core-device.c 33.4 KB
Newer Older
1 2
/*
 * Device probing and sysfs code.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bug.h>
22
#include <linux/ctype.h>
23
#include <linux/delay.h>
24 25
#include <linux/device.h>
#include <linux/errno.h>
26 27
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
28
#include <linux/idr.h>
29
#include <linux/jiffies.h>
30 31
#include <linux/kobject.h>
#include <linux/list.h>
32
#include <linux/mod_devicetable.h>
S
Stefan Richter 已提交
33
#include <linux/module.h>
34
#include <linux/mutex.h>
35
#include <linux/random.h>
36
#include <linux/rwsem.h>
37
#include <linux/slab.h>
J
Jay Fenlason 已提交
38
#include <linux/spinlock.h>
39 40 41
#include <linux/string.h>
#include <linux/workqueue.h>

A
Arun Sharma 已提交
42
#include <linux/atomic.h>
S
Stefan Richter 已提交
43
#include <asm/byteorder.h>
44

45
#include "core.h"
46

47
void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
{
	ci->p = p + 1;
	ci->end = ci->p + (p[0] >> 16);
}
EXPORT_SYMBOL(fw_csr_iterator_init);

int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
{
	*key = *ci->p >> 24;
	*value = *ci->p & 0xffffff;

	return ci->p++ < ci->end;
}
EXPORT_SYMBOL(fw_csr_iterator_next);

63
static const u32 *search_leaf(const u32 *directory, int search_key)
64 65 66 67 68 69 70 71 72
{
	struct fw_csr_iterator ci;
	int last_key = 0, key, value;

	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (last_key == search_key &&
		    key == (CSR_DESCRIPTOR | CSR_LEAF))
			return ci.p - 1 + value;
73

74 75
		last_key = key;
	}
76

77 78 79
	return NULL;
}

80
static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
81
{
82 83
	unsigned int quadlets, i;
	char c;
84 85 86 87

	if (!size || !buf)
		return -EINVAL;

88
	quadlets = min(block[0] >> 16, 256U);
89 90 91 92 93 94 95 96 97
	if (quadlets < 2)
		return -ENODATA;

	if (block[1] != 0 || block[2] != 0)
		/* unknown language/character set */
		return -ENODATA;

	block += 3;
	quadlets -= 2;
98 99
	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
		c = block[i / 4] >> (24 - 8 * (i % 4));
100 101
		if (c == '\0')
			break;
102
		buf[i] = c;
103
	}
104 105 106
	buf[i] = '\0';

	return i;
107 108 109
}

/**
110 111 112 113 114
 * fw_csr_string() - reads a string from the configuration ROM
 * @directory:	e.g. root directory or unit directory
 * @key:	the key of the preceding directory entry
 * @buf:	where to put the string
 * @size:	size of @buf, in bytes
115
 *
116 117 118
 * The string is taken from a minimal ASCII text descriptor leaf after
 * the immediate entry with @key.  The string is zero-terminated.
 * Returns strlen(buf) or a negative error code.
119
 */
120
int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
121
{
122
	const u32 *leaf = search_leaf(directory, key);
123 124
	if (!leaf)
		return -ENOENT;
125

126 127 128 129
	return textual_leaf_to_string(leaf, buf, size);
}
EXPORT_SYMBOL(fw_csr_string);

130
static void get_ids(const u32 *directory, int *id)
131 132
{
	struct fw_csr_iterator ci;
133
	int key, value;
134 135 136

	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
137 138 139 140 141 142
		switch (key) {
		case CSR_VENDOR:	id[0] = value; break;
		case CSR_MODEL:		id[1] = value; break;
		case CSR_SPECIFIER_ID:	id[2] = value; break;
		case CSR_VERSION:	id[3] = value; break;
		}
143
	}
144
}
145

146 147 148 149 150
static void get_modalias_ids(struct fw_unit *unit, int *id)
{
	get_ids(&fw_parent_device(unit)->config_rom[5], id);
	get_ids(unit->directory, id);
}
151

152 153 154 155 156 157 158 159 160 161 162 163 164 165
static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
{
	int match = 0;

	if (id[0] == id_table->vendor_id)
		match |= IEEE1394_MATCH_VENDOR_ID;
	if (id[1] == id_table->model_id)
		match |= IEEE1394_MATCH_MODEL_ID;
	if (id[2] == id_table->specifier_id)
		match |= IEEE1394_MATCH_SPECIFIER_ID;
	if (id[3] == id_table->version)
		match |= IEEE1394_MATCH_VERSION;

	return (match & id_table->match_flags) == id_table->match_flags;
166 167
}

168 169
static bool is_fw_unit(struct device *dev);

170 171
static int fw_unit_match(struct device *dev, struct device_driver *drv)
{
172 173 174
	const struct ieee1394_device_id *id_table =
			container_of(drv, struct fw_driver, driver)->id_table;
	int id[] = {0, 0, 0, 0};
175 176 177 178 179

	/* We only allow binding to fw_units. */
	if (!is_fw_unit(dev))
		return 0;

180
	get_modalias_ids(fw_unit(dev), id);
181

182 183
	for (; id_table->match_flags != 0; id_table++)
		if (match_ids(id_table, id))
184 185 186 187 188 189 190
			return 1;

	return 0;
}

static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
{
191
	int id[] = {0, 0, 0, 0};
192

193
	get_modalias_ids(unit, id);
194 195 196

	return snprintf(buffer, buffer_size,
			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
197
			id[0], id[1], id[2], id[3]);
198 199
}

200
static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
201 202 203 204
{
	struct fw_unit *unit = fw_unit(dev);
	char modalias[64];

205
	get_modalias(unit, modalias, sizeof(modalias));
206

207
	if (add_uevent_var(env, "MODALIAS=%s", modalias))
208 209 210 211 212 213
		return -ENOMEM;

	return 0;
}

struct bus_type fw_bus_type = {
214
	.name = "firewire",
215 216 217 218 219 220
	.match = fw_unit_match,
};
EXPORT_SYMBOL(fw_bus_type);

int fw_device_enable_phys_dma(struct fw_device *device)
{
221 222 223 224 225
	int generation = device->generation;

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();

226 227
	return device->card->driver->enable_phys_dma(device->card,
						     device->node_id,
228
						     generation);
229 230 231
}
EXPORT_SYMBOL(fw_device_enable_phys_dma);

232 233 234 235 236
struct config_rom_attribute {
	struct device_attribute attr;
	u32 key;
};

237 238
static ssize_t show_immediate(struct device *dev,
			      struct device_attribute *dattr, char *buf)
239 240 241 242
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
	struct fw_csr_iterator ci;
243
	const u32 *dir;
244 245 246
	int key, value, ret = -ENOENT;

	down_read(&fw_device_rwsem);
247 248 249 250 251 252 253 254

	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

	fw_csr_iterator_init(&ci, dir);
	while (fw_csr_iterator_next(&ci, &key, &value))
255 256 257 258 259 260 261
		if (attr->key == key) {
			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
				       "0x%06x\n", value);
			break;
		}

	up_read(&fw_device_rwsem);
262

263
	return ret;
264 265 266 267 268
}

#define IMMEDIATE_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }

269 270
static ssize_t show_text_leaf(struct device *dev,
			      struct device_attribute *dattr, char *buf)
271 272 273
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
274
	const u32 *dir;
275 276 277
	size_t bufsize;
	char dummy_buf[2];
	int ret;
278

279 280
	down_read(&fw_device_rwsem);

281 282 283 284 285
	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

286 287 288 289 290
	if (buf) {
		bufsize = PAGE_SIZE - 1;
	} else {
		buf = dummy_buf;
		bufsize = 1;
291 292
	}

293
	ret = fw_csr_string(dir, attr->key, buf, bufsize);
294

295 296 297 298 299 300
	if (ret >= 0) {
		/* Strip trailing whitespace and add newline. */
		while (ret > 0 && isspace(buf[ret - 1]))
			ret--;
		strcpy(buf + ret, "\n");
		ret++;
301
	}
302

303
	up_read(&fw_device_rwsem);
304

305
	return ret;
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
}

#define TEXT_LEAF_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }

static struct config_rom_attribute config_rom_attributes[] = {
	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
	IMMEDIATE_ATTR(version, CSR_VERSION),
	IMMEDIATE_ATTR(model, CSR_MODEL),
	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
};

322 323 324
static void init_fw_attribute_group(struct device *dev,
				    struct device_attribute *attrs,
				    struct fw_attribute_group *group)
325 326
{
	struct device_attribute *attr;
327 328 329 330
	int i, j;

	for (j = 0; attrs[j].attr.name != NULL; j++)
		group->attrs[j] = &attrs[j].attr;
331 332 333 334 335

	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
		attr = &config_rom_attributes[i].attr;
		if (attr->show(dev, attr, NULL) < 0)
			continue;
336
		group->attrs[j++] = &attr->attr;
337 338
	}

339
	group->attrs[j] = NULL;
340 341 342
	group->groups[0] = &group->group;
	group->groups[1] = NULL;
	group->group.attrs = group->attrs;
343
	dev->groups = (const struct attribute_group **) group->groups;
344 345
}

346 347
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
348 349 350 351 352 353 354 355 356 357
{
	struct fw_unit *unit = fw_unit(dev);
	int length;

	length = get_modalias(unit, buf, PAGE_SIZE);
	strcpy(buf + length, "\n");

	return length + 1;
}

358 359
static ssize_t rom_index_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
360
{
361 362
	struct fw_device *device = fw_device(dev->parent);
	struct fw_unit *unit = fw_unit(dev);
363

364 365
	return snprintf(buf, PAGE_SIZE, "%d\n",
			(int)(unit->directory - device->config_rom));
366 367
}

368 369 370 371
static struct device_attribute fw_unit_attributes[] = {
	__ATTR_RO(modalias),
	__ATTR_RO(rom_index),
	__ATTR_NULL,
372 373
};

374 375
static ssize_t config_rom_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
376
{
377
	struct fw_device *device = fw_device(dev);
378
	size_t length;
379

380 381 382 383
	down_read(&fw_device_rwsem);
	length = device->config_rom_length * 4;
	memcpy(buf, device->config_rom, length);
	up_read(&fw_device_rwsem);
384

385
	return length;
386 387
}

388 389
static ssize_t guid_show(struct device *dev,
			 struct device_attribute *attr, char *buf)
390 391
{
	struct fw_device *device = fw_device(dev);
392 393 394 395 396 397
	int ret;

	down_read(&fw_device_rwsem);
	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
		       device->config_rom[3], device->config_rom[4]);
	up_read(&fw_device_rwsem);
398

399
	return ret;
400 401
}

402 403 404 405 406 407 408 409
static ssize_t is_local_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct fw_device *device = fw_device(dev);

	return sprintf(buf, "%u\n", device->is_local);
}

410
static int units_sprintf(char *buf, const u32 *directory)
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
{
	struct fw_csr_iterator ci;
	int key, value;
	int specifier_id = 0;
	int version = 0;

	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_SPECIFIER_ID:
			specifier_id = value;
			break;
		case CSR_VERSION:
			version = value;
			break;
		}
	}

	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
}

static ssize_t units_show(struct device *dev,
			  struct device_attribute *attr, char *buf)
{
	struct fw_device *device = fw_device(dev);
	struct fw_csr_iterator ci;
	int key, value, i = 0;

	down_read(&fw_device_rwsem);
	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key != (CSR_UNIT | CSR_DIRECTORY))
			continue;
		i += units_sprintf(&buf[i], ci.p + value - 1);
		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
			break;
	}
	up_read(&fw_device_rwsem);

	if (i)
		buf[i - 1] = '\n';

	return i;
}

456 457
static struct device_attribute fw_device_attributes[] = {
	__ATTR_RO(config_rom),
458
	__ATTR_RO(guid),
459
	__ATTR_RO(is_local),
460
	__ATTR_RO(units),
461
	__ATTR_NULL,
462 463
};

464 465
static int read_rom(struct fw_device *device,
		    int generation, int index, u32 *data)
466
{
467 468
	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
	int i, rcode;
469 470 471

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();
472

473 474 475 476 477 478 479 480
	for (i = 10; i < 100; i += 10) {
		rcode = fw_run_transaction(device->card,
				TCODE_READ_QUADLET_REQUEST, device->node_id,
				generation, device->max_speed, offset, data, 4);
		if (rcode != RCODE_BUSY)
			break;
		msleep(i);
	}
J
Jay Fenlason 已提交
481
	be32_to_cpus(data);
482

J
Jay Fenlason 已提交
483
	return rcode;
484 485
}

486
#define MAX_CONFIG_ROM_SIZE 256
487

488 489 490
/*
 * Read the bus info block, perform a speed probe, and read all of the rest of
 * the config ROM.  We do all this with a cached bus generation.  If the bus
491
 * generation changes under us, read_config_rom will fail and get retried.
492 493
 * It's better to start all over in this case because the node from which we
 * are reading the ROM may have changed the ROM during the reset.
494
 * Returns either a result code or a negative error code.
495
 */
496
static int read_config_rom(struct fw_device *device, int generation)
497
{
498
	struct fw_card *card = device->card;
499 500
	const u32 *old_rom, *new_rom;
	u32 *rom, *stack;
501
	u32 sp, key;
502
	int i, end, length, ret;
503

504 505
	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
506 507 508
	if (rom == NULL)
		return -ENOMEM;

509 510
	stack = &rom[MAX_CONFIG_ROM_SIZE];
	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
511

512 513
	device->max_speed = SCODE_100;

514 515
	/* First read the bus info block. */
	for (i = 0; i < 5; i++) {
516 517
		ret = read_rom(device, generation, i, &rom[i]);
		if (ret != RCODE_COMPLETE)
518
			goto out;
519
		/*
520
		 * As per IEEE1212 7.2, during initialization, devices can
521 522 523 524
		 * reply with a 0 for the first quadlet of the config
		 * rom to indicate that they are booting (for example,
		 * if the firmware is on the disk of a external
		 * harddisk).  In that case we just fail, and the
525 526
		 * retry mechanism will try again later.
		 */
527 528
		if (i == 0 && rom[i] == 0) {
			ret = RCODE_BUSY;
529
			goto out;
530
		}
531 532
	}

533 534 535 536 537 538 539 540 541 542 543 544 545
	device->max_speed = device->node->max_speed;

	/*
	 * Determine the speed of
	 *   - devices with link speed less than PHY speed,
	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
	 *   - all devices if there are 1394b repeaters.
	 * Note, we cannot use the bus info block's link_spd as starting point
	 * because some buggy firmwares set it lower than necessary and because
	 * 1394-1995 nodes do not have the field.
	 */
	if ((rom[2] & 0x7) < device->max_speed ||
	    device->max_speed == SCODE_BETA ||
546
	    card->beta_repeaters_present) {
547 548 549 550
		u32 dummy;

		/* for S1600 and S3200 */
		if (device->max_speed == SCODE_BETA)
551
			device->max_speed = card->link_speed;
552 553

		while (device->max_speed > SCODE_100) {
554 555
			if (read_rom(device, generation, 0, &dummy) ==
			    RCODE_COMPLETE)
556 557 558 559 560
				break;
			device->max_speed--;
		}
	}

561 562
	/*
	 * Now parse the config rom.  The config rom is a recursive
563 564 565
	 * directory structure so we parse it using a stack of
	 * references to the blocks that make up the structure.  We
	 * push a reference to the root directory on the stack to
566 567
	 * start things off.
	 */
568 569 570 571
	length = i;
	sp = 0;
	stack[sp++] = 0xc0000005;
	while (sp > 0) {
572 573
		/*
		 * Pop the next block reference of the stack.  The
574 575
		 * lower 24 bits is the offset into the config rom,
		 * the upper 8 bits are the type of the reference the
576 577
		 * block.
		 */
578 579
		key = stack[--sp];
		i = key & 0xffffff;
580 581
		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
			ret = -ENXIO;
582
			goto out;
583
		}
584 585

		/* Read header quadlet for the block to get the length. */
586 587
		ret = read_rom(device, generation, i, &rom[i]);
		if (ret != RCODE_COMPLETE)
588
			goto out;
589
		end = i + (rom[i] >> 16) + 1;
590
		if (end > MAX_CONFIG_ROM_SIZE) {
591
			/*
592 593 594
			 * This block extends outside the config ROM which is
			 * a firmware bug.  Ignore this whole block, i.e.
			 * simply set a fake block length of 0.
595
			 */
596 597 598
			fw_err(card, "skipped invalid ROM block %x at %llx\n",
			       rom[i],
			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
599 600 601 602
			rom[i] = 0;
			end = i;
		}
		i++;
603

604 605
		/*
		 * Now read in the block.  If this is a directory
606
		 * block, check the entries as we read them to see if
607 608
		 * it references another block, and push it in that case.
		 */
609
		for (; i < end; i++) {
610 611
			ret = read_rom(device, generation, i, &rom[i]);
			if (ret != RCODE_COMPLETE)
612
				goto out;
613

614
			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
615 616 617 618 619 620 621 622
				continue;
			/*
			 * Offset points outside the ROM.  May be a firmware
			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
			 * 7.7.18).  Simply overwrite this pointer here by a
			 * fake immediate entry so that later iterators over
			 * the ROM don't have to check offsets all the time.
			 */
623
			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
624 625 626 627
				fw_err(card,
				       "skipped unsupported ROM entry %x at %llx\n",
				       rom[i],
				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
628 629 630 631
				rom[i] = 0;
				continue;
			}
			stack[sp++] = i + rom[i];
632 633 634 635 636
		}
		if (length < i)
			length = i;
	}

637 638
	old_rom = device->config_rom;
	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
639 640
	if (new_rom == NULL) {
		ret = -ENOMEM;
641
		goto out;
642
	}
643 644 645

	down_write(&fw_device_rwsem);
	device->config_rom = new_rom;
646
	device->config_rom_length = length;
647 648 649
	up_write(&fw_device_rwsem);

	kfree(old_rom);
650
	ret = RCODE_COMPLETE;
651 652 653
	device->max_rec	= rom[2] >> 12 & 0xf;
	device->cmc	= rom[2] >> 30 & 1;
	device->irmc	= rom[2] >> 31 & 1;
654 655
 out:
	kfree(rom);
656

657
	return ret;
658 659 660 661 662 663
}

static void fw_unit_release(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);

664
	fw_device_put(fw_parent_device(unit));
665 666 667
	kfree(unit);
}

668 669 670 671 672
static struct device_type fw_unit_type = {
	.uevent		= fw_unit_uevent,
	.release	= fw_unit_release,
};

673
static bool is_fw_unit(struct device *dev)
674
{
675
	return dev->type == &fw_unit_type;
676 677 678 679 680 681 682 683 684 685 686 687 688 689
}

static void create_units(struct fw_device *device)
{
	struct fw_csr_iterator ci;
	struct fw_unit *unit;
	int key, value, i;

	i = 0;
	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key != (CSR_UNIT | CSR_DIRECTORY))
			continue;

690 691 692 693
		/*
		 * Get the address of the unit directory and try to
		 * match the drivers id_tables against it.
		 */
694
		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
695
		if (unit == NULL) {
696
			fw_err(device->card, "out of memory for unit\n");
697 698 699 700 701
			continue;
		}

		unit->directory = ci.p + value - 1;
		unit->device.bus = &fw_bus_type;
702
		unit->device.type = &fw_unit_type;
703
		unit->device.parent = &device->device;
704
		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
705

706 707 708
		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
				ARRAY_SIZE(fw_unit_attributes) +
				ARRAY_SIZE(config_rom_attributes));
709 710 711
		init_fw_attribute_group(&unit->device,
					fw_unit_attributes,
					&unit->attribute_group);
712

713 714 715
		if (device_register(&unit->device) < 0)
			goto skip_unit;

716
		fw_device_get(device);
717 718 719 720
		continue;

	skip_unit:
		kfree(unit);
721 722 723 724 725
	}
}

static int shutdown_unit(struct device *device, void *data)
{
726
	device_unregister(device);
727 728 729 730

	return 0;
}

731 732 733 734 735 736 737 738
/*
 * fw_device_rwsem acts as dual purpose mutex:
 *   - serializes accesses to fw_device_idr,
 *   - serializes accesses to fw_device.config_rom/.config_rom_length and
 *     fw_unit.directory, unless those accesses happen at safe occasions
 */
DECLARE_RWSEM(fw_device_rwsem);

739
DEFINE_IDR(fw_device_idr);
740 741
int fw_cdev_major;

742
struct fw_device *fw_device_get_by_devt(dev_t devt)
743 744 745
{
	struct fw_device *device;

746
	down_read(&fw_device_rwsem);
747
	device = idr_find(&fw_device_idr, MINOR(devt));
748 749
	if (device)
		fw_device_get(device);
750
	up_read(&fw_device_rwsem);
751 752 753 754

	return device;
}

755 756
struct workqueue_struct *fw_workqueue;
EXPORT_SYMBOL(fw_workqueue);
757 758 759 760

static void fw_schedule_device_work(struct fw_device *device,
				    unsigned long delay)
{
761
	queue_delayed_work(fw_workqueue, &device->work, delay);
762 763
}

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
/*
 * These defines control the retry behavior for reading the config
 * rom.  It shouldn't be necessary to tweak these; if the device
 * doesn't respond to a config rom read within 10 seconds, it's not
 * going to respond at all.  As for the initial delay, a lot of
 * devices will be able to respond within half a second after bus
 * reset.  On the other hand, it's not really worth being more
 * aggressive than that, since it scales pretty well; if 10 devices
 * are plugged in, they're all getting read within one second.
 */

#define MAX_RETRIES	10
#define RETRY_DELAY	(3 * HZ)
#define INITIAL_DELAY	(HZ / 2)
#define SHUTDOWN_DELAY	(2 * HZ)

780 781 782 783
static void fw_device_shutdown(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
784 785
	int minor = MINOR(device->device.devt);

786 787
	if (time_before64(get_jiffies_64(),
			  device->card->reset_jiffies + SHUTDOWN_DELAY)
788
	    && !list_empty(&device->card->link)) {
789
		fw_schedule_device_work(device, SHUTDOWN_DELAY);
790 791 792 793 794 795 796 797
		return;
	}

	if (atomic_cmpxchg(&device->state,
			   FW_DEVICE_GONE,
			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
		return;

798
	fw_device_cdev_remove(device);
799 800
	device_for_each_child(&device->device, NULL, shutdown_unit);
	device_unregister(&device->device);
801

802
	down_write(&fw_device_rwsem);
803
	idr_remove(&fw_device_idr, minor);
804
	up_write(&fw_device_rwsem);
805

806
	fw_device_put(device);
807 808
}

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
static void fw_device_release(struct device *dev)
{
	struct fw_device *device = fw_device(dev);
	struct fw_card *card = device->card;
	unsigned long flags;

	/*
	 * Take the card lock so we don't set this to NULL while a
	 * FW_NODE_UPDATED callback is being handled or while the
	 * bus manager work looks at this node.
	 */
	spin_lock_irqsave(&card->lock, flags);
	device->node->data = NULL;
	spin_unlock_irqrestore(&card->lock, flags);

	fw_node_put(device->node);
	kfree(device->config_rom);
	kfree(device);
	fw_card_put(card);
}

830
static struct device_type fw_device_type = {
831
	.release = fw_device_release,
832 833
};

834 835 836 837 838
static bool is_fw_device(struct device *dev)
{
	return dev->type == &fw_device_type;
}

839 840 841 842 843 844
static int update_unit(struct device *dev, void *data)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_driver *driver = (struct fw_driver *)dev->driver;

	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
845
		device_lock(dev);
846
		driver->update(unit);
847
		device_unlock(dev);
848 849 850 851 852 853 854 855 856 857 858 859 860
	}

	return 0;
}

static void fw_device_update(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);

	fw_device_cdev_update(device);
	device_for_each_child(&device->device, NULL, update_unit);
}
861

862
/*
863 864 865 866
 * If a device was pending for deletion because its node went away but its
 * bus info block and root directory header matches that of a newly discovered
 * device, revive the existing fw_device.
 * The newly allocated fw_device becomes obsolete instead.
867
 */
868 869 870 871 872 873 874
static int lookup_existing_device(struct device *dev, void *data)
{
	struct fw_device *old = fw_device(dev);
	struct fw_device *new = data;
	struct fw_card *card = new->card;
	int match = 0;

875 876 877
	if (!is_fw_device(dev))
		return 0;

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
	down_read(&fw_device_rwsem); /* serialize config_rom access */
	spin_lock_irq(&card->lock);  /* serialize node access */

	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
	    atomic_cmpxchg(&old->state,
			   FW_DEVICE_GONE,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
		struct fw_node *current_node = new->node;
		struct fw_node *obsolete_node = old->node;

		new->node = obsolete_node;
		new->node->data = new;
		old->node = current_node;
		old->node->data = old;

		old->max_speed = new->max_speed;
		old->node_id = current_node->node_id;
		smp_wmb();  /* update node_id before generation */
		old->generation = card->generation;
		old->config_rom_retries = 0;
898
		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
899

900
		PREPARE_DELAYED_WORK(&old->work, fw_device_update);
901
		fw_schedule_device_work(old, 0);
902 903 904 905 906 907 908 909 910 911 912 913

		if (current_node == card->root_node)
			fw_schedule_bm_work(card, 0);

		match = 1;
	}

	spin_unlock_irq(&card->lock);
	up_read(&fw_device_rwsem);

	return match;
}
914

915 916
enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };

917
static void set_broadcast_channel(struct fw_device *device, int generation)
918 919 920 921 922 923 924 925
{
	struct fw_card *card = device->card;
	__be32 data;
	int rcode;

	if (!card->broadcast_channel_allocated)
		return;

926 927 928 929 930 931 932 933 934 935 936 937 938 939
	/*
	 * The Broadcast_Channel Valid bit is required by nodes which want to
	 * transmit on this channel.  Such transmissions are practically
	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
	 * to narrow down to which nodes we send Broadcast_Channel updates.
	 */
	if (!device->irmc || device->max_rec < 8)
		return;

	/*
	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
	 * Perform a read test first.
	 */
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	if (device->bc_implemented == BC_UNKNOWN) {
		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
				device->node_id, generation, device->max_speed,
				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
				&data, 4);
		switch (rcode) {
		case RCODE_COMPLETE:
			if (data & cpu_to_be32(1 << 31)) {
				device->bc_implemented = BC_IMPLEMENTED;
				break;
			}
			/* else fall through to case address error */
		case RCODE_ADDRESS_ERROR:
			device->bc_implemented = BC_UNIMPLEMENTED;
		}
	}

	if (device->bc_implemented == BC_IMPLEMENTED) {
		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
				   BROADCAST_CHANNEL_VALID);
		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
				device->node_id, generation, device->max_speed,
				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
				&data, 4);
	}
}

967 968 969 970 971 972 973 974
int fw_device_set_broadcast_channel(struct device *dev, void *gen)
{
	if (is_fw_device(dev))
		set_broadcast_channel(fw_device(dev), (long)gen);

	return 0;
}

975 976 977 978
static void fw_device_init(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
979
	struct fw_card *card = device->card;
980
	struct device *revived_dev;
981
	int minor, ret;
982

983 984
	/*
	 * All failure paths here set node->data to NULL, so that we
985
	 * don't try to do device_for_each_child() on a kfree()'d
986 987
	 * device.
	 */
988

989 990
	ret = read_config_rom(device, device->generation);
	if (ret != RCODE_COMPLETE) {
991 992
		if (device->config_rom_retries < MAX_RETRIES &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
993
			device->config_rom_retries++;
994
			fw_schedule_device_work(device, RETRY_DELAY);
995
		} else {
996
			if (device->node->link_on)
997 998 999
				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
					  device->node_id,
					  fw_rcode_string(ret));
1000 1001
			if (device->node == card->root_node)
				fw_schedule_bm_work(card, 0);
1002 1003 1004 1005 1006
			fw_device_release(&device->device);
		}
		return;
	}

1007
	revived_dev = device_find_child(card->device,
1008 1009 1010 1011 1012 1013 1014 1015
					device, lookup_existing_device);
	if (revived_dev) {
		put_device(revived_dev);
		fw_device_release(&device->device);

		return;
	}

1016
	device_initialize(&device->device);
1017 1018

	fw_device_get(device);
1019
	down_write(&fw_device_rwsem);
T
Tejun Heo 已提交
1020 1021
	minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
			GFP_KERNEL);
1022
	up_write(&fw_device_rwsem);
1023

T
Tejun Heo 已提交
1024
	if (minor < 0)
1025 1026
		goto error;

1027
	device->device.bus = &fw_bus_type;
1028
	device->device.type = &fw_device_type;
1029
	device->device.parent = card->device;
1030
	device->device.devt = MKDEV(fw_cdev_major, minor);
1031
	dev_set_name(&device->device, "fw%d", minor);
1032

1033 1034 1035
	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
			ARRAY_SIZE(fw_device_attributes) +
			ARRAY_SIZE(config_rom_attributes));
1036 1037 1038
	init_fw_attribute_group(&device->device,
				fw_device_attributes,
				&device->attribute_group);
1039

1040
	if (device_add(&device->device)) {
1041
		fw_err(card, "failed to add device\n");
1042
		goto error_with_cdev;
1043 1044 1045 1046
	}

	create_units(device);

1047 1048
	/*
	 * Transition the device to running state.  If it got pulled
1049 1050 1051 1052 1053
	 * out from under us while we did the intialization work, we
	 * have to shut down the device again here.  Normally, though,
	 * fw_node_event will be responsible for shutting it down when
	 * necessary.  We have to use the atomic cmpxchg here to avoid
	 * racing with the FW_NODE_DESTROYED case in
1054 1055
	 * fw_node_event().
	 */
1056
	if (atomic_cmpxchg(&device->state,
1057 1058 1059
			   FW_DEVICE_INITIALIZING,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
		PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1060
		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1061
	} else {
1062 1063 1064 1065
		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
			  dev_name(&device->device),
			  device->config_rom[3], device->config_rom[4],
			  1 << device->max_speed);
1066
		device->config_rom_retries = 0;
1067

1068
		set_broadcast_channel(device, device->generation);
1069 1070

		add_device_randomness(&device->config_rom[3], 8);
1071
	}
1072

1073 1074
	/*
	 * Reschedule the IRM work if we just finished reading the
1075 1076
	 * root node config rom.  If this races with a bus reset we
	 * just end up running the IRM work a couple of extra times -
1077 1078
	 * pretty harmless.
	 */
1079 1080
	if (device->node == card->root_node)
		fw_schedule_bm_work(card, 0);
1081 1082 1083

	return;

1084
 error_with_cdev:
1085
	down_write(&fw_device_rwsem);
1086
	idr_remove(&fw_device_idr, minor);
1087
	up_write(&fw_device_rwsem);
S
Stefan Richter 已提交
1088
 error:
1089 1090 1091
	fw_device_put(device);		/* fw_device_idr's reference */

	put_device(&device->device);	/* our reference */
1092 1093
}

1094
/* Reread and compare bus info block and header of root directory */
1095 1096
static int reread_config_rom(struct fw_device *device, int generation,
			     bool *changed)
1097 1098
{
	u32 q;
1099
	int i, rcode;
1100 1101

	for (i = 0; i < 6; i++) {
1102 1103 1104
		rcode = read_rom(device, generation, i, &q);
		if (rcode != RCODE_COMPLETE)
			return rcode;
1105 1106

		if (i == 0 && q == 0)
1107
			/* inaccessible (see read_config_rom); retry later */
1108
			return RCODE_BUSY;
1109

1110 1111 1112 1113
		if (q != device->config_rom[i]) {
			*changed = true;
			return RCODE_COMPLETE;
		}
1114 1115
	}

1116 1117
	*changed = false;
	return RCODE_COMPLETE;
1118 1119 1120 1121 1122 1123 1124
}

static void fw_device_refresh(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
	struct fw_card *card = device->card;
1125 1126
	int ret, node_id = device->node_id;
	bool changed;
1127

1128
	ret = reread_config_rom(device, device->generation, &changed);
1129 1130
	if (ret != RCODE_COMPLETE)
		goto failed_config_rom;
1131

1132
	if (!changed) {
1133
		if (atomic_cmpxchg(&device->state,
1134 1135
				   FW_DEVICE_INITIALIZING,
				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
			goto gone;

		fw_device_update(work);
		device->config_rom_retries = 0;
		goto out;
	}

	/*
	 * Something changed.  We keep things simple and don't investigate
	 * further.  We just destroy all previous units and create new ones.
	 */
	device_for_each_child(&device->device, NULL, shutdown_unit);

1149
	ret = read_config_rom(device, device->generation);
1150 1151
	if (ret != RCODE_COMPLETE)
		goto failed_config_rom;
1152

1153
	fw_device_cdev_update(device);
1154 1155
	create_units(device);

1156 1157 1158
	/* Userspace may want to re-read attributes. */
	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);

1159
	if (atomic_cmpxchg(&device->state,
1160 1161
			   FW_DEVICE_INITIALIZING,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1162 1163
		goto gone;

1164
	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1165 1166 1167
	device->config_rom_retries = 0;
	goto out;

1168 1169 1170 1171 1172 1173 1174 1175
 failed_config_rom:
	if (device->config_rom_retries < MAX_RETRIES &&
	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
		device->config_rom_retries++;
		fw_schedule_device_work(device, RETRY_DELAY);
		return;
	}

1176 1177
	fw_notice(card, "giving up on refresh of device %s: %s\n",
		  dev_name(&device->device), fw_rcode_string(ret));
1178
 gone:
1179 1180
	atomic_set(&device->state, FW_DEVICE_GONE);
	PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1181
	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1182 1183
 out:
	if (node_id == card->root_node->node_id)
1184
		fw_schedule_bm_work(card, 0);
1185 1186
}

1187 1188 1189 1190 1191 1192
void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
{
	struct fw_device *device;

	switch (event) {
	case FW_NODE_CREATED:
1193 1194 1195 1196 1197 1198
		/*
		 * Attempt to scan the node, regardless whether its self ID has
		 * the L (link active) flag set or not.  Some broken devices
		 * send L=0 but have an up-and-running link; others send L=1
		 * without actually having a link.
		 */
1199
 create:
1200 1201 1202 1203
		device = kzalloc(sizeof(*device), GFP_ATOMIC);
		if (device == NULL)
			break;

1204 1205
		/*
		 * Do minimal intialization of the device here, the
1206 1207 1208 1209 1210 1211 1212
		 * rest will happen in fw_device_init().
		 *
		 * Attention:  A lot of things, even fw_device_get(),
		 * cannot be done before fw_device_init() finished!
		 * You can basically just check device->state and
		 * schedule work until then, but only while holding
		 * card->lock.
1213
		 */
1214
		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1215
		device->card = fw_card_get(card);
1216 1217 1218
		device->node = fw_node_get(node);
		device->node_id = node->node_id;
		device->generation = card->generation;
1219
		device->is_local = node == card->local_node;
1220
		mutex_init(&device->client_list_mutex);
1221
		INIT_LIST_HEAD(&device->client_list);
1222

1223 1224
		/*
		 * Set the node data to point back to this device so
1225
		 * FW_NODE_UPDATED callbacks can update the node_id
1226 1227
		 * and generation for the device.
		 */
1228 1229
		node->data = device;

1230 1231
		/*
		 * Many devices are slow to respond after bus resets,
1232 1233
		 * especially if they are bus powered and go through
		 * power-up after getting plugged in.  We schedule the
1234 1235
		 * first config rom scan half a second after bus reset.
		 */
1236
		INIT_DELAYED_WORK(&device->work, fw_device_init);
1237
		fw_schedule_device_work(device, INITIAL_DELAY);
1238 1239
		break;

1240
	case FW_NODE_INITIATED_RESET:
1241
	case FW_NODE_LINK_ON:
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
		device = node->data;
		if (device == NULL)
			goto create;

		device->node_id = node->node_id;
		smp_wmb();  /* update node_id before generation */
		device->generation = card->generation;
		if (atomic_cmpxchg(&device->state,
			    FW_DEVICE_RUNNING,
			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1253
			fw_schedule_device_work(device,
1254
				device->is_local ? 0 : INITIAL_DELAY);
1255 1256 1257
		}
		break;

1258
	case FW_NODE_UPDATED:
1259 1260
		device = node->data;
		if (device == NULL)
1261 1262 1263
			break;

		device->node_id = node->node_id;
1264
		smp_wmb();  /* update node_id before generation */
1265
		device->generation = card->generation;
1266 1267
		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1268
			fw_schedule_device_work(device, 0);
1269
		}
1270 1271 1272 1273 1274 1275 1276
		break;

	case FW_NODE_DESTROYED:
	case FW_NODE_LINK_OFF:
		if (!node->data)
			break;

1277 1278
		/*
		 * Destroy the device associated with the node.  There
1279 1280 1281 1282 1283 1284 1285 1286
		 * are two cases here: either the device is fully
		 * initialized (FW_DEVICE_RUNNING) or we're in the
		 * process of reading its config rom
		 * (FW_DEVICE_INITIALIZING).  If it is fully
		 * initialized we can reuse device->work to schedule a
		 * full fw_device_shutdown().  If not, there's work
		 * scheduled to read it's config rom, and we just put
		 * the device in shutdown state to have that code fail
1287 1288
		 * to create the device.
		 */
1289
		device = node->data;
1290
		if (atomic_xchg(&device->state,
1291
				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1292
			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1293
			fw_schedule_device_work(device,
1294
				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1295 1296 1297 1298
		}
		break;
	}
}