core-device.c 33.3 KB
Newer Older
1 2
/*
 * Device probing and sysfs code.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bug.h>
22
#include <linux/ctype.h>
23
#include <linux/delay.h>
24 25
#include <linux/device.h>
#include <linux/errno.h>
26 27
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
28
#include <linux/idr.h>
29
#include <linux/jiffies.h>
30 31
#include <linux/kobject.h>
#include <linux/list.h>
32
#include <linux/mod_devicetable.h>
S
Stefan Richter 已提交
33
#include <linux/module.h>
34
#include <linux/mutex.h>
35
#include <linux/rwsem.h>
36
#include <linux/slab.h>
J
Jay Fenlason 已提交
37
#include <linux/spinlock.h>
38 39 40
#include <linux/string.h>
#include <linux/workqueue.h>

A
Arun Sharma 已提交
41
#include <linux/atomic.h>
S
Stefan Richter 已提交
42
#include <asm/byteorder.h>
43

44
#include "core.h"
45

46
void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
{
	ci->p = p + 1;
	ci->end = ci->p + (p[0] >> 16);
}
EXPORT_SYMBOL(fw_csr_iterator_init);

int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
{
	*key = *ci->p >> 24;
	*value = *ci->p & 0xffffff;

	return ci->p++ < ci->end;
}
EXPORT_SYMBOL(fw_csr_iterator_next);

62
static const u32 *search_leaf(const u32 *directory, int search_key)
63 64 65 66 67 68 69 70 71
{
	struct fw_csr_iterator ci;
	int last_key = 0, key, value;

	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (last_key == search_key &&
		    key == (CSR_DESCRIPTOR | CSR_LEAF))
			return ci.p - 1 + value;
72

73 74
		last_key = key;
	}
75

76 77 78
	return NULL;
}

79
static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
80
{
81 82
	unsigned int quadlets, i;
	char c;
83 84 85 86

	if (!size || !buf)
		return -EINVAL;

87
	quadlets = min(block[0] >> 16, 256U);
88 89 90 91 92 93 94 95 96
	if (quadlets < 2)
		return -ENODATA;

	if (block[1] != 0 || block[2] != 0)
		/* unknown language/character set */
		return -ENODATA;

	block += 3;
	quadlets -= 2;
97 98
	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
		c = block[i / 4] >> (24 - 8 * (i % 4));
99 100
		if (c == '\0')
			break;
101
		buf[i] = c;
102
	}
103 104 105
	buf[i] = '\0';

	return i;
106 107 108
}

/**
109 110 111 112 113
 * fw_csr_string() - reads a string from the configuration ROM
 * @directory:	e.g. root directory or unit directory
 * @key:	the key of the preceding directory entry
 * @buf:	where to put the string
 * @size:	size of @buf, in bytes
114
 *
115 116 117
 * The string is taken from a minimal ASCII text descriptor leaf after
 * the immediate entry with @key.  The string is zero-terminated.
 * Returns strlen(buf) or a negative error code.
118
 */
119
int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
120
{
121
	const u32 *leaf = search_leaf(directory, key);
122 123
	if (!leaf)
		return -ENOENT;
124

125 126 127 128
	return textual_leaf_to_string(leaf, buf, size);
}
EXPORT_SYMBOL(fw_csr_string);

129
static void get_ids(const u32 *directory, int *id)
130 131
{
	struct fw_csr_iterator ci;
132
	int key, value;
133 134 135

	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
136 137 138 139 140 141
		switch (key) {
		case CSR_VENDOR:	id[0] = value; break;
		case CSR_MODEL:		id[1] = value; break;
		case CSR_SPECIFIER_ID:	id[2] = value; break;
		case CSR_VERSION:	id[3] = value; break;
		}
142
	}
143
}
144

145 146 147 148 149
static void get_modalias_ids(struct fw_unit *unit, int *id)
{
	get_ids(&fw_parent_device(unit)->config_rom[5], id);
	get_ids(unit->directory, id);
}
150

151 152 153 154 155 156 157 158 159 160 161 162 163 164
static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
{
	int match = 0;

	if (id[0] == id_table->vendor_id)
		match |= IEEE1394_MATCH_VENDOR_ID;
	if (id[1] == id_table->model_id)
		match |= IEEE1394_MATCH_MODEL_ID;
	if (id[2] == id_table->specifier_id)
		match |= IEEE1394_MATCH_SPECIFIER_ID;
	if (id[3] == id_table->version)
		match |= IEEE1394_MATCH_VERSION;

	return (match & id_table->match_flags) == id_table->match_flags;
165 166
}

167 168
static bool is_fw_unit(struct device *dev);

169 170
static int fw_unit_match(struct device *dev, struct device_driver *drv)
{
171 172 173
	const struct ieee1394_device_id *id_table =
			container_of(drv, struct fw_driver, driver)->id_table;
	int id[] = {0, 0, 0, 0};
174 175 176 177 178

	/* We only allow binding to fw_units. */
	if (!is_fw_unit(dev))
		return 0;

179
	get_modalias_ids(fw_unit(dev), id);
180

181 182
	for (; id_table->match_flags != 0; id_table++)
		if (match_ids(id_table, id))
183 184 185 186 187 188 189
			return 1;

	return 0;
}

static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
{
190
	int id[] = {0, 0, 0, 0};
191

192
	get_modalias_ids(unit, id);
193 194 195

	return snprintf(buffer, buffer_size,
			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
196
			id[0], id[1], id[2], id[3]);
197 198
}

199
static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
200 201 202 203
{
	struct fw_unit *unit = fw_unit(dev);
	char modalias[64];

204
	get_modalias(unit, modalias, sizeof(modalias));
205

206
	if (add_uevent_var(env, "MODALIAS=%s", modalias))
207 208 209 210 211 212
		return -ENOMEM;

	return 0;
}

struct bus_type fw_bus_type = {
213
	.name = "firewire",
214 215 216 217 218 219
	.match = fw_unit_match,
};
EXPORT_SYMBOL(fw_bus_type);

int fw_device_enable_phys_dma(struct fw_device *device)
{
220 221 222 223 224
	int generation = device->generation;

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();

225 226
	return device->card->driver->enable_phys_dma(device->card,
						     device->node_id,
227
						     generation);
228 229 230
}
EXPORT_SYMBOL(fw_device_enable_phys_dma);

231 232 233 234 235
struct config_rom_attribute {
	struct device_attribute attr;
	u32 key;
};

236 237
static ssize_t show_immediate(struct device *dev,
			      struct device_attribute *dattr, char *buf)
238 239 240 241
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
	struct fw_csr_iterator ci;
242
	const u32 *dir;
243 244 245
	int key, value, ret = -ENOENT;

	down_read(&fw_device_rwsem);
246 247 248 249 250 251 252 253

	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

	fw_csr_iterator_init(&ci, dir);
	while (fw_csr_iterator_next(&ci, &key, &value))
254 255 256 257 258 259 260
		if (attr->key == key) {
			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
				       "0x%06x\n", value);
			break;
		}

	up_read(&fw_device_rwsem);
261

262
	return ret;
263 264 265 266 267
}

#define IMMEDIATE_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }

268 269
static ssize_t show_text_leaf(struct device *dev,
			      struct device_attribute *dattr, char *buf)
270 271 272
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
273
	const u32 *dir;
274 275 276
	size_t bufsize;
	char dummy_buf[2];
	int ret;
277

278 279
	down_read(&fw_device_rwsem);

280 281 282 283 284
	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

285 286 287 288 289
	if (buf) {
		bufsize = PAGE_SIZE - 1;
	} else {
		buf = dummy_buf;
		bufsize = 1;
290 291
	}

292
	ret = fw_csr_string(dir, attr->key, buf, bufsize);
293

294 295 296 297 298 299
	if (ret >= 0) {
		/* Strip trailing whitespace and add newline. */
		while (ret > 0 && isspace(buf[ret - 1]))
			ret--;
		strcpy(buf + ret, "\n");
		ret++;
300
	}
301

302
	up_read(&fw_device_rwsem);
303

304
	return ret;
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
}

#define TEXT_LEAF_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }

static struct config_rom_attribute config_rom_attributes[] = {
	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
	IMMEDIATE_ATTR(version, CSR_VERSION),
	IMMEDIATE_ATTR(model, CSR_MODEL),
	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
};

321 322 323
static void init_fw_attribute_group(struct device *dev,
				    struct device_attribute *attrs,
				    struct fw_attribute_group *group)
324 325
{
	struct device_attribute *attr;
326 327 328 329
	int i, j;

	for (j = 0; attrs[j].attr.name != NULL; j++)
		group->attrs[j] = &attrs[j].attr;
330 331 332 333 334

	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
		attr = &config_rom_attributes[i].attr;
		if (attr->show(dev, attr, NULL) < 0)
			continue;
335
		group->attrs[j++] = &attr->attr;
336 337
	}

338
	group->attrs[j] = NULL;
339 340 341
	group->groups[0] = &group->group;
	group->groups[1] = NULL;
	group->group.attrs = group->attrs;
342
	dev->groups = (const struct attribute_group **) group->groups;
343 344
}

345 346
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
347 348 349 350 351 352 353 354 355 356
{
	struct fw_unit *unit = fw_unit(dev);
	int length;

	length = get_modalias(unit, buf, PAGE_SIZE);
	strcpy(buf + length, "\n");

	return length + 1;
}

357 358
static ssize_t rom_index_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
359
{
360 361
	struct fw_device *device = fw_device(dev->parent);
	struct fw_unit *unit = fw_unit(dev);
362

363 364
	return snprintf(buf, PAGE_SIZE, "%d\n",
			(int)(unit->directory - device->config_rom));
365 366
}

367 368 369 370
static struct device_attribute fw_unit_attributes[] = {
	__ATTR_RO(modalias),
	__ATTR_RO(rom_index),
	__ATTR_NULL,
371 372
};

373 374
static ssize_t config_rom_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
375
{
376
	struct fw_device *device = fw_device(dev);
377
	size_t length;
378

379 380 381 382
	down_read(&fw_device_rwsem);
	length = device->config_rom_length * 4;
	memcpy(buf, device->config_rom, length);
	up_read(&fw_device_rwsem);
383

384
	return length;
385 386
}

387 388
static ssize_t guid_show(struct device *dev,
			 struct device_attribute *attr, char *buf)
389 390
{
	struct fw_device *device = fw_device(dev);
391 392 393 394 395 396
	int ret;

	down_read(&fw_device_rwsem);
	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
		       device->config_rom[3], device->config_rom[4]);
	up_read(&fw_device_rwsem);
397

398
	return ret;
399 400
}

401
static int units_sprintf(char *buf, const u32 *directory)
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
{
	struct fw_csr_iterator ci;
	int key, value;
	int specifier_id = 0;
	int version = 0;

	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_SPECIFIER_ID:
			specifier_id = value;
			break;
		case CSR_VERSION:
			version = value;
			break;
		}
	}

	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
}

static ssize_t units_show(struct device *dev,
			  struct device_attribute *attr, char *buf)
{
	struct fw_device *device = fw_device(dev);
	struct fw_csr_iterator ci;
	int key, value, i = 0;

	down_read(&fw_device_rwsem);
	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key != (CSR_UNIT | CSR_DIRECTORY))
			continue;
		i += units_sprintf(&buf[i], ci.p + value - 1);
		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
			break;
	}
	up_read(&fw_device_rwsem);

	if (i)
		buf[i - 1] = '\n';

	return i;
}

447 448
static struct device_attribute fw_device_attributes[] = {
	__ATTR_RO(config_rom),
449
	__ATTR_RO(guid),
450
	__ATTR_RO(units),
451
	__ATTR_NULL,
452 453
};

454 455
static int read_rom(struct fw_device *device,
		    int generation, int index, u32 *data)
456
{
457 458
	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
	int i, rcode;
459 460 461

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();
462

463 464 465 466 467 468 469 470
	for (i = 10; i < 100; i += 10) {
		rcode = fw_run_transaction(device->card,
				TCODE_READ_QUADLET_REQUEST, device->node_id,
				generation, device->max_speed, offset, data, 4);
		if (rcode != RCODE_BUSY)
			break;
		msleep(i);
	}
J
Jay Fenlason 已提交
471
	be32_to_cpus(data);
472

J
Jay Fenlason 已提交
473
	return rcode;
474 475
}

476
#define MAX_CONFIG_ROM_SIZE 256
477

478 479 480
/*
 * Read the bus info block, perform a speed probe, and read all of the rest of
 * the config ROM.  We do all this with a cached bus generation.  If the bus
481
 * generation changes under us, read_config_rom will fail and get retried.
482 483
 * It's better to start all over in this case because the node from which we
 * are reading the ROM may have changed the ROM during the reset.
484
 * Returns either a result code or a negative error code.
485
 */
486
static int read_config_rom(struct fw_device *device, int generation)
487
{
488
	struct fw_card *card = device->card;
489 490
	const u32 *old_rom, *new_rom;
	u32 *rom, *stack;
491
	u32 sp, key;
492
	int i, end, length, ret;
493

494 495
	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
496 497 498
	if (rom == NULL)
		return -ENOMEM;

499 500
	stack = &rom[MAX_CONFIG_ROM_SIZE];
	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
501

502 503
	device->max_speed = SCODE_100;

504 505
	/* First read the bus info block. */
	for (i = 0; i < 5; i++) {
506 507
		ret = read_rom(device, generation, i, &rom[i]);
		if (ret != RCODE_COMPLETE)
508
			goto out;
509
		/*
510
		 * As per IEEE1212 7.2, during initialization, devices can
511 512 513 514
		 * reply with a 0 for the first quadlet of the config
		 * rom to indicate that they are booting (for example,
		 * if the firmware is on the disk of a external
		 * harddisk).  In that case we just fail, and the
515 516
		 * retry mechanism will try again later.
		 */
517 518
		if (i == 0 && rom[i] == 0) {
			ret = RCODE_BUSY;
519
			goto out;
520
		}
521 522
	}

523 524 525 526 527 528 529 530 531 532 533 534 535
	device->max_speed = device->node->max_speed;

	/*
	 * Determine the speed of
	 *   - devices with link speed less than PHY speed,
	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
	 *   - all devices if there are 1394b repeaters.
	 * Note, we cannot use the bus info block's link_spd as starting point
	 * because some buggy firmwares set it lower than necessary and because
	 * 1394-1995 nodes do not have the field.
	 */
	if ((rom[2] & 0x7) < device->max_speed ||
	    device->max_speed == SCODE_BETA ||
536
	    card->beta_repeaters_present) {
537 538 539 540
		u32 dummy;

		/* for S1600 and S3200 */
		if (device->max_speed == SCODE_BETA)
541
			device->max_speed = card->link_speed;
542 543

		while (device->max_speed > SCODE_100) {
544 545
			if (read_rom(device, generation, 0, &dummy) ==
			    RCODE_COMPLETE)
546 547 548 549 550
				break;
			device->max_speed--;
		}
	}

551 552
	/*
	 * Now parse the config rom.  The config rom is a recursive
553 554 555
	 * directory structure so we parse it using a stack of
	 * references to the blocks that make up the structure.  We
	 * push a reference to the root directory on the stack to
556 557
	 * start things off.
	 */
558 559 560 561
	length = i;
	sp = 0;
	stack[sp++] = 0xc0000005;
	while (sp > 0) {
562 563
		/*
		 * Pop the next block reference of the stack.  The
564 565
		 * lower 24 bits is the offset into the config rom,
		 * the upper 8 bits are the type of the reference the
566 567
		 * block.
		 */
568 569
		key = stack[--sp];
		i = key & 0xffffff;
570 571
		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
			ret = -ENXIO;
572
			goto out;
573
		}
574 575

		/* Read header quadlet for the block to get the length. */
576 577
		ret = read_rom(device, generation, i, &rom[i]);
		if (ret != RCODE_COMPLETE)
578
			goto out;
579
		end = i + (rom[i] >> 16) + 1;
580
		if (end > MAX_CONFIG_ROM_SIZE) {
581
			/*
582 583 584
			 * This block extends outside the config ROM which is
			 * a firmware bug.  Ignore this whole block, i.e.
			 * simply set a fake block length of 0.
585
			 */
586 587 588
			fw_err(card, "skipped invalid ROM block %x at %llx\n",
			       rom[i],
			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
589 590 591 592
			rom[i] = 0;
			end = i;
		}
		i++;
593

594 595
		/*
		 * Now read in the block.  If this is a directory
596
		 * block, check the entries as we read them to see if
597 598
		 * it references another block, and push it in that case.
		 */
599
		for (; i < end; i++) {
600 601
			ret = read_rom(device, generation, i, &rom[i]);
			if (ret != RCODE_COMPLETE)
602
				goto out;
603

604
			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
605 606 607 608 609 610 611 612
				continue;
			/*
			 * Offset points outside the ROM.  May be a firmware
			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
			 * 7.7.18).  Simply overwrite this pointer here by a
			 * fake immediate entry so that later iterators over
			 * the ROM don't have to check offsets all the time.
			 */
613
			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
614 615 616 617
				fw_err(card,
				       "skipped unsupported ROM entry %x at %llx\n",
				       rom[i],
				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
618 619 620 621
				rom[i] = 0;
				continue;
			}
			stack[sp++] = i + rom[i];
622 623 624 625 626
		}
		if (length < i)
			length = i;
	}

627 628
	old_rom = device->config_rom;
	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
629 630
	if (new_rom == NULL) {
		ret = -ENOMEM;
631
		goto out;
632
	}
633 634 635

	down_write(&fw_device_rwsem);
	device->config_rom = new_rom;
636
	device->config_rom_length = length;
637 638 639
	up_write(&fw_device_rwsem);

	kfree(old_rom);
640
	ret = RCODE_COMPLETE;
641 642 643
	device->max_rec	= rom[2] >> 12 & 0xf;
	device->cmc	= rom[2] >> 30 & 1;
	device->irmc	= rom[2] >> 31 & 1;
644 645
 out:
	kfree(rom);
646

647
	return ret;
648 649 650 651 652 653
}

static void fw_unit_release(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);

654
	fw_device_put(fw_parent_device(unit));
655 656 657
	kfree(unit);
}

658 659 660 661 662
static struct device_type fw_unit_type = {
	.uevent		= fw_unit_uevent,
	.release	= fw_unit_release,
};

663
static bool is_fw_unit(struct device *dev)
664
{
665
	return dev->type == &fw_unit_type;
666 667 668 669 670 671 672 673 674 675 676 677 678 679
}

static void create_units(struct fw_device *device)
{
	struct fw_csr_iterator ci;
	struct fw_unit *unit;
	int key, value, i;

	i = 0;
	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key != (CSR_UNIT | CSR_DIRECTORY))
			continue;

680 681 682 683
		/*
		 * Get the address of the unit directory and try to
		 * match the drivers id_tables against it.
		 */
684
		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
685
		if (unit == NULL) {
686
			fw_err(device->card, "out of memory for unit\n");
687 688 689 690 691
			continue;
		}

		unit->directory = ci.p + value - 1;
		unit->device.bus = &fw_bus_type;
692
		unit->device.type = &fw_unit_type;
693
		unit->device.parent = &device->device;
694
		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
695

696 697 698
		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
				ARRAY_SIZE(fw_unit_attributes) +
				ARRAY_SIZE(config_rom_attributes));
699 700 701
		init_fw_attribute_group(&unit->device,
					fw_unit_attributes,
					&unit->attribute_group);
702

703 704 705
		if (device_register(&unit->device) < 0)
			goto skip_unit;

706
		fw_device_get(device);
707 708 709 710
		continue;

	skip_unit:
		kfree(unit);
711 712 713 714 715
	}
}

static int shutdown_unit(struct device *device, void *data)
{
716
	device_unregister(device);
717 718 719 720

	return 0;
}

721 722 723 724 725 726 727 728
/*
 * fw_device_rwsem acts as dual purpose mutex:
 *   - serializes accesses to fw_device_idr,
 *   - serializes accesses to fw_device.config_rom/.config_rom_length and
 *     fw_unit.directory, unless those accesses happen at safe occasions
 */
DECLARE_RWSEM(fw_device_rwsem);

729
DEFINE_IDR(fw_device_idr);
730 731
int fw_cdev_major;

732
struct fw_device *fw_device_get_by_devt(dev_t devt)
733 734 735
{
	struct fw_device *device;

736
	down_read(&fw_device_rwsem);
737
	device = idr_find(&fw_device_idr, MINOR(devt));
738 739
	if (device)
		fw_device_get(device);
740
	up_read(&fw_device_rwsem);
741 742 743 744

	return device;
}

745 746
struct workqueue_struct *fw_workqueue;
EXPORT_SYMBOL(fw_workqueue);
747 748 749 750

static void fw_schedule_device_work(struct fw_device *device,
				    unsigned long delay)
{
751
	queue_delayed_work(fw_workqueue, &device->work, delay);
752 753
}

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
/*
 * These defines control the retry behavior for reading the config
 * rom.  It shouldn't be necessary to tweak these; if the device
 * doesn't respond to a config rom read within 10 seconds, it's not
 * going to respond at all.  As for the initial delay, a lot of
 * devices will be able to respond within half a second after bus
 * reset.  On the other hand, it's not really worth being more
 * aggressive than that, since it scales pretty well; if 10 devices
 * are plugged in, they're all getting read within one second.
 */

#define MAX_RETRIES	10
#define RETRY_DELAY	(3 * HZ)
#define INITIAL_DELAY	(HZ / 2)
#define SHUTDOWN_DELAY	(2 * HZ)

770 771 772 773
static void fw_device_shutdown(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
774 775
	int minor = MINOR(device->device.devt);

776 777
	if (time_before64(get_jiffies_64(),
			  device->card->reset_jiffies + SHUTDOWN_DELAY)
778
	    && !list_empty(&device->card->link)) {
779
		fw_schedule_device_work(device, SHUTDOWN_DELAY);
780 781 782 783 784 785 786 787
		return;
	}

	if (atomic_cmpxchg(&device->state,
			   FW_DEVICE_GONE,
			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
		return;

788
	fw_device_cdev_remove(device);
789 790
	device_for_each_child(&device->device, NULL, shutdown_unit);
	device_unregister(&device->device);
791

792
	down_write(&fw_device_rwsem);
793
	idr_remove(&fw_device_idr, minor);
794
	up_write(&fw_device_rwsem);
795

796
	fw_device_put(device);
797 798
}

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
static void fw_device_release(struct device *dev)
{
	struct fw_device *device = fw_device(dev);
	struct fw_card *card = device->card;
	unsigned long flags;

	/*
	 * Take the card lock so we don't set this to NULL while a
	 * FW_NODE_UPDATED callback is being handled or while the
	 * bus manager work looks at this node.
	 */
	spin_lock_irqsave(&card->lock, flags);
	device->node->data = NULL;
	spin_unlock_irqrestore(&card->lock, flags);

	fw_node_put(device->node);
	kfree(device->config_rom);
	kfree(device);
	fw_card_put(card);
}

820
static struct device_type fw_device_type = {
821
	.release = fw_device_release,
822 823
};

824 825 826 827 828
static bool is_fw_device(struct device *dev)
{
	return dev->type == &fw_device_type;
}

829 830 831 832 833 834
static int update_unit(struct device *dev, void *data)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_driver *driver = (struct fw_driver *)dev->driver;

	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
835
		device_lock(dev);
836
		driver->update(unit);
837
		device_unlock(dev);
838 839 840 841 842 843 844 845 846 847 848 849 850
	}

	return 0;
}

static void fw_device_update(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);

	fw_device_cdev_update(device);
	device_for_each_child(&device->device, NULL, update_unit);
}
851

852
/*
853 854 855 856
 * If a device was pending for deletion because its node went away but its
 * bus info block and root directory header matches that of a newly discovered
 * device, revive the existing fw_device.
 * The newly allocated fw_device becomes obsolete instead.
857
 */
858 859 860 861 862 863 864
static int lookup_existing_device(struct device *dev, void *data)
{
	struct fw_device *old = fw_device(dev);
	struct fw_device *new = data;
	struct fw_card *card = new->card;
	int match = 0;

865 866 867
	if (!is_fw_device(dev))
		return 0;

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
	down_read(&fw_device_rwsem); /* serialize config_rom access */
	spin_lock_irq(&card->lock);  /* serialize node access */

	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
	    atomic_cmpxchg(&old->state,
			   FW_DEVICE_GONE,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
		struct fw_node *current_node = new->node;
		struct fw_node *obsolete_node = old->node;

		new->node = obsolete_node;
		new->node->data = new;
		old->node = current_node;
		old->node->data = old;

		old->max_speed = new->max_speed;
		old->node_id = current_node->node_id;
		smp_wmb();  /* update node_id before generation */
		old->generation = card->generation;
		old->config_rom_retries = 0;
888
		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
889

890
		PREPARE_DELAYED_WORK(&old->work, fw_device_update);
891
		fw_schedule_device_work(old, 0);
892 893 894 895 896 897 898 899 900 901 902 903

		if (current_node == card->root_node)
			fw_schedule_bm_work(card, 0);

		match = 1;
	}

	spin_unlock_irq(&card->lock);
	up_read(&fw_device_rwsem);

	return match;
}
904

905 906
enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };

907
static void set_broadcast_channel(struct fw_device *device, int generation)
908 909 910 911 912 913 914 915
{
	struct fw_card *card = device->card;
	__be32 data;
	int rcode;

	if (!card->broadcast_channel_allocated)
		return;

916 917 918 919 920 921 922 923 924 925 926 927 928 929
	/*
	 * The Broadcast_Channel Valid bit is required by nodes which want to
	 * transmit on this channel.  Such transmissions are practically
	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
	 * to narrow down to which nodes we send Broadcast_Channel updates.
	 */
	if (!device->irmc || device->max_rec < 8)
		return;

	/*
	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
	 * Perform a read test first.
	 */
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	if (device->bc_implemented == BC_UNKNOWN) {
		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
				device->node_id, generation, device->max_speed,
				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
				&data, 4);
		switch (rcode) {
		case RCODE_COMPLETE:
			if (data & cpu_to_be32(1 << 31)) {
				device->bc_implemented = BC_IMPLEMENTED;
				break;
			}
			/* else fall through to case address error */
		case RCODE_ADDRESS_ERROR:
			device->bc_implemented = BC_UNIMPLEMENTED;
		}
	}

	if (device->bc_implemented == BC_IMPLEMENTED) {
		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
				   BROADCAST_CHANNEL_VALID);
		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
				device->node_id, generation, device->max_speed,
				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
				&data, 4);
	}
}

957 958 959 960 961 962 963 964
int fw_device_set_broadcast_channel(struct device *dev, void *gen)
{
	if (is_fw_device(dev))
		set_broadcast_channel(fw_device(dev), (long)gen);

	return 0;
}

965 966 967 968
static void fw_device_init(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
969
	struct fw_card *card = device->card;
970
	struct device *revived_dev;
971
	int minor, ret;
972

973 974
	/*
	 * All failure paths here set node->data to NULL, so that we
975
	 * don't try to do device_for_each_child() on a kfree()'d
976 977
	 * device.
	 */
978

979 980
	ret = read_config_rom(device, device->generation);
	if (ret != RCODE_COMPLETE) {
981 982
		if (device->config_rom_retries < MAX_RETRIES &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
983
			device->config_rom_retries++;
984
			fw_schedule_device_work(device, RETRY_DELAY);
985
		} else {
986
			if (device->node->link_on)
987 988 989
				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
					  device->node_id,
					  fw_rcode_string(ret));
990 991
			if (device->node == card->root_node)
				fw_schedule_bm_work(card, 0);
992 993 994 995 996
			fw_device_release(&device->device);
		}
		return;
	}

997
	revived_dev = device_find_child(card->device,
998 999 1000 1001 1002 1003 1004 1005
					device, lookup_existing_device);
	if (revived_dev) {
		put_device(revived_dev);
		fw_device_release(&device->device);

		return;
	}

1006
	device_initialize(&device->device);
1007 1008

	fw_device_get(device);
1009
	down_write(&fw_device_rwsem);
1010
	ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
1011 1012
	      idr_get_new(&fw_device_idr, device, &minor) :
	      -ENOMEM;
1013
	up_write(&fw_device_rwsem);
1014

1015
	if (ret < 0)
1016 1017
		goto error;

1018
	device->device.bus = &fw_bus_type;
1019
	device->device.type = &fw_device_type;
1020
	device->device.parent = card->device;
1021
	device->device.devt = MKDEV(fw_cdev_major, minor);
1022
	dev_set_name(&device->device, "fw%d", minor);
1023

1024 1025 1026
	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
			ARRAY_SIZE(fw_device_attributes) +
			ARRAY_SIZE(config_rom_attributes));
1027 1028 1029
	init_fw_attribute_group(&device->device,
				fw_device_attributes,
				&device->attribute_group);
1030

1031
	if (device_add(&device->device)) {
1032
		fw_err(card, "failed to add device\n");
1033
		goto error_with_cdev;
1034 1035 1036 1037
	}

	create_units(device);

1038 1039
	/*
	 * Transition the device to running state.  If it got pulled
1040 1041 1042 1043 1044
	 * out from under us while we did the intialization work, we
	 * have to shut down the device again here.  Normally, though,
	 * fw_node_event will be responsible for shutting it down when
	 * necessary.  We have to use the atomic cmpxchg here to avoid
	 * racing with the FW_NODE_DESTROYED case in
1045 1046
	 * fw_node_event().
	 */
1047
	if (atomic_cmpxchg(&device->state,
1048 1049 1050
			   FW_DEVICE_INITIALIZING,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
		PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1051
		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1052
	} else {
1053 1054 1055 1056
		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
			  dev_name(&device->device),
			  device->config_rom[3], device->config_rom[4],
			  1 << device->max_speed);
1057
		device->config_rom_retries = 0;
1058

1059
		set_broadcast_channel(device, device->generation);
1060
	}
1061

1062 1063
	/*
	 * Reschedule the IRM work if we just finished reading the
1064 1065
	 * root node config rom.  If this races with a bus reset we
	 * just end up running the IRM work a couple of extra times -
1066 1067
	 * pretty harmless.
	 */
1068 1069
	if (device->node == card->root_node)
		fw_schedule_bm_work(card, 0);
1070 1071 1072

	return;

1073
 error_with_cdev:
1074
	down_write(&fw_device_rwsem);
1075
	idr_remove(&fw_device_idr, minor);
1076
	up_write(&fw_device_rwsem);
S
Stefan Richter 已提交
1077
 error:
1078 1079 1080
	fw_device_put(device);		/* fw_device_idr's reference */

	put_device(&device->device);	/* our reference */
1081 1082
}

1083
/* Reread and compare bus info block and header of root directory */
1084 1085
static int reread_config_rom(struct fw_device *device, int generation,
			     bool *changed)
1086 1087
{
	u32 q;
1088
	int i, rcode;
1089 1090

	for (i = 0; i < 6; i++) {
1091 1092 1093
		rcode = read_rom(device, generation, i, &q);
		if (rcode != RCODE_COMPLETE)
			return rcode;
1094 1095

		if (i == 0 && q == 0)
1096
			/* inaccessible (see read_config_rom); retry later */
1097
			return RCODE_BUSY;
1098

1099 1100 1101 1102
		if (q != device->config_rom[i]) {
			*changed = true;
			return RCODE_COMPLETE;
		}
1103 1104
	}

1105 1106
	*changed = false;
	return RCODE_COMPLETE;
1107 1108 1109 1110 1111 1112 1113
}

static void fw_device_refresh(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
	struct fw_card *card = device->card;
1114 1115
	int ret, node_id = device->node_id;
	bool changed;
1116

1117 1118
	ret = reread_config_rom(device, device->generation, &changed);
	if (ret != RCODE_COMPLETE) {
1119 1120 1121
		if (device->config_rom_retries < MAX_RETRIES / 2 &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
			device->config_rom_retries++;
1122
			fw_schedule_device_work(device, RETRY_DELAY / 2);
1123 1124 1125 1126

			return;
		}
		goto give_up;
1127
	}
1128

1129
	if (!changed) {
1130
		if (atomic_cmpxchg(&device->state,
1131 1132
				   FW_DEVICE_INITIALIZING,
				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
			goto gone;

		fw_device_update(work);
		device->config_rom_retries = 0;
		goto out;
	}

	/*
	 * Something changed.  We keep things simple and don't investigate
	 * further.  We just destroy all previous units and create new ones.
	 */
	device_for_each_child(&device->device, NULL, shutdown_unit);

1146 1147
	ret = read_config_rom(device, device->generation);
	if (ret != RCODE_COMPLETE) {
1148 1149 1150
		if (device->config_rom_retries < MAX_RETRIES &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
			device->config_rom_retries++;
1151
			fw_schedule_device_work(device, RETRY_DELAY);
1152 1153 1154 1155 1156 1157

			return;
		}
		goto give_up;
	}

1158
	fw_device_cdev_update(device);
1159 1160
	create_units(device);

1161 1162 1163
	/* Userspace may want to re-read attributes. */
	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);

1164
	if (atomic_cmpxchg(&device->state,
1165 1166
			   FW_DEVICE_INITIALIZING,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1167 1168
		goto gone;

1169
	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1170 1171 1172 1173
	device->config_rom_retries = 0;
	goto out;

 give_up:
1174 1175
	fw_notice(card, "giving up on refresh of device %s: %s\n",
		  dev_name(&device->device), fw_rcode_string(ret));
1176
 gone:
1177 1178
	atomic_set(&device->state, FW_DEVICE_GONE);
	PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1179
	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1180 1181
 out:
	if (node_id == card->root_node->node_id)
1182
		fw_schedule_bm_work(card, 0);
1183 1184
}

1185 1186 1187 1188 1189 1190
void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
{
	struct fw_device *device;

	switch (event) {
	case FW_NODE_CREATED:
1191 1192 1193 1194 1195 1196
		/*
		 * Attempt to scan the node, regardless whether its self ID has
		 * the L (link active) flag set or not.  Some broken devices
		 * send L=0 but have an up-and-running link; others send L=1
		 * without actually having a link.
		 */
1197
 create:
1198 1199 1200 1201
		device = kzalloc(sizeof(*device), GFP_ATOMIC);
		if (device == NULL)
			break;

1202 1203
		/*
		 * Do minimal intialization of the device here, the
1204 1205 1206 1207 1208 1209 1210
		 * rest will happen in fw_device_init().
		 *
		 * Attention:  A lot of things, even fw_device_get(),
		 * cannot be done before fw_device_init() finished!
		 * You can basically just check device->state and
		 * schedule work until then, but only while holding
		 * card->lock.
1211
		 */
1212
		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1213
		device->card = fw_card_get(card);
1214 1215 1216
		device->node = fw_node_get(node);
		device->node_id = node->node_id;
		device->generation = card->generation;
1217
		device->is_local = node == card->local_node;
1218
		mutex_init(&device->client_list_mutex);
1219
		INIT_LIST_HEAD(&device->client_list);
1220

1221 1222
		/*
		 * Set the node data to point back to this device so
1223
		 * FW_NODE_UPDATED callbacks can update the node_id
1224 1225
		 * and generation for the device.
		 */
1226 1227
		node->data = device;

1228 1229
		/*
		 * Many devices are slow to respond after bus resets,
1230 1231
		 * especially if they are bus powered and go through
		 * power-up after getting plugged in.  We schedule the
1232 1233
		 * first config rom scan half a second after bus reset.
		 */
1234
		INIT_DELAYED_WORK(&device->work, fw_device_init);
1235
		fw_schedule_device_work(device, INITIAL_DELAY);
1236 1237
		break;

1238
	case FW_NODE_INITIATED_RESET:
1239
	case FW_NODE_LINK_ON:
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
		device = node->data;
		if (device == NULL)
			goto create;

		device->node_id = node->node_id;
		smp_wmb();  /* update node_id before generation */
		device->generation = card->generation;
		if (atomic_cmpxchg(&device->state,
			    FW_DEVICE_RUNNING,
			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1251
			fw_schedule_device_work(device,
1252
				device->is_local ? 0 : INITIAL_DELAY);
1253 1254 1255
		}
		break;

1256
	case FW_NODE_UPDATED:
1257 1258
		device = node->data;
		if (device == NULL)
1259 1260 1261
			break;

		device->node_id = node->node_id;
1262
		smp_wmb();  /* update node_id before generation */
1263
		device->generation = card->generation;
1264 1265
		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1266
			fw_schedule_device_work(device, 0);
1267
		}
1268 1269 1270 1271 1272 1273 1274
		break;

	case FW_NODE_DESTROYED:
	case FW_NODE_LINK_OFF:
		if (!node->data)
			break;

1275 1276
		/*
		 * Destroy the device associated with the node.  There
1277 1278 1279 1280 1281 1282 1283 1284
		 * are two cases here: either the device is fully
		 * initialized (FW_DEVICE_RUNNING) or we're in the
		 * process of reading its config rom
		 * (FW_DEVICE_INITIALIZING).  If it is fully
		 * initialized we can reuse device->work to schedule a
		 * full fw_device_shutdown().  If not, there's work
		 * scheduled to read it's config rom, and we just put
		 * the device in shutdown state to have that code fail
1285 1286
		 * to create the device.
		 */
1287
		device = node->data;
1288
		if (atomic_xchg(&device->state,
1289
				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1290
			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1291
			fw_schedule_device_work(device,
1292
				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1293 1294 1295 1296
		}
		break;
	}
}