm_table->mclk_table.dpm_levels[i].value *
									clock_percent) / 100;
				} else
					dpm_table->mclk_table.dpm_levels[i].value =
							golden_dpm_table->mclk_table.dpm_levels[i].value;
			}
		}
	}

	if (data->need_update_smu7_dpm_table &
			(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
3929
		result = polaris10_populate_all_graphic_levels(hwmgr);
3930 3931 3932 3933 3934 3935 3936 3937
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
				return result);
	}

	if (data->need_update_smu7_dpm_table &
			(DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
		/*populate MCLK dpm table to SMU7 */
3938
		result = polaris10_populate_all_memory_levels(hwmgr);
3939 3940 3941 3942 3943 3944 3945 3946
		PP_ASSERT_WITH_CODE((0 == result),
				"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
				return result);
	}

	return result;
}

3947 3948
static int polaris10_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
			  struct polaris10_single_dpm_table *dpm_table,
3949 3950 3951
			uint32_t low_limit, uint32_t high_limit)
{
	uint32_t i;
3952
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966

	for (i = 0; i < dpm_table->count; i++) {
		if ((dpm_table->dpm_levels[i].value < low_limit)
		|| (dpm_table->dpm_levels[i].value > high_limit))
			dpm_table->dpm_levels[i].enabled = false;
		else if (((1 << i) & data->disable_dpm_mask) == 0)
			dpm_table->dpm_levels[i].enabled = false;
		else
			dpm_table->dpm_levels[i].enabled = true;
	}

	return 0;
}

3967 3968
static int polaris10_trim_dpm_states(struct pp_hwmgr *hwmgr,
		const struct polaris10_power_state *polaris10_ps)
3969 3970
{
	int result = 0;
3971
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3972 3973
	uint32_t high_limit_count;

3974
	PP_ASSERT_WITH_CODE((polaris10_ps->performance_level_count >= 1),
3975 3976 3977
			"power state did not have any performance level",
			return -1);

3978
	high_limit_count = (1 == polaris10_ps->performance_level_count) ? 0 : 1;
3979

3980
	polaris10_trim_single_dpm_states(hwmgr,
3981
			&(data->dpm_table.sclk_table),
3982 3983
			polaris10_ps->performance_levels[0].engine_clock,
			polaris10_ps->performance_levels[high_limit_count].engine_clock);
3984

3985
	polaris10_trim_single_dpm_states(hwmgr,
3986
			&(data->dpm_table.mclk_table),
3987 3988
			polaris10_ps->performance_levels[0].memory_clock,
			polaris10_ps->performance_levels[high_limit_count].memory_clock);
3989 3990 3991 3992

	return result;
}

3993
static int polaris10_generate_dpm_level_enable_mask(
3994 3995 3996 3997 3998
		struct pp_hwmgr *hwmgr, const void *input)
{
	int result;
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
3999 4000 4001
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	const struct polaris10_power_state *polaris10_ps =
			cast_const_phw_polaris10_power_state(states->pnew_state);
4002

4003
	result = polaris10_trim_dpm_states(hwmgr, polaris10_ps);
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
	if (result)
		return result;

	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
	data->dpm_level_enable_mask.mclk_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
			phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);

	return 0;
}

4017
int polaris10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4018 4019
{
	return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
4020 4021 4022 4023
			PPSMC_MSG_UVDDPM_Enable :
			PPSMC_MSG_UVDDPM_Disable);
}

4024
int polaris10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
4025 4026
{
	return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4027 4028 4029 4030
			PPSMC_MSG_VCEDPM_Enable :
			PPSMC_MSG_VCEDPM_Disable);
}

4031
int polaris10_enable_disable_samu_dpm(struct pp_hwmgr *hwmgr, bool enable)
4032 4033 4034 4035 4036 4037
{
	return smum_send_msg_to_smc(hwmgr->smumgr, enable?
			PPSMC_MSG_SAMUDPM_Enable :
			PPSMC_MSG_SAMUDPM_Disable);
}

4038
int polaris10_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4039
{
4040
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
	uint32_t mm_boot_level_offset, mm_boot_level_value;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	if (!bgate) {
		data->smc_state_table.UvdBootLevel = 0;
		if (table_info->mm_dep_table->count > 0)
			data->smc_state_table.UvdBootLevel =
					(uint8_t) (table_info->mm_dep_table->count - 1);
		mm_boot_level_offset = data->dpm_table_start +
				offsetof(SMU74_Discrete_DpmTable, UvdBootLevel);
		mm_boot_level_offset /= 4;
		mm_boot_level_offset *= 4;
		mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
				CGS_IND_REG__SMC, mm_boot_level_offset);
		mm_boot_level_value &= 0x00FFFFFF;
		mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24;
		cgs_write_ind_register(hwmgr->device,
				CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);

		if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_UVDDPM) ||
			phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_StablePState))
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_UVDDPM_SetEnabledMask,
					(uint32_t)(1 << data->smc_state_table.UvdBootLevel));
	}

4070
	return polaris10_enable_disable_uvd_dpm(hwmgr, !bgate);
4071 4072
}

4073
static int polaris10_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
4074 4075 4076
{
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
4077 4078 4079 4080 4081
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	const struct polaris10_power_state *polaris10_nps =
			cast_const_phw_polaris10_power_state(states->pnew_state);
	const struct polaris10_power_state *polaris10_cps =
			cast_const_phw_polaris10_power_state(states->pcurrent_state);
4082 4083 4084 4085 4086

	uint32_t mm_boot_level_offset, mm_boot_level_value;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

4087 4088
	if (polaris10_nps->vce_clks.evclk > 0 &&
	(polaris10_cps == NULL || polaris10_cps->vce_clks.evclk == 0)) {
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108

		data->smc_state_table.VceBootLevel =
				(uint8_t) (table_info->mm_dep_table->count - 1);

		mm_boot_level_offset = data->dpm_table_start +
				offsetof(SMU74_Discrete_DpmTable, VceBootLevel);
		mm_boot_level_offset /= 4;
		mm_boot_level_offset *= 4;
		mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
				CGS_IND_REG__SMC, mm_boot_level_offset);
		mm_boot_level_value &= 0xFF00FFFF;
		mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
		cgs_write_ind_register(hwmgr->device,
				CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);

		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_VCEDPM_SetEnabledMask,
					(uint32_t)1 << data->smc_state_table.VceBootLevel);

4109 4110 4111 4112 4113
			polaris10_enable_disable_vce_dpm(hwmgr, true);
		} else if (polaris10_nps->vce_clks.evclk == 0 &&
				polaris10_cps != NULL &&
				polaris10_cps->vce_clks.evclk > 0)
			polaris10_enable_disable_vce_dpm(hwmgr, false);
4114 4115 4116 4117 4118
	}

	return 0;
}

4119
int polaris10_update_samu_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4120
{
4121
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
	uint32_t mm_boot_level_offset, mm_boot_level_value;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	if (!bgate) {
		data->smc_state_table.SamuBootLevel =
				(uint8_t) (table_info->mm_dep_table->count - 1);
		mm_boot_level_offset = data->dpm_table_start +
				offsetof(SMU74_Discrete_DpmTable, SamuBootLevel);
		mm_boot_level_offset /= 4;
		mm_boot_level_offset *= 4;
		mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
				CGS_IND_REG__SMC, mm_boot_level_offset);
		mm_boot_level_value &= 0xFFFFFF00;
		mm_boot_level_value |= data->smc_state_table.SamuBootLevel << 0;
		cgs_write_ind_register(hwmgr->device,
				CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);

		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_StablePState))
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_SAMUDPM_SetEnabledMask,
					(uint32_t)(1 << data->smc_state_table.SamuBootLevel));
	}

4147
	return polaris10_enable_disable_samu_dpm(hwmgr, !bgate);
4148 4149
}

4150
static int polaris10_update_sclk_threshold(struct pp_hwmgr *hwmgr)
4151
{
4152
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167

	int result = 0;
	uint32_t low_sclk_interrupt_threshold = 0;

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SclkThrottleLowNotification)
		&& (hwmgr->gfx_arbiter.sclk_threshold !=
				data->low_sclk_interrupt_threshold)) {
		data->low_sclk_interrupt_threshold =
				hwmgr->gfx_arbiter.sclk_threshold;
		low_sclk_interrupt_threshold =
				data->low_sclk_interrupt_threshold;

		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);

4168
		result = polaris10_copy_bytes_to_smc(
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
				hwmgr->smumgr,
				data->dpm_table_start +
				offsetof(SMU74_Discrete_DpmTable,
					LowSclkInterruptThreshold),
				(uint8_t *)&low_sclk_interrupt_threshold,
				sizeof(uint32_t),
				data->sram_end);
	}

	return result;
}

4181
static int polaris10_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
4182
{
4183
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4184 4185 4186

	if (data->need_update_smu7_dpm_table &
		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
4187
		return polaris10_program_memory_timing_parameters(hwmgr);
4188 4189 4190 4191

	return 0;
}

4192
static int polaris10_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4193
{
4194
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4195 4196 4197 4198 4199 4200 4201 4202

	if (0 == data->need_update_smu7_dpm_table)
		return 0;

	if ((0 == data->sclk_dpm_key_disabled) &&
		(data->need_update_smu7_dpm_table &
		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {

4203
		PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr),
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
				"Trying to Unfreeze SCLK DPM when DPM is disabled",
				);
		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_SCLKDPM_UnfreezeLevel),
			"Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
			return -1);
	}

	if ((0 == data->mclk_dpm_key_disabled) &&
		(data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {

4215
		PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr),
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
				"Trying to Unfreeze MCLK DPM when DPM is disabled",
				);
		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
				PPSMC_MSG_SCLKDPM_UnfreezeLevel),
		    "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
		    return -1);
	}

	data->need_update_smu7_dpm_table = 0;

	return 0;
}

4229
static int polaris10_notify_link_speed_change_after_state_change(
4230 4231 4232 4233
		struct pp_hwmgr *hwmgr, const void *input)
{
	const struct phm_set_power_state_input *states =
			(const struct phm_set_power_state_input *)input;
4234 4235 4236 4237
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	const struct polaris10_power_state *polaris10_ps =
			cast_const_phw_polaris10_power_state(states->pnew_state);
	uint16_t target_link_speed = polaris10_get_maximum_link_speed(hwmgr, polaris10_ps);
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
	uint8_t  request;

	if (data->pspp_notify_required) {
		if (target_link_speed == PP_PCIEGen3)
			request = PCIE_PERF_REQ_GEN3;
		else if (target_link_speed == PP_PCIEGen2)
			request = PCIE_PERF_REQ_GEN2;
		else
			request = PCIE_PERF_REQ_GEN1;

		if (request == PCIE_PERF_REQ_GEN1 &&
				phm_get_current_pcie_speed(hwmgr) > 0)
			return 0;

		if (acpi_pcie_perf_request(hwmgr->device, request, false)) {
			if (PP_PCIEGen2 == target_link_speed)
				printk("PSPP request to switch to Gen2 from Gen3 Failed!");
			else
				printk("PSPP request to switch to Gen1 from Gen2 Failed!");
		}
	}

	return 0;
}

4263
static int polaris10_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
4264 4265
{
	int tmp_result, result = 0;
4266
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4267

4268
	tmp_result = polaris10_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
4269 4270 4271 4272 4273 4274 4275
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to find DPM states clocks in DPM table!",
			result = tmp_result);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_PCIEPerformanceRequest)) {
		tmp_result =
4276
			polaris10_request_link_speed_change_before_state_change(hwmgr, input);
4277 4278 4279 4280 4281
		PP_ASSERT_WITH_CODE((0 == tmp_result),
				"Failed to request link speed change before state change!",
				result = tmp_result);
	}

4282
	tmp_result = polaris10_freeze_sclk_mclk_dpm(hwmgr);
4283 4284 4285
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to freeze SCLK MCLK DPM!", result = tmp_result);

4286
	tmp_result = polaris10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
4287 4288 4289 4290
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to populate and upload SCLK MCLK DPM levels!",
			result = tmp_result);

4291
	tmp_result = polaris10_generate_dpm_level_enable_mask(hwmgr, input);
4292 4293 4294 4295
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to generate DPM level enabled mask!",
			result = tmp_result);

4296
	tmp_result = polaris10_update_vce_dpm(hwmgr, input);
4297 4298 4299 4300
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to update VCE DPM!",
			result = tmp_result);

4301
	tmp_result = polaris10_update_sclk_threshold(hwmgr);
4302 4303 4304 4305
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to update SCLK threshold!",
			result = tmp_result);

4306
	tmp_result = polaris10_program_mem_timing_parameters(hwmgr);
4307 4308 4309 4310
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to program memory timing parameters!",
			result = tmp_result);

4311
	tmp_result = polaris10_unfreeze_sclk_mclk_dpm(hwmgr);
4312 4313 4314 4315
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to unfreeze SCLK MCLK DPM!",
			result = tmp_result);

4316
	tmp_result = polaris10_upload_dpm_level_enable_mask(hwmgr);
4317 4318 4319 4320 4321 4322 4323
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to upload DPM level enabled mask!",
			result = tmp_result);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_PCIEPerformanceRequest)) {
		tmp_result =
4324
			polaris10_notify_link_speed_change_after_state_change(hwmgr, input);
4325 4326 4327 4328 4329 4330 4331 4332
		PP_ASSERT_WITH_CODE((0 == tmp_result),
				"Failed to notify link speed change after state change!",
				result = tmp_result);
	}
	data->apply_optimized_settings = false;
	return result;
}

4333
static int polaris10_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
4334
{
4335 4336
	hwmgr->thermal_controller.
	advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
4337

4338
	if (phm_is_hw_access_blocked(hwmgr))
4339
		return 0;
4340 4341 4342

	return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
			PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm);
4343 4344
}

4345
int polaris10_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display)
4346 4347 4348 4349 4350 4351
{
	PPSMC_Msg msg = has_display ? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay;

	return (smum_send_msg_to_smc(hwmgr->smumgr, msg) == 0) ?  0 : -1;
}

4352
int polaris10_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
{
	uint32_t num_active_displays = 0;
	struct cgs_display_info info = {0};
	info.mode_info = NULL;

	cgs_get_active_displays_info(hwmgr->device, &info);

	num_active_displays = info.display_count;

	if (num_active_displays > 1)  /* to do && (pHwMgr->pPECI->displayConfiguration.bMultiMonitorInSync != TRUE)) */
4363
		polaris10_notify_smc_display_change(hwmgr, false);
4364
	else
4365
		polaris10_notify_smc_display_change(hwmgr, true);
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375

	return 0;
}

/**
* Programs the display gap
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @return   always OK
*/
4376
int polaris10_program_display_gap(struct pp_hwmgr *hwmgr)
4377
{
4378
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
	uint32_t num_active_displays = 0;
	uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
	uint32_t display_gap2;
	uint32_t pre_vbi_time_in_us;
	uint32_t frame_time_in_us;
	uint32_t ref_clock;
	uint32_t refresh_rate = 0;
	struct cgs_display_info info = {0};
	struct cgs_mode_info mode_info;

	info.mode_info = &mode_info;

	cgs_get_active_displays_info(hwmgr->device, &info);
	num_active_displays = info.display_count;

	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (num_active_displays > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);

	ref_clock = mode_info.ref_clock;
	refresh_rate = mode_info.refresh_rate;

	if (0 == refresh_rate)
		refresh_rate = 60;

	frame_time_in_us = 1000000 / refresh_rate;

	pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
	display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU74_SoftRegisters, PreVBlankGap), 0x64);

	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU74_SoftRegisters, VBlankTimeout), (frame_time_in_us - pre_vbi_time_in_us));

4414
	polaris10_notify_smc_display_change(hwmgr, num_active_displays != 0);
4415 4416 4417 4418 4419

	return 0;
}


4420
int polaris10_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4421
{
4422
	return polaris10_program_display_gap(hwmgr);
4423 4424 4425 4426 4427 4428 4429 4430 4431
}

/**
*  Set maximum target operating fan output RPM
*
* @param    hwmgr:  the address of the powerplay hardware manager.
* @param    usMaxFanRpm:  max operating fan RPM value.
* @return   The response that came from the SMC.
*/
4432
static int polaris10_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm)
4433
{
4434 4435 4436 4437 4438 4439 4440 4441
	hwmgr->thermal_controller.
	advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;

	if (phm_is_hw_access_blocked(hwmgr))
		return 0;

	return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
			PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm);
4442 4443
}

4444
int polaris10_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
4445 4446 4447 4448 4449
					const void *thermal_interrupt_info)
{
	return 0;
}

4450
bool polaris10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4451
{
4452
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
	bool is_update_required = false;
	struct cgs_display_info info = {0, 0, NULL};

	cgs_get_active_displays_info(hwmgr->device, &info);

	if (data->display_timing.num_existing_displays != info.display_count)
		is_update_required = true;
/* TO DO NEED TO GET DEEP SLEEP CLOCK FROM DAL
	if (phm_cap_enabled(hwmgr->hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
		cgs_get_min_clock_settings(hwmgr->device, &min_clocks);
4463 4464 4465
		if (min_clocks.engineClockInSR != data->display_timing.minClockInSR &&
			(min_clocks.engineClockInSR >= POLARIS10_MINIMUM_ENGINE_CLOCK ||
				data->display_timing.minClockInSR >= POLARIS10_MINIMUM_ENGINE_CLOCK))
4466 4467 4468 4469 4470
			is_update_required = true;
*/
	return is_update_required;
}

4471 4472
static inline bool polaris10_are_power_levels_equal(const struct polaris10_performance_level *pl1,
							   const struct polaris10_performance_level *pl2)
4473 4474 4475 4476 4477 4478 4479
{
	return ((pl1->memory_clock == pl2->memory_clock) &&
		  (pl1->engine_clock == pl2->engine_clock) &&
		  (pl1->pcie_gen == pl2->pcie_gen) &&
		  (pl1->pcie_lane == pl2->pcie_lane));
}

4480
int polaris10_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal)
4481
{
4482 4483
	const struct polaris10_power_state *psa = cast_const_phw_polaris10_power_state(pstate1);
	const struct polaris10_power_state *psb = cast_const_phw_polaris10_power_state(pstate2);
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
	int i;

	if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
		return -EINVAL;

	/* If the two states don't even have the same number of performance levels they cannot be the same state. */
	if (psa->performance_level_count != psb->performance_level_count) {
		*equal = false;
		return 0;
	}

	for (i = 0; i < psa->performance_level_count; i++) {
4496
		if (!polaris10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
			/* If we have found even one performance level pair that is different the states are different. */
			*equal = false;
			return 0;
		}
	}

	/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
	*equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
	*equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
	*equal &= (psa->sclk_threshold == psb->sclk_threshold);

	return 0;
}

4511
int polaris10_upload_mc_firmware(struct pp_hwmgr *hwmgr)
4512
{
4513
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532

	uint32_t vbios_version;

	/*  Read MC indirect register offset 0x9F bits [3:0] to see if VBIOS has already loaded a full version of MC ucode or not.*/

	phm_get_mc_microcode_version(hwmgr);
	vbios_version = hwmgr->microcode_version_info.MC & 0xf;
	/*  Full version of MC ucode has already been loaded. */
	if (vbios_version == 0) {
		data->need_long_memory_training = false;
		return 0;
	}

	data->need_long_memory_training = true;

/*
 * 	PPMCME_FirmwareDescriptorEntry *pfd = NULL;
	pfd = &tonga_mcmeFirmware;
	if (0 == PHM_READ_FIELD(hwmgr->device, MC_SEQ_SUP_CNTL, RUN))
4533
		polaris10_load_mc_microcode(hwmgr, pfd->dpmThreshold,
4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
					pfd->cfgArray, pfd->cfgSize, pfd->ioDebugArray,
					pfd->ioDebugSize, pfd->ucodeArray, pfd->ucodeSize);
*/
	return 0;
}

/**
 * Read clock related registers.
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
4546
static int polaris10_read_clock_registers(struct pp_hwmgr *hwmgr)
4547
{
4548
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570

	data->clock_registers.vCG_SPLL_FUNC_CNTL = cgs_read_ind_register(hwmgr->device,
						CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL)
						& CG_SPLL_FUNC_CNTL__SPLL_BYPASS_EN_MASK;

	data->clock_registers.vCG_SPLL_FUNC_CNTL_2 = cgs_read_ind_register(hwmgr->device,
						CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2)
						& CG_SPLL_FUNC_CNTL_2__SCLK_MUX_SEL_MASK;

	data->clock_registers.vCG_SPLL_FUNC_CNTL_4 = cgs_read_ind_register(hwmgr->device,
						CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4)
						& CG_SPLL_FUNC_CNTL_4__SPLL_SPARE_MASK;

	return 0;
}

/**
 * Find out if memory is GDDR5.
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
4571
static int polaris10_get_memory_type(struct pp_hwmgr *hwmgr)
4572
{
4573
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
	uint32_t temp;

	temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);

	data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
			((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
			 MC_SEQ_MISC0_GDDR5_SHIFT));

	return 0;
}

/**
 * Enables Dynamic Power Management by SMC
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
4591
static int polaris10_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
{
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
			GENERAL_PWRMGT, STATIC_PM_EN, 1);

	return 0;
}

/**
 * Initialize PowerGating States for different engines
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 * @return   always 0
 */
4605
static int polaris10_init_power_gate_state(struct pp_hwmgr *hwmgr)
4606
{
4607
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4608 4609 4610 4611 4612 4613 4614 4615

	data->uvd_power_gated = false;
	data->vce_power_gated = false;
	data->samu_power_gated = false;

	return 0;
}

4616
static int polaris10_init_sclk_threshold(struct pp_hwmgr *hwmgr)
4617
{
4618
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4619 4620 4621 4622 4623
	data->low_sclk_interrupt_threshold = 0;

	return 0;
}

4624
int polaris10_setup_asic_task(struct pp_hwmgr *hwmgr)
4625 4626 4627
{
	int tmp_result, result = 0;

4628
	polaris10_upload_mc_firmware(hwmgr);
4629

4630
	tmp_result = polaris10_read_clock_registers(hwmgr);
4631 4632 4633
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to read clock registers!", result = tmp_result);

4634
	tmp_result = polaris10_get_memory_type(hwmgr);
4635 4636 4637
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to get memory type!", result = tmp_result);

4638
	tmp_result = polaris10_enable_acpi_power_management(hwmgr);
4639 4640 4641
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to enable ACPI power management!", result = tmp_result);

4642
	tmp_result = polaris10_init_power_gate_state(hwmgr);
4643 4644 4645 4646 4647 4648 4649
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to init power gate state!", result = tmp_result);

	tmp_result = phm_get_mc_microcode_version(hwmgr);
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to get MC microcode version!", result = tmp_result);

4650
	tmp_result = polaris10_init_sclk_threshold(hwmgr);
4651 4652 4653 4654 4655 4656
	PP_ASSERT_WITH_CODE((0 == tmp_result),
			"Failed to init sclk threshold!", result = tmp_result);

	return result;
}

4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
static int polaris10_get_pp_table(struct pp_hwmgr *hwmgr, char **table)
{
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);

	*table = (char *)&data->smc_state_table;

	return sizeof(struct SMU74_Discrete_DpmTable);
}

static int polaris10_set_pp_table(struct pp_hwmgr *hwmgr, const char *buf, size_t size)
{
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);

	void *table = (void *)&data->smc_state_table;

	memcpy(table, buf, size);

	return 0;
}

static int polaris10_force_clock_level(struct pp_hwmgr *hwmgr,
		enum pp_clock_type type, int level)
{
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);

	if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
		return -EINVAL;

	switch (type) {
	case PP_SCLK:
		if (!data->sclk_dpm_key_disabled)
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_SCLKDPM_SetEnabledMask,
					(1 << level));
		break;
	case PP_MCLK:
		if (!data->mclk_dpm_key_disabled)
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_MCLKDPM_SetEnabledMask,
					(1 << level));
		break;
	case PP_PCIE:
		if (!data->pcie_dpm_key_disabled)
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_PCIeDPM_ForceLevel,
					(1 << level));
		break;
	default:
		break;
	}

	return 0;
}

static uint16_t polaris10_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
{
	uint32_t speedCntl = 0;

	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
	speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
			ixPCIE_LC_SPEED_CNTL);
	return((uint16_t)PHM_GET_FIELD(speedCntl,
			PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
}

static int polaris10_print_clock_levels(struct pp_hwmgr *hwmgr,
		enum pp_clock_type type, char *buf)
{
	struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
	struct polaris10_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
	struct polaris10_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
	struct polaris10_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
	int i, now, size = 0;
	uint32_t clock, pcie_speed;

	switch (type) {
	case PP_SCLK:
		smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
		clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);

		for (i = 0; i < sclk_table->count; i++) {
			if (clock > sclk_table->dpm_levels[i].value)
				continue;
			break;
		}
		now = i;

		for (i = 0; i < sclk_table->count; i++)
			size += sprintf(buf + size, "%d: %uMhz %s\n",
					i, sclk_table->dpm_levels[i].value / 100,
					(i == now) ? "*" : "");
		break;
	case PP_MCLK:
		smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
		clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);

		for (i = 0; i < mclk_table->count; i++) {
			if (clock > mclk_table->dpm_levels[i].value)
				continue;
			break;
		}
		now = i;

		for (i = 0; i < mclk_table->count; i++)
			size += sprintf(buf + size, "%d: %uMhz %s\n",
					i, mclk_table->dpm_levels[i].value / 100,
					(i == now) ? "*" : "");
		break;
	case PP_PCIE:
		pcie_speed = polaris10_get_current_pcie_speed(hwmgr);
		for (i = 0; i < pcie_table->count; i++) {
			if (pcie_speed != pcie_table->dpm_levels[i].value)
				continue;
			break;
		}
		now = i;

		for (i = 0; i < pcie_table->count; i++)
			size += sprintf(buf + size, "%d: %s %s\n", i,
					(pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x8" :
					(pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" :
					(pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "",
					(i == now) ? "*" : "");
		break;
	default:
		break;
	}
	return size;
}

static const struct pp_hwmgr_func polaris10_hwmgr_funcs = {
	.backend_init = &polaris10_hwmgr_backend_init,
	.backend_fini = &polaris10_hwmgr_backend_fini,
	.asic_setup = &polaris10_setup_asic_task,
	.dynamic_state_management_enable = &polaris10_enable_dpm_tasks,
	.apply_state_adjust_rules = polaris10_apply_state_adjust_rules,
	.force_dpm_level = &polaris10_force_dpm_level,
	.power_state_set = polaris10_set_power_state_tasks,
	.get_power_state_size = polaris10_get_power_state_size,
	.get_mclk = polaris10_dpm_get_mclk,
	.get_sclk = polaris10_dpm_get_sclk,
	.patch_boot_state = polaris10_dpm_patch_boot_state,
	.get_pp_table_entry = polaris10_get_pp_table_entry,
4800
	.get_num_of_pp_table_entries = tonga_get_number_of_powerplay_table_entries,
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
	.print_current_perforce_level = polaris10_print_current_perforce_level,
	.powerdown_uvd = polaris10_phm_powerdown_uvd,
	.powergate_uvd = polaris10_phm_powergate_uvd,
	.powergate_vce = polaris10_phm_powergate_vce,
	.disable_clock_power_gating = polaris10_phm_disable_clock_power_gating,
	.update_clock_gatings = polaris10_phm_update_clock_gatings,
	.notify_smc_display_config_after_ps_adjustment = polaris10_notify_smc_display_config_after_ps_adjustment,
	.display_config_changed = polaris10_display_configuration_changed_task,
	.set_max_fan_pwm_output = polaris10_set_max_fan_pwm_output,
	.set_max_fan_rpm_output = polaris10_set_max_fan_rpm_output,
	.get_temperature = polaris10_thermal_get_temperature,
	.stop_thermal_controller = polaris10_thermal_stop_thermal_controller,
	.get_fan_speed_info = polaris10_fan_ctrl_get_fan_speed_info,
	.get_fan_speed_percent = polaris10_fan_ctrl_get_fan_speed_percent,
	.set_fan_speed_percent = polaris10_fan_ctrl_set_fan_speed_percent,
	.reset_fan_speed_to_default = polaris10_fan_ctrl_reset_fan_speed_to_default,
	.get_fan_speed_rpm = polaris10_fan_ctrl_get_fan_speed_rpm,
	.set_fan_speed_rpm = polaris10_fan_ctrl_set_fan_speed_rpm,
	.uninitialize_thermal_controller = polaris10_thermal_ctrl_uninitialize_thermal_controller,
	.register_internal_thermal_interrupt = polaris10_register_internal_thermal_interrupt,
	.check_smc_update_required_for_display_configuration = polaris10_check_smc_update_required_for_display_configuration,
	.check_states_equal = polaris10_check_states_equal,
	.get_pp_table = polaris10_get_pp_table,
	.set_pp_table = polaris10_set_pp_table,
	.force_clock_level = polaris10_force_clock_level,
	.print_clock_levels = polaris10_print_clock_levels,
	.enable_per_cu_power_gating = polaris10_phm_enable_per_cu_power_gating,
4828 4829
};

4830
int polaris10_hwmgr_init(struct pp_hwmgr *hwmgr)
4831
{
4832
	struct polaris10_hwmgr  *data;
4833

4834
	data = kzalloc (sizeof(struct polaris10_hwmgr), GFP_KERNEL);
4835 4836 4837 4838
	if (data == NULL)
		return -ENOMEM;

	hwmgr->backend = data;
4839
	hwmgr->hwmgr_func = &polaris10_hwmgr_funcs;
4840
	hwmgr->pptable_func = &tonga_pptable_funcs;
4841
	pp_polaris10_thermal_initialize(hwmgr);
4842 4843 4844

	return 0;
}