bio.c 47.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
9
#include <linux/uio.h>
10
#include <linux/iocontext.h>
L
Linus Torvalds 已提交
11 12 13
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
14
#include <linux/export.h>
L
Linus Torvalds 已提交
15 16
#include <linux/mempool.h>
#include <linux/workqueue.h>
17
#include <linux/cgroup.h>
18
#include <linux/blk-cgroup.h>
19
#include <linux/highmem.h>
20
#include <linux/sched/sysctl.h>
21
#include <linux/blk-crypto.h>
L
Linus Torvalds 已提交
22

23
#include <trace/events/block.h>
24
#include "blk.h"
J
Josef Bacik 已提交
25
#include "blk-rq-qos.h"
26

27 28 29 30 31 32
/*
 * Test patch to inline a certain number of bi_io_vec's inside the bio
 * itself, to shrink a bio data allocation from two mempool calls to one
 */
#define BIO_INLINE_VECS		4

L
Linus Torvalds 已提交
33 34 35 36 37
/*
 * if you change this list, also change bvec_alloc or things will
 * break badly! cannot be bigger than what you can fit into an
 * unsigned short
 */
38
#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
39
static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
40
	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
L
Linus Torvalds 已提交
41 42 43 44 45 46 47
};
#undef BV

/*
 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
 * IO code that does not need private memory pools.
 */
48
struct bio_set fs_bio_set;
49
EXPORT_SYMBOL(fs_bio_set);
L
Linus Torvalds 已提交
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
/*
 * Our slab pool management
 */
struct bio_slab {
	struct kmem_cache *slab;
	unsigned int slab_ref;
	unsigned int slab_size;
	char name[8];
};
static DEFINE_MUTEX(bio_slab_lock);
static struct bio_slab *bio_slabs;
static unsigned int bio_slab_nr, bio_slab_max;

static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
{
	unsigned int sz = sizeof(struct bio) + extra_size;
	struct kmem_cache *slab = NULL;
68
	struct bio_slab *bslab, *new_bio_slabs;
69
	unsigned int new_bio_slab_max;
70 71 72 73 74 75
	unsigned int i, entry = -1;

	mutex_lock(&bio_slab_lock);

	i = 0;
	while (i < bio_slab_nr) {
76
		bslab = &bio_slabs[i];
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

		if (!bslab->slab && entry == -1)
			entry = i;
		else if (bslab->slab_size == sz) {
			slab = bslab->slab;
			bslab->slab_ref++;
			break;
		}
		i++;
	}

	if (slab)
		goto out_unlock;

	if (bio_slab_nr == bio_slab_max && entry == -1) {
92
		new_bio_slab_max = bio_slab_max << 1;
93
		new_bio_slabs = krealloc(bio_slabs,
94
					 new_bio_slab_max * sizeof(struct bio_slab),
95 96
					 GFP_KERNEL);
		if (!new_bio_slabs)
97
			goto out_unlock;
98
		bio_slab_max = new_bio_slab_max;
99
		bio_slabs = new_bio_slabs;
100 101 102 103 104 105 106
	}
	if (entry == -1)
		entry = bio_slab_nr++;

	bslab = &bio_slabs[entry];

	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
107 108
	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
				 SLAB_HWCACHE_ALIGN, NULL);
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
	if (!slab)
		goto out_unlock;

	bslab->slab = slab;
	bslab->slab_ref = 1;
	bslab->slab_size = sz;
out_unlock:
	mutex_unlock(&bio_slab_lock);
	return slab;
}

static void bio_put_slab(struct bio_set *bs)
{
	struct bio_slab *bslab = NULL;
	unsigned int i;

	mutex_lock(&bio_slab_lock);

	for (i = 0; i < bio_slab_nr; i++) {
		if (bs->bio_slab == bio_slabs[i].slab) {
			bslab = &bio_slabs[i];
			break;
		}
	}

	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
		goto out;

	WARN_ON(!bslab->slab_ref);

	if (--bslab->slab_ref)
		goto out;

	kmem_cache_destroy(bslab->slab);
	bslab->slab = NULL;

out:
	mutex_unlock(&bio_slab_lock);
}

149 150
unsigned int bvec_nr_vecs(unsigned short idx)
{
151
	return bvec_slabs[--idx].nr_vecs;
152 153
}

154
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
155
{
156 157 158 159 160
	if (!idx)
		return;
	idx--;

	BIO_BUG_ON(idx >= BVEC_POOL_NR);
161

162
	if (idx == BVEC_POOL_MAX) {
163
		mempool_free(bv, pool);
164
	} else {
165 166 167 168 169 170
		struct biovec_slab *bvs = bvec_slabs + idx;

		kmem_cache_free(bvs->slab, bv);
	}
}

171 172
struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
			   mempool_t *pool)
L
Linus Torvalds 已提交
173 174 175
{
	struct bio_vec *bvl;

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
	/*
	 * see comment near bvec_array define!
	 */
	switch (nr) {
	case 1:
		*idx = 0;
		break;
	case 2 ... 4:
		*idx = 1;
		break;
	case 5 ... 16:
		*idx = 2;
		break;
	case 17 ... 64:
		*idx = 3;
		break;
	case 65 ... 128:
		*idx = 4;
		break;
	case 129 ... BIO_MAX_PAGES:
		*idx = 5;
		break;
	default:
		return NULL;
	}

	/*
	 * idx now points to the pool we want to allocate from. only the
	 * 1-vec entry pool is mempool backed.
	 */
206
	if (*idx == BVEC_POOL_MAX) {
207
fallback:
208
		bvl = mempool_alloc(pool, gfp_mask);
209 210
	} else {
		struct biovec_slab *bvs = bvec_slabs + *idx;
211
		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
212

J
Jens Axboe 已提交
213
		/*
214 215 216
		 * Make this allocation restricted and don't dump info on
		 * allocation failures, since we'll fallback to the mempool
		 * in case of failure.
J
Jens Axboe 已提交
217
		 */
218
		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
L
Linus Torvalds 已提交
219

J
Jens Axboe 已提交
220
		/*
221
		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
222
		 * is set, retry with the 1-entry mempool
J
Jens Axboe 已提交
223
		 */
224
		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
225
		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
226
			*idx = BVEC_POOL_MAX;
227 228 229 230
			goto fallback;
		}
	}

231
	(*idx)++;
L
Linus Torvalds 已提交
232 233 234
	return bvl;
}

235
void bio_uninit(struct bio *bio)
L
Linus Torvalds 已提交
236
{
237
	bio_disassociate_blkg(bio);
238 239 240

	if (bio_integrity(bio))
		bio_integrity_free(bio);
241 242

	bio_crypt_free_ctx(bio);
K
Kent Overstreet 已提交
243
}
244
EXPORT_SYMBOL(bio_uninit);
245

K
Kent Overstreet 已提交
246 247 248 249 250
static void bio_free(struct bio *bio)
{
	struct bio_set *bs = bio->bi_pool;
	void *p;

251
	bio_uninit(bio);
K
Kent Overstreet 已提交
252 253

	if (bs) {
254
		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
K
Kent Overstreet 已提交
255 256 257 258 259

		/*
		 * If we have front padding, adjust the bio pointer before freeing
		 */
		p = bio;
260 261
		p -= bs->front_pad;

262
		mempool_free(p, &bs->bio_pool);
K
Kent Overstreet 已提交
263 264 265 266
	} else {
		/* Bio was allocated by bio_kmalloc() */
		kfree(bio);
	}
P
Peter Osterlund 已提交
267 268
}

269 270 271 272 273
/*
 * Users of this function have their own bio allocation. Subsequently,
 * they must remember to pair any call to bio_init() with bio_uninit()
 * when IO has completed, or when the bio is released.
 */
274 275
void bio_init(struct bio *bio, struct bio_vec *table,
	      unsigned short max_vecs)
L
Linus Torvalds 已提交
276
{
J
Jens Axboe 已提交
277
	memset(bio, 0, sizeof(*bio));
278
	atomic_set(&bio->__bi_remaining, 1);
279
	atomic_set(&bio->__bi_cnt, 1);
280 281 282

	bio->bi_io_vec = table;
	bio->bi_max_vecs = max_vecs;
L
Linus Torvalds 已提交
283
}
284
EXPORT_SYMBOL(bio_init);
L
Linus Torvalds 已提交
285

K
Kent Overstreet 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299
/**
 * bio_reset - reinitialize a bio
 * @bio:	bio to reset
 *
 * Description:
 *   After calling bio_reset(), @bio will be in the same state as a freshly
 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 *   comment in struct bio.
 */
void bio_reset(struct bio *bio)
{
	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);

300
	bio_uninit(bio);
K
Kent Overstreet 已提交
301 302

	memset(bio, 0, BIO_RESET_BYTES);
303
	bio->bi_flags = flags;
304
	atomic_set(&bio->__bi_remaining, 1);
K
Kent Overstreet 已提交
305 306 307
}
EXPORT_SYMBOL(bio_reset);

308
static struct bio *__bio_chain_endio(struct bio *bio)
K
Kent Overstreet 已提交
309
{
310 311
	struct bio *parent = bio->bi_private;

312 313
	if (!parent->bi_status)
		parent->bi_status = bio->bi_status;
K
Kent Overstreet 已提交
314
	bio_put(bio);
315 316 317 318 319 320
	return parent;
}

static void bio_chain_endio(struct bio *bio)
{
	bio_endio(__bio_chain_endio(bio));
K
Kent Overstreet 已提交
321 322 323 324
}

/**
 * bio_chain - chain bio completions
325 326
 * @bio: the target bio
 * @parent: the @bio's parent bio
K
Kent Overstreet 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339
 *
 * The caller won't have a bi_end_io called when @bio completes - instead,
 * @parent's bi_end_io won't be called until both @parent and @bio have
 * completed; the chained bio will also be freed when it completes.
 *
 * The caller must not set bi_private or bi_end_io in @bio.
 */
void bio_chain(struct bio *bio, struct bio *parent)
{
	BUG_ON(bio->bi_private || bio->bi_end_io);

	bio->bi_private = parent;
	bio->bi_end_io	= bio_chain_endio;
340
	bio_inc_remaining(parent);
K
Kent Overstreet 已提交
341 342 343
}
EXPORT_SYMBOL(bio_chain);

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
static void bio_alloc_rescue(struct work_struct *work)
{
	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
	struct bio *bio;

	while (1) {
		spin_lock(&bs->rescue_lock);
		bio = bio_list_pop(&bs->rescue_list);
		spin_unlock(&bs->rescue_lock);

		if (!bio)
			break;

		generic_make_request(bio);
	}
}

static void punt_bios_to_rescuer(struct bio_set *bs)
{
	struct bio_list punt, nopunt;
	struct bio *bio;

366 367
	if (WARN_ON_ONCE(!bs->rescue_workqueue))
		return;
368 369 370 371 372 373 374 375 376 377 378 379 380 381
	/*
	 * In order to guarantee forward progress we must punt only bios that
	 * were allocated from this bio_set; otherwise, if there was a bio on
	 * there for a stacking driver higher up in the stack, processing it
	 * could require allocating bios from this bio_set, and doing that from
	 * our own rescuer would be bad.
	 *
	 * Since bio lists are singly linked, pop them all instead of trying to
	 * remove from the middle of the list:
	 */

	bio_list_init(&punt);
	bio_list_init(&nopunt);

382
	while ((bio = bio_list_pop(&current->bio_list[0])))
383
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
384
	current->bio_list[0] = nopunt;
385

386 387 388 389
	bio_list_init(&nopunt);
	while ((bio = bio_list_pop(&current->bio_list[1])))
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
	current->bio_list[1] = nopunt;
390 391 392 393 394 395 396 397

	spin_lock(&bs->rescue_lock);
	bio_list_merge(&bs->rescue_list, &punt);
	spin_unlock(&bs->rescue_lock);

	queue_work(bs->rescue_workqueue, &bs->rescue_work);
}

L
Linus Torvalds 已提交
398 399
/**
 * bio_alloc_bioset - allocate a bio for I/O
400
 * @gfp_mask:   the GFP_* mask given to the slab allocator
L
Linus Torvalds 已提交
401
 * @nr_iovecs:	number of iovecs to pre-allocate
402
 * @bs:		the bio_set to allocate from.
L
Linus Torvalds 已提交
403 404
 *
 * Description:
405 406 407
 *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
 *   backed by the @bs's mempool.
 *
408 409 410 411 412 413
 *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
 *   always be able to allocate a bio. This is due to the mempool guarantees.
 *   To make this work, callers must never allocate more than 1 bio at a time
 *   from this pool. Callers that need to allocate more than 1 bio must always
 *   submit the previously allocated bio for IO before attempting to allocate
 *   a new one. Failure to do so can cause deadlocks under memory pressure.
414
 *
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
 *   Note that when running under generic_make_request() (i.e. any block
 *   driver), bios are not submitted until after you return - see the code in
 *   generic_make_request() that converts recursion into iteration, to prevent
 *   stack overflows.
 *
 *   This would normally mean allocating multiple bios under
 *   generic_make_request() would be susceptible to deadlocks, but we have
 *   deadlock avoidance code that resubmits any blocked bios from a rescuer
 *   thread.
 *
 *   However, we do not guarantee forward progress for allocations from other
 *   mempools. Doing multiple allocations from the same mempool under
 *   generic_make_request() should be avoided - instead, use bio_set's front_pad
 *   for per bio allocations.
 *
430 431 432
 *   RETURNS:
 *   Pointer to new bio on success, NULL on failure.
 */
433 434
struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
			     struct bio_set *bs)
L
Linus Torvalds 已提交
435
{
436
	gfp_t saved_gfp = gfp_mask;
437 438
	unsigned front_pad;
	unsigned inline_vecs;
I
Ingo Molnar 已提交
439
	struct bio_vec *bvl = NULL;
T
Tejun Heo 已提交
440 441 442
	struct bio *bio;
	void *p;

443 444 445 446 447 448 449 450 451 452
	if (!bs) {
		if (nr_iovecs > UIO_MAXIOV)
			return NULL;

		p = kmalloc(sizeof(struct bio) +
			    nr_iovecs * sizeof(struct bio_vec),
			    gfp_mask);
		front_pad = 0;
		inline_vecs = nr_iovecs;
	} else {
J
Junichi Nomura 已提交
453
		/* should not use nobvec bioset for nr_iovecs > 0 */
454 455
		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
				 nr_iovecs > 0))
J
Junichi Nomura 已提交
456
			return NULL;
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
		/*
		 * generic_make_request() converts recursion to iteration; this
		 * means if we're running beneath it, any bios we allocate and
		 * submit will not be submitted (and thus freed) until after we
		 * return.
		 *
		 * This exposes us to a potential deadlock if we allocate
		 * multiple bios from the same bio_set() while running
		 * underneath generic_make_request(). If we were to allocate
		 * multiple bios (say a stacking block driver that was splitting
		 * bios), we would deadlock if we exhausted the mempool's
		 * reserve.
		 *
		 * We solve this, and guarantee forward progress, with a rescuer
		 * workqueue per bio_set. If we go to allocate and there are
		 * bios on current->bio_list, we first try the allocation
473 474 475
		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
		 * bios we would be blocking to the rescuer workqueue before
		 * we retry with the original gfp_flags.
476 477
		 */

478 479
		if (current->bio_list &&
		    (!bio_list_empty(&current->bio_list[0]) ||
480 481
		     !bio_list_empty(&current->bio_list[1])) &&
		    bs->rescue_workqueue)
482
			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
483

484
		p = mempool_alloc(&bs->bio_pool, gfp_mask);
485 486 487
		if (!p && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
488
			p = mempool_alloc(&bs->bio_pool, gfp_mask);
489 490
		}

491 492 493 494
		front_pad = bs->front_pad;
		inline_vecs = BIO_INLINE_VECS;
	}

T
Tejun Heo 已提交
495 496
	if (unlikely(!p))
		return NULL;
L
Linus Torvalds 已提交
497

498
	bio = p + front_pad;
499
	bio_init(bio, NULL, 0);
I
Ingo Molnar 已提交
500

501
	if (nr_iovecs > inline_vecs) {
502 503
		unsigned long idx = 0;

504
		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
505 506 507
		if (!bvl && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
508
			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
509 510
		}

I
Ingo Molnar 已提交
511 512
		if (unlikely(!bvl))
			goto err_free;
513

514
		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
515 516
	} else if (nr_iovecs) {
		bvl = bio->bi_inline_vecs;
L
Linus Torvalds 已提交
517
	}
518 519

	bio->bi_pool = bs;
I
Ingo Molnar 已提交
520 521
	bio->bi_max_vecs = nr_iovecs;
	bio->bi_io_vec = bvl;
L
Linus Torvalds 已提交
522
	return bio;
I
Ingo Molnar 已提交
523 524

err_free:
525
	mempool_free(p, &bs->bio_pool);
I
Ingo Molnar 已提交
526
	return NULL;
L
Linus Torvalds 已提交
527
}
528
EXPORT_SYMBOL(bio_alloc_bioset);
L
Linus Torvalds 已提交
529

530
void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
L
Linus Torvalds 已提交
531 532
{
	unsigned long flags;
533 534
	struct bio_vec bv;
	struct bvec_iter iter;
L
Linus Torvalds 已提交
535

536
	__bio_for_each_segment(bv, bio, iter, start) {
537 538 539
		char *data = bvec_kmap_irq(&bv, &flags);
		memset(data, 0, bv.bv_len);
		flush_dcache_page(bv.bv_page);
L
Linus Torvalds 已提交
540 541 542
		bvec_kunmap_irq(data, &flags);
	}
}
543
EXPORT_SYMBOL(zero_fill_bio_iter);
L
Linus Torvalds 已提交
544

545 546 547 548 549 550 551 552 553 554
/**
 * bio_truncate - truncate the bio to small size of @new_size
 * @bio:	the bio to be truncated
 * @new_size:	new size for truncating the bio
 *
 * Description:
 *   Truncate the bio to new size of @new_size. If bio_op(bio) is
 *   REQ_OP_READ, zero the truncated part. This function should only
 *   be used for handling corner cases, such as bio eod.
 */
555 556 557 558 559 560 561 562 563 564
void bio_truncate(struct bio *bio, unsigned new_size)
{
	struct bio_vec bv;
	struct bvec_iter iter;
	unsigned int done = 0;
	bool truncated = false;

	if (new_size >= bio->bi_iter.bi_size)
		return;

565
	if (bio_op(bio) != REQ_OP_READ)
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
		goto exit;

	bio_for_each_segment(bv, bio, iter) {
		if (done + bv.bv_len > new_size) {
			unsigned offset;

			if (!truncated)
				offset = new_size - done;
			else
				offset = 0;
			zero_user(bv.bv_page, offset, bv.bv_len - offset);
			truncated = true;
		}
		done += bv.bv_len;
	}

 exit:
	/*
	 * Don't touch bvec table here and make it really immutable, since
	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
	 * in its .end_bio() callback.
	 *
	 * It is enough to truncate bio by updating .bi_size since we can make
	 * correct bvec with the updated .bi_size for drivers.
	 */
	bio->bi_iter.bi_size = new_size;
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
/**
 * guard_bio_eod - truncate a BIO to fit the block device
 * @bio:	bio to truncate
 *
 * This allows us to do IO even on the odd last sectors of a device, even if the
 * block size is some multiple of the physical sector size.
 *
 * We'll just truncate the bio to the size of the device, and clear the end of
 * the buffer head manually.  Truly out-of-range accesses will turn into actual
 * I/O errors, this only handles the "we need to be able to do I/O at the final
 * sector" case.
 */
void guard_bio_eod(struct bio *bio)
{
	sector_t maxsector;
	struct hd_struct *part;

	rcu_read_lock();
	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
	if (part)
		maxsector = part_nr_sects_read(part);
	else
		maxsector = get_capacity(bio->bi_disk);
	rcu_read_unlock();

	if (!maxsector)
		return;

	/*
	 * If the *whole* IO is past the end of the device,
	 * let it through, and the IO layer will turn it into
	 * an EIO.
	 */
	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
		return;

	maxsector -= bio->bi_iter.bi_sector;
	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
		return;

	bio_truncate(bio, maxsector << 9);
}

L
Linus Torvalds 已提交
637 638 639 640 641 642
/**
 * bio_put - release a reference to a bio
 * @bio:   bio to release reference to
 *
 * Description:
 *   Put a reference to a &struct bio, either one you have gotten with
643
 *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
L
Linus Torvalds 已提交
644 645 646
 **/
void bio_put(struct bio *bio)
{
647
	if (!bio_flagged(bio, BIO_REFFED))
K
Kent Overstreet 已提交
648
		bio_free(bio);
649 650 651 652 653 654 655 656 657
	else {
		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));

		/*
		 * last put frees it
		 */
		if (atomic_dec_and_test(&bio->__bi_cnt))
			bio_free(bio);
	}
L
Linus Torvalds 已提交
658
}
659
EXPORT_SYMBOL(bio_put);
L
Linus Torvalds 已提交
660

K
Kent Overstreet 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673
/**
 * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
 * 	@bio: destination bio
 * 	@bio_src: bio to clone
 *
 *	Clone a &bio. Caller will own the returned bio, but not
 *	the actual data it points to. Reference count of returned
 * 	bio will be one.
 *
 * 	Caller must ensure that @bio_src is not freed before @bio.
 */
void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
{
674
	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
K
Kent Overstreet 已提交
675 676

	/*
677
	 * most users will be overriding ->bi_disk with a new target,
K
Kent Overstreet 已提交
678 679
	 * so we don't set nor calculate new physical/hw segment counts here
	 */
680
	bio->bi_disk = bio_src->bi_disk;
681
	bio->bi_partno = bio_src->bi_partno;
682
	bio_set_flag(bio, BIO_CLONED);
S
Shaohua Li 已提交
683 684
	if (bio_flagged(bio_src, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
J
Jens Axboe 已提交
685
	bio->bi_opf = bio_src->bi_opf;
686
	bio->bi_ioprio = bio_src->bi_ioprio;
687
	bio->bi_write_hint = bio_src->bi_write_hint;
K
Kent Overstreet 已提交
688 689
	bio->bi_iter = bio_src->bi_iter;
	bio->bi_io_vec = bio_src->bi_io_vec;
690

691
	bio_clone_blkg_association(bio, bio_src);
692
	blkcg_bio_issue_init(bio);
K
Kent Overstreet 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
}
EXPORT_SYMBOL(__bio_clone_fast);

/**
 *	bio_clone_fast - clone a bio that shares the original bio's biovec
 *	@bio: bio to clone
 *	@gfp_mask: allocation priority
 *	@bs: bio_set to allocate from
 *
 * 	Like __bio_clone_fast, only also allocates the returned bio
 */
struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
{
	struct bio *b;

	b = bio_alloc_bioset(gfp_mask, 0, bs);
	if (!b)
		return NULL;

	__bio_clone_fast(b, bio);

714 715
	bio_crypt_clone(b, bio, gfp_mask);

K
Kent Overstreet 已提交
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
	if (bio_integrity(bio)) {
		int ret;

		ret = bio_integrity_clone(b, bio, gfp_mask);

		if (ret < 0) {
			bio_put(b);
			return NULL;
		}
	}

	return b;
}
EXPORT_SYMBOL(bio_clone_fast);

731 732 733 734 735 736
const char *bio_devname(struct bio *bio, char *buf)
{
	return disk_name(bio->bi_disk, bio->bi_partno, buf);
}
EXPORT_SYMBOL(bio_devname);

737 738
static inline bool page_is_mergeable(const struct bio_vec *bv,
		struct page *page, unsigned int len, unsigned int off,
739
		bool *same_page)
740 741 742 743 744 745 746 747 748
{
	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
		bv->bv_offset + bv->bv_len - 1;
	phys_addr_t page_addr = page_to_phys(page);

	if (vec_end_addr + 1 != page_addr + off)
		return false;
	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
		return false;
749

750 751 752
	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
	if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
		return false;
753 754 755
	return true;
}

756 757 758 759 760 761 762 763
/*
 * Try to merge a page into a segment, while obeying the hardware segment
 * size limit.  This is not for normal read/write bios, but for passthrough
 * or Zone Append operations that we can't split.
 */
static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
				 struct page *page, unsigned len,
				 unsigned offset, bool *same_page)
764
{
765
	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
766 767 768 769 770 771 772 773
	unsigned long mask = queue_segment_boundary(q);
	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;

	if ((addr1 | mask) != (addr2 | mask))
		return false;
	if (bv->bv_len + len > queue_max_segment_size(q))
		return false;
774
	return __bio_try_merge_page(bio, page, len, offset, same_page);
775 776
}

L
Linus Torvalds 已提交
777
/**
778 779 780 781 782 783 784 785
 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
 * @q: the target queue
 * @bio: destination bio
 * @page: page to add
 * @len: vec entry length
 * @offset: vec entry offset
 * @max_sectors: maximum number of sectors that can be added
 * @same_page: return if the segment has been merged inside the same page
K
Kent Overstreet 已提交
786
 *
787 788
 * Add a page to a bio while respecting the hardware max_sectors, max_segment
 * and gap limitations.
L
Linus Torvalds 已提交
789
 */
790
int bio_add_hw_page(struct request_queue *q, struct bio *bio,
791
		struct page *page, unsigned int len, unsigned int offset,
792
		unsigned int max_sectors, bool *same_page)
L
Linus Torvalds 已提交
793 794 795
{
	struct bio_vec *bvec;

796
	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
L
Linus Torvalds 已提交
797 798
		return 0;

799
	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
L
Linus Torvalds 已提交
800 801
		return 0;

802
	if (bio->bi_vcnt > 0) {
803
		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
804
			return len;
805 806 807 808 809

		/*
		 * If the queue doesn't support SG gaps and adding this segment
		 * would create a gap, disallow it.
		 */
810
		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
811 812
		if (bvec_gap_to_prev(q, bvec, offset))
			return 0;
813 814
	}

M
Ming Lei 已提交
815
	if (bio_full(bio, len))
L
Linus Torvalds 已提交
816 817
		return 0;

818
	if (bio->bi_vcnt >= queue_max_segments(q))
819 820
		return 0;

821 822 823 824 825
	bvec = &bio->bi_io_vec[bio->bi_vcnt];
	bvec->bv_page = page;
	bvec->bv_len = len;
	bvec->bv_offset = offset;
	bio->bi_vcnt++;
826
	bio->bi_iter.bi_size += len;
L
Linus Torvalds 已提交
827 828
	return len;
}
829

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
/**
 * bio_add_pc_page	- attempt to add page to passthrough bio
 * @q: the target queue
 * @bio: destination bio
 * @page: page to add
 * @len: vec entry length
 * @offset: vec entry offset
 *
 * Attempt to add a page to the bio_vec maplist. This can fail for a
 * number of reasons, such as the bio being full or target block device
 * limitations. The target block device must allow bio's up to PAGE_SIZE,
 * so it is always possible to add a single page to an empty bio.
 *
 * This should only be used by passthrough bios.
 */
845 846 847
int bio_add_pc_page(struct request_queue *q, struct bio *bio,
		struct page *page, unsigned int len, unsigned int offset)
{
848
	bool same_page = false;
849 850
	return bio_add_hw_page(q, bio, page, len, offset,
			queue_max_hw_sectors(q), &same_page);
851
}
852
EXPORT_SYMBOL(bio_add_pc_page);
853

L
Linus Torvalds 已提交
854
/**
855 856
 * __bio_try_merge_page - try appending data to an existing bvec.
 * @bio: destination bio
857
 * @page: start page to add
858
 * @len: length of the data to add
859
 * @off: offset of the data relative to @page
860
 * @same_page: return if the segment has been merged inside the same page
L
Linus Torvalds 已提交
861
 *
862 863 864 865
 * Try to add the data at @page + @off to the last bvec of @bio.  This is a
 * a useful optimisation for file systems with a block size smaller than the
 * page size.
 *
866 867
 * Warn if (@len, @off) crosses pages in case that @same_page is true.
 *
868
 * Return %true on success or %false on failure.
L
Linus Torvalds 已提交
869
 */
870
bool __bio_try_merge_page(struct bio *bio, struct page *page,
871
		unsigned int len, unsigned int off, bool *same_page)
L
Linus Torvalds 已提交
872
{
K
Kent Overstreet 已提交
873
	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
874
		return false;
875

876
	if (bio->bi_vcnt > 0) {
877
		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
878 879

		if (page_is_mergeable(bv, page, len, off, same_page)) {
880 881
			if (bio->bi_iter.bi_size > UINT_MAX - len)
				return false;
882 883 884 885
			bv->bv_len += len;
			bio->bi_iter.bi_size += len;
			return true;
		}
K
Kent Overstreet 已提交
886
	}
887 888 889
	return false;
}
EXPORT_SYMBOL_GPL(__bio_try_merge_page);
K
Kent Overstreet 已提交
890

891
/**
892
 * __bio_add_page - add page(s) to a bio in a new segment
893
 * @bio: destination bio
894 895 896
 * @page: start page to add
 * @len: length of the data to add, may cross pages
 * @off: offset of the data relative to @page, may cross pages
897 898 899 900 901 902 903 904
 *
 * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
 * that @bio has space for another bvec.
 */
void __bio_add_page(struct bio *bio, struct page *page,
		unsigned int len, unsigned int off)
{
	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
K
Kent Overstreet 已提交
905

906
	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
M
Ming Lei 已提交
907
	WARN_ON_ONCE(bio_full(bio, len));
908 909 910 911

	bv->bv_page = page;
	bv->bv_offset = off;
	bv->bv_len = len;
K
Kent Overstreet 已提交
912 913

	bio->bi_iter.bi_size += len;
914
	bio->bi_vcnt++;
915 916 917

	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
		bio_set_flag(bio, BIO_WORKINGSET);
918 919 920 921
}
EXPORT_SYMBOL_GPL(__bio_add_page);

/**
922
 *	bio_add_page	-	attempt to add page(s) to bio
923
 *	@bio: destination bio
924 925 926
 *	@page: start page to add
 *	@len: vec entry length, may cross pages
 *	@offset: vec entry offset relative to @page, may cross pages
927
 *
928
 *	Attempt to add page(s) to the bio_vec maplist. This will only fail
929 930 931 932 933
 *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
 */
int bio_add_page(struct bio *bio, struct page *page,
		 unsigned int len, unsigned int offset)
{
934 935 936
	bool same_page = false;

	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
M
Ming Lei 已提交
937
		if (bio_full(bio, len))
938 939 940
			return 0;
		__bio_add_page(bio, page, len, offset);
	}
K
Kent Overstreet 已提交
941
	return len;
L
Linus Torvalds 已提交
942
}
943
EXPORT_SYMBOL(bio_add_page);
L
Linus Torvalds 已提交
944

945
void bio_release_pages(struct bio *bio, bool mark_dirty)
946 947 948 949
{
	struct bvec_iter_all iter_all;
	struct bio_vec *bvec;

950 951 952
	if (bio_flagged(bio, BIO_NO_PAGE_REF))
		return;

953 954 955
	bio_for_each_segment_all(bvec, bio, iter_all) {
		if (mark_dirty && !PageCompound(bvec->bv_page))
			set_page_dirty_lock(bvec->bv_page);
956
		put_page(bvec->bv_page);
957
	}
958
}
959
EXPORT_SYMBOL_GPL(bio_release_pages);
960

961 962 963 964 965 966 967 968 969 970 971 972
static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
{
	const struct bio_vec *bv = iter->bvec;
	unsigned int len;
	size_t size;

	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
		return -EINVAL;

	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
	size = bio_add_page(bio, bv->bv_page, len,
				bv->bv_offset + iter->iov_offset);
973 974 975 976
	if (unlikely(size != len))
		return -EINVAL;
	iov_iter_advance(iter, size);
	return 0;
977 978
}

979 980
#define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))

981
/**
982
 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
983 984 985
 * @bio: bio to add pages to
 * @iter: iov iterator describing the region to be mapped
 *
986
 * Pins pages from *iter and appends them to @bio's bvec array. The
987
 * pages will have to be released using put_page() when done.
988 989
 * For multi-segment *iter, this function only adds pages from the
 * the next non-empty segment of the iov iterator.
990
 */
991
static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
992
{
993 994
	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
995 996
	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
	struct page **pages = (struct page **)bv;
997
	bool same_page = false;
998 999
	ssize_t size, left;
	unsigned len, i;
1000
	size_t offset;
1001 1002 1003 1004 1005 1006 1007 1008

	/*
	 * Move page array up in the allocated memory for the bio vecs as far as
	 * possible so that we can start filling biovecs from the beginning
	 * without overwriting the temporary page array.
	*/
	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1009 1010 1011 1012 1013

	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
	if (unlikely(size <= 0))
		return size ? size : -EFAULT;

1014 1015
	for (left = size, i = 0; left > 0; left -= len, i++) {
		struct page *page = pages[i];
1016

1017
		len = min_t(size_t, PAGE_SIZE - offset, left);
1018 1019 1020 1021 1022

		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
			if (same_page)
				put_page(page);
		} else {
M
Ming Lei 已提交
1023
			if (WARN_ON_ONCE(bio_full(bio, len)))
1024 1025 1026
                                return -EINVAL;
			__bio_add_page(bio, page, len, offset);
		}
1027
		offset = 0;
1028 1029 1030 1031 1032
	}

	iov_iter_advance(iter, size);
	return 0;
}
1033

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
{
	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
	struct request_queue *q = bio->bi_disk->queue;
	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
	struct page **pages = (struct page **)bv;
	ssize_t size, left;
	unsigned len, i;
	size_t offset;

	if (WARN_ON_ONCE(!max_append_sectors))
		return 0;

	/*
	 * Move page array up in the allocated memory for the bio vecs as far as
	 * possible so that we can start filling biovecs from the beginning
	 * without overwriting the temporary page array.
	 */
	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);

	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
	if (unlikely(size <= 0))
		return size ? size : -EFAULT;

	for (left = size, i = 0; left > 0; left -= len, i++) {
		struct page *page = pages[i];
		bool same_page = false;

		len = min_t(size_t, PAGE_SIZE - offset, left);
		if (bio_add_hw_page(q, bio, page, len, offset,
				max_append_sectors, &same_page) != len)
			return -EINVAL;
		if (same_page)
			put_page(page);
		offset = 0;
	}

	iov_iter_advance(iter, size);
	return 0;
}

1078
/**
1079
 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1080
 * @bio: bio to add pages to
1081 1082 1083 1084 1085
 * @iter: iov iterator describing the region to be added
 *
 * This takes either an iterator pointing to user memory, or one pointing to
 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
 * map them into the kernel. On IO completion, the caller should put those
J
Jens Axboe 已提交
1086 1087 1088 1089 1090 1091
 * pages. If we're adding kernel pages, and the caller told us it's safe to
 * do so, we just have to add the pages to the bio directly. We don't grab an
 * extra reference to those pages (the user should already have that), and we
 * don't put the page on IO completion. The caller needs to check if the bio is
 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
 * released.
1092 1093
 *
 * The function tries, but does not guarantee, to pin as many pages as
1094 1095 1096
 * fit into the bio, or are requested in *iter, whatever is smaller. If
 * MM encounters an error pinning the requested pages, it stops. Error
 * is returned only if 0 pages could be pinned.
1097 1098 1099
 */
int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
{
1100
	const bool is_bvec = iov_iter_is_bvec(iter);
1101 1102 1103 1104
	int ret;

	if (WARN_ON_ONCE(bio->bi_vcnt))
		return -EINVAL;
1105 1106

	do {
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
			if (WARN_ON_ONCE(is_bvec))
				return -EINVAL;
			ret = __bio_iov_append_get_pages(bio, iter);
		} else {
			if (is_bvec)
				ret = __bio_iov_bvec_add_pages(bio, iter);
			else
				ret = __bio_iov_iter_get_pages(bio, iter);
		}
M
Ming Lei 已提交
1117
	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1118

1119
	if (is_bvec)
1120
		bio_set_flag(bio, BIO_NO_PAGE_REF);
1121
	return bio->bi_vcnt ? 0 : ret;
1122
}
1123
EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1124

1125
static void submit_bio_wait_endio(struct bio *bio)
1126
{
1127
	complete(bio->bi_private);
1128 1129 1130 1131 1132 1133 1134 1135
}

/**
 * submit_bio_wait - submit a bio, and wait until it completes
 * @bio: The &struct bio which describes the I/O
 *
 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
 * bio_endio() on failure.
1136 1137 1138 1139
 *
 * WARNING: Unlike to how submit_bio() is usually used, this function does not
 * result in bio reference to be consumed. The caller must drop the reference
 * on his own.
1140
 */
1141
int submit_bio_wait(struct bio *bio)
1142
{
1143
	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1144
	unsigned long hang_check;
1145

1146
	bio->bi_private = &done;
1147
	bio->bi_end_io = submit_bio_wait_endio;
J
Jens Axboe 已提交
1148
	bio->bi_opf |= REQ_SYNC;
1149
	submit_bio(bio);
1150 1151 1152 1153 1154 1155 1156 1157 1158

	/* Prevent hang_check timer from firing at us during very long I/O */
	hang_check = sysctl_hung_task_timeout_secs;
	if (hang_check)
		while (!wait_for_completion_io_timeout(&done,
					hang_check * (HZ/2)))
			;
	else
		wait_for_completion_io(&done);
1159

1160
	return blk_status_to_errno(bio->bi_status);
1161 1162 1163
}
EXPORT_SYMBOL(submit_bio_wait);

K
Kent Overstreet 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
/**
 * bio_advance - increment/complete a bio by some number of bytes
 * @bio:	bio to advance
 * @bytes:	number of bytes to complete
 *
 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 * be updated on the last bvec as well.
 *
 * @bio will then represent the remaining, uncompleted portion of the io.
 */
void bio_advance(struct bio *bio, unsigned bytes)
{
	if (bio_integrity(bio))
		bio_integrity_advance(bio, bytes);

1180
	bio_crypt_advance(bio, bytes);
K
Kent Overstreet 已提交
1181
	bio_advance_iter(bio, &bio->bi_iter, bytes);
K
Kent Overstreet 已提交
1182 1183 1184
}
EXPORT_SYMBOL(bio_advance);

1185 1186
void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
			struct bio *src, struct bvec_iter *src_iter)
K
Kent Overstreet 已提交
1187
{
1188
	struct bio_vec src_bv, dst_bv;
K
Kent Overstreet 已提交
1189
	void *src_p, *dst_p;
1190
	unsigned bytes;
K
Kent Overstreet 已提交
1191

1192 1193 1194
	while (src_iter->bi_size && dst_iter->bi_size) {
		src_bv = bio_iter_iovec(src, *src_iter);
		dst_bv = bio_iter_iovec(dst, *dst_iter);
1195 1196

		bytes = min(src_bv.bv_len, dst_bv.bv_len);
K
Kent Overstreet 已提交
1197

1198 1199
		src_p = kmap_atomic(src_bv.bv_page);
		dst_p = kmap_atomic(dst_bv.bv_page);
K
Kent Overstreet 已提交
1200

1201 1202
		memcpy(dst_p + dst_bv.bv_offset,
		       src_p + src_bv.bv_offset,
K
Kent Overstreet 已提交
1203 1204 1205 1206 1207
		       bytes);

		kunmap_atomic(dst_p);
		kunmap_atomic(src_p);

1208 1209
		flush_dcache_page(dst_bv.bv_page);

1210 1211
		bio_advance_iter(src, src_iter, bytes);
		bio_advance_iter(dst, dst_iter, bytes);
K
Kent Overstreet 已提交
1212 1213
	}
}
1214 1215 1216
EXPORT_SYMBOL(bio_copy_data_iter);

/**
1217 1218 1219
 * bio_copy_data - copy contents of data buffers from one bio to another
 * @src: source bio
 * @dst: destination bio
1220 1221 1222 1223 1224 1225
 *
 * Stops when it reaches the end of either @src or @dst - that is, copies
 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
 */
void bio_copy_data(struct bio *dst, struct bio *src)
{
1226 1227 1228 1229
	struct bvec_iter src_iter = src->bi_iter;
	struct bvec_iter dst_iter = dst->bi_iter;

	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1230
}
K
Kent Overstreet 已提交
1231 1232
EXPORT_SYMBOL(bio_copy_data);

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
/**
 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
 * another
 * @src: source bio list
 * @dst: destination bio list
 *
 * Stops when it reaches the end of either the @src list or @dst list - that is,
 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
 * bios).
 */
void bio_list_copy_data(struct bio *dst, struct bio *src)
{
	struct bvec_iter src_iter = src->bi_iter;
	struct bvec_iter dst_iter = dst->bi_iter;

	while (1) {
		if (!src_iter.bi_size) {
			src = src->bi_next;
			if (!src)
				break;

			src_iter = src->bi_iter;
		}

		if (!dst_iter.bi_size) {
			dst = dst->bi_next;
			if (!dst)
				break;

			dst_iter = dst->bi_iter;
		}

		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
	}
}
EXPORT_SYMBOL(bio_list_copy_data);

1270
void bio_free_pages(struct bio *bio)
1271 1272
{
	struct bio_vec *bvec;
1273
	struct bvec_iter_all iter_all;
1274

1275
	bio_for_each_segment_all(bvec, bio, iter_all)
1276 1277
		__free_page(bvec->bv_page);
}
1278
EXPORT_SYMBOL(bio_free_pages);
1279

L
Linus Torvalds 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
/*
 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
 * for performing direct-IO in BIOs.
 *
 * The problem is that we cannot run set_page_dirty() from interrupt context
 * because the required locks are not interrupt-safe.  So what we can do is to
 * mark the pages dirty _before_ performing IO.  And in interrupt context,
 * check that the pages are still dirty.   If so, fine.  If not, redirty them
 * in process context.
 *
 * We special-case compound pages here: normally this means reads into hugetlb
 * pages.  The logic in here doesn't really work right for compound pages
 * because the VM does not uniformly chase down the head page in all cases.
 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
 * handle them at all.  So we skip compound pages here at an early stage.
 *
 * Note that this code is very hard to test under normal circumstances because
 * direct-io pins the pages with get_user_pages().  This makes
 * is_page_cache_freeable return false, and the VM will not clean the pages.
1299
 * But other code (eg, flusher threads) could clean the pages if they are mapped
L
Linus Torvalds 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
 * pagecache.
 *
 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
 * deferred bio dirtying paths.
 */

/*
 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
 */
void bio_set_pages_dirty(struct bio *bio)
{
1311
	struct bio_vec *bvec;
1312
	struct bvec_iter_all iter_all;
L
Linus Torvalds 已提交
1313

1314
	bio_for_each_segment_all(bvec, bio, iter_all) {
1315 1316
		if (!PageCompound(bvec->bv_page))
			set_page_dirty_lock(bvec->bv_page);
L
Linus Torvalds 已提交
1317 1318 1319 1320 1321 1322 1323
	}
}

/*
 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
 * If they are, then fine.  If, however, some pages are clean then they must
 * have been written out during the direct-IO read.  So we take another ref on
1324
 * the BIO and re-dirty the pages in process context.
L
Linus Torvalds 已提交
1325 1326
 *
 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1327 1328
 * here on.  It will run one put_page() against each page and will run one
 * bio_put() against the BIO.
L
Linus Torvalds 已提交
1329 1330
 */

1331
static void bio_dirty_fn(struct work_struct *work);
L
Linus Torvalds 已提交
1332

1333
static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
L
Linus Torvalds 已提交
1334 1335 1336 1337 1338 1339
static DEFINE_SPINLOCK(bio_dirty_lock);
static struct bio *bio_dirty_list;

/*
 * This runs in process context
 */
1340
static void bio_dirty_fn(struct work_struct *work)
L
Linus Torvalds 已提交
1341
{
1342
	struct bio *bio, *next;
L
Linus Torvalds 已提交
1343

1344 1345
	spin_lock_irq(&bio_dirty_lock);
	next = bio_dirty_list;
L
Linus Torvalds 已提交
1346
	bio_dirty_list = NULL;
1347
	spin_unlock_irq(&bio_dirty_lock);
L
Linus Torvalds 已提交
1348

1349 1350
	while ((bio = next) != NULL) {
		next = bio->bi_private;
L
Linus Torvalds 已提交
1351

1352
		bio_release_pages(bio, true);
L
Linus Torvalds 已提交
1353 1354 1355 1356 1357 1358
		bio_put(bio);
	}
}

void bio_check_pages_dirty(struct bio *bio)
{
1359
	struct bio_vec *bvec;
1360
	unsigned long flags;
1361
	struct bvec_iter_all iter_all;
L
Linus Torvalds 已提交
1362

1363
	bio_for_each_segment_all(bvec, bio, iter_all) {
1364 1365
		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
			goto defer;
L
Linus Torvalds 已提交
1366 1367
	}

1368
	bio_release_pages(bio, false);
1369 1370 1371 1372 1373 1374 1375 1376
	bio_put(bio);
	return;
defer:
	spin_lock_irqsave(&bio_dirty_lock, flags);
	bio->bi_private = bio_dirty_list;
	bio_dirty_list = bio;
	spin_unlock_irqrestore(&bio_dirty_lock, flags);
	schedule_work(&bio_dirty_work);
L
Linus Torvalds 已提交
1377 1378
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
static inline bool bio_remaining_done(struct bio *bio)
{
	/*
	 * If we're not chaining, then ->__bi_remaining is always 1 and
	 * we always end io on the first invocation.
	 */
	if (!bio_flagged(bio, BIO_CHAIN))
		return true;

	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);

1390
	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1391
		bio_clear_flag(bio, BIO_CHAIN);
1392
		return true;
1393
	}
1394 1395 1396 1397

	return false;
}

L
Linus Torvalds 已提交
1398 1399 1400 1401 1402
/**
 * bio_endio - end I/O on a bio
 * @bio:	bio
 *
 * Description:
1403 1404 1405
 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
 *   bio unless they own it and thus know that it has an end_io function.
N
NeilBrown 已提交
1406 1407 1408 1409 1410
 *
 *   bio_endio() can be called several times on a bio that has been chained
 *   using bio_chain().  The ->bi_end_io() function will only be called the
 *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
 *   generated if BIO_TRACE_COMPLETION is set.
L
Linus Torvalds 已提交
1411
 **/
1412
void bio_endio(struct bio *bio)
L
Linus Torvalds 已提交
1413
{
C
Christoph Hellwig 已提交
1414
again:
1415
	if (!bio_remaining_done(bio))
C
Christoph Hellwig 已提交
1416
		return;
1417 1418
	if (!bio_integrity_endio(bio))
		return;
L
Linus Torvalds 已提交
1419

J
Josef Bacik 已提交
1420 1421 1422
	if (bio->bi_disk)
		rq_qos_done_bio(bio->bi_disk->queue, bio);

C
Christoph Hellwig 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	/*
	 * Need to have a real endio function for chained bios, otherwise
	 * various corner cases will break (like stacking block devices that
	 * save/restore bi_end_io) - however, we want to avoid unbounded
	 * recursion and blowing the stack. Tail call optimization would
	 * handle this, but compiling with frame pointers also disables
	 * gcc's sibling call optimization.
	 */
	if (bio->bi_end_io == bio_chain_endio) {
		bio = __bio_chain_endio(bio);
		goto again;
K
Kent Overstreet 已提交
1434
	}
C
Christoph Hellwig 已提交
1435

1436 1437
	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
		trace_block_bio_complete(bio->bi_disk->queue, bio,
1438
					 blk_status_to_errno(bio->bi_status));
N
NeilBrown 已提交
1439 1440 1441
		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
	}

1442
	blk_throtl_bio_endio(bio);
S
Shaohua Li 已提交
1443 1444
	/* release cgroup info */
	bio_uninit(bio);
C
Christoph Hellwig 已提交
1445 1446
	if (bio->bi_end_io)
		bio->bi_end_io(bio);
L
Linus Torvalds 已提交
1447
}
1448
EXPORT_SYMBOL(bio_endio);
L
Linus Torvalds 已提交
1449

K
Kent Overstreet 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
/**
 * bio_split - split a bio
 * @bio:	bio to split
 * @sectors:	number of sectors to split from the front of @bio
 * @gfp:	gfp mask
 * @bs:		bio set to allocate from
 *
 * Allocates and returns a new bio which represents @sectors from the start of
 * @bio, and updates @bio to represent the remaining sectors.
 *
1460
 * Unless this is a discard request the newly allocated bio will point
1461 1462
 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
 * neither @bio nor @bs are freed before the split bio.
K
Kent Overstreet 已提交
1463 1464 1465 1466
 */
struct bio *bio_split(struct bio *bio, int sectors,
		      gfp_t gfp, struct bio_set *bs)
{
1467
	struct bio *split;
K
Kent Overstreet 已提交
1468 1469 1470 1471

	BUG_ON(sectors <= 0);
	BUG_ON(sectors >= bio_sectors(bio));

1472 1473 1474 1475
	/* Zone append commands cannot be split */
	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
		return NULL;

1476
	split = bio_clone_fast(bio, gfp, bs);
K
Kent Overstreet 已提交
1477 1478 1479 1480 1481 1482
	if (!split)
		return NULL;

	split->bi_iter.bi_size = sectors << 9;

	if (bio_integrity(split))
1483
		bio_integrity_trim(split);
K
Kent Overstreet 已提交
1484 1485 1486

	bio_advance(bio, split->bi_iter.bi_size);

N
NeilBrown 已提交
1487
	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1488
		bio_set_flag(split, BIO_TRACE_COMPLETION);
N
NeilBrown 已提交
1489

K
Kent Overstreet 已提交
1490 1491 1492 1493
	return split;
}
EXPORT_SYMBOL(bio_split);

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
/**
 * bio_trim - trim a bio
 * @bio:	bio to trim
 * @offset:	number of sectors to trim from the front of @bio
 * @size:	size we want to trim @bio to, in sectors
 */
void bio_trim(struct bio *bio, int offset, int size)
{
	/* 'bio' is a cloned bio which we need to trim to match
	 * the given offset and size.
	 */

	size <<= 9;
1507
	if (offset == 0 && size == bio->bi_iter.bi_size)
1508 1509 1510
		return;

	bio_advance(bio, offset << 9);
1511
	bio->bi_iter.bi_size = size;
1512 1513

	if (bio_integrity(bio))
1514
		bio_integrity_trim(bio);
1515

1516 1517 1518
}
EXPORT_SYMBOL_GPL(bio_trim);

L
Linus Torvalds 已提交
1519 1520 1521 1522
/*
 * create memory pools for biovec's in a bio_set.
 * use the global biovec slabs created for general use.
 */
1523
int biovec_init_pool(mempool_t *pool, int pool_entries)
L
Linus Torvalds 已提交
1524
{
1525
	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
L
Linus Torvalds 已提交
1526

1527
	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
L
Linus Torvalds 已提交
1528 1529
}

1530 1531 1532 1533 1534 1535 1536
/*
 * bioset_exit - exit a bioset initialized with bioset_init()
 *
 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
 * kzalloc()).
 */
void bioset_exit(struct bio_set *bs)
L
Linus Torvalds 已提交
1537
{
1538 1539
	if (bs->rescue_workqueue)
		destroy_workqueue(bs->rescue_workqueue);
1540
	bs->rescue_workqueue = NULL;
1541

1542 1543
	mempool_exit(&bs->bio_pool);
	mempool_exit(&bs->bvec_pool);
1544

1545
	bioset_integrity_free(bs);
1546 1547 1548 1549 1550
	if (bs->bio_slab)
		bio_put_slab(bs);
	bs->bio_slab = NULL;
}
EXPORT_SYMBOL(bioset_exit);
L
Linus Torvalds 已提交
1551

1552 1553
/**
 * bioset_init - Initialize a bio_set
K
Kent Overstreet 已提交
1554
 * @bs:		pool to initialize
1555 1556 1557 1558 1559
 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
 * @front_pad:	Number of bytes to allocate in front of the returned bio
 * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
 *              and %BIOSET_NEED_RESCUER
 *
K
Kent Overstreet 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
 * Description:
 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
 *    to ask for a number of bytes to be allocated in front of the bio.
 *    Front pad allocation is useful for embedding the bio inside
 *    another structure, to avoid allocating extra data to go with the bio.
 *    Note that the bio must be embedded at the END of that structure always,
 *    or things will break badly.
 *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
 *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
 *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
 *    dispatch queued requests when the mempool runs out of space.
 *
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
 */
int bioset_init(struct bio_set *bs,
		unsigned int pool_size,
		unsigned int front_pad,
		int flags)
{
	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);

	bs->front_pad = front_pad;

	spin_lock_init(&bs->rescue_lock);
	bio_list_init(&bs->rescue_list);
	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);

	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
	if (!bs->bio_slab)
		return -ENOMEM;

	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
		goto bad;

	if ((flags & BIOSET_NEED_BVECS) &&
	    biovec_init_pool(&bs->bvec_pool, pool_size))
		goto bad;

	if (!(flags & BIOSET_NEED_RESCUER))
		return 0;

	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
	if (!bs->rescue_workqueue)
		goto bad;

	return 0;
bad:
	bioset_exit(bs);
	return -ENOMEM;
}
EXPORT_SYMBOL(bioset_init);

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
/*
 * Initialize and setup a new bio_set, based on the settings from
 * another bio_set.
 */
int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
{
	int flags;

	flags = 0;
	if (src->bvec_pool.min_nr)
		flags |= BIOSET_NEED_BVECS;
	if (src->rescue_workqueue)
		flags |= BIOSET_NEED_RESCUER;

	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
}
EXPORT_SYMBOL(bioset_init_from_src);

1629
#ifdef CONFIG_BLK_CGROUP
1630

1631
/**
1632
 * bio_disassociate_blkg - puts back the blkg reference if associated
1633 1634
 * @bio: target bio
 *
1635
 * Helper to disassociate the blkg from @bio if a blkg is associated.
1636
 */
1637
void bio_disassociate_blkg(struct bio *bio)
1638
{
1639 1640 1641 1642
	if (bio->bi_blkg) {
		blkg_put(bio->bi_blkg);
		bio->bi_blkg = NULL;
	}
1643
}
1644
EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
1645

1646
/**
1647
 * __bio_associate_blkg - associate a bio with the a blkg
1648
 * @bio: target bio
D
Dennis Zhou 已提交
1649 1650
 * @blkg: the blkg to associate
 *
1651 1652 1653 1654 1655
 * This tries to associate @bio with the specified @blkg.  Association failure
 * is handled by walking up the blkg tree.  Therefore, the blkg associated can
 * be anything between @blkg and the root_blkg.  This situation only happens
 * when a cgroup is dying and then the remaining bios will spill to the closest
 * alive blkg.
1656
 *
1657 1658
 * A reference will be taken on the @blkg and will be released when @bio is
 * freed.
1659
 */
1660
static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
1661
{
1662 1663
	bio_disassociate_blkg(bio);

1664
	bio->bi_blkg = blkg_tryget_closest(blkg);
1665 1666
}

1667
/**
1668
 * bio_associate_blkg_from_css - associate a bio with a specified css
1669
 * @bio: target bio
1670
 * @css: target css
1671
 *
1672
 * Associate @bio with the blkg found by combining the css's blkg and the
1673 1674
 * request_queue of the @bio.  This falls back to the queue's root_blkg if
 * the association fails with the css.
1675
 */
1676 1677
void bio_associate_blkg_from_css(struct bio *bio,
				 struct cgroup_subsys_state *css)
1678
{
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
	struct request_queue *q = bio->bi_disk->queue;
	struct blkcg_gq *blkg;

	rcu_read_lock();

	if (!css || !css->parent)
		blkg = q->root_blkg;
	else
		blkg = blkg_lookup_create(css_to_blkcg(css), q);

	__bio_associate_blkg(bio, blkg);

	rcu_read_unlock();
1692
}
1693
EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1694

1695
#ifdef CONFIG_MEMCG
1696
/**
1697
 * bio_associate_blkg_from_page - associate a bio with the page's blkg
1698
 * @bio: target bio
1699 1700 1701
 * @page: the page to lookup the blkcg from
 *
 * Associate @bio with the blkg from @page's owning memcg and the respective
1702 1703
 * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
 * root_blkg.
1704
 */
1705
void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
1706
{
1707 1708 1709 1710 1711
	struct cgroup_subsys_state *css;

	if (!page->mem_cgroup)
		return;

1712 1713 1714 1715 1716 1717
	rcu_read_lock();

	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
	bio_associate_blkg_from_css(bio, css);

	rcu_read_unlock();
1718 1719 1720
}
#endif /* CONFIG_MEMCG */

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
/**
 * bio_associate_blkg - associate a bio with a blkg
 * @bio: target bio
 *
 * Associate @bio with the blkg found from the bio's css and request_queue.
 * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
 * already associated, the css is reused and association redone as the
 * request_queue may have changed.
 */
void bio_associate_blkg(struct bio *bio)
{
1732
	struct cgroup_subsys_state *css;
1733 1734 1735

	rcu_read_lock();

1736
	if (bio->bi_blkg)
1737
		css = &bio_blkcg(bio)->css;
1738
	else
1739
		css = blkcg_css();
1740

1741
	bio_associate_blkg_from_css(bio, css);
1742 1743

	rcu_read_unlock();
1744
}
1745
EXPORT_SYMBOL_GPL(bio_associate_blkg);
1746

1747
/**
1748
 * bio_clone_blkg_association - clone blkg association from src to dst bio
1749 1750 1751
 * @dst: destination bio
 * @src: source bio
 */
1752
void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1753
{
1754 1755
	rcu_read_lock();

1756
	if (src->bi_blkg)
1757
		__bio_associate_blkg(dst, src->bi_blkg);
1758 1759

	rcu_read_unlock();
1760
}
1761
EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1762 1763
#endif /* CONFIG_BLK_CGROUP */

L
Linus Torvalds 已提交
1764 1765 1766 1767
static void __init biovec_init_slabs(void)
{
	int i;

1768
	for (i = 0; i < BVEC_POOL_NR; i++) {
L
Linus Torvalds 已提交
1769 1770 1771
		int size;
		struct biovec_slab *bvs = bvec_slabs + i;

1772 1773 1774 1775 1776
		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
			bvs->slab = NULL;
			continue;
		}

L
Linus Torvalds 已提交
1777 1778
		size = bvs->nr_vecs * sizeof(struct bio_vec);
		bvs->slab = kmem_cache_create(bvs->name, size, 0,
1779
                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
L
Linus Torvalds 已提交
1780 1781 1782 1783 1784
	}
}

static int __init init_bio(void)
{
1785 1786
	bio_slab_max = 2;
	bio_slab_nr = 0;
K
Kees Cook 已提交
1787 1788
	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
			    GFP_KERNEL);
1789 1790 1791

	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);

1792 1793
	if (!bio_slabs)
		panic("bio: can't allocate bios\n");
L
Linus Torvalds 已提交
1794

1795
	bio_integrity_init();
L
Linus Torvalds 已提交
1796 1797
	biovec_init_slabs();

1798
	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
L
Linus Torvalds 已提交
1799 1800
		panic("bio: can't allocate bios\n");

1801
	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1802 1803
		panic("bio: can't create integrity pool\n");

L
Linus Torvalds 已提交
1804 1805 1806
	return 0;
}
subsys_initcall(init_bio);